On stability of cycles in some piecewise dynamical systems of mathematical biology
https://doi.org/10.25587/2411-9326-2025-1-4-14
Abstract
For a piecewise linear three-dimensional dynamical system of biochemical kinetics with three-steps righthand sides, we find conditions of existence of two stable cycles in the phase portrait. Toroidal neighborhoods of these cycles are constructed.
About the Authors
A. V. GlubokikhRussian Federation
Alina V. Glubokikh
1 Pirogov Street, Novosibirsk 630090
V. P. Golubyatnikov
Russian Federation
Vladimir P. Golubyatnikov
4 Koptyug Avenue, Novosibirsk 630090
E. P. Volokitin
Russian Federation
Evgenii P. Volokitin
4 Koptyug Avenue, Novosibirsk 630090
References
1. B¨ottner R., Bellman K., Tchuraev R. N., and Ratner V. A., “Modelling of epigenetic networks composed of monogenetic units of gene expression, with reference to bacteriophage lambda development,” in: Molecular Genetic Information System, Modelling and Simulation (K. Bellman, ed.), pp. 81–132, Academie, Berlin (1983).
2. Tchuraev R. N. and Ratner V. A., “A continuous approach with threshold characteristics for simulation of gene expression,” in: Molecular Genetic Information System, Modelling and Simulation (K. Bellman, ed.), pp. 64–80, Academie, Berlin (1983).
3. Murray J. D., Mathematical Biology, vol. 1, Springer, Berlin (2002).
4. System Computational Biology (N. A. Kolchanov, S. S. Goncharov, V. A. Ivanisenko, V. A. Likhoshvai, eds.) [in Russian], SB RAS, Novosibirsk (2008).
5. Golubyatnikov V. P., Gaidov Yu. A., Kleshchev A. G., and Volokitin E. P., “Modeling of asymmetric gene networks functioning with different types of regulation,” Biophys., 51, suppl. 1, 61–65 (2006).
6. Tchuraev R. N. and Galimzyanov A. V., “Modeling of actual eukaryotic control gene subnetworks based on the method of generalized threshold models,” Molecular Biol., 35, No. 6, 933–939 (2001).
7. Gaidov Yu. A. and Golubyatnikov V. P., “On cycles and other geometric phenomena in phase portraits of some nonlinear dynamical system,” in: Geometry and its Applications (V. Rovenskii, P. Walczak, eds.), Springer-Verl., Berlin, pp. 225–233, (2014).
8. Golubyatnikov V. P. and Minushkina L. S., “Monotonicity of the Poincar´e mapping in some models of circular gene networks,” J. Appl. Ind. Math., 13, No. 3, 472–479 (2019).
9. Minushkina L. S. , “Periodic trajectories of nonlinear circular gene networks models,” Sib. Math. J., 63, No. 1, 95–103 (2024).
10. Glass L. and Pasternack J. S., “Stable oscillations in mathematical models of biological control systems,” J. Math. Biol., 6, 207–223 (1978).
11. Golubyatnikov V. P., Akinshin A. A., Ayupova N. B., and Minushkina L. S., “Stratifications and foliations in phase portraits of gene network models,” Vavilov J. Genetics Breeding, 26, No. 8, 758–764 (2022).
12. Ivanov V. V., “Attracting limit cycle of an odd-dimensional circular gene network model,” J. Appl. Ind. Math., 16, No. 3, 409–415 (2022).
13. Golubyatnikov V. P. and Minushkina L. S., “On geometric structure of phase portraits of some piecewise linear dynamical systems,” Tbilisi Math. J., 7, Special Issue, 49–56 (2021).
14. Golubyatnikov V. P. and Ivanov V. V. “Uniqueness and stability of a cycle in 3-dimensional circular block-linear gene network model [in Russian],” Sib. J. Pure Appl. Math., 18, No. 4, 19–28 (2018).
15. Golubyatnikov V. P., Ayupova N. B., Bondarenko N. E., and Glubokikh A. V., “Hidden attractors and nonlocal oscillations in gene networks models,” Russ. J. Numer. Anal. Math. Model., 39, No. 2, 75–81 (2024).
16. Anishchenko V. S., Complicated Oscillations in Simple Systems [in Russian], Nauka, Moscow (1990).
17. Hartman P. Ordinary differential equations. John Wiley, New York (1964).
18. Ayupova N. B., Volokitin E. P., and Golubyatnikov V. P., “Non-local oscillations in gene networks models [in Russian],” Mat. Zamet. SVFU, 31, No. 1, 7–20 (2024).
19. Hirsch M., “Systems of differential equations which are competitive or cooperative I: Limit sets,” SIAM J. Math. Anal., 13, 167–179 (1982).
20. Glyzin S. D., Kolesov A. Yu., and Rozov N. Kh., “Existence and stability of the relaxation cycle in a mathematical repressilator model,” Math. Notes, 101, No. 1, 71–86 (2017).
21. Chumakov G. A. and Chumakova N. A., “Homoclinic cycles in one gene network model [in Russian],” Mat. Zamet. SVFU, 21, No. 14, 97–106 (2014).
22. Likhoshvai V. A., Kogai V. V., Fadeev S. I., and Khlebodarova T. M., “Alternative splicing can lead to chaos,” J. Bioinform. Comput. Biol., 13, 1540003 (2015).
Review
For citations:
Glubokikh A.V., Golubyatnikov V.P., Volokitin E.P. On stability of cycles in some piecewise dynamical systems of mathematical biology. Mathematical notes of NEFU. 2025;32(1):4-14. (In Russ.) https://doi.org/10.25587/2411-9326-2025-1-4-14
JATS XML