Preview

Mathematical notes of NEFU

Advanced search

On existence and uniqueness of a global solution to a quasilinear equation with Gerasimov–Caputo fractional derivatives

https://doi.org/10.25587/2411-9326-2025-1-98-99

Abstract

Issues of the unique global solvability of the Cauchy problem for a class of quasilinear equations in Banach spaces are studied. The equations contain several fractional derivatives of Gerasimov – Caputo in the linear and nonlinear part. The sectoriality condition for a pencil of operators at derivatives in the linear part is used.

About the Author

K. V. Boyko
Chelyabinsk State University
Russian Federation

Kseniya V. Boyko

129 Brat’ev Kashirinyh St., Chelyabinsk 454000



References

1. Бойко К. В. Линейные и квазилинейные уравнения с несколькими производными Герасимова — Капуто // Челяб. физ.-мат. журн. 2024. Т. 9, № 1. С. 5–22.


Review

For citations:


Boyko K.V. On existence and uniqueness of a global solution to a quasilinear equation with Gerasimov–Caputo fractional derivatives. Mathematical notes of NEFU. 2025;32(1):98-99. (In Russ.) https://doi.org/10.25587/2411-9326-2025-1-98-99

Views: 5

JATS XML


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2411-9326 (Print)
ISSN 2587-876X (Online)