On the Cauchy problem for one system of pseudohyperbolic type
https://doi.org/10.25587/2411-9326-2023-4-3-11
Abstract
We consider the Cauchy problem for one system unsolvable with respect to the highest time derivative. The system under study belongs to the class of pseudohyperbolic systems and describes transverse flexural-torsional vibrations of an elastic rod. We prove the unique solvability of the Cauchy problem in Sobolev spaces and obtain estimates for the solution.
About the Authors
L. N. Bondar′Russian Federation
Lina N. Bondar′
4 Koptyug Avenue, 630090 Novosibirsk
S. B. Mingnarov
Russian Federation
Sanzhar B. Mingnarov
1 Pirogov Street, 630090 Novosibirsk
References
1. Vlasov V. Z., Thin-Walled Elastic Beams, Natl. Sci. Found., Washington, DC (1961).
2. Demidenko G.V.and UspenskiiS. V.,Partial Differential Equations and Systems Not Solvable with Respect to the Highest-Order Derivative, Marcel Dekker, New York; Basel (2003).
3. Demidenko G. V., “Solvability conditions of the Cauchy problem for pseudohyperbolic equations,” Sib. Math. J., 56, No. 6, 1028–1041 (2015).
4. Bondar L. N. and Demidenko G. V., “On well-posedness of the Cauchy problem for pseudohyperbolic equations in weighted Sobolev spaces,” Sib. Math. J., 64, No. 5, 1076–1090 (2023).
5. Fedotov I. and Volevich L. V., “The Cauchy problem for hyperbolic equations not resolved with respect to the highest time derivative,” Russ. J. Math. Phys., 13, No. 3, 278–292 (2006).
6. Gerasimov S. I. and Erofeev V. I., Problems of Wave Dynamics for Structural Elements [in Russian], Ross. Fed. Yad. Tsentr–Vseross. Nauchn.-Issled. Inst. Eksp. Fiz., Sarov (2014).
7. Bishop R. E. D., “Longitudinal waves in beams,” Aeronaut. Q., 3, No. 4, 280–293 (1952).
8. Rao J. S., Advanced Theory of Vibration, Wiley East., New Delhi (1992).
9. Fedotov I., Polyanin A. D., Shatalov M., and Tenkam H. M., “Longitudinal vibration of a Ray leigh–Bishop rod,” Dokl. Phys., 434, 1–6 (2010).
Review
For citations:
Bondar′ L.N., Mingnarov S.B. On the Cauchy problem for one system of pseudohyperbolic type. Mathematical notes of NEFU. 2023;30(4):3-11. (In Russ.) https://doi.org/10.25587/2411-9326-2023-4-3-11
JATS XML