Preview

Mathematical notes of NEFU

Advanced search

On a hidden attractor of one asymmetric gene network model

https://doi.org/10.25587/2411-9326-2024-2-3-13

Abstract

We consider a model of simplest circular gene network regulated by one negative and two positive feedbacks. The model is represented in the form of 3-dimensional dynamical system with piecewise linear threshold righthand sides. In the phase portrait of this system, we describe a hidden attractor. Conditions of existence and uniqueness of a cycle of this system are established.

About the Authors

V. P. Golubyatnikov
Novosibirsk State University
Russian Federation

Vladimir P. Golubyatnikov

1 Pirogov Street, 630090 Novosibirsk



E. A. Sitnyakovskaya
Novosibirsk State University
Russian Federation

Elizaveta A. Sitnyakovskaya

1 Pirogov Street, 630090 Novosibirsk



References

1. Glass L., “Combinatorial and topological methods in nonlinear chemical kinetics,” J. Chem. Phys., 63, No. 4, 1325–1335 (1975).

2. Glass L. and Pasternack J. S., “Stable oscillations in mathematical models of biological control systems,” J. Math. Biol., 6, 207–223 (1978).

3. Kolchanov N. F., Ananko E. A., Likhoshvai V. A., Podkolodnaya O. A., Ignatieva E. V., Ratushnyi A. V., and Matushkin Yu. G., “Gene networks description and modeling in the GeneNet system,” Ch. 7, pp. 149–180, In: Gene Regulation and Metabolism (J. ColladoVides, R. Hofestadt, eds.), The MIT Press, Cambridge, MA (2002).

4. Golubyatnikov V. P., Gaidov Yu. A., Kleshchev A. G., and Volokitin E. P., “Modeling of asymmetric gene networks functioning with different types of regulation,” Biophys., 51, suppl. 1, 61–65 (2006).

5. Ayupova N. B. and Golubyatnikov V. P., “On a cycle in a 5-dimensional circular gene network model,” J. Appl. Ind. Math., 15, No. 3, 376–383 (2021).

6. Mallet-Paret J. and Smith H. L., “The Poincar´e–Bendixson theorem for monotone cyclic feedback systems,” J. Dyn. Differ. Equ., 2, No. 4, 367–421 (1990).

7. Kolesov A. Yu., Rozov N. Kh., and Sadovnichiy V. A., “Periodic solutions of traveling-wave type in circular gene networks,” Izv. RAN, Ser. Mat., 80, No. 3, 67–94 (2016).

8. Shen S., Ma Y., Ren Y., and Wei D., “Construction of an oscillator gene circuit by negative and positive feedbacks,” J. Microbiol. Biotechnol., 26, No. 1, 139–144 (2016).

9. Tchuraev R. N. and Ratner V. A., “A continuous approach with threshold characteristics for simulation of gene expression,” in: Molecular Genetic Information Systems. Modelling and Simulation (K. Bellman, ed.), pp. 64–80, Berlin (1983).

10. Tchuraev R. N. and Galimzyanov A. V., “Modeling of actual eukaryotic control gene subnetworks based on the method of generalized threshold models,” Molecular Biol., 35, No. 6, 933–939 (2001).

11. Golubyatnikov V. P. and Minushkina L. S., “Monotonicity of the Poincar´e mapping in some models of circular gene networks,” J. Appl. Ind. Math., 13, No. 3, 472–479 (2019).

12. Yomdin Y., “Semialgebraic complexity of functions,” J. Complexity, 21, 111–148 (2005).

13. Farcot E. and Gouz´e J.-L., “Periodic solutions of piecewise affine gene network models with non uniform decay rates: the case of a negative feedback loop,” Acta Biotheor., 57, No. 4, 429–455 (2009).

14. Llibre J., Novaes D. D., and Texeira M. A., “Maximum number of limit cycles for certain piecewise linear dynamical systems,” Nonlinear Dyn., 82, No. 3, 1159–1175 (2015).

15. Minushkina L. S., “Phase portraits of a block-linear dynamical system in a model for a circular gene network [in Russian],” Mat. Zamet. SVFU, 28, No. 2, 34–46 (2021).

16. Golubyatnikov V. P., Akinshin A. A., Ayupova N. B., and Minushkina L. S., “Stratifications and foliations in phase portraits of gene network models,” Vavilov J. Genetics Breeding, 26, No. 8, 758–764 (2022).

17. Minushkina L. S., “Periodic trajectories of nonlinear circular gene network models [in Russian],” Vladikavk. Mat. Zhurn., 25, No. 4, 80–90 (2023).

18. Golubyatnikov V. P. and Minushkina L. S., “On geometric structure of phase portraits of some piecewise linear dynamical systems,” Tbilisi Math. J., 7, special issue, 49–56 (2021).

19. Kazantsev M. V., “On some properties of the domain graphs of dynamical systems [in Russian],” Sib. Zhurn. Ind. Mat., 18, No. 4, 42–49 (2015).

20. Golubyatnikov V. P., Ayupova N. B., Bondarenko N. E., and Glubokikh A. V., “Hidden attractors and nonlocal oscillations in gene networks models,” Russ. J. Numer. Anal. Math. Model., 39, No. 2, 1–7 (2024).

21. Golubyatnikov V. P., “On non-uniqueness of cycles in 3D models of circular gene networks [in Russian],” Chelyab. Fiz.-Mat. Zhurn., 9, No. 1, 23–34 (2024).

22. Kirillova N. E. and Minushkina L. S., “On discretization of phase portraits of dynamical systems [in Russian],” Izv. Altai Gos. Univ., 108, No. 4, 82–85 (2019).

23. Golubyatnikov V. P. and Kalenykh A. E., “Structure of phase portraits of nonlinear dynamical systems,” J. Math. Sci., 215, No. 4, 475–473 (2016).

24. Dudkowski D., Jafari S., Kapitaniak T., Kuznetsov N. V., Leonov G. A., and Prasad A., “Hidden attractors in dynamical systems,” Phys. Rep., 637, 1–50 (2016).

25. Likhoshvai V. A., Kogai V. V., Fadeev S. I., and Khlebodarova T. M., “On the chaos in gene networks,” J. Bioinform. Comput. Biol., 11, article No. 1340009 (2013).

26. Chumakov G. A. and Chumakova N. A., “Homoclinic cycles in a gene network model [in Russian],” Mat. Zamet. SVFU, 21, No. 4, 97–106 (2014).

27. Kirillova N. E., “On invariant surfaces in gene network model,” J. Appl. Ind. Math., 14, No. 4, 666–671 (2020).


Review

For citations:


Golubyatnikov V.P., Sitnyakovskaya E.A. On a hidden attractor of one asymmetric gene network model. Mathematical notes of NEFU. 2024;31(2):3-13. (In Russ.) https://doi.org/10.25587/2411-9326-2024-2-3-13

Views: 10

JATS XML


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2411-9326 (Print)
ISSN 2587-876X (Online)