Preview

Mathematical notes of NEFU

Advanced search

Mathematical model for calculating carbon dynamics in wetland ecosystems of cold regions of Western Siberia

https://doi.org/10.25587/2411-9326-2024-1-102-115

Abstract

Studying the dynamics of carbon stocks in wetland ecosystems will allow us to more accurately assess the contribution of wetlands to global climate change. This work proposes a zero-dimensional mathematical model that describes the carbon dynamics of a local (at the watershed scale) wetland ecosystem, taking the ambient temperature into account. The proposed model identifies two carbon reservoirs: plant phytomass and organic carbon in mortmass. The main processes of the model include photosynthesis, respiration, phytomass die-off, and carbon leaching by groundwater. Numerical experiments were carried out to show how changes in ambient temperature affect the dynamics of carbon stocks in wetland ecosystems.

About the Authors

S. P. Semenov
Semenov Yugra State University
Russian Federation

Sergey P. 

16 Chekhov Street, Khanty-Mansiysk 628012



E. A. Dyukarev
Yugra State University, UNESCO Chair “Dynamics of the Environment and Global Climate Change” ; Institute of Monitoring of Climatic and Ecological Systems SB RAS, Laboratory of Physics of Climatic Systems
Russian Federation

Egor A. Dyukarev

16 Chekhov Street, Khanty-Mansiysk 628012

10/3 Akademichesky Avenue, Tomsk 634021



A. O. Tashkin
Yugra State University
Russian Federation

Artem O. Tashkin 

16 Chekhov Street, Khanty-Mansiysk 628012



References

1. Melaku N. D., Wang J., and Meshesha T. W., “Modeling the dynamics of carbon dioxide emission and ecosystem exchange using a modified SWAT hydrologic model in cold wetlands,” Water, 14, No. 9, 1458 (2022).

2. Bubier J. B., Gaytri M. T., Roulet N., and Lafleur P., “Spatial and temporal variability in growing-season net ecosystem carbon dioxide exchange at a large peatland in Ontario, Canada,” Ecosystems, No. 6, 353–367 (2003).

3. Kondratyev K. Ya. and Krapivin V. F., Modeling the Global Carbon Cycle [in Russian], Fizmatlit, Moscow (2004).

4. Fedotov A. M., Medvedev S. B., Pestunov A. I., and Pestunov I. A., “On the non-standard behavior of the minimum model of the carbon cycle [in Russian],” Vestn. Novosib. Gos. Univ., Ser. Inform. Tekhnol., 9, No. 1, 82–88 (2011).

5. Bartsev S. I., Degermendzhi A. G., and Erokhin D. V., “Global minimum model of longterm carbon dynamics in the biosphere [in Russian],” Dokl. Akad. Nauk, Geofiz., 401, No. 2, 233–237 (2005).

6. Zhang Y., Li C., Trettin C., and Sun G., “An integrated model of soil, hydrology, and vegetation for carbon dynamics in wetland ecosystems,” Glob. Biogeochem. Cycles, 16, No. 4, 9–17 (2002).

7. Famiglietti C. A., Smallman T. L., Levine P. A., Flack-Prain S., Quetin G. R., Meyer V., Parazoo N. C., Stettz S. G., Yang Y., Bonal D., Bloom A. A., Williams M., and Konings A. G., “Optimal model complexity for terrestrial carbon cycle prediction,” Biogeosci., 18, 2727–2754 (2021).

8. Semenov S. P., Dyukarev E. A., and Tashkin A. O., “Biogeochemical carbon cycles numerical modeling in wetland ecosystems,” Lobachevskii J. Math., 44, No. 3, 1223–1228 (2023).

9. Monteith J. L., “Solar radiation and productivity in tropical ecosystems,” J. Appl. Ecol., 9, 747–766 (1972).

10. Monteith, J. L., “Climate and efficiency of crop production in Britain,” Philos. Trans. R. Soc. Lond., B, 281, 277–294 ( 1977).

11. Goetz S. and Prince S., “Modelling terrestrial carbon exchange and storage: evidence and implications of functional convergence in light-use efficiency,” Adv. Ecol. Res., 28, 57–92 (1999).

12. Tian Y., Zhang Y., Knyazikhin Y., Myneni R. B., Glassy J., Dedieu G., and Running S. W., “Prototyping of MODISLAI and FPAR algorithm with LASUR and LANDSAT data,” IEEE Trans. Geosci. Remote Sens., 38, 2387–2401 (2000).

13. Semenov S. P. and Tashkin A. O., “Analysis of carbon cycle models for research of wetland ecosystems in Western Siberia [in Russian],” Vestn. Yur. Gos. Univ., 18, No. 4, 145–152 (2022).

14. Dong T., Wu B., Meng J., Du X., and Shang J., “Sensitivity analysis of retrieving fraction of absorbed photosynthetically active radiation (FPAR) using remote sensing data,” Acta Ecolog. Sin., 36, No. 1, 1–7 (2016).

15. Deverel S., Oikawa P., Dore S., Mack S., and Silva L., Restoration of California Deltaic and Coastal Wetlands for Climate Change Mitigation, Amer. Carbon Reg., North Little Rock, AR (2017).

16. Davidson E. A., Samanta S., Caramori S. S., and Savage K., “The Dual Arrhenius and Michaelis–Menten kinetics model for decomposition of soil organic matter at hourly to seasonal time scales,” Glob. Change Biol., 18, 371–384 (2012).

17. Tang J. Y. and Riley W. J., “A total quasi-steady-state formulation of substrate uptake kinetics in complex networks and an example application to microbial litter decomposition,” Biogeosci., 10, 8329–8351 (2013).

18. Michaelis L. and Menten M. L., “Die Kinetik der Invertinwirkung,” Biochem. Z., 49, 333–369.

19. Bugmann H., Seidl R., Hartig F., Bohn F., Bruna J., Cailleret M., et al., “Tree mortality submodels drive simulated long-term forest dynamics: assessing 15 models from the stand to global scale,” Ecosphere, 10, paper ID 02616 (2019).

20. Dyukarev E. A. and Kurakov S. A., “Response of bare soil respiration to air and soil temperature variations according to different models: A case study of an urban grassland,” Land, 12, 939 (2023).

21. Maloszewski P. and Zuber A., “Principles and practice of calibration and validation of mathematical models for the interpretation of environmental tracer data in aquifers,” Adv. Water Res., 16, No. 3, 173–190 (1993).

22. Ovchinnikov N. N. and Shikhanova N. M., Photosynthesis [in Russian], Prosveschenie, Moscow (1972).

23. O’Neill R. V., Goldstein R. A., Shugart H. H., and Mankin J. B., Terrestrial ecosystem energy model. Eastern deciduous forest biome memo report Oak Ridge, Environ. Div. Ridge Natl.


Review

For citations:


Semenov S.P., Dyukarev E.A., Tashkin A.O. Mathematical model for calculating carbon dynamics in wetland ecosystems of cold regions of Western Siberia. Mathematical notes of NEFU. 2024;31(1):102-115. (In Russ.) https://doi.org/10.25587/2411-9326-2024-1-102-115

Views: 6

JATS XML


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2411-9326 (Print)
ISSN 2587-876X (Online)