Methodology for identifying parameters for a system of differential equations of a mathematical model of creep
https://doi.org/10.25587/2411-9326-2025-1-96-97
Abstract
A method for parametric identification of a system of differential equations for a mathematical model of incomplete reversibility of creep deformation has been developed. Using methods of nonlinear regression analysis, estimates of the random parameters of the system are found based on difference equations. Relationships connecting parameter estimates and coefficients of difference equations were obtained, and iterative procedures for refining parameters were developed. The method was tested on a large amount of experimental data.
About the Author
E. A. AfanasevaRussian Federation
Elena A. Afanaseva
244 Molodogvardeyskaya St., Samara 443100
References
1. Самарин Ю. П. Уравнения состояния материалов со сложными реологическими свойствами. Куйбышев: КГУ, 1979.
2. Самарин Ю. П. Построение экспоненциальных аппроксимаций для кривых ползучести методом последовательного выделения экспоненциальных слагаемых // Проблемы прочности. 1974. № 9. С.
Review
For citations:
Afanaseva E.A. Methodology for identifying parameters for a system of differential equations of a mathematical model of creep. Mathematical notes of NEFU. 2025;32(1):96-97. (In Russ.) https://doi.org/10.25587/2411-9326-2025-1-96-97
JATS XML