On existence and uniqueness of a global solution to a quasilinear equation with Gerasimov–Caputo fractional derivatives
https://doi.org/10.25587/2411-9326-2025-1-98-99
Abstract
Issues of the unique global solvability of the Cauchy problem for a class of quasilinear equations in Banach spaces are studied. The equations contain several fractional derivatives of Gerasimov – Caputo in the linear and nonlinear part. The sectoriality condition for a pencil of operators at derivatives in the linear part is used.
About the Author
K. V. BoykoRussian Federation
Kseniya V. Boyko
129 Brat’ev Kashirinyh St., Chelyabinsk 454000
References
1. Бойко К. В. Линейные и квазилинейные уравнения с несколькими производными Герасимова — Капуто // Челяб. физ.-мат. журн. 2024. Т. 9, № 1. С. 5–22.
Review
For citations:
Boyko K.V. On existence and uniqueness of a global solution to a quasilinear equation with Gerasimov–Caputo fractional derivatives. Mathematical notes of NEFU. 2025;32(1):98-99. (In Russ.) https://doi.org/10.25587/2411-9326-2025-1-98-99
JATS XML