Preview

Mathematical notes of NEFU

Advanced search

On the Cauchy problem for one system of pseudohyperbolic type

https://doi.org/10.25587/2411-9326-2023-4-3-11

Abstract

We consider the Cauchy problem for one system unsolvable with respect to the highest time derivative. The system under study belongs to the class of pseudohyperbolic systems and describes transverse flexural-torsional vibrations of an elastic rod. We prove the unique solvability of the Cauchy problem in Sobolev spaces and obtain estimates for the solution.

About the Authors

L. N. Bondar′
Sobolev Institute of Mathematics
Russian Federation

Lina N. Bondar′

4 Koptyug Avenue, 630090 Novosibirsk



S. B. Mingnarov
Novosibirsk State University
Russian Federation

Sanzhar B. Mingnarov

1 Pirogov Street, 630090 Novosibirsk



References

1. Vlasov V. Z., Thin-Walled Elastic Beams, Natl. Sci. Found., Washington, DC (1961).

2. Demidenko G.V.and UspenskiiS. V.,Partial Differential Equations and Systems Not Solvable with Respect to the Highest-Order Derivative, Marcel Dekker, New York; Basel (2003).

3. Demidenko G. V., “Solvability conditions of the Cauchy problem for pseudohyperbolic equations,” Sib. Math. J., 56, No. 6, 1028–1041 (2015).

4. Bondar L. N. and Demidenko G. V., “On well-posedness of the Cauchy problem for pseudohyperbolic equations in weighted Sobolev spaces,” Sib. Math. J., 64, No. 5, 1076–1090 (2023).

5. Fedotov I. and Volevich L. V., “The Cauchy problem for hyperbolic equations not resolved with respect to the highest time derivative,” Russ. J. Math. Phys., 13, No. 3, 278–292 (2006).

6. Gerasimov S. I. and Erofeev V. I., Problems of Wave Dynamics for Structural Elements [in Russian], Ross. Fed. Yad. Tsentr–Vseross. Nauchn.-Issled. Inst. Eksp. Fiz., Sarov (2014).

7. Bishop R. E. D., “Longitudinal waves in beams,” Aeronaut. Q., 3, No. 4, 280–293 (1952).

8. Rao J. S., Advanced Theory of Vibration, Wiley East., New Delhi (1992).

9. Fedotov I., Polyanin A. D., Shatalov M., and Tenkam H. M., “Longitudinal vibration of a Ray leigh–Bishop rod,” Dokl. Phys., 434, 1–6 (2010).


Review

For citations:


Bondar′ L.N., Mingnarov S.B. On the Cauchy problem for one system of pseudohyperbolic type. Mathematical notes of NEFU. 2023;30(4):3-11. (In Russ.) https://doi.org/10.25587/2411-9326-2023-4-3-11

Views: 7

JATS XML


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2411-9326 (Print)
ISSN 2587-876X (Online)