Identification of heat transfer coefficient from boundary integral measurement
https://doi.org/10.25587/2411-9326-2025-3-82-94
Abstract
In this article we examine in Sobolev spaces well-posedness questions of inverse problems of recovering the heat transfer coefficient from a collection of integrals of a flux with weight over the boundary. Under some conditions we demonstrate that a unique solution to the problem exists locally in time and depends continuously on the data. The method is constructive and the proposed approach allows us to construct new numerical methods for determining a solution. The proof employs a priori bounds and the contraction mapping principle.
About the Author
O. A. SoldatovRussian Federation
Oleg A. Soldatov
16 Chekhov Street, 628012 Khanty-Mansiisk
References
1. Alifanov O. M., Artyukhin E. A., and Nenarokomov A. V., Inverse Problems in the Study of Complex Heat Transfer [in Russian], Yanus-K, Moscow (2009).
2. Permyakov P. P., Afanas’eva T. A., Varlamov S. P., and Skryabin P. N., “Recovering boundary condition for modeling heat transfer on the surface of soils [in Russian],” Arktika XXI Vek, Gum. Nauki, No. 1, 27–35 (2019).
3. Permyakov P. P., Identification of Parameters in the Mathematical Model of Heat and Moisture Transfer in Frozen Soils [in Russian], Nauka, Novosibirsk (1989).
4. Pyatkov S. G. and Baranchuk V. A., “Determination of the heat transfer coefficient in mathematical models of heat and mass transfer,” Math. Notes, 113, No. 1, 93–108 (2023).
5. Kostin A. B. and Prilepko A. I., ‘On some problems of the reconstruction of a boundary condition for a parabolic equation, II,” Differ. Equ., 32, No. 11, 1515–1525 (1996).
6. Kostin A. B. and Prilepko A. I., “On some problem of the reconstruction of a boundary condition for a parabolic equation, I,” Differ. Equ., 32, No. 1, 113–122 (1996).
7. Pilant M. and Rundell W., “An iteration method for the determination of an unknown boundary condition in a parabolic initial-boundary value problem,” Proc. Edinburgh Math. Soc., 32, 59–71 (1989).
8. Dihn N., Hao D. N., Thanh P. X., and Lesnik D., “Determination of the heat transfer coefficients in transient heat conduction,” Inverse Probl., 29, 095020 (2013).
9. Hao D. N., Huong B. V., Thanh P. X., and Lesnik D., “Identification of nonlinear heat transfer laws from boundary observations,” Appl. Anal., 94, No. 9, 1784–1799 (2014).
10. Slodicka M. and Van Keer R., “Determination of a Robin coefficient in semilinear parabolic problems by means of boundary measurements,” Inverse Probl., 18, 139–152 (2002).
11. Onyango T. T. M., Ingham D.B., Lesnic D., and Slodiscka M., “Determination of a timedependent heat transfer coefficient from non-standard boundary measurements,” Math. Computers Simul., 79, 1577–1584 (2009).
12. Da Silva W. B., Dutra J. C. S., Kopperschimidt C. E. P., Lesnic D., and Aykroyd R. G., “Sequential particle filter estimation of a time-dependent heat transfer coefficient in a multidimensional nonlinear inverse heat conduction problem,” Appl. Math. Model., 89, 654–668 (2021).
13. Slodicka M., Lesnic D., and Onyango T. T. M., “Determination of a time-dependent heat transfer coefficient in a nonlinear inverse heat conduction problem,” Inverse Probl. Sci. Eng., 18, No. 1, 65–81 (2010).
14. Rundell W. and Yin H.-M., “A parabolic inverse problem with an unknown boundary condition,” J. Differ. Equ., 86, 234–242 (1990).
15. R¨osch A., “Second order optimality conditions and stability estimates for the identification of nonlinear heat transfer laws,” in: Control and Estimation of Distributed Parameter Systems, pp. 237–246, Birkh¨auser, Basel (1998) (Int. Ser. Numer. Math.; vol. 126).
16. R¨osch A., “A Gauss–Newton method for the identification of nonlinear heat transfer laws,” in: Optimal Control of Complex Structures, pp. 217–230, Birkh¨auser, Basel (2002) (Int. Ser. Numer. Math.; vol. 139).
17. Onyango T. T. M., Ingham D. B., and Lesnic D., “Reconstruction of boundary condition laws in heat conduction using the boundary element method,” Comput. Math. Appl., 57, 153–168 (2009).
18. Kozhanov A. I., “Linear inverse for some classes of nonlinear nonstationary equations,” Sib. Electron. Math. Rep., 12, 264–275 (2015).
19. Verzhbitskii M. A. and Pyatkov S. G., “On some inverse problems of determining boundary regimes [in Russian],” Mat. Zamet. SVFU, 23, No. 2, 3–18 (2016).
20. Ding M. H., Liu H., and Zheng G. H., ‘On inverse problems for several coupled PDE systems arising in mathematical biology,” J. Math. Biol., 87, No. 86 (2023).
21. Triebel H., Interpolation Theory, Function Spaces, Differential Operators, Deutsch. Verl. Wiss., Berlin (1978).
22. Amann H., “Compact embeddings of vector-valued Sobolev and Besov spaces,” Glas. Mat., 35, No. 1, 161–177 (2000).
23. Ladyzhenskaya O. A., Solonnikov V. A., and Ural’tseva N. N., Linear and Quasi-Linear Equations of Parabolic Type, Amer. Math. Soc., Providence, RI (1968) (Transl. Math. Monogr.; vol. 23).
24. Belonogov V. A. and Pyatkov S. G., “On solvability of some classes of transmission problems in a cylindrical space domain,” Sib. Electron. Math. Rep., 18, No. 1, 176–206 (2021).
25. Belonogov V. A. and Pyatkov S. G., “On some classes of inverse problems of recovering the heat transfer coefficient in stratified media,” Sib. Math. J., 63, No. 2, 206–223 (2022).
Review
For citations:
Soldatov O.A. Identification of heat transfer coefficient from boundary integral measurement. Mathematical notes of NEFU. 2025;32(3):82-94. (In Russ.) https://doi.org/10.25587/2411-9326-2025-3-82-94
JATS XML