Modeling the influence of structure and physical properties of a medium on the nature of propagation of seismic waves from earthquakes
https://doi.org/10.25587/2411-9326-2024-3-82-92
Abstract
A direct dynamic problem of the theory of elasticity is considered, which models the formation of seismic wave fields from earthquakes that occur during tectonic processes in the lower layers of Earth’s crust. The numerical solution to the stated problem is based on the method of complexing the analytical Laguerre transform and the finite difference method. A series of numerical calculations for a test model of media has been carried out.
About the Authors
Kh. Kh. ImomnazarovRussian Federation
Kholmatzhon Kh. Imomnazarov
6 Lavrentiev Avenue, Novosibirsk 630090
A. A. Mikhailov
Russian Federation
Aleksandr A. Mikhailov
6 Lavrentiev Avenue, Novosibirsk 630090
I. K. Iskandarov
Russian Federation
Ilkham K. Iskandarov
136 Tikhookeanskaya Street, Khabarovsk 680035
References
1. Mikhailenko B. G., “Spectral Laguerre method for the approximate solution of time dependent problems,” Appl. Math. Lett., No. 12, 105–110 (1999).
2. Konyukh G. V., Mikhailenko B. G., and Mikhailov A. A., “Application of the integral Laguerre transforms for forward seismic modeling,” J. Comput. Acoust., 9, No. 4, 1523–1541 (2001).
3. Mikhailenko B. G., Mikhailov A. A., and Reshetova G. V., “Numerical modeling of transient seismic fields in viscoelastic media based on the Laguerre spectral method,” Pure Appl. Geophys., No. 160, 1207–1224 (2003).
4. Mikhailenko B. G., Mikhailov A. A., and Reshetova G. V., “Numerical viscoelastic modeling by the spectral Laguerre method,” Geophys. Prospect., No. 51, 37–48 (2003).
5. Godunov S. K., Equations of Mathematical Physics [in Russian], Nauka, Moscow (1971).
6. Tikhonov A. N. and Samarsky A. A., Equations of Mathematical Physics [in Russian], Nauka, Moscow (2004).
7. Konovalov A. N. and Popov Yu. P., “Optimal explicitly solvable discrete models with controlled imbalance of total mechanical energy for dynamic problems of linear theory of elasticity,” Sib. Math. J., 56, No. 5, 1092–1099 (2015).
8. Levander A. R., “Fourth-order finite-difference P-SV seismograms,” Geophys., 53, 1425–1436 (1988).
9. Saad Y. and Van der Vorst H. A., “Iterative solution of linear systems in the 20th century,” J. Comput. Appl. Math., No. 123, 1–33 (2000).
10. Sonneveld P., “CGS, a fast Lanczos-type solver for nonsymmetric linear system,” SIAM J. Sci. Stat. Comput., No. 10, 36–52 (1989).
11. Nielsen C. and Thybo H., “Lower crustal intrusions beneath the southern Baikal Rift Zone: Evidence from full-waveform modeling of wide-angle seismic data,” Tectonophys., 470, No. 3, 298–318 (2009).
12. Mikhailov A., Imomnazarov Kh., Iskandarov I., and Omonov A., “Modeling the seismic waves propagation while earthquakes,” AIP Conf. Proc., 3147, No. 1, 030008 (2024).
Review
For citations:
Imomnazarov Kh.Kh., Mikhailov A.A., Iskandarov I.K. Modeling the influence of structure and physical properties of a medium on the nature of propagation of seismic waves from earthquakes. Mathematical notes of NEFU. 2024;31(3):82-92. (In Russ.) https://doi.org/10.25587/2411-9326-2024-3-82-92
JATS XML