Sharp bounds associated with the Zalcman conjecture for the initial coefficients and second Hankel determinants for certain subclass of analytic functions
https://doi.org/10.25587/SVFU.2023.24.67.007
Аннотация
In this paper, we obtain sharp bounds in the Zalcman conjecture for the initial coefficients, the second Hankel determinant H2,2(f) = a2a4 − a24 and an upper bound for the second Hankel determinant H2,3(f) = a3a5−a24 for the functions belonging to a certain subclass of analytic functions. The practical tools applied in the derivation of our main results are the coefficient inequalities of the Carath´eodory class P.
Ключевые слова
Об авторах
N. VaniИндия
D. Vamshee Krishna
Индия
B. Rath
Россия
Список литературы
1. Pommerenke Ch., “On the coefficients and Hankel determinants of univalent functions,” J. Lond. Math. Soc., 41, 111–122 (1966).
2. Janteng A., Halim S. A. and Darus M., “Hankel determinant for starlike and convex functions,” Int. J. Math. Anal., 1, No. 13, 619–625 (2007).
3. Janteng A., Halim S. A. and Darus M., “Coefficient inequality for a function whose derivative has a positive real part,” J. Inequal. Pure Appl. Math., 7, No. 2, 1–5 (2006).
4. Gurusamy P. and Jayasankar R., “The estimates for second Hankel determinant of Ma–Minda starlike and convex functions,” AIP Conf. Proc., 2282, 020039 (2020).
5. Orhan H., Magesh N., and Balaji V. K., “Second Hankel determinant for certain class of bi-univalent functions defined by Chebyshev polynomials,” Asian-Eur. J. Math., 12, No. 2, Article ID 1950017 (2019).
6. Sim Y. J., Thomas D. K., and Zaprawa P., “The second Hankel determinant for starlike and convex functions of order alpha,” Complex Variables, Elliptic Equ., 67, No. 10, 2423–2443 (2021).
7. Sokol J. and Thomas D. K., “The second Hankel determinant for alpha-convex functions,” Lith. Math. J., 58, No. 2, 212–218 (2018).
8. Zaprawa P., “Second Hankel determinants for the class of typically real functions,” Abstr. Appl. Anal., 2016, Article ID 3792367 (2016).
9. Zaprawa P., “On Hankel determinant H2(3) for univalent functions,” Result. Math., 73, No. 3 (2018).
10. Hern A. L. P., Janteng A., Omar R., “Hankel determinant H2(3) for certain subclasses of univalent functions,” Math. Stat., 8, No. 5, 566–569 (2020).
11. Vamshee Krishna D. and RamReddy T., “Coefficient inequality for certain p-valent analytic functions,” Rocky Mt. J. Math., 44, No. 6, 1941–1959 (2014).
12. Krushkal S. L., “Univalent functions and holomorphic motions,” J. Anal. Math., 66, 253–275 (1995).
13. Krushkal S. L., “Proof of the Zalcman conjecture for initial coefficients,” Georgian Math. J., 17, 663–681 (2010).
14. Brown J. E. and Tsao A., “Proof of the Zalcman conjecture for starlike and typically real functions,” Math. Z., 191, 467–474 (1986).
15. Abu Muhanna Y., Li L., and Ponnusamy S., “Extremal problems on the class of convex functions of order −1/2,” Arch. Math. (Basel), 103, No. 6, 461–471 (2014).
16. Ma W., “The Zalcman conjecture for close-to-convex functions,” Proc. Amer. Math. Soc., 104, 741–744 (1988).
17. Ma W., “Generalized Zalcman conjecture for starlike and typically real functions,” J. Math. AnaL. Appl., 234, 328–339 (1999).
18. Bansal D. and Sokol J., “Zalcman conjecture for some subclass of analytic functions,” J. Fractional Calc., 8, No. 1, 1–5 (2017).
19. Ravichandran V. and Verma S., “Generalized Zalcman conjecture for some classes of analytic functions,” J. Math. Anal. Appl., 450, No. 1, 592–605 (2017).
20. Vamshee Krishna D. and Shalini D., “Certain coefficient inequalities associated with Hankel determinant for a specific subfamily of holomorphic mappings,” Publ. Inst. Math. (Beograd) (N. S.), 111, No. 125, 127–132 (2022).
21. Sakaguchi K., “On a certain univalent mapping,” J. Math. Soc. Japan, 11, 72–75 (1959).
22. Das R. N. and Singh P., “On subclass of schlicht mappings,” Ind. J. Pure Appl. Math., 8, 864–872 (1977).
23. Duren P. L., Univalent Functions, Springer, New York (1983) (Grundlehren Math. Wiss.; vol. 259).
24. Pommerenke Ch., Univalent Functions, Vandenhoeck und Ruprecht, G¨ottingen (1975).
25. Hayami T. and Owa S., “Generalized Hankel determinant for certain classes,” Int. J. Math. Anal., 4, 2573–2585 (2010).
26. Livingston A. E., “The coefficients of multivalent close-to-convex functions,” Proc. Amer. Math. Soc., 21, No. 3, 545–552 (1969).
27. Libera R. J. and Zlotkiewicz E. J., “Coefficient bounds for the inverse of a function with derivative in P ,” Proc. Amer. Math. Soc., 87, 251–257 (1983).
28. RamReddy T. and Vamshee Krishna D., “Hankel determinant for starlike and convex functions with respect to symmetric points,” J. Ind. Math. Soc. (N. S.), 79, No. 1–4, 161–171 (2012).
Рецензия
Для цитирования:
Vani N., Vamshee Krishna D., Rath B. Sharp bounds associated with the Zalcman conjecture for the initial coefficients and second Hankel determinants for certain subclass of analytic functions. Математические заметки СВФУ. 2023;30(2):92-100. https://doi.org/10.25587/SVFU.2023.24.67.007
For citation:
Vani N., Vamshee Krishna D., Rath B. Sharp bounds associated with the Zalcman conjecture for the initial coefficients and second Hankel determinants for certain subclass of analytic functions. Mathematical notes of NEFU. 2023;30(2):92-100. https://doi.org/10.25587/SVFU.2023.24.67.007
JATS XML