Preview

Mathematical notes of NEFU

Advanced search

Integration of the loaded MKDV equation with a source in the class of rapidly decreasing functions

https://doi.org/10.25587/SVFU.2023.75.56.006

Abstract

We consider the Cauchy problem for a loaded modified Korteweg–de Vries equation with a self-consistent source. The evolution of the scattering data of the Dirac operator, whose potential is a solution of the loaded modified Korteweg–de Vries equation with a self-consistent source in the class of rapidly decreasing functions, is derived. A specific example is given to illustrate the application of the obtained results.

About the Authors

U. A. Hoitmetov
Urgench State University, Department of Applied Mathematics and Mathematical Physics
Uzbekistan

Umid A. Hoitmetov

14 Kh. Alimdjan Street, Urgench, 220100, Uzbekistan



Sh. Q. Sobirov
Urgench State University, Department of Applied Mathematics and Mathematical Physics
Uzbekistan

Shekhzod Q. Sobirov

14 Kh. Alimdjan Street, Urgench, 220100, Uzbekistan



References

1. Gardner C. S., Greene I. M., Kruskal M. D., and Miura R. M., “Method for solving the Korteweg–de Vries equation,” Phys. Rev. Lett., 19, 1095–1097 (1967).

2. Lax P. D., “Integrals of nonlinear equations of evolution and solitary waves,” Commun. Pure Appl. Math., 21, 467–490 (1968).

3. Wadati M., “The exact solution of the modified Korteweg–de Vries equation,” J. Phys. Soc. Japan., 32, 1681 (1972).

4. Khater A. H., El-Kalaawy O. H., and Callebaut D. K., “Backlund transformations and exact solutions for Alfven solitons in a relativistic electron–positron plasma,” Phys. Scr., 58, No. 6, 545–548 (1998).

5. Schief W., “An infinite hierarchy of symmetries associated with hyperbolic surfaces,” Nonlinearity, 8, No. 1, 1–9 (1995).

6. Matsutani S. and Tsuru H., “Reflectionless quantum wire,” J. Phys. Soc. Japan, 60, No. 11, 3640–3644 (1991).

7. Johnpillai A. G., Khalique C. M., and Biswas A., “Exact solutions of the mKdV equation with time-dependent coefficients,” Math. Commun., 16, 509–518 (2011).

8. Biswas A., “Solitary wave solution for the generalized KdV equation with timedependent damping and dispersion,” Commun. Nonlinear Sci. Numer. Simul., 14, 3503–3506 (2009).

9. Vaganan B. M. and Kumaran M. S., “Exact linearization and invariant solutions of the generalized Burger’s equation with linear damping and variable viscosity,” Stud. Appl. Math., 117, 95–108 (2006).

10. Xiao-Yan T., Fei H., and Sen-Yue L., “Variable coefficient KdV equation and the analytical diagnosis of a dipole blocking life cycle,” Chin. Phys. Lett., 23, 887–890 (2006).

11. Demiray H., “Variable coefficient modified KdV equation in fluid-filled elastic tubes with stenosis: Solitary waves,” Chaos, Solitons, Fractals, 42, 358–364 (2009).

12. Khasanov A. B. and Urazboev G. U., “Method for solving the mKdV equation with a selfconsistent source [in Russian],” Uzbek. Mat. Zh., No. 1, 69–75 (2003).

13. Mamedov K. A., “Integration of mKdV equation with a self-consistent source in the class of finite density functions in the case of moving eigenvalues,” Russ. Math., 64, No. 10, 66–78 (2020).

14. Wu J. and Geng X., “Inverse scattering transform and soliton classification of the coupled modified Korteweg–de Vries equation,” Commun. Nonlinear Sci. Numer. Simul., 53, 83–93 (2017).

15. Vaneeva O., “Lie symmetries and exact solutions of variable coefficient mKdV equations: an equivalence based approach,” Commun. Nonlinear Sci. Numer. Simul., 17, No. 2, 611–618 (2012).

16. Salas A. H., “Exact solutions to mKdV equation with variable coefficients,” Appl. Math. Comput., 216, No. 10, 2792–2798 (2010).

17. Dai C., Zhu J., and Zhang J., “New exact solutions to the mKdV equation with variable coefficients,” Chaos, Solitons, Fractals, 27, No. 4, 881–886 (2006).

18. Das S. and Ghosh D., “AKNS formalism and exact solutions of KdV and modified KdV equations with variable coefficients,” Int. J. Adv. Res. Math., 6, 32–41 (2016).

19. Zheng X., Shang Y., and Huang Y., “Abundant explicit and exact solutions for the variable coefficient mKdV equations,” Hindawi Publ. Corp. Abstr. Appl. Anal., 2013, article No. 109690 (2013).

20. Frolov I. S., “Inverse scattering problem for a Dirac system on the whole axis [in Russian],” Dokl. Akad. Nauk SSSR, 207, No. 1, 44–47 (1972).

21. Demontis F., “Exact solutions of the modified Korteweg–de Vries equation [in Russian],” Teor. Mat. Fiz., 168, No. 1, 35–48 (2011).

22. Khasanov A. B., “An inverse problem in scattering theory for a system of two first-order nonselfadjoint differential equations [in Russian],” Dokl. Akad. Nauk SSSR, 277, No. 3, 559–562 (1984).

23. Nakhushev A. M., Equations of Mathematical Biology [in Russian], Vysshaya Shkola, Moscow (1995).

24. Nakhushev A. M., “Loaded equations and their applications [in Russian],” Differ. Equ., 19, No. 1, 86–94 (1983).

25. Kozhanov A. I., “Nonlinear loaded equations and inverse problems [in Russian],” Zh. Vychisl. Mat. Mat. Fiz., 44, No. 2, 694–716 (2004).

26. Khasanov A. B. and Hoitmetov U. A., “On integration of the loaded mKdV equation in the class of rapidly decreasing functions,” Bull. Irkut. State Univ., Ser. Math., 38, 19–35 (2021).

27. Hoitmetov U. A., “Integration of the sine-Gordon equation with a source and an additional term,” Rep. Math. Phys., 90, No. 2, 221–240 (2022).

28. Hoitmetov U. A., “Integration of the Hirota equation with time-dependent coefficients,” Theor. Math. Phys., 214, No. 1, 30–42 (2023).

29. Khasanov A. B. and Hoitmetov U. A., “Integration of the loaded Korteweg–de Vries equation with a self-consistent source in the class of rapidly decreasing complex-valued functions,” Trans. Natl. Acad. Sci. Azerb., Ser. Phys.-Tech. Math. Sci., 42, No. 4, 1–15 (2022)

30. Khasanov A. B. and Hoitmetov U. A., “Integration of the general loaded Korteweg–de Vries equation with an integral type source in the class of rapidly decreasing complex-valued functions,” Russ. Math., 65, No. 7, 43–57 (2021).

31. Zakharov V. E. and Shabat A. B., “Exact theory of two-dimensional self-focusing and onedimensional self-modulation of waves in nonlinear media,” Sov. Phys., 34, No. 1, 62–69 (1972).

32. Ablowitz M. and Sigur H., Solitons and the Inverse Problem Method, SIAM, Philadelphia (1981).

33. Dodd R., Eilbeck J., Gibbon J., and Morris H., Solitons and Nonlinear Wave Equations, Acad. Press, London (1982).


Review

For citations:


Hoitmetov U.A., Sobirov Sh.Q. Integration of the loaded MKDV equation with a source in the class of rapidly decreasing functions. Mathematical notes of NEFU. 2023;30(2):75-91. (In Russ.) https://doi.org/10.25587/SVFU.2023.75.56.006

Views: 6

JATS XML


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2411-9326 (Print)
ISSN 2587-876X (Online)