Preview

Mathematical notes of NEFU

Advanced search

THE HANKEL––KIPRIANOV––KATRAKHOV TRANSFORM AND SINGULAR K–PSEUDODIFFERENTIAL OPERATORS

https://doi.org/10.25587/2411-9326-2024-1-21-34

Abstract

To study problems with the singular differential Bessel operator Bγ with a negative parameter γ ∈ (10), the paper introduces an integral transformation based on the solution u=Jµ of the singular Bessel equation Bγ u+u=0, which is expressed through the Bessel function of the first kind with a positive parameter µγ+1 . An even and an odd K-Bessel (Hankel–Kipriyanov–Katrakhov) transform as well as a class of singular K-pseudodifferential operators are constructed. The main theorems on the orders of singular K-pseudodifferential operators with symbol from '3m (Sobolev–Kipriyanov function spaces) and a theorem on products and commutators are proved.

About the Author

Yu. N. Bulatov
Bunin Yelets State University,
Russian Federation

28.1 Kommunarov Street, 399770 Yelets, Lipetsk Region



References

1. Lyakhov L. N. and Sanina E. L., “Kipriyanov–Beltrami operator with negative dimension of the Bessel operators and the singular Dirichlet problem for the B-harmonic equation,” Differ. Equ., 56, 1564–1574 (2020).

2. Metzler R., Glockle W. G., and Nonnenmacher Th. F., “Fractional model equation for anomalous diffusion,” Phys. A: Stat. Mech. Appl., 211, No. 1, 13–24 (1994).

3. Lyakhov L. N. and Sanina E. L., “Differential and integral operations in hidden spherical symmetry and the dimension of the Koch curve,” Math. Notes, 113, 502–511 (2023).

4. Sabitov K. B. and Zaitseva N. V., “Initial value problem for B-hyperbolic equation with integral condition of the second kind,” Differ. Equ., 54, 121–133 (2018).

5. Lyakhov L. N., Bulatov Yu. N., Roshchupkin S. A., and Sanina E. L., “Pseudoshift and the fundamental solution of the Kipriyanov ЛB-operator,” Differ. Equ., 58, 1639–1650 (2022).

6. Levitan B. M., “Expansion in Fourier series and integrals with Bessel functions [in Russian],” Usp. Mat. Nauk, 6, No. 2, 102–143 (1961).

7. Kipriyanov I. A., Singular Elliptic Boundary Value Problems [in Russian], Nauka, Moscow (1997).

8. Sabitov K. B. and Zaitseva N. V., “The second initial-boundary value problem for a B-hyperbolic equation,” Russ. Math., 63, 66–76 (2019).

9. Sabitov K. B., “On the uniform convergence of the expansion of a function in the Fourier– Bessel range,” Russ. Math., 66, 79–85 (2022).

10. Lyakhov L. N., Sanina E. L., Roshchupkin S. A., and Bulatov Yu. N., “Fundamental solution of a singular Bessel differential operator with a negative parameter,” Russ. Math., 67, 43–54 (2023).

11. Kipriyanov I. A. and Katrakhov V. V., “On a class of one-dimensional singular pseudodifferential operators,” Math. USSR, Sb., 33, 43–61 (1977).

12. Kipriyanov I. A., “An operator generated by the Fourier–Bessel transform,” Sib. Math. J., 8, No. 3, 433–458 (1967).

13. Kipriyanov I. A. and Lyakhov L. N., “On a class of pseudodifferential operators,” Sov. Math., Dokl., 15, 1319–1322 (1974).

14. Katrakhov V. V. and Lyakhov L. N., “Full Fourier–Bessel transform and the algebra of singular pseudodifferential operators,” Differ. Equ., 47, No. 5, 681–695 (2011).

15. Lyakhov L. N., Roshchupkin S. A., and Bulatov Yu. N., “Kipriyanov singular pseudodifferential operators generated by Bessel J -transform,” J. Math. Sci., 269, 205–216 (2023).

16. Lyakhov L. N. and Bulatov Yu. N., “Composition and commutator of singular J -pseudodifferential Kipriyanov operators in RN ,” Lobachevskii J. Math., 44, 3438–3454 (2023).


Review

For citations:


Bulatov Yu.N. THE HANKEL––KIPRIANOV––KATRAKHOV TRANSFORM AND SINGULAR K–PSEUDODIFFERENTIAL OPERATORS. Mathematical notes of NEFU. 2024;31(1):21-34. (In Russ.) https://doi.org/10.25587/2411-9326-2024-1-21-34

Views: 4

JATS XML


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2411-9326 (Print)
ISSN 2587-876X (Online)