
Математические 
заметки СВФУ

 
 

СЕВЕРО-ВОСТОЧНЫЙ ФЕДЕРАЛЬНЫЙ
УНИВЕРСИТЕТ ИМЕНИ М. К. АММОСОВА

ISSN  2411-9326

Том 31
 № 3. 2024



Редакционный совет

Главный редактор: Егоров И. Е., д.ф.-м.н., профессор, СВФУ

Зам. главного редактора: Кожанов А. И., д.ф.-м.н., профессор, Ин-

ститут математики им. С. Л. Соболева СО РАН

Зам. главного редактора: Попов С. В., д.ф.-м.н., профессор, СВФУ

Ответственный секретарь: Евсеев З. И., СВФУ

Члены редакционного совета:

Бородин О. В., д.ф.-м.н., профессор, Институт математики им. С. Л. Со-

болева СО РАН

Вабищевич П. Н., д.ф.-м.н., профессор, Институт проблем безопасного

развития атомной энергетики РАН

Васильев В. И., д.ф.-м.н., профессор, СВФУ

Зикиров О. С., д.ф.-м.н., профессор, Национальный университет Узбеки-

стана им. Мирзо Улугбека, Узбекистан

Морозов А. С., д.ф.-м.н., профессор, Институт математики им. С. Л. Со-

болева СО РАН

Пятков С. Г., д.ф.-м.н., профессор, Югорский государственный универ-

ситет

Хлуднев А. М., д.ф.-м.н., профессор, Институт гидродинамики им.

М. А. Лаврентьева СО РАН

Itou H., Ph.D., Professor, Tokyo University of Science, Japan

Ruzhansky M., Professor, Ghent University, Belgium

Tani A., Professor, Keio University, Japan



СЕВЕРО-ВОСТОЧНЫЙ ФЕДЕРАЛЬНЫЙ

УНИВЕРСИТЕТ имени М. К. АММОСОВА

МАТЕМАТИЧЕСКИЕ
ЗАМЕТКИ СВФУ

ОСНОВАН В 1994 ГОДУ НАУЧНЫЙ ЖУРНАЛ ВЫХОДИТ 4 РАЗА В ГОД

Том 31, № 3 (123) Июль—сентябрь, 2024

СОДЕРЖАНИЕ

Математика

Кожанов А. И., Спиридонова Н. Р. Краевые задачи

для специального класса вырождающихся гиперболических

уравнений . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

A. I. Kozhanov, N. R. Spiridonova Boundary problems for a special

class of degenerate hyperbolic equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

Кононенко Л. И., Волокитин Е. П. Качественный анализ одной

сингулярно возмущенной системы дифференциальных уравнений

с малым параметром . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

L. I. Kononenko, E. P. Volokitin Qualitative analysis of one singularly

perturbed system of differential equations with a small parameter . . . . 26

Ошоров Б. Б., Булгатова Е. Н., Васильева Е. Г. Обобщенная

разрешимость неклассических краевых задач для систем уравнений

в частных производных . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

B. B. Oshorov, E. N. Bulgatova, E. G. Vasilyeva Generalized

solvability of non-classical boundary-value problems for systems

of partial differential equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

Попов Н. С. О нелокальных интегродифференциальных краевых

задачах многомерных псевдопараболических уравнений . . . . . . . . . . 39

N. S. Popov On nonlocal integro-differential boundary value problems

for multidimensional pseudoparabolic equations . . . . . . . . . . . . . . . . . . . . . 51

Федоров В. Е., Плеханова М. В., Сагимбаева А. О. Нелинейные

обратные задачи со стационарным неизвестным элементом

для уравнений с производными Джрбашяна — Нерсесяна . . . . . . . . . 53



V. E. Fedorov, M. V. Plekhanova, A. O. Sagimbaeva Nonlinear

inverse problems with a stationary unknown element for equations with

Dzhrbashyan–Nersesyan derivatives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

R. F. Shamoyan, E. B. Tomashevskaya On Bergman type projections

in new analytic spaces in tubular domains over symmetric cones . . . . . 73

Математическое моделирование

Имомназаров Х. Х., Михайлов А. А, Искандаров И. К.

Моделирование влияния строения и физических свойств среды

на характер распространения сейсмических волн

от землетрясений . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

Kh. Kh. Imomnazarov, A. A. Mikhailov, K. Iskandarov Modeling

the influence of structure and physical properties of a medium on the

nature of propagation of seismic waves from earthquakes . . . . . . . . . . . . . 91

Попова Т. С. Численное решение задачи о Т-образном сопряжении

двух тонких включений Тимошенко в двумерном упругом теле . . . 93

T. S. Popova Numerical solution of the problem of T-shaped junction

of two thin Timoshenko inclusions in a two-dimentional elastic body . 118

Адрес издателя:
СВФУ, ул. Белинского, 58, Якутск, 677000

Адрес редакции:
СВФУ, ул. Кулаковского, 48, каб. 543, Якутск, 677000
Телефон: 8(4112)32-14-99, Факс: 8(4112)36-43-47;
http://mzsvfu.ru
e-mail: prokopevav85@gmail.com; yktmatzam@gmail.com;
ivanegorov51@mail.ru

c© Северо-Восточный федеральный университет
имени М. К. Аммосова, 2024



Математические заметки СВФУ
Июль—сентябрь, 2024. Том 31, № 3

УДК 517.95

КРАЕВЫЕ ЗАДАЧИ ДЛЯ СПЕЦИАЛЬНОГО

КЛАССА ВЫРОЖДАЮЩИХСЯ

ГИПЕРБОЛИЧЕСКИХ УРАВНЕНИЙ

А. И. Кожанов, Н. Р. Спиридонова

Аннотация. Исследуется разрешимость новых краевых задач для специального
класса вырождающихся гиперболических уравнений второго порядка. В изучаемых
задачах имеются две особенности. Первая из них — наличие в уравнении двух пере-
менных, каждая из которых может считаться временной. Эта особенность означает,
что для изучаемых уравнений могут быть корректными задачи с принципиально
разными носителями граничных условий. Второй особенностью является наличие
в уравнении вырождения. Эта особенность также означает, что в зависимости от
характера вырождения постановка краевых задач может существенно меняться.

Для всех изучаемых задач доказываются теоремы существования и единствен-
ности регулярных решений — решений, имеющих все обобщенные по С. Л. Соболеву
производные, входящие в уравнение.

DOI: 10.25587/2411-9326-2024-3-3-14

Ключевые слова: гиперболические уравнения, вырождение, краевые задачи, ре-
гулярные решения, существование, единственность.

Введение

Работа посвящена исследованию разрешимости краевых задач для диффе-

ренциальных уравнений

ϕ(t)uxt + ψ(t)uxx + b(x, t)ux + c(x, t)u = f(x, t) (∗)

с неотрицательной функцией ψ(t) и с функцией ϕ(t), знак которой будет уточ-

нен ниже. Подобные уравнения возникают в газовой динамике [1, 2], с матема-

тической точки зрения они изучались в работах [3–8]. Отметим, что задачи,

изученные в настоящей работе, ранее исследованы не были.

Уравнения (∗) являются гиперболическими как в случае ϕ(t)ψ(t) > 0, так

и в случае ϕ(t)ψ(t) < 0. Это означает, с одной стороны, что в них каждая

из переменных x или t может считаться временной и в зависимости от выбора

направления времени может измениться постановка краевых задач, с другой —

что направление гиперболичности в разных точках области определения может

быть разным и тогда постановка краевых задач также может измениться в

зависимости от свойств функций ϕ(t) и ψ(t).

Работа выполнена при поддержке Минобрнауки РФ, соглашение от 28.02.2024 № 075-02-
2024-1441.

c© 2024 Кожанов А. И., Спиридонова Н. Р.
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Целью работы является определение достаточных условий, гарантирующих

существование и единственность регулярных решений изучаемых ниже краевых

задач (регулярными решениями мы называем решения, имеющие все обобщен-

ные по С. Л. Соболеву [9] производные, входящие в соответствующее уравне-

ние).

1. Постановка задач

Пусть � — интервал (0, 1) оси Ox, Q — прямоугольник � × (0, T ), 0 <

T < +∞. Далее, пусть b(x, t), c(x, t), f(x, t), ϕ(t) и ψ(t) — заданные функции,

определенные при x ∈ �, t ∈ [0, T ], L — дифференциальный оператор, действие

которого на заданной функции v(x, t) определяется равенством

Lv = ϕ(t)vxt + ψ(t)vxx + b(x, t)vx + c(x, t)v.

Краевая задача I. Найти функцию u(x, t), являющуюся в прямоуголь-

нике Q решением уравнения

Lu = f(x, t) (1)

и такую, что для нее выполняется условие

u(0, t) = ux(0, t) = 0, 0 < t < T. (2)

Краевая задача II. Найти функцию u(x, t), являющуюся в прямоуголь-

нике Q решением уравнения (1) и такую, что для нее выполняются условие (2),

а также условие

u(x, 0) = 0, x ∈ �. (3)

Краевая задача III. Найти функцию u(x, t), являющуюся в прямоуголь-

нике Q решением уравнения (1) и такую, что для нее выполняется условие (2),

а также условие

u(x, 0) = u(x, T ) = 0, x ∈ �. (4)

Краевая задача IV. Найти функцию u(x, t), являющуюся в прямоуголь-

нике Q решением уравнения (1) и такую, что для нее выполняются условие (3),

а также условие

u(0, t) = ux(1, t) = 0, 0 < t < T, (5)

Определим линейное пространство V :

V = {v(x, t) : v(x, t) ∈W 1
2 (Q), vx(x, t) ∈W 1

2 (Q)}.

Снабдим это пространство нормой

‖v‖V =
(
‖v‖2W 1

2
(Q) + ‖vx‖2W 1

2
(Q)

) 1
2 .

Основной целью работы является доказательство существования и един-

ственности решений краевых задач I–IV, принадлежащих пространству V . Ос-

новным отличием настоящей работы от работ предшественников (которых не
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так много) является то, что у нас уравнение (1) может существенно вырождать-

ся — функция ϕ(t) может обращаться в нуль на множествах ненулевой меры из

отрезка [0, T ], функция ϕ(t) в задачах I–III может менять знак сколько угодно

раз.

Некоторые аналоги линеаризованного уравнения Линя — Рейснера — Цзяня

(т. е. уравнения (1) в случае ϕ(t) ≡ ψ(t) ≡ 1) с вырождением изучались в

работах [4, 5], но характер вырождения в этих работах был иной, нежели в

настоящей работе.

Уточним также, что, с одной стороны, постановки задач I–III близки к

постановкам работ [3, 4], постановка задачи IV близка к постановке работы [5],

с другой стороны, все задачи I–IV являются новыми для рассматриваемых в

основной части работы уравнений.

2. Разрешимость краевых задач I–III

Рассмотрим вначале случай строго положительной на отрезке [0, T ] функ-

ции ψ(t).

Исследование разрешимости краевых задач I–III будет проведено с помо-

щью метода регуляризации и метода продолжения по параметру. Поскольку

методы доказательства разрешимости задач I–III будут лишь незначительно

различаться, сведем все соответствующие результаты в одну теорему.

Теорема 1. Пусть выполняются условия

ϕ(t) ∈ C1([0, T ]), ψ(t) ∈ C1([0, T ]), b(x, t) ∈ C(Q),

c(x, t) ∈ C(Q), bt(x, t) ∈ C(Q), ct(x, t) ∈ C(Q);

ψ(t) ≥ ψ0 > 0 при t ∈ [0, T ],

а также одно из условий

(i) ϕ(0) ≤ 0, ϕ(T ) ≥ 0, f(x, t) ∈ L2(Q), ft(x, t) ∈ L2(Q);

(ii) ϕ(0) > 0, ϕ(T ) ≥ 0, f(x, t) ∈ L2(Q), ft(x, t) ∈ L2(Q), f(x, 0) = 0 при

x ∈ �;

(iii) ϕ(0) > 0, ϕ(T ) < 0, f(x, t) ∈ L2(Q), ft(x, t) ∈ L2(Q), f(x, 0) = f(x, T ) =

0 при x ∈ �.

Тогда краевая задача I, II или III при выполнении соответствующих усло-

вий (i), (ii) или (iii) разрешима в пространстве V , причем единственным обра-

зом.

Доказательство. Пусть ε — положительное число, Lε — дифференци-

альный оператор, действие которого на заданной функции v(x, t) определяется

равенством

Lεv = −εvxtt + Lv.

Рассмотрим следующие три вспомогательные краевые задачи.



6 А. И. Кожанов, Н. Р. Спиридонова

Задача Iε. Найти функцию u(x, t), являющуюся в прямоугольнике Q ре-

шением уравнения

Lεu = f(x, t) (6)

и такую, что для нее выполняются условие (2), а также условие

ut(x, 0) = ut(x, T ) = 0, x ∈ �. (7)

Задача IIε. Найти функцию u(x, t), являющуюся в прямоугольнике Q ре-

шением уравнения (6) и такую, что для нее выполняются условие (2), а также

условие

ut(x, T ) = 0, x ∈ �. (8)

Задача IIIε. Найти функцию u(x, t), являющуюся в прямоугольнике Q

решением уравнения (6) и такую, что для нее выполняются условия (2) и (4).

Определим пространство V1:

V1 = {v(x, t) : v(x, t) ∈ V, vxtt(x, t) ∈ L2(Q)}.

Разрешимость вспомогательных краевых задач Iε–IIIε, а также самих за-

дач I–III будем устанавливать с помощью априорных оценок. Установим их

наличие.

При получении оценок индекс «ε» у решений уравнения (6) опустим. Более

того, через u(x, t) будем обозначать решение любой задачи Iε, IIε или IIIε.

Анализируя последовательно равенства

x∫

0

T∫

0

Lεu(y, t)uy(y, t) dtdy =

x∫

0

T∫

0

f(y, t)uy(y, t) dtdy, (9)

−
x∫

0

T∫

0

1

ψ(t)
Lεu(y, t)uytt(y, t) dtdy = −

x∫

0

T∫

0

1

ψ(t)
f(y, t)uytt(y, t) dtdy, (10)

т. е. интегрируя по частям, используя положительность функции ψ(t), условия

соответствующих задач Iε, IIε или IIIε, и, наконец, применяя лемму Гронуолла,

получим, что выполняется оценка

ε

x∫

0

T∫

0

u2
ytt dtdy +

T∫

0

[
u2
x(x, t) + u2

xt(x, t)
]
dt ≤M1

∫

Q

f2 dtdx, (11)

постоянная M1 в которой определяется функциями ϕ(t), ψ(t), c(x, t), а также

числом ε.

Еще одна оценка

x∫

0

T∫

0

u2
xx dtdx ≤M2

∫

Q

f2 dtdx (12)
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очевидным образом вытекает из оценки (11); постоянная M2 в этой оценке так-

же определяется функциями ϕ(t), ψ(t), c(x, t) и числом ε.

Оценок (11) и (12) вполне достаточно для доказательства разрешимости

в пространстве V1 краевых задач Iε, IIε или IIIε. Действительно, определим

семейство операторов Lε,λ, 0 ≤ λ ≤ 1:

Lε,λv = −εvxtt + ψ(t)vxx + λ[vxt + cv].

При λ = 0 и при фиксированном ε каждая из задач Iε, IIε или IIIε для этого

оператора разрешима в пространстве V1 (см. [10, 11]). Далее, для решений этих

же задач с операторм Lε,λ имеют место равномерные по λ априорные оцен-

ки (11), (12). Согласно теореме о методе продолжения по параметру [12, гл. III,

§ 14] приведенных выше фактов достаточно для существования в пространстве

V1 решений краевых задач Iε, IIε или IIIε для оператора Lε,λ при всех λ из

отрезка [0, 1] при фиксированном ε и при принадлежности функции f(x, t) про-

странству L2(Q). Поскольку Lε,1 = Lε, тем самым получаем, что каждая из

задач Iε, IIε или IIIε при фиксированном ε разрешима в пространстве V1.

Пусть {εm}∞m=1 — последовательность положительных чисел, сходящаяся

к 0, um(x, t) — решение одной из задач Iεm , IIεm или IIIεm . Полагая в равен-

стве (10) ε = εm, u = um, повторяя выкладки, которые позволили получить

оценки (11), (12), но при этом дополнительно в правой части (12) выполняя

интегрирование по переменной t и используя условия (i), (ii) или (iii), получим,

что для семейства {um(x, t)}∞m=1 выполняется априорная оценка

εm

x∫

0

T∫

0

u2
mytt(y, t) dtdy +

T∫

0

[
u2
mx(x, t) + u2

mxt(x, t)
]
dt

+

x∫

0

T∫

0

u2
myy(y, t) dtdy ≤M3

∫

Q

(
f2 + f2

t

)
dxdt, (13)

постоянная M3 в которой определяется лишь функциями ϕ(t), ψ(t) и c(x, t).

Используя классическую теорему о рефлексивности гильбертова простран-

ства (см., например, [10]), нетрудно показать, что существует подпоследователь-

ность {umk
(x, t)}∞k=1, слабо сходящаяся в пространстве V к некоторой функции

u(x, t), такая, что εmk
umkxtt(x, t) → 0 при k → ∞. Эта функция u(x, t) и будет

искомым решением либо задачи I, либо задачи II, либо задачи III.

Единственность решений для всех трех задач очевидно следует, например,

из оценки (11), справедливой и при ε = 0.

Теорема полностью доказана.

Пусть теперь функция ψ(t) неотрицательна на отрезке [0, T ].

Теорема 2. Пусть выполняются условия

ϕ(t) ∈ C1([0, T ]), ψ(t) ∈ C1([0, T ]), b(x, t) ∈ C1(Q), c(x, t) ∈ C1(Q);
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ψ(t) > 0 при t ∈ (0, T ), ψ(0) ≥ 0, ψ(T ) ≥ 0;

b(x, t)− 1

2
ϕ′(t) ≥ b0 > 0, b(x, t) +

1

2
ϕ′(t) ≥ b1 > 0 при (x, t) ∈ �;

fx(x, t) ∈ L2(Q), fxt(x, t) ∈ L2(Q), f(0, t) = 0 при t ∈ [0, T ];

а также одно из условий (i), (ii) или (iii) теоремы 1. Тогда соответствующая

задача I, II или III разрешима в пространстве V , причем единственным образом.

Доказательство. Положим ψε(t) = ψ(t) + ε, и пусть ε — произвольное

положительное число. Рассмотрим уравнение

ϕ(t)uxt + ψε(t)uxx − εuxtt + b(x, t)ux + c(x, t)u = f(x, t) (14)

и краевую задачу для него с условиями (2), (3) и (7) либо с условиями (2), (3)

и (4), либо с условиями (2) и (8).

Для решений u(x, t) каждой из этих задач выполняются равномерные по ε

оценки
x∫

0

T∫

0

u2
y dtdy + ε

x∫

0

T∫

0

u2
yt dtdy ≤ R1

∫

Q

f2 dtdy, (15)

x∫

0

T∫

0

u2
yy dtdy + ε

x∫

0

T∫

0

u2
ytt dtdy ≤ R2

∫

Q

(f2 + f2
y ) dtdy. (16)

Первая из этих оценок доказывается умножением уравнения (14) с теку-

щей пространственной переменной y на функцию uy(y, t) и интегрированием по

прямоугольнику {0 < y < x ≤ 1, 0 < t < T }, вторая — дифференцированием

уравнения (14) по пространственной переменнной и повторением предыдущей

процедуры (уточним лишь, что вследствие условия f(0, t) = 0 функция uxx(0, t)

будет тождественно нулевой на отрезке [0, T ]).

Умножим уравнение (14) на функцию uxtt(x, t) и проинтегрируем по пря-

моугольнику Q. Используя оценки (15), (16) и учитывая условия теоремы, по-

лучим, что для решений u(x, t) каждой из задач I, II или III будет выполняться

оценка
∫

Q

u2
xt dtdx+ ε

∫

Q

u2
xtt dtdx ≤ R3

∫

Q

(f2 + f2
x + f2

t + f2
xt) dtdx, (17)

постоянная R3 в которой определяется лишь функциями b(x, t), c(x, t), ϕ(t) и

ψ(t). Оценок (15)–(17) вполне достаточно для организации процедуры пре-

дельного перехода (с выбором последовательности {εm}∞m=1 такой, что εm > 0,

εm → 0 при m→∞, и с использованием свойства рефлексивности гильбертова

пространства). Предельная функция в каждом из соответствующих случаев

(i), (ii) или (iii) даст решение из простравнства V соответствующей задачи I, II

или III.

Теорема доказана.
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3. Разрешимость краевой задачи IV

Теорема 3. Пусть выполняются условия

ϕ(t) ∈ C([0, T ]), [ϕ(t)]−1 ∈ L2([0, T ]), ψ(t) ∈ C1([0, T ]);

ϕ(t) > 0 при t ∈ (0, T ), ϕ(0) ≥ 0, ϕ(T ) ≥ 0;

ψ(t) ≤ ψ0 < 0 при t ∈ [0, T ];

b(x, t) ∈ C(Q), bx(x, t) ∈ C(Q), c(x, t) ∈ C(Q), cx(x, t) ∈ C(Q);

|b(x, t)|+ |bx(x, t)| + |c(x, t)|+ |cx(x, t)| ≤ N0ϕ
1/2(t) при (x, t) ∈ Q.

Тогда для любой функции f(x, t) такой, что f(x, t) ∈ L2(Q), ft(x, t) ∈ L2(Q),

f(x, 0) = 0 при x ∈ �, краевая задача IV имеет решение u(x, t), принадлежащее

пространству V , причем ровно одно.

Доказательство. Вновь воспользуемся методом регуляризации.

Пусть ε — положительное число, Lε — оператор, действие которого на за-

данной функции v(x, t) определяется равенством

Lε = εψ(t)vxxt + Lv.

Как показано в [10, 11], краевая задача с условиями (3) и (5) для уравнения

Lεu = f при фиксированном ε и при выполнении условий теоремы имеет реше-

ние u(x, t) такое, что u(x, t) ∈ V , uxxt(x, t) ∈ L2(Q). Докажем, что для семейства

этих решений имеют место нужные равномерные по ε априорные оценки.

Рассмотрим равенство

t∫

0

∫

�

A0 + x

ψ(t)
Lεu · uxxτ dxdτ =

t∫

0

∫

�

A0 + x

ψ(t)
fuxxτ dxdτ,

в котором A0 — фиксированное положительное число. После несложных вы-

кладок это равенство преобразуется к виду

ε

t∫

0

∫

�

(A0 + x)u2
xxτ dxdτ −

1

2

t∫

0

∫

�

ϕ(τ)

ψ(τ)
u2
xτ dxdτ −

1

2

t∫

0

ϕ(τ)

ψ(τ)
u2
xτ (0, τ) dτ

+
1

2

∫

�

u2
xx(x, t) dx =

t∫

0

∫

�

(A0 + x)b

ψ(τ)
uxxuxτ dxdτ

+

t∫

0

∫

�

((A0 + x)b)x
ψ(τ)

uxuxτ dxdτ +A0

t∫

0

b(0, τ)

ψ(τ)
ux(0, τ)uxτ (0, τ) dτ

−
t∫

0

∫

�

(A0 + x)

(
1

ψ(τ)

)

τ

uxx dxdτ +

∫

�

A0 + x

ψ(t)
f(x, t)uxx(x, t) dx. (18)
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Оценивая каждое слагаемое правой части равенства (18) с помощью нера-

венства Юнга и условий теоремы, дополнительно используя неравенство

u2
x(x, τ) ≤

∫

�

u2
xx(x, τ) dx (19)

и, наконец, применяя лемму Гронуоллла, получим, что следствием равенства

(18) будет априорная оценка

t∫

0

∫

�

u2
xxτ dxdτ +

t∫

0

∫

�

ϕ(τ)u2
xτ dxdτ +

t∫

0

ϕ(τ)u2
xτ (0, τ) dτ

+

∫

�

u2
xx(x, t) dx ≤ N1

∫

Q

(
f2 + f2

t

)
dxdt, (20)

постоянная N1 в которой определяется функциями ψ(t), b(x, t) и c(x, t), а также

числом T .

На следующем шаге рассмотрим равенство
∫

Qd

1

ϕ(t)
Lεu · uxt dxdt =

∫

Qd

1

ϕ(t)
f uxt dxdt,

в котором d есть число такое, что 0 < d < T −d, а Qd — область {(x, t) : 0 < x <

1, d < t < T − d}. Это равенство нетрудно преобразовать к виду

ε

2

T−d∫

d

ψ(t)

ϕ(t)
u2
xt dxdt+

∫

Qd

u2
xt dxdt = −

∫

Qd

ψ(t)

ϕ(t)
uxtuxx dxdt

−
∫

Qd

b

ϕ(t)
uxtux dxdt−

∫

Qd

c

ϕ(t)
uxtu dxdt+

∫

Qd

f

ϕ(t)
uxt dxdt. (21)

Оценим первое слагаемое правой части этого равенства с помощью неравенств

Гёльдера и Юнга, а также оценки (20):

∣∣∣∣
∫

Qd

ψ(t)

ϕ(t)
uxtuxx dxdt

∣∣∣∣ ≤ N2

T−d∫

d

1

ϕ(t)

(∫

�

u2
xt dx

) 1
2
(∫

�

u2
xx dx

) 1
2

dt

≤ N3

T−d∫

d

1

ϕ(t)

(∫

�

u2
xt dx

) 1
2

dt ≤ δ2

2

∫

Qd

u2
xt dxdt +

N3

2δ2

T−d∫

d

dt

ϕ2(t)
. (22)

Числа N2 и N3 здесь определяются функциями ψ(t), b(x, t) и c(x, t), а также

числом T , число δ лишь произвольное положительное число.

Второе и третье слагаемые правой части (21) оцениваются аналогичным

образом с дополнительным использованием неравенства (19) и аналогичного

неравенства для функции u(x, t), четвертое слагаемое правой части (21) оцени-

вается с помощью неравенства Юнга. Поскольку последний интеграл в правой
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части неравенства (22) конечен и конечны аналогичные интегралы, получаемые

при оценке второго, третьего и четвертого слагаемых правой части (22) (конеч-

ность этих интегралов имеет место вследствие условий теоремы на функции ϕ(t)

и f(x, t)), то после подбора числа δ малым из неравенства (21) можно вывести

неравенство ∫

Qd

u2
xt dxdt ≤ N4

с постоянной N4, определяемой функциями ϕ(t), ψ(t), b(x, t), c(x, t) и f(x, t),

а также числом T . Из этого неравенства вследствие произвольности числа d

следует априорная оценка ∫

Q

u2
xt dxdt ≤ N4. (23)

Оценки (20) и (23) означают, что семейство решений краевой задачи для уравне-

ния Lεu = f с условиями (3) и (5) равномерно по ε ограничено в пространстве V

и что семейство функций
√
εuxxt(x, t) равномерно по ε ограничено в простран-

стве L2(Q). Используя далее свойство рефлексивности гильбертова простран-

ства (т. е. используя возможность выбора соответсвующих слабо сходящихся

последовательностей), нетрудно установить существование требуемого решения

краевой задачи IV.

Теорема доказана.

4. Замечания и дополнения

4.1. В разд. 1 отсутствует постановка краевой задачи с одним условием

при t = T . Очевидно, что эта задача сводится к задаче III.

4.2. В уравнении (1) функции ϕ и ψ вполне могут быть функциями, зави-

сящими от обоих переменных x и t. Соответствующие условия теорем 1–3 для

этих функций должны быть «равномерными» по переменной x.

4.3. Функция ϕ(t) в теореме 3 может обращаться в нуль при t = 0 и при

t = T . Нетрудно показать, что аналогичную теорему существования решения

краевой задачи IV можно получить и в случае обращения функции ϕ(t) в нуль

в любом конечном множестве точек из отрезка [0, T ].

4.4. Если в уравнении (1) присутствует диссипативное слагаемое a(x, t)ut,

то разрешимость краевой задачи IV можно будет доказать при значительно

более слабых ограничениях на входные даные.

4.5. В краевой задаче IV условие ux(1, t) = 0 можно заменить условием

ux(1, t) + γ(t)u(1, t) = 0.
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Аннотация. Рассматривается сингулярно возмущенная система обыкновенных
дифференциальных уравнений с малым параметром, в которой участвуют разно-
масштабные переменные. Излагаются необходимые сведения о методе интеграль-
ных многообразий, такие как медленная поверхность (ε = 0), листы медленной по-
верхности, интегральное многообразие (ε 6= 0), его листы, асимптотическое разло-
жение медленного интегрального многообразия по степеням ε. В качестве примера
в работе проводится качественный анализ одной системы, являющейся сингулярно
возмущенной системой с малым параметром.
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Введение

Настоящая работа основана на исследованиях [1–7]. Рассматривается систе-

ма обыкновенных дифференциальных уравнений (ОДУ) с малым параметром

вида

ẋ(t) = f(x(t), y(t), t, ε), ε ẏ(t) = g(x(t), y(t), t, ε), (1)

x ∈ Rm — медленные переменные, y ∈ Rn — быстрые переменные, t ∈ R, f, g

— достаточно гладкие функции, ε > 0 — малый параметр. Первое уравнение

системы (1) называется медленной подсистемой, второе — быстрой подсисте-

мой.

Работа имеет следующую структуру.

В разд. 1 кратко изложены элементы теории интегральных многообразий

медленных и быстрых движений сингулярно возмущенных дифференциальных

систем. В разд. 2 дано описание схемы алгоритма качественного аналаза си-

стемы обыкновенных дифференциальных уравнений с малым параметром [3].

В разд. 3 в качестве примера проведен анализ конкретной системы с разномас-

штабными переменными, взятой из [8]. В приложении эта система исследована

Работа выполнена в рамках государственного задания ИМ СО РАН проект FWNF-2022-
0005.

c© 2024 Кононенко Л. И., Волокитин Е. П.
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с применением традиционных методов качественной теории плоских динамиче-

ских систем при произвольных значениях параметров.

1. Существование интегрального

многообразия медленных движений

Для приближенного качественного анализа системы (1) предлагается сна-

чала изучить строение, форму и особенности интегрального многообразия при

помощи асимптотических разложений по ε.

Гладкая поверхность S в Rm ×Rn ×R называется интегральным многооб-

разием системы (1), если любая интегральная кривая этой системы, имеющая

хотя бы одну общую точку с S, целиком лежит на поверхности S. Формально

если при t = t0 точка (x(t0), y(t0), t0) принадлежит S, то интегральная кривая

(x(t), y(t), t) целиком находится на S [8].

Для автономных систем вместо термина «интегральное многообразие» ино-

гда используется термин «инвариантное многообразие» [8].

Простейшим примером интегрального многообразия является интеграль-

ная кривая системы. Примером интегрального многообразия являются фазо-

вые траектории системы, в том числе стационарные состояния и предельные

циклы. Расширенное фазовое пространство Rm × Rn × R тоже является инте-

гральным многообразием.

Приведем необходимые сведения о методе интегральных многообразий при-

менительно к системе (1).

Если в системе (1) положить ε = 0, получим порождающую или вырож-

денную систему

ẋ = f(x, y, t, 0), (2)

0 = g(x, y, t, 0). (3)

Уравнение g(x, y, t, 0) = 0 задает медленную поверхность. Это уравнение

медленной поверхности может иметь одно или несколько решений вида y =

ϕ(x, t), каждое из которых задает лист медленной поверхности.

Листы интегрального многообразия медленных движений (или медленно-

го интегрального многообразия) являются уточнением при учете малого пара-

метра ε листов медленной поверхности и получаются из них с помощью асимп-

тотического разложения по степеням ε:

h(x, t, ε) = h0(x, t) + εh1(x, t) + · · ·+ εkhk(x, t) + · · · , (4)

где h0(x, t) = ϕ(x, t) и коэффициенты в разложении hk(x, t) подсчитываются по

рекуррентной формуле, приведенной, например, в [3]:

hk = −B−1

[
g(k) − ∂hk−1

∂t
−

k−1∑

p=0

∂hp
∂x

fk−1−p

]

ε

, k = 1, 2, . . . ,

B = det

(
∂g

∂y
(x, h0(x, t), t, 0)

)
6= 0.

(5)
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Среди интегральных многообразий системы (1) нас интересуют (m + 1)-

мерные интегральные многообразия (m — размерность медленных перемен-

ных), которые представимы в виде графика вектор-функции y = h(x, t, ε) и

для которых выполняется соотношение

lim
ε→0

h(x, t, ε) = h0(x, t),

где h0(x, t) = ϕ(x, t) — функция, график которой является листом медленной

поверхности.

Нахождение решения системы (1) сводится к отысканию решения вырож-

денной системы (2), (3), получаемой из исходной, если параметр ε формально

положить равным нулю. Этот факт следует из работ А. Н. Тихонова (см., на-

пример, [9]), в которых доказаны теоремы о предельном переходе к решению

вырожденной задачи при стремлении малого параметра к нулю. Правые ча-

сти системы (1) f , g являются достаточно гладкими функциями, поэтому удо-

влетворяют требуемым условиям, в частности, обеспечивают единственность

решения.

В [3] было доказано существование интегрального многообразия для систе-

мы (1). Приведем соответствующую теорему.

Пусть для системы выполнены следующие условия.

I. Уравнение g(x, y, t, 0) = 0 имеет изолированное решение y = h0(x, t) при

t ∈ R, x ∈ Rm.

II. В области

�0 = {(x, y, t, ε) | x ∈ Rm, ‖y − h0(x, t)‖ < ρ, t ∈ R, 0 ≤ ε ≤ ε0}

функции f , g и h0 равномерно непрерывны и ограничены вместе с частными

производными по переменным до (k + 2)-го порядка включительно (k ≥ 0).

III. Собственные значения λi(x, t) (i = 1, . . . , n) матрицы ∂g
∂y (x, h0(x, t), t, 0)

подчиняются неравенству Reλi(x, t) ≤ −2γ < 0.

Теорема [3]. Пусть выполняются условия I–III. Тогда существует такое ε1
(0 < ε1 ≤ ε0), ε0 ≪ 1, — формальный параметр, что для каждого ε ∈ (0, ε1] си-

стема (1) имеет интегральное многообразие медленных движений y = h(x, t, ε),

представленное формулой (4) с коэффициентами (5), движение по которому

описывается уравнением

ẋ = f(x, h(x, t, ε), t, ε).

2. Описание схемы алгоритма качественного

исследования системы ОДУ с малым параметром

Как указано выше, исследование сингулярно возмущенной системы (1) обык-

новенных дифференциальных уравнений будем проводить на основе алгоритма,

предложенного в [3]. Напомним вкратце схему этого алгоритма.
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Шаг I. Описание листов интегрального многообразия. Интегральное мно-

гообразие в нулевом приближении (ε = 0) задается уравнением g(x(t), y(t), t, 0)

= 0, называемым уравнением медленной поверхности. Оно может иметь несколь-

ко решений y = ϕi(x, t), i = 1, . . . , l, задающих листы медленной поверхности.

Шаг II. Нахождение границ листов медленной поверности. Граница ли-

ста находится как пересечение медленной поверхности g(x(t), y(t), t, 0) = 0 с

поверхностью, заданной уравнением

det

(
∂g

∂y
(x(t), y(t), t, 0)

)
= 0.

Шаг III. Выяснение характера устойчивости листов медленной поверхно-

сти. Для листа y = ϕi(x, t) характер устойчивости зависит от знака собственных

чисел матрицы
∂g

∂y
(x(t), ϕi(x, t), t, 0), i =, 2, . . . , l.

Лист устойчив, если действительные числа всех собственных чисел отри-

цательны. Лист неустойчив, если действительные части всех собственных чи-

сел положительны. Лист условно устойчив, если среди действительных чисел

имеются и положительные, и отрицательные (но нет нулевых). В случае нуле-

вых действительных частей собственных чисел небходимо рассматривать первое

приближение по ε медленной поверхности.

Шаг IV. Качественный анализ динамики медленной подсистемы на каж-

дом из листов медленной поверхности с выяснением следующих основных осо-

бенностей динамики: нахождение стационарных состояний, их типа, условий

множественности, колебаний разных видов, в том числе релаксационных, ре-

шений-уток. Если траектория содержит постоянно чередующиеся медленные и

быстрые участки, она описывает релаксационные колебания. Решения-утки —

это траектории, переходящие с притягивающего участка медленной кривой на

отталкивающий участок. Подробно решения-утки и релаксационные колебания

описываются в [10–14].

Шаг V. Качественный анализ системы в целом. Заметим, что по этой схе-

ме был проведен качественный анализ динамических свойств, например, двух

следующих моделей: каталитического изотермического реактора идеального пе-

ремешивания и реакции каталитического окисления [6].

3. Пример применения качественного

анализа к исследованию конкретной

системы ОДУ с малым параметром

Рассмотрим систему, которая является примером, иллюстрирующим эф-

фективность метода качественного анализа сингулярно возмущенных систем

обыкновенных дифференциальных уравнений, в которых присутствуют разно-

масштабные переменные [8].
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Для упрощения исследования рассматривается система, для которой вы-

полнены следующие условия:

1) качественный анализ проводим для системы при ε = 0, т. е. для вырож-

денной системы (2), (3) (на медленной поверхности); тесная связь с вырожден-

ной системой мотивирует рассмотрение этого случая;

2) рассматривается система с одной медленной и одной быстрой перемен-

ными, т. е. m = n = 1;

3) функцию g(x, y, t, ε) считаем удовлетворяющей условиям теоремы о неяв-

ной функции, в частности,
∂g(x,y,t,0)

∂y 6= 0 в надлежащих точках.

Имеем

ẋ = y, εẏ = x2 + y2 − a, a > 0, (6)

где x ∈ R, y ∈ R, t ∈ R, ε — положительный малый параметр.

Уравнение ẋ = y — медленная подсистема системы (6), уравнение εẏ =

x2 + y2 − a — быстрая подсистема (x — медленная переменная, y — быстрая).

Шаг 1. Найдем листы медленной поверхности системы (6). Уравнение

медленной поверхности, т. е. интегрального многообразия при ε = 0,

x2 + y2 − a = 0. (7)

Это окружность с центром в точке (0, 0) радиуса
√
a. Заметим, что уравнение

(7) — это неявное задание окружности. Но мы можем свести его к явному

заданию [15] (рис. 1).

x

y

O

Рис. 1. Система (6) при ε = 0.

Окружность имеет два листа:

S1 : y1 =
√
a− x2, S2 : y2 = −

√
a− x2, |x| < a. (8)

Для приближенного вычисления используется асимптотическое разложение

функции h(x, t, ε) по степеням малого параметра, описанного формулами (4), (5).

Чаще всего качественное исследование поведения медленной подсистемы

ограничивается анализом на листах медленной поверхности. В нулевом при-

ближении поведение решений на многообразии медленных движений задается

порождающей системой дифференциальных уравнений (2), (3). Если возникает
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необходимость иметь следующие приближения интегрального многообразия, то

для их получения дифференцируют функцию g(x, y, t, ε) по переменной t [8].

Для системы (6) имеем:

a) нулевое приближение интегрального многообразия (медленной поверх-

ности) имеет вид x2 + y2 = a;

b) первое приближение для интегрального многообразия имеет вид

(
x+

ε

2

)2

+ y2 = a+
ε2

4
;

с) второе приближение имеет вид

(
x+

ε

2

)2

+ y2 = a− ε2

4
,

заметим, что оно совпадает со всеми последующими и дает точное уравнение

для медленного интегрального многообразия [8].

Вернемся к дальнейшему исследованию по шагам системы (1).

Шаги 2, 3. Найдем границы листов S1 и S2. Как сказано в разд. 2, гра-

ницы листа находятся как пересечение медленной поверхности с поверхностью,

заданной уравнением

det

(
∂g

∂y

)
= 0,

т. е. в нашем случае рассматриваем систему

{
x2 + y2 = a,

y√
a−x2

= 0 на листе S1

и систему {
x2 + y2 = a,
−y√
a−x2

= 0 на листе S2.

У обоих листов границами являются точки (
√
a, 0), (−√a, 0).

Так как размерность переменных x, y равна 1, устойчивость листов S1 и S2

зависит от знака ∂g
∂y , и видим, что лист S1 неустойчивый, а лист S2 устойчивый.

Мы не исследуем систему (2) на неустойчивом листе, т. е. на листе S1, так

как поведение на неустойчивых листах мало отражается на поведении системы

в целом, по крайней мере для того круга динамического поведения, который

мы исследуем.

Шаг 4. Проведем качественный анализ системы (6) на устойчивом листе

S2. Медленная подсистема на листе S2 после выражения быстрой переменной

y через медленную x имеет вид

ẋ =
√
a− x2.

Особые точки данной системы — это граничные точки x1 =
√
a, x2 = −√a.

Они являются точками срыва. На устойчивом листе S2 в силу простоты систе-

мы нет сложной динамики. Мы выбрали эту систему для демонстрации метода
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интегральных многообразий из-за ее простоты, нам важно, чтобы шаги исследо-

вания не сильно загромождались формулами. Конечно, есть примеры систем,

в которых картина поведения решений сложная, динамика интересная.

Как мы уже упоминали, в [6, 7] подробно рассматриваются сингулярно воз-

мущенные системы ОДУ с малым параметром, описывающие модели из хими-

ческой кинетики: первая модель — изотермического реактора смешения, вторая

модель — реакции окисления CO2.

Шаг 5. Качественная картина поведения решений системы (6) на устой-

чивом листе S2 будет похожа на поведение решений медленной подсистемы на

том же листе.

Приложение

Исследуем качественную картину поведения решений системы (6) в целом

при прозвольных значениях параметров a > 0, ε > 0.

Запишем систему (6) в виде

ẋ = y ≡ P (x, y), ẏ =
x2 + y2 − a

ε
≡ Q(x, y). (9)

Как установлено в [8], функция

f1(x, y) = x2 + y2 + εx− a+
ε2

2

задает медленное интегральное многообразие системы (6) f1(x, y) = 0, которое

представляет собой окружность радиуса
√
a− ε2/4 с центром в точке (−ε/2, 0) и

состоит из устойчивого и неустойчивого листов (нижняя и верхняя полуокруж-

ности).

Функция f1(x, y) является инвариантом системы (9) с кофактором k1 =

2y/ε:
∂f1(x, y)

∂x
P (x, y) +

∂f1(x, y)

∂y
Q(x, y)) =

2y

ε
f1(x, y).

Функция

f2(x, y) = expx

является инвариантом системы (9) (инвариантный экспоненциальный множи-

тель) с кофактором k2 = y:

∂f2(x, y)

∂x
P (x, y) +

∂f2(x, y)

∂y
Q(x, y)) = yf2(x, y).

Имеем k1 − 2
εk2 = 0. В таком случае функция

H(x, y) = f1(x, y)f2(x, y)
−2/ε =

(
x2 + y2 + εx− a+

ε2

2

)
exp(−2x/ε) (10)

будет интегралом Дарбу системы (9).

Подробнее о теории Дарбу интегрирования плоских полиномиальных си-

стем см., например, в [16].
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Система (9) имеет две особые точки O1(
√
a, 0), O2(−

√
a, 0).

Матрица линейного приближения правой части системы, вычисленная в

точке O1, имеет вид

J1 =

(
0 1

2
√
a

ε 0

)
.

Особая точка O1 — седло.

Матрица линейного приближения правой части системы, вычисленная в

точке O2, имеет вид

J2 =

(
0 1

− 2
√
a

ε 0

)
.

Особая точка O2 является центром по линейной части. Поскольку система (9)

имеет интеграл (10), аналитический на всей плоскости, она не может иметь

особых точек типа фокус. Следовательно, точка O2 является центром системы

(9).

Границей области центра служит траектория, двоякоасимптотическая к

седлу O1 (петля сепаратрисы).

x

y

Рис. 2. Траектории системы (9) в окрестности экватора Пуанкаре.

В частности, в области центра помещается медленное интегральное мно-

гообразие. Эта окружность определяет периодическое решение системы (9).

Траектория пересекает ось Ox в точках с абсциссами x1, x2, которые определя-

ются из уравнения

x2 + εx− a+
ε2

2
= 0.

Имеем

x1,2 =
1

2
(−ε∓

√
4a− ε2),

и период равен

T = 2

x2∫

x1

dx√
−(x2 + εx− a+ ε2

2 )

= 2

x2∫

x1

dx√
−(x− x1)(x − x2)

= 2π.

Центр O2 не является изохронным. Поэтому рассмотренное периодическое дви-

жение неустойчиво по Ляпунову.
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Рис. 3. Фазовый портрет системы (9).

-2 -1 1 2
x

-3

-2

-1

1

2

3

y

Рис. 4. Фазовый портрет системы (9) при значениях параметров a = 4, ε = 1/10.

Бесконечно удаленные точки системы (9) расположены в точках пересече-

ния экватора Пуанкаре с осью Oy: устойчивый вырожденный узел в верхней

полуплоскости и неустойчивый в нижней (рис. 2).

Фазовый портрет системы (9) приведен на рис. 3.

При стремлении ε к 0 медленное интегральное многообразие и петля сепа-

ратрисы стремятся к окружности x2 + y2 = a, которая определяет медленную

поверхность, и приходим к представлению о поведении решений системы, со-

гласующемуся с выводами, полученными ранее в разд. 3.

В системе (9) при малых ε имеют место траектории, поведение которых на-
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поминает поведение траекторий-уток [10, 11], поскольку они характеризуются

тем, что в течение заметного промежутка времени проходят в непосредствен-

ной близости от неустойчивой части медленного интегрального многообразия.

Внутри области центра эти траектории замкнуты и представляют собой циклы.

Если эти циклы расположены достаточно далеко от состояний равновесия, они

состоят из быстрых и медленных участков и являются релаксационными.

Рис. 4 иллюстрирует сказанное.

Отметим, что медленное интегральное многообразие задается как линия

уровня H(x, y) = 0, т. е.

x2 + y2 + εx− a+
ε2

2
= 0,

является алгебраической кривой (окружность) и определяет алгебраический

цикл.

Благодарность. Авторы благодарят В. Н. Потапова за большую помощь
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1. Идея введения обобщенных решений начала проникать в математиче-

скую физику с 20-х гг. прошлого столетия. В частности, при исследовании дву-

мерных вариационных задач появилась необходимость расширить класс функ-

ций, среди которых ищется минимум, привлекая непрерывные функции, име-

ющие обобщенные производные (классы Тонелли) [1]. Другим источником воз-

никновения обобщенных решений послужили нестационарные задачи для вол-

нового уравнения и уравнений гидродинамики, где давно вводились разрывные

решения в виде плоских и сферических волн с сильным разрывом, а также

решения, описывающие ударные волны.

В этом направлении значительные результаты, во многом определяющие

все дальнейшие исследования, получены С. Л. Соболевым [2]. В основу опре-

деляемых им обобщенных решений той или иной задачи для уравнения Lu = f

положено интегральное тождество
∫

D

u(x)L∗ν dx =

∫

D

fν(x) dx,

имеющее место для некоторого класса гладких «пробных» функций ν(x). Затем

доказывается, что такие обобщенные решения дифференциальных уравнений

с постоянными коэффициентами по существу являются пределами в том или

ином смысле гладких решений исследуемых задач. Таким образом, С. Л. Собо-

лев пришел к определению обобщенных решений уравнения Lu = f как пределу

классических решений. В настоящее время эти два вида обобщенных решений

называются слабыми и сильными решениями.

c© 2024 Ошоров Б. Б., Булгатова Е. Н., Васильева Е. Г.
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О. А. Ладыженская [3], продолжая исследования в указанном направлении,

отметила, что для каждой задачи можно вводить различные классы обобщен-

ных решений, определяемые тем функциональным пространством, которому

принадлежит искомое решение. При этом оказалось, что корректность задач

зависит от функциональных пространств, в которых ищется решение.

Возник вопрос отличия систем уравнений в частных производных от одного

уравнения с точки зрения постановки корректных задач. Если для обыкновен-

ных дифференциальных уравнений и систем обыкновенных дифференциаль-

ных уравнений такие постановки практически совпадают, то для уравнений в

частных производных наблюдается иная картина. Для одного эллиптического

уравнения второго порядка корректной является задача Дирихле и есть при-

мер эллиптической по Петровскому системы уравнений второго порядка, для

которой нарушается единственность решения задачи Дирихле [4].

Этот факт положил начало исследованиям, где одной из задач является

изучение влияния типа системы уравнений на постановку корректных задач.

Методика исследований базируется на результатах В. Н. Врагова, изложенных

в доступной форме в учебном пособии [5].

Исследования Б. Б. Ошорова, которые были начаты еще в 70-х годах про-

шлого столетия [6], изложены в работах [7–13]. В самом начале для эллиптиче-

ской системы уравнений второго порядка, где в главной части стоит оператор

из работы [4], доказана [6–10] однозначная разрешимость неклассической кра-

евой задачи в прямоугольнике D = {(x, y) ∈ R2 : 0 < x < k; 0 < y < l}, где

однородные граничные условия имеют вид

u1|y=0 = u1y|y=0 = u2|y=l = u2y|y=l = 0,

u1|x=0 = u1|x=k = u2|x=0 = u2|x=l = 0.
(1)

Здесь условия на функцию u1(x, y) совпадают с условиями смешанной задачи

для гиперболического волнового уравнения, а условия на функцию u2(x, y) суть

условия смешанной задачи для волнового уравнения, но с измененным направ-

лением времени (переменная y).

Так как оператор второго порядка в этих работах является второй степенью

оператора Коши — Римана, чтобы понять, почему для эллиптической системы

корректна гиперболическая задача, были исследованы краевые задачи для си-

стем уравнений первого порядка в плоских областях. Эти исследования также

отражены в [7–10]. По сути, исследуемые задачи являются обобщениями задачи

Римана — Гильберта с разрывными краевыми условиями для системы Коши —

Римана. Тогда условия (1) являются продолжениями условий Римана — Гиль-

берта на уравнения второго порядка.

Результаты исследований для плоских областей нашли продолжение для

областей в трехмерном и четырехмерном пространствах как краевые задачи

для системы уравнений Моисила — Теодореско и для переменных кватернионов

[10, 11].

Отметим, что во всех перечисленных выше работах рассматривались неклас-

сические задачи для классических систем уравнений эллиптического типа. За-
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тем пришло понимание, что в примененной методике исследования задач Ри-

мана — Гильберта с разрывными краевыми условиями и их обобщений эллип-

тичность систем уравнений не играет существенной роли. Поэтому было начато

изучение краевых задач для систем уравнений, не имеющих определенного типа

по существующим классификациям, что нашло отражение в работах [12, 13].

Следует отметить, что в перечисленных работах главные части систем урав-

нений в основном являются дифференциальными операторами с постоянными

коэффициентами.

Далее в этой работе в некоторой области D ⊂ Rn рассматриваем систему

уравнений с переменными коэффициентами

LU ≡
n∑

i=1

Ai(x)Uxi
(x) +A(x)U(x) = F (x), (2)

где x = (x1, . . . , xn) ∈ Rn, Ai(x), i = 1, n, — квадратные матрицы n-го порядка,

U(x) =



u1(x)

...

uk(x)




— неизвестная матрица (вектор-функция),

F (x) =



f1(x)

...

fk(x)




— заданная матрица (вектор-функция). Размерность пространства переменных

может не совпадать с размерностью вектор-функции.

Поскольку известно, что любая квадратная матрица представляется в ви-

де суммы симметрической и кососимметрической матриц, сначала изучаем си-

стемы (2), в которых коэффициенты не являются произвольными матрицами.

Например, можно рассматривать:

(а) симметрические системы, в которых все матрицы в главной части диф-

ференциального оператора не является знакоопределенными;

(б) системы, где одна матрица в главной части симметрическая, а другие

кососимметрические;

(в) системы, где все матрицы в главной части кососимметрические.

Рассмотрим случай (а). Заметим, что предложенная ниже схема исследова-

ния с небольшими непринципиальными видоизменениями может быть исполь-

зована в других случаях. Схема исследования выглядит следующим образом.

Для произвольных матриц-столбцов (вектор-функций) U(x), V (x) ∈ C∞(D)

интегрированием по частям получаем интегральное равенство

(LU, V )0 = (U,L∗V )0 +

∫

�

k∑

i=1

〈U,AiV 〉ηi d� .
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В этом выражении ( , )0 — скалярное произведение в пространстве L2(D), � —

граница области D, (η1, η2, . . . , ηn) — единичный вектор внешней нормали к

этой границе,

L∗V ≡ −
k∑

i=1

AiVxi
+

(
AT −

k∑

i=1

Aixi

)
V

— оператор, формально сопряженный оператору LU , 〈 , 〉 — скалярное произве-

дение в пространстве Rn.

2. В пространстве C∞(D) выделяем подмножество CL вектор-функций

U(x), которые на границе � принимают такие значения, чтобы для формаль-

но сопряженного оператора множество CL порождало множество C∗L вектор-

функций V (x), удовлетворяющих сопряженным граничным условиям, и имело

место тождество

(LU, V )0 = (U,L∗V )0, U(x) ∈ CL, V (x) ∈ C∗L, (3)

т. е. было выполнено условие

∫

�

k∑

i=1

〈U,AiV 〉ηi d� = 0, U(x) ∈ CL, V (x) ∈ C∗L.

Тождество (3) позволяет определить слабое обобщенное решение краевой за-

дачи LU = F , U(x) ∈ CL, как вектор-функцию U(x) ∈ L2(D), для которой

справедливо тождество

(U,L∗V )0 = (F, V )0, V (x) ∈ C∗L.

Сильное обобщенное решение этой задачи U(x) ∈ L2(D) определяется условия-

ми

∃{Un(x) ∈ CL} : lim
n→∞

‖Un − U‖0 = lim
n→∞

‖LUn − F‖0 = 0.

3. Имеет место следующая теорема разрешимости задачи.

Теорема 1. Если справедливы априорные оценки

‖LU‖0 ≥ δ‖U‖0, ‖L∗V ‖0 ≥ δ1‖V ‖0, U(x) ∈ CL, V (x) ∈ C∗L, δ, δ1 = const > 0,

то для любой F (x) ∈ L2(D) в пространстве L2(D) однозначно разрешимы кра-

евая задача LU = F , U(x) ∈ CL, и сопряженная краевая задача L∗V = G,

V (x) ∈ C∗L.

Для наглядности реализуем эту схему для систем двух уравнений в плоской

области.

(a) В квадрате D = {(x, y) ∈ R2 : 0 < x < 1, 0 < y < 1} с границей �

рассмотрим систему уравнений

LU ≡ A(x, y)Ux(x, y) +B(x, y)Uy(x, y) + C(x, y)U(x, y) = F (x, y), (4)
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где

A(x, y) =

(
a11 a12

a21 a22

)
, B(x, y) =

(
b11 b12
b21 b22

)

—симметрические матрицы из пространства C1(D),

C(x, y) =

(
c11 c12
c21 c22

)

— матрица из пространства C(D),

U(x, y) =

(
u1

u2

)

— искомая вектор-функция (матрица-столбец),

F (x, y) =

(
f1
f2

)

— заданная вектор-функция.

Одна из симметрических функциональных матриц A(x, y) и B(x, y) может

быть положительно или отрицательно определенной в области D (система ги-

перболическая), а в общем случае они обе не будут знакоопределенными. Ха-

рактеристический детерминант системы имеет вид

Q(λ) = det(A(x, y)λ1 +B(x, y)λ2) =

∣∣∣∣
a11λ1 + b11λ2 a12λ1 + b12λ2

a12λ1 + b12λ2 a22λ1 + b22λ2

∣∣∣∣

=
(
a11a22 − a2

12

)
λ2

1 + (a11b22 + a22b11 − 2a12b12)λ1λ2 +
(
b11b22 − b212

)
λ2

2.

Для произвольных функциональных коэффициентов эта квадратичная форма

может не иметь постоянного знака в областиD (система без определенного типа

по существующим классификациям), может быть знакоопределенной (система

эллиптическая) и, наконец, может вырождаться (система вырождающаяся).

Границу квадрата � разбиваем на части следующим образом:

�+
01 = {(0, y) : a11λ

2
1 + 2a12λ1λ2 + a22λ

2
2 > 0, λ = (λ1, λ2) 6= (0, 0)},

�−01 = {(0, y) : a11λ
2
1 + 2a12λ1λ2 + a22λ

2
2 < 0, λ = (λ1, λ2) 6= (0, 0)},

� 0
01 = {(0, y) : a11λ

2
1 + 2a12λ1λ2 + a22λ

2
2 = 0, λ = (λ1, λ2) 6= (0, 0)},

�+
11 = {(1, y) : a11λ

2
1 + 2a12λ1λ2 + a22λ

2
2 > 0, λ = (λ1, λ2) 6= (0, 0)},

�−11 = {(1, y) : a11λ
2
1 + 2a12λ1λ2 + a22λ

2
2 < 0, λ = (λ1, λ2) 6= (0, 0)},

� 0
11 = {(1, y) : a11λ

2
1 + 2a12λ1λ2 + a22λ

2
2 = 0, λ = (λ1, λ2) 6= (0, 0)},

�+
02 = {(x, 0) : b11λ

2
1 + 2b12λ1λ2 + b22λ

2
2 > 0, λ = (λ1, λ2) 6= (0, 0)},

�−02 = {(x, 0) : b11λ
2
1 + 2b12λ1λ2 + b22λ

2
2 < 0, λ = (λ1, λ2) 6= (0, 0)},

� 0
02 = {(x, 0) : b11λ

2
1 + 2b12λ1λ2 + b22λ

2
2 = 0, λ = (λ1, λ2) 6= (0, 0)},

�+
12 = {(x, 1) : b11λ

2
1 + 2b12λ1λ2 + b22λ

2
2 > 0, λ = (λ1, λ2) 6= (0, 0)},

�−12 = {(x, 1) : b11λ
2
1 + 2b12λ1λ2 + b22λ

2
2 < 0, λ = (λ1, λ2) 6= (0, 0)},

� 0
12 = {(x, 1) : b11λ

2
1 + 2b12λ1λ2 + b22λ

2
2 = 0, λ = (λ1, λ2) 6= (0, 0)}.

Независимо от наличия какого-то типа системы уравнений или его отсут-

ствия рассматриваем следующую краевую задачу.



Обобщенная разрешимость неклассических краевых задач 33

Задача 1. В квадрате D найти решение системы (4), удовлетворяющее

граничным условиям

U |�+

01
∪�−

11
∪�+

02
∪�−

12

= 0. (5)

Тем самымCL — множество вектор-функций U(x, y) ∈ C∞(D), для которых

выполнены условия (5).

Формально сопряженный оператор имеет вид

L∗V ≡ −AVx −BVy + (CT −Ax −By)V,

а C∗L — множество вектор-функций V (x, y) ∈ C∞(D), для которых выполнены

следующие условия:

V |�−
01
∪� 0

01
∪�+

11
∪� 0

11
∪�−

02
∪� 0

02
∪�+

12
∪� 0

12

= 0. (5∗)

Теорема 2. Если матрица C− 1
2Ax− 1

2By положительно определена в квад-

ратеD, то для любых вектор-функций U(x, y) ∈ CL и V (x, y) ∈ C∗L справедливы

априорные оценки

‖LU‖0 ≥ δ‖U‖0, ‖L∗V ‖0 ≥ δ1‖V ‖0, δ, δ1 = const > 0.

Доказательство. Интегрированием по частям получаем

(LU,U)0 = (AUx, U)0 + (BUy, U)0 + (CU,U)0

= −((AU)x, U)0 − ((BU)y , U)0 + (CU,U)0

= −(AUx, U)0− (BUy, U) + ((C −Ax−By)U,U)0 +

∫

�

(〈AU,U〉η1 + 〈BU,U〉η2) d�

=

((
C − 1

2
Ax −

1

2
By

)
U,U

)

0

+
1

2

∫

�

(〈AU,U〉η1 + 〈BU,U〉η2) d� .

В силу условий (5)

∫

�

〈AU,U〉η1d� = −
∫

�−
01

(
a11u

2
1 + 2a12u1u2 + a22u

2
2

)∣∣
x=0

dy

+

∫

�+

11

(
a11u

2
1 + 2a12u1u2 + a22u

2
2

)∣∣
x=1

dy ≥ 0.

Аналогично ∫

�

〈BU,U〉η2 d� ≥ 0.

Следовательно, ∫

�

(〈AU,U〉η1 + 〈BU,U〉η2) d� ≥ 0.
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В силу положительной определенности матрицы C − 1
2Ax − 1

2By имеет место

неравенство

(LU,U)0 ≥ δ‖U‖20,
откуда следует первая из доказываемых априорных оценок.

Другую оценку доказываем аналогично, рассматривая интеграл (L∗V, V )0

на вектор-функциях V (x, y) ∈ C∗L.

Согласно теореме 1 краевая задача (4), (5) и сопряженная краевая задача

L∗V = G(x, y) и (5∗) однозначно разрешимы в пространстве L2(D).

(b) В выпуклой ограниченной области D ⊂ R2 с кусочно-гладкой границей

� рассматриваем систему уравнений

LU ≡ A(x, y)Ux(x, y) +B(x, y)Uy(x, y) + C(x, y)U(x, y) = F (x, y), (6)

где

A(x, y) =

(
0 a
−a 0

)
, B(x, y) =

(
0 b
−b 0

)

— кососимметрические матрицы из пространства C1(D),

C(x, y) =

(
c11 c12
c21 c22

)

— матрица из пространства C(D).

Характеристический детерминант системы имеет вид

Q(λ) = det(A(x, y)λ1+B(x, y)λ2) =

∣∣∣∣
0 aλ1 + bλ2

−(aλ1 + bλ2) 0

∣∣∣∣ = (aλ1+bλ2)
2 ≥ 0,

т. е. система (6) либо эллиптическая, либо вырождающаяся.

После умножения второго уравнения системы (6) на (−1) получаем систему

с симметрическими матричными коэффициентами. Сохранив для обозначения

этой системы вид (6), полагаем

A(x, y) =

(
0 a
a 0

)
, B(x, y) =

(
0 b
b 0

)
.

Ввиду простой структуры матричных коэффициентов можно рассматри-

вать различные краевые задачи.

На границе квадрата выделим множество

�1 = {(x, y) ∈ � : aη1 + bη2 6= 0}.
Задача 2. В области D найти решение системы уравнений (6), удовлетво-

ряющее условию

u1|�1
= 0. (7)

Эта задача является аналогом задачи Дирихле для системы уравнений Коши —

Римана.

Условия (8) определяют множество CL. Множество C∗L состоит из вектор-

функций V (x, y) ∈ C∞(D), для которых выполнено условие

v1|�1
= 0. (7∗)
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Теорема 3. Если матрица C− 1
2Ax− 1

2By положительно определена в квад-

ратеD, то для любых вектор-функций U(x, y) ∈ CL и V (x, y) ∈ C∗L справедливы

априорные оценки

‖LU‖0 ≥ δ‖U‖0, ‖L∗V ‖0 ≥ δ1‖V ‖0, δ, δ1 = const > 0.

Эта теорема доказывается так же, как теорема 2.

Представим множество �1 в виде �1 = �11 ∪ �12 так, чтобы �11 ∩ �12 6= ∅.

Задача 3. В области D найти решение системы уравнений (6), удовлетво-

ряющее условию

u1|�11
= u2|�12

= 0. (8)

Эта задача есть аналог задачи Римана — Гильберта с разрывными краевыми

условиями для системы уравнений Коши — Римана.

Условия (8) определяют множество C̃L для задачи 3. Множество C̃∗L состо-

ит из вектор-функций V (x, y) ∈ C∞(D), для которых выполнено условие

v1|�12
= v2|�11

= 0. (8∗)

Теорема 4. Если матрица C− 1
2Ax− 1

2By положительно определена в квад-

ратеD, то для любых вектор-функций U(x, y) ∈ C̃L и V (x, y) ∈ C̃∗L справедливы

априорные оценки

‖LU‖0 ≥ δ‖U‖0, ‖L∗V ‖0 ≥ δ1‖V ‖0, δ, δ1 = const > 0.

Эта теорема доказывается так же, как теорема 2.

На основании теоремы 1 делаем вывод, что задачи 2 и 3, а также их сопря-

женные задачи, однозначно разрешимы в пространстве L2(D).
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КРАЕВЫХ ЗАДАЧАХ МНОГОМЕРНЫХ

ПСЕВДОПАРАБОЛИЧЕСКИХ УРАВНЕНИЙ

Н. С. Попов

Аннотация. Исследуется разрешимость начально-краевой задачи для линейных
интегродифференциальных уравнений с заданием на боковой границе условия, свя-
зывающего значения решения или конормальной производной решения со значе-
ниями некоторого интегрального оператора от решения. Доказываются теоремы
существования и единственности регулярных решений. Начало систематических
исследований нелокальных краевых задач — задач нахождения периодических ре-
шений для эллиптических уравнений — было положено в статье А. В. Бицадзе и
А. А. Самарского (1969). Отметим также исследования для псевдопараболических
и псевдогиперболических уравнений третьего порядка с интегральным условием
на боковой границе. Большой вклад в развитие теории нелокальных задач для
дифференциальных уравнений различных классов внесли монографии А. Л. Ску-
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оценки, регулярное решение.

1. Введение

Нелокальные краевые задачи для параболических и гиперболических урав-

нений с интегральным условием на боковой границе активно изучаются в по-

следнее время, но при этом в основном рассматривается лишь случай класси-

ческих уравнений второго порядка (см. [1–5]). Отметим также исследования

для псевдопараболических и псевдогиперболических уравнений с интегральным

условием на боковой границе [1, 6, 7].

Нелокальные задачи естественным образом возникают в задачах математи-

ческого моделирования — в задачах теплопроводности, физики плазмы, элек-

тродинамики, биологии и во многих других задачах, связанных с реальными

физическими, механическими и т. п. процессами.

В настоящей работе изучаются интегродифференциальные уравнения с ин-

тегральными условиями на боковой границе. Доказываются теоремы существо-

вания регулярных решений.

c© 2024 Попов Н. С.



40 Н. С. Попов

2. Постановка задачи

Пусть � — ограниченная область пространства Rn с гладкой (для простоты

бесконечно-дифференцируемой) границей � , Q — цилиндр � × (0, T ) (0 < T <

+∞), S = � × (0, T ) — его боковая граница, a(x, t), c(x, t) и f(x, t) — функции,

заданные в цилиндре Q, u0(x) — на множестве �, N(t) — на множестве [0, T ] и

K1(x, y, t), K2(x, y, t) — на множестве x ∈ �, y ∈ �, t ∈ [0, T ].

Краевая задача I. Найти функцию u(x, t), являющуюся в цилиндре Q

решением уравнения

Lu ≡ ∂

∂t
(Au−�u)−a(x, t)�u+c(x, t)u = f(x, t), Au =

t∫

0

N(t−τ)u(x, τ) dτ, (1)

и такую, что для нее выполняются условия

u(x, 0) = u0(x), x ∈ �, (2)

u(x, t)|(x,t)∈S =

∫

�

K1(x, y, t)u(y, t) dy

∣∣∣∣
(x,t)∈S

. (3)

Краевая задача II. Найти функцию u(x, t), являющуюся в цилиндре Q

решением уравнения (1) и такую, что для нее выполняются условия (2) и усло-

вие
∂u(x, t)

∂ν(x)

∣∣∣∣
(x,t)∈S

=

∫

�

K2(x, y, t)u(y, t) dy

∣∣∣∣
(x,t)∈S

. (4)

Уточним, что здесь и далее по повторяющимся индексам ведется суммиро-

вание в пределах от 1 до n; ν(x) = (ν1, . . . , νn) — вектор внутренней нормали к

� в текущей точке.

3. Разрешимость краевой задачи I

Из уравнения (1) получим

N(0)u(x, t) +

t∫

0

N ′(t− τ)u(x, τ) dτ −�ut − a(x, t)�u + c(x, t)u = f(x, t).

Отсюда при t = 0 с учетом условий (2) имеем нелокальную краевую задачу для

определения u′t(x, 0):

−a(x, 0)�u0(x) + (N(0) + c(x, 0))u0(x) −�u′t(x, 0) = f(x, 0),

u′t(x, 0)|x∈� =

∫

�

(K1(x, y, t)u(y, t))′t|t=0 dy

∣∣∣∣
x∈�

. (5)

Определим оператор M по формуле

(Mu)(x, t) = u(x, t)−Ku(x, t), Ku(x, t) =

∫

�

K1(x, y, t)u(y, t) dy,



О нелокальных интегродифференциальных краевых задачах 41

где оператор K определен на пространстве L2(�) и предполагаем, что 1 не яв-

ляется собственным числом оператора K. В этом случае M будет непрерывно

обратимым оператором из L2(�) в L2(�) и существуют положительные посто-

янные m1, m2 такие, что выполняются неравенства

m1

∫

�

u2(x, t) dx ≤
∫

�

[Mu(x, t)]2 dx ≤ m2

∫

�

u2(x, t) dx (6)

при любых t ∈ [0, T ] и u(x, t) ∈ L∞(0, T ;L2(�)). Отметим, что в работе [8]

рассмотрен случай, когда 1 является собственным числом оператора вида K.

Пусть

V =
{
v(x, t) : v ∈ L∞

(
0, T ;W 2

2 (�)
)
, vt ∈ L2

(
0, T ;W 2

2 (�)
)}
,

норму в этом пространстве определим следующим образом:

‖v‖V = ‖vt‖L2(0,T ;W 2
2
(�) + ‖v‖L∞(0,T ;W 2

2
(�)).

Введем обозначения:

LMu(x, t)−MLu(x, t) = �(x, t, u), w = Mu,

и будем рассматривать уравнение относительно w:

Lw = g(x, t) + �(x, t,M−1w),

где g(x, t) = Mf , которое, как будет показано ниже, эквивалентно исходному

уравнению (1).

Имеем

�(x, t, u) =

∫

�

[a(x, t)�xK1(x, y, t) +�xK1t(x, y, t)

− c(x, t)K1(x, y, t) + c(y, t)K1(x, y, t)]u(y, t) dy

−
∫

�

a(y, t)K1(x, y, t)�yu(y, t) dy −
∫

�

K1(x, y, t)�yut(y, t) dy

+

∫

�

�xK1(x, y, t)ut(y, t) dy.

Прежде чем доказывать разрешимость краевой задачи I, заметим, что для

функций u(x, t) из пространства V , для которых выполняется условие (2), имеет

место следующее неравенства Пуанкаре:

t∫

0

∫

�

u2 dxdτ ≤ d0

t∫

0

∫

�

(△u)2 dxdτ, (7)

где c0, d0 зависят от области �.
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Пусть

w0(x) = u0(x) −
∫

�

K1(x, y, 0)u0(y) dy.

Введем обозначения

P0 = max
t∈[0,T ]

∫

�

∫

�

(�xK1)
2(x, y, t) dxdy,

Q0 = max
t∈[0,T ]

∫

�

∫

�

K2
1 (x, y, t) dxdy, c1 = max

t∈[0,T ]
|N ′(t)|.

(8)

Теорема 1. Пусть выполняются условия (6),

c(x, t) ∈ C1(Q), c(x, t) ≥ c0 > 0 при (x, t) ∈ Q;

K1(x, y, t) ∈ C3(�× �× [0, T ]),

1− δ20(1 + d0)−
P0d0

δ20m1
> 0, 1− Q0d0

δ20m1
> 0 при δ0 ∈

(
0,

√
2

2

)
;

f(x, t) ∈ L2(Q).

(9)

Тогда краевая задача I имеет решение u(x, t), принадлежащее пространству V ,

и это решение единственно.

Доказательство. Рассмотрим вспомогательную краевую задачу: найти

функцию w(x, t), являющуюся в цилиндре Q решением уравнения

Lw = g(x, t) + �1(x, t, w) (10)

и удовлетворяющую условиям

w(x, t)|S = 0, w(x, 0) = w0(x), x ∈ �, (11)

где

u(x, 0)−
∫

�

K(x, y, 0)u(y, 0) dy = u0(x) −
∫

�

K(x, y, 0)u0(y) dy = w0(x),

�1(x, t, w) = �(x, t,M−1w).

Докажем, что при выполнении условий теоремы краевая задача (10), (11)

разрешима в классе W = {v(x, t) : v(x, t) ∈ V, w(x, t) = Mv(x, t) ∈ V } для

любой функции g(x, t) из пространства L2(Q). Воспользуемся методом продол-

жения по параметру. Именно, для чисел λ из отрезка [0, 1] определим семейство

операторов {Lλ}: Lλw = g + λ�1(x, t, w). Рассмотрим краевую задачу: найти

функцию w(x, t), являющуюся в цилиндре Q решением уравнения

Lλw = g(x, t) + λ�1(x, t, w) (7λ)

при выполнении условий (11). Обозначим через � множество тех чисел λ из

отрезка [0, 1], для которых краевая задача (7λ), (11) разрешима в классе W для
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произвольной функции g(x, t) из пространства L2(Q). Покажем, что множество

� будет совпадать со всем отрезком [0, 1]. Совпадение множества � с отрезком

[0, 1] и означает разрешимость краевой задачи (10), (11) в требуемом классе.

Убедимся прежде всего, что множество � непустое. Рассмотрим краевую

задачу: найти функцию w(x, t), являющуюся в цилиндре Q решением уравнения

Lw = g(x, t)

при выполнении условий (11).

Как следует из результатов работ [1, 9, 10], при выполнении условий теоре-

мы эта задача имеет решение, принадлежащее пространству V .

Пусть w(x, t) — решение краевой задачи (7λ), (11) из пространства V . Да-

лее, если имеет место априорная оценка в том же пространстве V , то задача

разрешима при λ ∈ [0, 1] (см. [11]).

Для получения априорной оценки умножим уравнение (7λ), записанное в

переменных x и τ , на функцию wτ−�wτ и результат проинтегрируем по области

� и по переменной τ в пределах от 0 до t. Таким образом преобразуем равенство

t∫

0

∫

�

Lλw(wτ −�wτ ) dxdτ =

t∫

0

∫

�

(g + λ�1)(wτ −�wτ ) dxdτ.

C помощью интегрирования по частям с учетом краевых условий (11) придем

к равенству

1

2
N(0)

∫

�

[
w2(x, t) dx +

n∑

i=1

w2
xi

(x, t)

]
dx

+

t∫

0

∫

�




τ∫

0

N ′(τ − ξ)w(x, ξ) dξ


 (wτ −�wτ ) dxdτ

+

t∫

0

∫

�

[
n∑

i=1

(wxiτ )
2 + (�wτ )2

]
dx dt

+
1

2

∫

�

(�w)2(x, t) dx +
1

2

n∑

i=1

∫

�

[a(x, t) + c(x, t)]w2
xi

(x, t) dx

+
1

2

∫

�

c(x, t)w2(x, t) dx =
1

2

t∫

0

∫

�

aτ (�w)2 dx dτ

+

n∑

i=1

t∫

0

∫

�

[
(aτ + cτ )w2

xi
− axi

wxi
wτ − cxi

wwxiτ

]
dxdτ

+

t∫

0

∫

�

cτw
2 dxdτ +

1

2

∫

�

c(x, 0)w2
0 dx+

1

2

∫

�

a(x, 0)(�w0)
2 dx
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+
1

2

n∑

i=1

∫

�

[a(x, 0) + c(x, 0)]w2
0xi

dx+

t∫

0

∫

�

(g + λ�1)(wτ −�wτ ) dxdτ. (12)

Рассмотрим интеграл

t∫

0

∫

�




τ∫

0

N ′(τ − ξ)w(x, ξ)dξ


 (wτ −�wτ ) dxdτ = J1 + J2. (13)

Имеем

|J1| =

∣∣∣∣∣∣

t∫

0

∫

�




τ∫

0

N ′(τ − ξ)wτ (x, ξ)dξ


w(x, τ) dxdτ

∣∣∣∣∣∣

≤ 1

2
c1T

t∫

0

∫

�

w2(x, τ) dxdτ,

|J2| =

∣∣∣∣∣∣

t∫

0

∫

�




τ∫

0

N ′(τ − ξ)w(x, ξ)dξ


�wτ (x, τ) dxdτ

∣∣∣∣∣∣

≤ 1

2
c1T

n∑

i=1

t∫

0

∫

�

w2
xi

(x, τ) dxdτ.

(14)

Для получения априорной оценки из равенства (12) рассмотрим оценку

интеграла
t∫

0

∫

�

u2
τ (y, τ) dydτ

через функцию w. Из равенства w = Mu имеем

uτ (y, τ)−
∫

�

K1(y, z, τ)uτ (z, τ) dz = wτ (y, τ) +

∫

�

K1τ (y, z, τ)u(z, τ) dz.

Используя (6) и неравенство Юнга, получим

∫

�

u2
τ (y, τ) dy ≤

1

m1

∫

�

[
wτ (y, τ) +

∫

�

K1τ (y, z, τ)u(z, τ) dz

]2
dy

=
1

m1

[ ∫

�

w2
τ (y, τ) dy + 2

∫

�

|wτ (y, τ)| ·
∣∣∣∣
∫

�

K1τ (y, z, τ)u(z, τ) dz

∣∣∣∣ dy

+

∫

�

(∫

�

K1τ (y, z, τ)u(z, τ)dz

)2

dy

]

≤ 1

m1

[ ∫

�

w2
τ (y, τ) dy + δ21

∫

�

w2
τ (y, τ) dy +

1

δ21

∫

�

(∫

�

K1τ (y, z, τ)u(z, τ) dz

)2

dy
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+

∫

�

(∫

�

K1τ (y, z, τ)u(z, τ)dz

)2

dy

]

≤ 1 + δ21
m1

∫

�

w2
τ (y, τ) dy +

C(δ1)

m1

∫

�

w2(y, τ) dy, (15)

где малое δ1 > 0 подберем позже, а последний интеграл оценивается через (6).

Для того чтобы оценить в (12) интеграл

t∫

0

∫

�

�1(wτ −�wτ ) dxdτ (16)

рассмотрим оценку интеграла от �(x, t, u) вида
∣∣∣∣∣∣

t∫

0

∫

�

(∫

�

�xK1(x, y, τ)uτ (y, τ) dy

)
(wτ −�wτ ) dxdτ

∣∣∣∣∣∣

≤
t∫

0

∫

�

(∫

�

(�xK1)
2(x, y, τ) dy

) 1
2
(∫

�

u2
τ (y, τ) dy

) 1
2

|wτ −�wτ | dxdτ

≤ δ20
2

t∫

0

∫

�

(wτ −�wτ )2 dxdτ

+
1

2δ20

t∫

0

∫

�

(∫

�

(�xK1)
2(x, y, τ) dy

)(∫

�

u2
τ (y, τ) dy

)
dxdτ

≤ δ20(1 + d0)

t∫

0

∫

�

(△wτ )2 dx dτ +
P0

2δ20m1

t∫

0

∫

�

w2
τ (y, τ) dydτ, (17)

где P0 задано равенством (8).

Продолжая неравенство (17), с учетом (15) и неравенства Юнга получим
∣∣∣∣∣∣

t∫

0

∫

�

(∫

�

�xK1(x, y, τ)uτ (y, τ) dy

)
(wτ −�wτ ) dxdτ

∣∣∣∣∣∣

≤ δ20(1 + d0)

t∫

0

∫

�

(△wτ )2 dx dτ +
P0(1 + δ21)

2δ20m1

t∫

0

∫

�

w2
τ (x, τ) dxdτ

+
P0C(δ1)

2m1δ20

t∫

0

∫

�

w2(x, τ) dxdτ. (18)

Далее, для того чтобы оценить в (16) интеграл вида

t∫

0

∫

�

(∫

�

K1(x, y, τ)�yuτ (y, τ) dy

)
(wτ −�xwτ ) dxdτ
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поступаем, как и выше. Имеем

∣∣∣∣∣∣

t∫

0

∫

�

(∫

�

K1(x, y, τ)�yuτ (y, τ) dy

)
(wτ −�wτ ) dxdτ

∣∣∣∣∣∣

≤ δ20
2

t∫

0

∫

�

(wτ −�wτ )2 dxdτ +
Q0(1 + δ21)

2δ20m1

t∫

0

∫

�

(�yuτ )
2(y, τ) dydτ, (19)

где Q0 задано формулой (8).

Зафиксируем δ0 ∈
(
0,
√

2
2

)
и потребуем выполнения неравенств (9):

p1 ≡ 1− δ20(1 + d0)−
P0d0

δ20m1
> 0, p2 ≡ 1− Q0d0

δ20m1
> 0, (20)

которые, очевидно, выполняются при малых |�xK1(x, y, t)| и |K1(x, y, t)|. Под-

бирая малое δ1 > 0, из неравенств

p1 −
P0δ

2
1

δ20m1
> 0, p2 −

Q0δ
2
1

δ20m1
> 0, (21)

применяя неравенство Юнга и используя лемму Гронуолла в равенстве (12),

получим априорную оценку

t∫

0

∫

�

[
(�wτ )2 +

n∑

i=1

(wxiτ )2

]
dx dτ

+

∫

�

[
w2(x, t) +

n∑

i=1

w2
xi

(x, t) + (�w)2(x, t)

]
dx ≤ K0

T∫

0

∫

�

g2(x, t) dxdt (22)

с положительной постоянной K0, определяемой лишь функциями a(x, t), c(x, t),

числами T , a0, c0, d0, а также областью �.

Очевидно, аналогичная оценка имеет место и для функции u(x, t):

‖u‖V ≤ K1‖w‖V ≤ K2‖g‖L2(Q), (23)

с положительными постоянными K1, K2 определяемой теми же величинами,

которыми определяются постоянные K0.

Из оценок (22), (23) следует открытость и замкнутость множества � (см.

[1, 5]). Следовательно, краевая задача (10), (11) разрешима в классе W .

Покажем теперь, что с помощью решения вспомогательной краевой зада-

чи (10), (11) можно найти решение исходной краевой задачи (1)–(3). Так как

g(x, t) = Mf(x, t) и в силу условия (6) следует, что из принадлежности функ-

ции f(x, t) пространству L2(Q) функция Mf(x, t) также будет принадлежать

пространству L2(Q), то согласно доказанному краевая задача (10), (11) с такой

функцией g(x, t) будет разрешима в пространстве V . Легко показать, что ис-

ходное уравнение (1) эквивалентно уравнению (10). В самом деле, уравнение
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(10) имеет вид LMu = Mf+�, откуда получим LMu = Mf+LMu−MLu, т. е.

M(Lu − f) = 0. Поскольку оператор M взаимно однозначен (из условия (6)),

то решение u(x, t) уравнения (10) будет решением уравнения (1). Выполнение

условий (2), (3) для функции u(x, t) очевидно.

Единственность решений очевидна — она вытекает, например, из неравен-

ства (23). Теорема доказана.

4. Разрешимость краевой задачи II

Пусть K2(x, y, t) — функция, определенная на множестве � × � × [0, T ] и

такая, что при (x, y, t) ∈ � × �× (0, T ) выполняется равенство

∂K2(x, y, t)

∂ν(x)
= K1(x, y, t)

(как можно построить данную функцию, обсудим ниже). С помощью функции

K2(x, y, t) определим оператор M1 и функцию �̃(x, t, u):

(M1u)(x, t) = u(x, t)−
∫

�

K2(x, y, t)u(y, t) dy,

�̃(x, t, u) = LM2u(x, t)−M2Lu(x, t),

значение оператораM2 на функции u(x, t) будем обозначать через w̃ = M2u(x, t)

и определим начальную функцию w̃(x, 0) = w1(x):

w1(x) = u0(x) −
∫

�

K2(x, y, 0)u0(y) dy.

Условие на оператор M1: оператор M1 однозначно и непрерывно обратим как

оператор из L2(�) в L2(�) при всех t ∈ [0, T ] и существуют положительные

постоянные m3, m4 такие, что выполняются неравенства

m3

∫

�

u2(x, t) dx ≤
∫

�

[M1u(x, t)]2 dx ≤ m4

∫

�

u2(x, t) dx (24)

при любых t ∈ [0, T ] и u(x, t) ∈ L∞(0, T ;L2(�)).

Имеем

�̃(x, t, u) =

∫

�

[a(x, t)�xK2(x, y, t) +�xK2t(x, y, t)

− c(x, t)K2(x, y, t) + c(y, t)K2(x, y, t)]u(y, t) dy

−
∫

�

a(y, t)K2(x, y, t)�yu(y, t) dy −
∫

�

K2(x, y, t)�yut(y, t) dy

+

∫

�

�xK2(x, y, t)ut(y, t) dy.

Как и выше, введем обозначения

P1 = max
t∈[0,T ]

∫

�

∫

�

(�xK2)
2(x, y, t) dxdy, Q1 = max

t∈[0,T ]

∫

�

∫

�

K2
2(x, y, t) dxdy. (25)
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Теорема 2. Пусть выполняются условия (24),

a(x, t), c(x, t) ∈ C1(Q),

a(x, t) ≥ a0 > 0, c(x, t) ≥ c0 > 0 при (x, t) ∈ Q;

K2(x, y, t) ∈ C3(�× �× [0, T ]),

1− δ20(1 + d0)−
P1d0

δ20m3
> 0, 1− Q1d0

δ20m3
> 0 при δ0 ∈

(
0,

√
2

2

)
;

f(x, t) ∈ L2(Q), w1(x) ∈W 1
2 (�),

∂w1(x)

∂ν(x)

∣∣∣∣
x∈�

= 0.

(26)

Тогда краевая задача II имеет решение u(x, t), принадлежащее пространству V ,

и это решение единственно.

Доказательство. Рассмотрим вспомогательную краевую задачу: найти

функцию u(x, t), являющуюся в цилиндре Q решением уравнения

Lw̃ = g(x, t) + �̃(x, t, u) (27)

и удовлетворяющую условиям

∂w̃(x, t)

∂ν(x)

∣∣∣∣
S

= 0, w̃(x, 0) = w1(x), x ∈ �, (28)

где g(x, t) — заданная функция. Разрешимость данной краевой задачи в про-

странствеW устанавливается стандартным (в рамках настоящей работы) спосо-

бом — с помощью метода продолжения по параметру. Необходимые априорные

оценки выводятся из равенств

t∫

0

∫

�

Lλw̃(w̃τ −�w̃τ ) dxdτ =

t∫

0

∫

�

(g + λ�̃1)(w̃τ −�w̃τ ) dxdτ,

где �̃1(x, t, w̃) = �̃
(
x, t,M−1

1 w̃
)
.

Как и выше, при осуществлении схемы метода продолжения по параметру

основная априорная оценка будет определяться положительной постоянной K3

в правой части, определяемой лишь функциями a(x, t), c(x, t), числами T , a0,

c0, d0, а также областью �. Имеем

‖u‖V ≤ K3‖g‖L2(Q). (29)

Как и ранее, с помощью решения вспомогательной краевой задачи (27),

(28) строим требуемое решение краевой задачи II — именно, с помощью выбора

функции g(x, t) = M1f(x, t) и перехода к уравнению

M1(Lu− f) = 0.

Единственность решений краевой задачи II в пространстве V очевидна из

априорной оценки (29). Теорема полностью доказана.
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Замечание 1. В теореме 1 условия малости на функции K1(x, y, t),

�xK1(x, y, t) можно заменить условиями симметричностиK1(x, y, t) = K1(y, x, t)

и обращения в нуль на границе:

K1(x, y, t) = K1yi
(x, y, t) = 0 (i = 1, . . . , n) при y ∈ � .

В случае теоремы 2 для функции K2(x, y, t) аналогично.

Замечание 2. В теоремах 1, 2 от условий a(x, t) ≥ a0 > 0, c(x, t) ≥ c0 > 0

можно отказаться, но тогда, как и выше, при получении априорных оценок

возникнут условия малости на функции a(x, t), c(x, t) и их производные.

Замечание 3. Функцию K2(x, y, t) можно построить, например, как ре-

шение второй краевой задачи для оператора Лапласа:

�K2(x, y, t) = �K1(x, y, t),
∂K2(x, y, t)

∂ν(x)

∣∣∣∣
x∈�

= K1(x, y, t)|x∈� ,

где переменные y и t являются параметрами.

5. Заключение

1. Метод доказательства разрешимости краевых задач I и II основан на пе-

реходе от задачи с неклассическим краевым условием к задаче с классическим

условием, но для неклассического уравнения — так называемого нагруженно-

го [9] уравнения, с последующим доказательством разрешимости полученной

задачи с помощью метода продолжения по параметру и априорных оценок и

далее — к построению решения исходной задачи. Ранее подобные методы в

близкой ситуации эффективно использовались в работах [3–5].

2. В краевой задаче II условие (4) можно заменить условием

∂u(x, t)

∂ν(x)
+ σ(x, t)u(x, t)|(x,t)∈S =

∫

�

K3(x, y, t)u(y, t) dy

∣∣∣∣
(x,t)∈S

.

3. Теоремы 1, 2 остаются справедливыми и для уравнения вида

∂

∂t
(Au −�u)−

n∑

i,j=1

∂

∂xi
(bij(x, t)uxj

) +

n∑

i=1

bi(x, t)uxi
+ b(x, t)u = f(x, t)

при соответствующих ограничениях на коэффициенты уравнения.
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Аннотация. Получены достаточные условия однозначной разрешимости в клас-
сическом и обобщенном смыслах обратной задачи для нелинейного уравнения в ба-
наховом пространстве, разрешенного относительно старшей дробной производной
Джрбашяна — Нерсесяна. Условие переопределения обратной задачи задается ин-
тегралом Стилтьеса, младшие производные входят в уравнение нелинейно. Опера-
тор при искомой функции в линейной части уравнения предполагается ограничен-
ным или порождающим аналитическое разрешающее семейство соответствующего
линейного однородного уравнения. С использованием полученных ранее авторами
результатов о прямой задаче для линейного неоднородного уравнения методом сжи-
мающих отображений получены основные результаты. Приведен пример обратной
задачи для уравнения в частных производных, для которой условия абстрактной
теоремы выполняются.

DOI: 10.25587/2411-9326-2024-3-53-72

Ключевые слова: нелинейная обратная задача, обобщенное решение, классиче-
ское решение, дробная производная Джрбашяна — Нерсесяна, начально-краевая
задача.

1. Введение

Обратные задачи для дифференциальных уравнений представляют инте-

рес для исследователей с теоретической точки зрения [1–4], и в то же время они

очень значимы для прикладных исследований в геофизике, астрономии, теории

управления и многих других областях науки [5–8]. С другой стороны, урав-

нениям с дробными производными посвящено огромное количество исследова-

тельских работ в последние десятилетия [9–12]. Отметим большое количество

совсем недавних работ, в которых исследуются линейные обратные задачи для

уравнений с дробными производными [13–25]. Нелинейные обратные задачи с

Исследование выполнено за счет гранта Российского научного фонда и Правительства
Челябинской области № 23–21–10015, https://rscf.ru/project/23-21-10015/.

c© 2024 Федоров В. Е., Плеханова М. В., Сагимбаева А. О.
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зависящим от времени неизвестным параметром для дробных дифференциаль-

ных уравнений исследованы в работах [26] (для уравнений с производными Ри-

мана — Лиувилля), в [27, 28] (уравнения с производными Герасимова — Капуто),

в [29, 30] (уравнения с производными Джрбашяна — Нерсесяна). В продолже-

ние этих работ здесь исследуются нелинейные обратные задачи с не зависящим

от времени неизвестным параметром u

D
σnz(t) = Az(t) +B(t,Dσ0z(t), Dσ1z(t), . . . , Dσn−1z(t)) + b(t)u, (1)

D
σkz(0) = zk, k = 0, 1, . . . , n− 1, (2)

T∫

0

z(t) dµ(t) = zT , (3)

где Dσk , k = 0, 1, . . . , n, — дробные производные Джрбашяна — Нерсесяна, со-

ответствующие набору чисел α0, α1, . . . , αn ∈ (0, 1] (определение см. в разд. 2),

B ∈ C([0, T ] ×Z n; Z ) — нелинейный оператор, b ∈ ([0, T ];C), µ : (0, T ] → R —

функция ограниченной вариации. Рассмотрены случаи ограниченного операто-

ра A в банаховом пространстве Z и линейного замкнутого оператора, порожда-

ющего аналитическое разрешающее семейство операторов линейного однород-

ного уравнения Dσnz(t) = Az(t) в Z . Здесь неизвестными являются функция

z : [0, T ] → Z и вектор u ∈ Z . Условия (2) можно назвать начальными усло-

виями Джрбашяна — Нерсесяна [31], (3) — условие переопределения обратной

задачи.

С использованием полученных ранее авторами результатов о разрешимости

прямой задачи [32–34] методом сжимающих отображений исследованы вопросы

однозначной разрешимости задачи (1)–(3) в смысле обобщенных и классических

решений. Рассмотрен иллюстративный пример.

2. Случай ограниченного оператора

Пусть Z — банахово пространство, для z ∈ L1(0, T ; Z )

Jβz(t) =

t∫

0

(t− s)β−1

� (β)
z(s) ds

есть дробный интеграл Римана — Лиувилля порядка β > 0, J0 — тождествен-

ный оператор, Dβz := J−βz при β ≤ 0, Dβz := DmJm−βz — дробная произ-

водная Римана — Лиувилля порядка β ∈ (m − 1,m], m ∈ N. Дробные произ-

водные Джрбашяна — Нерсесяна, которые соответствуют последовательности

{α0, α1, . . . , αn}, 0 < αk ≤ 1, k = 0, 1, . . . , n ∈ N, имеют вид [31]

D
σ0z(t) := Dα0−1z(t),

D
σkz(t) := Dαk−1Dαk−1Dαk−2 . . .Dα0z(t), k = 1, 2, . . . , n.

Такая производная является обобщением дробной производной Римана — Ли-

увилля (α0 ∈ (0, 1), αk = 1, k = 1, 2, . . . , n), дробной производной Герасимова —
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Капуто (αk = 1, k = 0, 1, . . . , n− 1, αn ∈ (0, 1)). Мы будем использовать обозна-

чения

σk :=

k∑

j=0

αj − 1, k = 0, 1, . . . , n.

Пусть L (Z ) — банахова алгебра всех линейных ограниченных операторов

в Z , C l(Z ) — множество линейных замкнутых плотно определенных в про-

странстве Z операторов. Область DA оператора A ∈ C l(Z ) наделена нормой

графика ‖ · ‖DA
= ‖ · ‖Z + ‖A · ‖Z , следовательно, DA является банаховым

пространством в силу замкнутости A.

Нам понадобится функция Миттаг-Леффлера

Eα,β(z) :=

∞∑

j=0

zj

� (αj + β)
, z ∈ L (Z ), α, β > 0.

Рассмотрим начальную задачу

D
σkz(0) = zk, k = 0, 1, . . . , n− 1, (4)

для линейного неоднородного уравнения

D
σnz(t) = Az(t) + f(t). (5)

Функция z ∈ C((0, T ]; Z ) является решением задачи (4), (5) на отрезке [0, T ],

если Dσkz ∈ AC([0, T ]; Z ), k = 0, 1, . . . , n−1, Dσnz ∈ C((0, T ]; Z ), равенство (5)

выполняется для всех t ∈ (0, T ] и выполнены условия (4).

Зададим пространство C1
β([0, T ]; Z ), β ∈ R, функций v ∈ C([0, T ]; Z ) ∩

C1((0, T ]; Z ) таких, что tβv′(t) ∈ C([0, T ]; Z ).

Теорема 1 [34]. Пусть A ∈ L (Z ), zk ∈ Z , k = 0, 1 . . . , n − 1, 0 < αk ≤ 1,

k = 0, 1, . . . , n, α0 + αn > 1, f ∈ C([0, T ]; Z ) при αn = 1 и f ∈ C1
β([0, T ]; Z ) для

некоторого β < 1 при αn < 1. Тогда функция

z(t) =

n−1∑

k=0

tσkEσn,σk+1(t
σnA)zk +

t∫

0

(t− s)σn−1Eσn,σn
((t− s)σnA)f(s) ds

является единственным решением задачи (4), (5).

Пусть A ∈ L (Z ), B ∈ C([0, T ] × Z n; Z ), b ∈ C([0, T ];C), zk ∈ Z , k =

0, 1, . . . , n− 1, zT ∈ Z , u ∈ Z . Рассмотрим обратную задачу (1)–(3).

Обобщенным решением задачи (1)–(3) будем называть пару

(z, u) ∈ [C((0, T ]; Z ) ∩ L1(0, T ; Z )]×Z ,

для которой Dσkz ∈ C([0, T ]; Z ), k = 0, 1, . . . , n− 1, при всех t ∈ (0, T ]

z(t) =

n−1∑

k=0

tσkEσn,σk+1(t
σnA)zk +

t∫

0

(t−s)σn−1Eσn,σn
((t−s)σnA)(Bz(s)+b(s)u) ds,

(6)
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где Bz(s) = B(s,Dσ0z(s), Dσ1z(s), . . . , Dσn−1z(s)), и выполнены условия (2),

(3). Если, кроме того, Dσkz ∈ AC([0, T ]; Z ), k = 0, 1, . . . , n − 1, существует

Dσnz ∈ C((0, T ]; Z ) и выполняется равенство (1) при всех t ∈ (0, T ], то пара

(z, u) называется классическим решением задачи (1)–(3).

Будем называть отображение B ∈ C([0, T ] × Z n; Z ) липшицевым, если

существует такое L > 0, что для любых x0, x1, . . . , xn−1, y0, y1, . . . , yn−1 ∈ Z ,

t ∈ [0, T ] выполняется

‖B(t, x0, x1, . . . , xn−1)−B(t, y0, y1, . . . , yn−1)‖Z ≤ L
n−1∑

k=0

‖xk − yk‖Z .

Через V T
0 µ обозначим вариацию функции µ на (0, T ].

Теорема 2. Пусть A ∈ L (Z ), n ∈ N, 0 < αk ≤ 1, k = 0, 1, . . . , n, α0 +αn >

1, αn−1 + αn > 1, B ∈ C([0, T ] × Z n; Z ) липшицево, b ∈ C([0, T ];C), zk ∈ Z ,

k = 0, 1, . . . , n− 1, zT ∈ Z , µ ∈ BV ((0, T ];C), существует обратный оператор

� :=




T∫

0

t∫

0

(t− s)σn−1Eσn,σn
((t− s)σnA)b(s) dsdµ(t)



−1

∈ L (Z ),

q := max
{
V T

0 µ‖�‖L (Z )LT
σnEσn,σn+1(T

σn‖A‖L (Z )),

2LT σn−σkEσn,σn−σk+1(T
σn‖A‖L (Z )),

2LT σn−σkEσn,σn−σk+1(T
σn‖A‖L (Z ))‖b‖C([0,T ];C), k = 0, 1, . . . , n− 1

}
< 1. (7)

Тогда обратная задача (1)–(3) имеет единственное обобщенное решение. Если

при этом αn = 1, то задача (1)–(3) имеет единственное классическое решение.

Доказательство. Сразу отметим, что неравенство αn−1 + αn > 1 с уче-

том остальных условий теоремы влечет существование непрерывных на [0, T ]

производных Dσk , k = 0, 1, . . . , n− 1, для интеграла из правой части равенства

(6).

При k, l = 0, 1, . . . , n− 1 в лемме 1 из [32] было доказано, что

Dσk tσlEσn,σl+1(t
σnA) = tσl−σkEσn,σl−σk+1(t

σnA) ∈ C([0, T ]; L (Z )), k ≤ l,

DσktσkEσn,σk+1(t
σnA) = Atσl−σk+σnEσn,σl−σk+σn+1(t

σnA) ∈ C([0, T ]; L (Z )), k > l.

Равенство

Dσk

t∫

0

(t− s)σn−1Eσn,σn
((t− s)σnA)f(s) ds

=

t∫

0

(t− s)σn−σk−1Eσn,σn−σk
((t− s)σnA)f(s) ds
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при k = 0, 1, . . . , n, αn = 1, f ∈ C([0, T ]; Z ) было получено при доказательстве

леммы 2 в [34]. Поэтому для обобщенного решения (z, u) задачи (1)–(3) при

k = 0, 1, . . . , n− 1

Dσkz(t) =

k−1∑

l=0

tσl−σk+σnEσn,σl−σk+σn+1(t
σnA)Azl

+

n−1∑

l=k

tσl−σkEσn,σl−σk+1(t
σnA)zl

+

t∫

0

(t− s)σn−σk−1Eσn,σn−σk
((t− s)σnA)(B(s,Dσ0z(s), . . . , Dσn−1z(s)) + b(s)u) ds.

(8)

Следовательно, Dσkz ∈ C([0, T ]; Z ).

В силу условия переопределения

zT =

T∫

0

n−1∑

k=0

tσkEσn,σk+1(t
σnA)zkdµ(t)

+

T∫

0

t∫

0

(t−s)σn−1Eσn,σn
((t−s)σnA)(B(s,Dσ0z(s), . . . , Dσn−1z(s))+b(s)u) dsdµ(t).

Поэтому согласно условиям теоремы

u = �zT − �
T∫

0

n−1∑

k=0

tσkEσn,σk+1(t
σnA)zk dµ(t)

− �
T∫

0

t∫

0

(t− s)σn−1Eσn,σn
((t− s)σnA)B(s,Dσ0z(s), . . . , Dσn−1z(s)) dsdµ(t). (9)

Получена система из n уравнений (8) при k = 0, 1, . . . , n − 1 и уравнения

(9) для n функций y0 := Dσ0z, y1 := Dσ1z, . . . , yn−1 := Dσn−1z и (n + 1)-го

неизвестного u.

Обозначим y = (y0, y1, . . . , yn−1) и в полном метрическом пространстве

C([0, T ]; Z n) × Z зададим отображение H с компонентами H0, H1, . . . , Hn:

при k = 0, 1, . . . , n− 1

Hk(y0, y1 . . . , yn−1, u)(t) =

k−1∑

l=0

tσl−σk+σnEσn,σl−σk+σn+1(t
σnA)Azl

+

n−1∑

l=k

tσl−σkEσn,σl−σk+1(t
σnA)zl

+

t∫

0

(t−s)σn−σk−1Eσn,σn−σk
((t−s)σnA)(B(s, y0(s), y1(s), . . . , yn−1(s))+b(s)u) ds,
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Hn(y0, y1, . . . , yn−1) = �zT − �
T∫

0

n−1∑

k=0

tσkEσn,σk+1(t
σnA)zk dµ(t)

− �
T∫

0

t∫

0

(t− s)σn−1Eσn,σn
((t− s)σnA)B(s, y0(s), y1(s), . . . , yn−1(s)) dsdµ(t).

Теперь обратную задачу (1)–(3) можно записать в виде системы

y0(t) = H0(y0, y1, . . . , yn−1, u)(t),

y1(t) = H1(y0, y1, . . . , yn−1, u)(t),

. . . ,

yn−1(t) = Hn−1(y0, y1, . . . , yn−1, u)(t),

u = Hn(y0, y1, . . . , yn−1) = Hn(H0(y, u), H1(y, u), . . . , Hn−1(y, u)).

(10)

По условиям теоремы отображение H(y0, y1, . . . , yn−1, u)(t) непрерывно по t на

[0, T ] при (y0, y1, . . . , yn−1, u) ∈ C([0, T ]; Z n) × Z . Поэтому H [C([0, T ]; Z n) ×
Z ] ⊂ C([0, T ]; Z n)×Z .

При (yj , uj) ∈ C([0, T ]; Z n ×Z ), j = 1, 2, k = 0, 1, . . . , n − 1 в силу липши-

цевости по фазовым переменным отображения B имеем

‖Hk(y
1, u1)(t)−Hk(y

2, u2)(t)‖Z

≤ L
t∫

0

tσn−σk−1Eσn,σn−σk
(tσn‖A‖L (Z ))

×
(

n−1∑

l=0

∥∥y1
l (s)− y2

l (s)
∥∥

Z
+ ‖b‖C([0,T ];C)‖u1 − u2‖Z

)
ds

≤ LT σn−σkEσn,σn−σk+1(T
σn‖A‖L (Z ))

×
(

n−1∑

l=0

∥∥y1
l − y2

l

∥∥
C([0,T ];Z )

+ ‖b‖C([0,T ];C)‖u1 − u2‖Z
)
,

‖Hn(y1)−Hn(y2)‖Z

≤ V T
0 µ‖�‖L (Z )LT

σnEσn,σn+1(T
σn‖A‖L (Z ))

n−1∑

l=0

‖y1
l − y2

l ‖C([0,T ];Z ).

Отсюда получаем

‖H(y1, u1)−H(y2, u2)‖C([0,T ];Z n)×Z

= max{‖Hn(y1)−Hn(y2)‖Z , ‖Hk(y
1, u1)−Hk(y

2, u2)‖C([0,T ];Z ), k = 0, 1, . . . , n−1}

≤ q
(

n−1∑

l=0

∥∥y1
l − y2

l

∥∥
C([0,T ];Z )

+ ‖u1 − u2‖Z
)

= q‖(y1, u1)−(y2, u2)‖C([0,T ];Z n)×Z .

В силу условия (7) отображение H имеет в пространстве C([0, T ]; Z n) × Z

единственную неподвижную точку (y0, u0) =
(
y0
0 , y

0
1 , . . . , y

0
n−1, u

0
)
.
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Имеем

y0
0 = H0(y

0, u0) =

n−1∑

l=0

tσl−σ0Eσn,σl−σ0+1(t
σnA)zl

+

t∫

0

(t−s)σn−σ0−1Eσn,σn−σ0
((t−s)σnA)

(
B
(
s, y0

0(s), y
0
1(s), . . . , y

0
n−1(s)

)
+b(s)u0

)
ds.

(11)

По построению H

Dα1−1D1y0
0 = y0

1, Dα2−1Dα1D1y0
0 = y0

2 , . . . , D
αn−1−1Dαn−2 . . . Dα1D1y0

0 = y0
n−1.

Отсюда, в частности, следует, что D1y0
0 ∈ L1(0, T ; Z ), а значит,

y0
0 = J1−α0D1−α0y0 + Jα0y0

0(0)
t−α0

� (1− α0)
= J1−α0D1−α0y0

(см. теорему 1.5 в [35]) в силу непрерывности на [0, T ] функции y0
0 . Подейство-

вав на равенство (11) оператором D1−α0 , получим

z0 := D1−α0y0
0 =

n−1∑

l=0

tσlEσn,σl+1(t
σnA)zl

+D1

t∫

0

(t− s)σnEσn,σn+1((t− s)σnA)
(
B
(
s, y0

0(s), y
0
1(s), . . . , y

0
n−1(s)

)
+ b(s)u0

)
ds

=

n−1∑

l=0

tσlEσn,σl+1(t
σnA)zl +

t∫

0

(t− s)σn−1Eσn,σn
((t− s)σnA)

× (B(s,Dσ0z0(s), Dσ1z0(s), . . . , Dσn−1z0(s)) + b(s)u0) ds.

Таким образом, (z0, u0) — обобщенное решение задачи (1)–(3). Если к тому же

αn = 1, то по теореме 1 непрерывности на [0, T ] функцииB(s,Dσ0z0(s), Dσ1z0(s),

. . . , Dσn−1z0(s)) + b(s)u0 достаточно, чтобы решение было классическим. �

Замечание 1. Задача (1)–(3) нелокальна по времени, поэтому говорить о

ее локальной разрешимости не имеет смысла. При этом часто используемый

метод доказательства нелокальной разрешимости нелинейных задач, когда до-

казывают сжимаемость достаточно большой степени оператора H (см., напри-

мер, [29]), в данном случае не работает, поскольку компонента Hn содержит

нелокальное интегрирование по t.

Замечание 2. Пусть µ — функция единичного скачка в точке T , b ≡ 1.

Тогда

T∫

0

t∫

0

(t− s)σn−1Eσn,σn
((t− s)σnA)b(s) dsdµ(t) = T σnEσn,σn+1(T

σnA),
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� := (T σnEσn,σn+1(T
σnA))−1

= T−σn� (σn + 1)(I + T σn� (σn + 1)AEσn,2σn+1(T
σnA))−1,

‖�‖L (Z ) ∼ T−σn� (σn + 1), T → 0 + .

Поэтому даже при малом T малость выражения

V T
0 µ‖�‖L (Z )LT

σnEσn,σn+1(T
σn‖A‖L (Z ))

из (7) не гарантирована, а значит, условие (7) может не выполняться.

3. Случай секториального оператора

Определим резольвентное множество ρ(A) := {λ ∈ C : (λI −A)−1 ∈ L (Z )}
оператора A и его спектр σ(A) := C \ ρ(A), обозначим Rλ(A) := (λI −A)−1.

ОператорA ∈ C l(Z ) принадлежит классу A ∈ A{αk}(θ0, a0) для некоторого

θ0 ∈ (π/2, π), a0 ≥ 0, αk ∈ (0, 1], k = 0, 1, . . . , n, если

(i) для всех λ ∈ Sθ0,a0
:= {µ ∈ C : | arg(µ − a0)| < θ0, µ 6= a0} имеем

λσn ∈ ρ(A);

(ii) для каждого θ ∈ (π/2, θ0), a > a0, существует такое K = K(θ, a) > 0,

что для всех λ ∈ Sθ,a

‖Rλσn (A)‖L (Z ) ≤
K(θ, a)

|λ|σn
.

Если A ∈ A{αk}(θ0, a0), то определены операторы

Yβ(t) :=
1

2πi

∫

�

λβRλσn (A)eλt dλ, t > 0, β ∈ R,

где � := �+ ∪ �0 ∪ �−, �± := {λ ∈ C : λ = a + re±iθ , r ∈ (δ,∞)}, �0 := {λ ∈ C :

λ = a + δeiϕ, ϕ ∈ [−θ, θ]}, θ ∈ (π/2, θ0), a > a0, δ > 0. Мы будем использовать

обозначения Zk(t) := Yσn−σk−1(t), k = 0, 1, . . . , n−1. Рассуждая, как в лемме 2.1

из [36], получим

∃C > 0 ∀t ∈ (0, T ] ‖Yβ(t)‖L (Z ) ≤ Cβt
σn−β−1. (12)

Пусть A ∈ A{αk}(θ0, a0), zk ∈ DA, k = 0, 1, . . . , n − 1, zT ∈ DA. В этом

случае решением задачи (4), (5) будем называть такое z ∈ C((0, T ];DA), что

Dσkz ∈ AC([0, T ]; Z ), k = 0, 1, . . . , n − 1, равенство (5) выполняется для всех

t ∈ (0, T ] и выполняются условия (4).

Теорема 3 [34]. Пусть αk ∈ (0, 1], k = 0, 1, . . . , n, α0 + αn > 1, θ0 ∈ (π/2, π],

a0 ≥ 0, A ∈ A{αk}(θ0, a0), функция f удовлетворяет одному из следующих

условий:

(i) f ∈ C([0, T ];DA) при αn = 1 и f ∈ C([0, T ];DA) ∩ C1
β([0, T ]; Z ) для

некоторого β < 1 при αn < 1;

(ii) f ∈ Cγ([0, T ]; Z ) при αn = 1 и f ∈ Cγ([0, T ]; Z ) ∩ C1
β([0, T ]; Z ) для

некоторых γ ∈ (0, 1], β < 1 при αn < 1.
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Тогда функция

z(t) =

n−1∑

k=0

Zk(t)zk +

t∫

0

Y0(t− s)f(s) ds

является единственным решением задачи (4), (5).

В данном случае обратную задачу рассмотрим для уравнения, в котором

нелинейный оператор B не зависит от производной Dσn−1z:

D
σnz(t) = Az(t) +B(t,Dσ0z(t), Dσ1z(t), . . . , Dσn−2z(t)) + b(t)u, (13)

D
σkz(0) = zk, k = 0, 1, . . . , n− 1, (14)

T∫

0

z(t) dµ(t) = zT . (15)

Обобщенным решением задачи (13)–(15) в случае оператора A ∈ A{αk}(θ0, a0)

будем называть пару (z, u) ∈ [C((0, T ]; Z )∩L1(0, T ; Z )]×Z , для которойDσkz ∈
C([0, T ]; Z ), k = 0, 1, . . . , n− 1, при всех t ∈ (0, T ]

z(t) =

n−1∑

k=0

Zk(t)zk +

t∫

0

Y0(t− s)(Bz(s) + b(s)u) ds, (16)

где Bz(s) = B(s,Dσ0z(s), Dσ1z(s), . . . , Dσn−2z(s)), и выполнены условия (14),

(15). Если, кроме того, z ∈ C((0, T ];DA), Dσkz ∈ AC([0, T ]; Z ), k = 0, 1, . . . , n−
1, существует Dσnz ∈ C((0, T ]; Z ) и выполняется равенство (13) при всех t ∈
(0, T ], то пара (z, u) называется классическим решением задачи (13)–(15).

Будем предполагать, что отображение B ∈ C([0, T ]×Z n−1; Z ) удовлетво-

ряет следующему условию: существуют такие L > 0, γ ∈ (0, 1], что для любых

x0, x1, . . . , xn−2, y0, y1, . . . , yn−2 ∈ Z , s, t ∈ [0, T ] выполняется

‖B(s, x0, x1, . . . , xn−2)−B(t, y0, y1, . . . , yn−2)‖Z ≤ L
(
|s− t|γ +

n−2∑

k=0

‖xk − yk‖Z
)
.

(17)

Теорема 4. Пусть 0 < αk ≤ 1, k = 0, 1, . . . , n, α0 + αn > 1, αn−1 + αn > 1,

A ∈ A{αk}(θ0, a0), θ0 ∈ (π/2, π), a0 ≥ 0, B ∈ C([0, T ]×Z n−1; Z ) удовлетворяет

условию (17), b ∈ Cγ([0, T ];C), zk ∈ DA, k = 0, 1, . . . , n − 1, zT ∈ DA, µ ∈
BV ((0, T ];C), существует обратный оператор

� :=




T∫

0

t∫

0

Y0(t− s)b(s) dsdµ(t)



−1

∈ L (DA; Z ),

q := LT σn max

{
C0

σn
V T

0 µ‖�‖L (Z ),
2Cσk

T−σk

σn − σk
,

2Cσk
T−σk

σn − σk
‖b‖C([0,T ];C), k = 0, 1, . . . , n− 1

}
< 1. (18)
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Тогда обратная задача (13)–(15) имеет единственное обобщенное решение. Если

к тому же αn = 1, то задача (13)–(15) имеет единственное классическое решение.

Доказательство. Для того чтобы воспользоваться теоремой 3, надо по-

казать гёльдоровость функции

f(t) = B(s,Dσ0z(s), . . . ,Dσn−2z(s)) + b(s)u

на обобщенном решении z. Функция b гёльдерова, кроме того, заметим, что

для Dσkz, k = 0, 1, . . . , n− 2, существуют непрерывные на [0, T ] функции

J1−αk+1D1
D

σkz = D
σk+1z.

В таком случае при 0 ≤ t < s ≤ T

‖Dσkz(s)−D
σkz(t)‖Z = ‖Jαk+1J1−αk+1D1

D
σkz(s)−Jαk+1J1−αk+1D1

D
σkz(t)‖Z

≤ sαk+1 − tαk+1

� (αk+1 + 1)
‖J1−αk+1D1

D
σkz‖C([0,T ];Z ) ≤

(s− t)αk+1

� (αk+1 + 1)
‖Dσk+1z‖C([0,T ];Z ),

поскольку функция
sαk+1 − tαk+1

(s− t)αk+1

невозрастающая по t при t ∈ [0, s), αk+1 ≤ 1. Таким образом, каждая функция

Dσkz гёльдерова с показателем αk+1, k = 0, 1, . . . , n− 2. Тогда

‖B(s,Dσ0z(s), . . . ,Dσn−2z(s))−B(t,Dσ0z(t), . . . ,Dσn−2z(t))‖Z

≤ L
(
|s− t|γ +

n−2∑

k=0

‖Dσk+1z‖C([0,T ];Z )

� (αk+1 + 1)
|s− t|αk+1

)
≤ L1|s− t|min{γ,α1,...,αn−1}.

При zk ∈ DA, k = 0, 1, . . . , n− 1, имеем

D
σjZk(t)zk = Yσn−σk−1+σj

(t)zk ∈ C([0, T ]; L (Z ))

(см. доказательство теоремы 3 в [33]). В силу леммы 1 из [33]

D
σj

t∫

0

Y0(t− s)g(s) ds =

t∫

0

Yσj
(t− s)g(s) ds, j = 0, 1, . . . , n− 1.

Поэтому из (16) следует, что при k = 0, 1, . . . , n− 1

D
σkz(t) =

n−1∑

l=0

Yσn−σl−1+σk
(t)zk

+

t∫

0

Yσk
(t− s)(B(s,Dσ0z(s), . . . ,Dσn−1z(s)) + b(s)u) ds. (19)

При этом также показано, что при k < l

‖DσkZl(t)‖L (Z ) ≤ Ctσl−σk
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(см. (12)), при k > l, zl ∈ DA

‖DσkZl(t)zl‖Z ≤ Ctα0+αn−1

и, наконец,

‖DσkZk(t)zk − zk‖Z ≤ Ctα0+αn−1.

Все это вместе и условие α0 + αn > 1 данной теоремы означает, что DσkZl(t)zl ∈
C([0, T ]; Z ), k, l = 0, 1, . . . , n− 1.

Заметим, что, поскольку zk ∈ DA, k = 0, 1, . . . , n− 1,

T∫

0

A
n−1∑

k=0

Zk(t)zk dµ(t) =

T∫

0

n−1∑

k=0

Zk(t)Azk dµ(t),

AY0(t) = Yσn
(t), t > 0,

T∫

0

A

t∫

0

Y0(t− s)B(s,Dσ0z(s), . . . ,Dσn−1z(s)) dsdµ(t)

=

T∫

0

t∫

0

Yσn
(t− s)B(s,Dσ0z(s), . . . ,Dσn−1z(s)) dsdµ(t),

поэтому

T∫

0

n−1∑

k=0

Zk(t)zk dµ(t),

T∫

0

t∫

0

Y0(t− s)B(s,Dσ0z(s), . . . ,Dσn−1z(s)) dsdµ(t) ∈ DA.

(20)

Подставим правую часть равенства (16), определяющего обобщенное реше-

ние, в (15) и получим

T∫

0

n−1∑

k=0

Zk(t)zk dµ(t)

+

T∫

0

t∫

0

Y0(t− s)(B(s,Dσ0z(s), . . . ,Dσn−1z(s)) + b(s)u) dsdµ(t) = zT .

Отсюда с учетом (20) и включения zT ∈ DA следует равенство

u = �zT − �
T∫

0

n−1∑

k=0

Zk(t)zk dµ(t)

− �
T∫

0

t∫

0

Y0(t− s)B(s,Dσ0z(s), . . . ,Dσn−1z(s)) dsdµ(t). (21)

Таким образом, вновь, как и в предыдущем разделе, получена система нели-

нейных уравнений вида (10), в которой теперь Hk задаются правыми частя-

ми уравнений (19) при k = 0, 1, . . . , n − 1, а Hn — правой частью равенства
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(21). Докажем, что оператор H = (H0, H1, . . . , Hn) сжимающий в пространстве

C([0, T ]; Z n)×Z .

Во-первых, как показано выше, отображениеHk(y0, y1, . . . , yn−1, u)(t) непре-

рывно по t на [0, T ] при (y0, y1, . . . , yn−1, u) ∈ C([0, T ]; Z n)×Z , следовательно,

выполняется H [C([0, T ]; Z n)×Z ] ⊂ C([0, T ]; Z n)×Z .

Далее, для (yj , uj) ∈ C([0, T ]; Z n)×Z , j = 1, 2, k = 0, 1, . . . , n−1 с помощью

липшицевости по фазовым переменным оператора B и с учетом (12) получим

‖Hk(y
1, u1)(t)−Hk(y

2, u2)(t)‖Z

≤ L
t∫

0

‖Yσk
(t)‖L (Z )

(
n−1∑

l=0

∥∥y1
l (s)− y2

l (s)
∥∥

Z
+ ‖b‖C([0,T ];C)‖u1 − u2‖Z

)
ds

≤ LCσk
T σn−σk

σn − σk

(
n−1∑

l=0

‖y1
l − y2

l ‖C([0,T ];Z ) + ‖b‖C([0,T ];C)‖u1 − u2‖Z
)
,

‖Hn(y1)−Hn(y2)‖Z ≤ V T
0 µ‖�‖L (DA;Z )

LC0T
σn

σn

n−1∑

l=0

∥∥y1
l − y2

l

∥∥
C([0,T ];Z )

.

Отсюда в силу (18)

‖H(y1, u1)−H(y2, u2)‖C([0,T ];Z n)×Z

= max{‖Hn(y1)−Hn(y2)‖Z , ‖Hk(y
1, u1)−Hk(y

2, u2)‖C([0,T ];Z ), k = 0, 1, . . . , n−1}
≤ q‖(y1, u1)− (y2, u2)‖C([0,T ];Z n)×Z .

Тот факт, что по единственной неподвижной точке (y0, u0) =
(
y0
0 , y

0
1 , . . . , y

0
n−1, u

0
)

отображения H в пространстве C([0, T ]; Z n)×Z определяется обобщенное ре-

шение (z0, u0), где z0 = D1−α0y0
0 , доказывается, как для теоремы 2.

При αn = 1 имеющаяся гёльдеровость правой части уравнения (13) по тео-

реме 3 влечет существование классического решения. �

4. Приложение к одной обратной задаче

для уравнения в частных производных

Пусть � ⊂ Rd — ограниченная область с гладкой границей ∂�, ν > 0,

� =
∂2

∂2ξ1
+

∂2

∂2ξ2
+ · · ·+ ∂2

∂2ξd

— оператор Лапласа. Пусть n ∈ N \ {1}, α0, α1, . . . , αn ∈ (0, 1], σn = α0 + α1 +

· · ·+ αn − 1. Рассмотрим обратную задачу

D
σk

t x(ξ, 0) = xk(ξ), k = 0, 1, . . . , n− 1, ξ ∈ �, (22)

x(ξ, t) = 0, (ξ, t) ∈ ∂�× (0, T ], (23)

x(ξ, T ) = xT (ξ), ξ ∈ �, (24)
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для уравнения в области �× (0, T ],

D
σn

t x(ξ, t) = ν�x(ξ, t) + arctan

(
n−2∑

k=0

D
σk

t x(ξ, t)

)
+ bu(ξ) (25)

с неизвестными функциями x, u. Здесь D
σk

t , k = 0, 1, . . . , n, — дробные про-

изводные Джрбашяна — Нерсесяна по переменной t, соответствующие набору

чисел α0, α1, . . . , αn, ν ∈ R+, b ∈ R \ {0}.
Возьмем j ∈ 2N, j − 2 > d/2, тогда по теореме вложения Соболева Hj−2(�)

⊂ C(�). Положим

Z = Hj(�), A = �, DA = Hj+2
0 (�) := {h ∈ Hj+2(�) : h(ξ) = 0, ξ ∈ ∂�},

тогда A ∈ C l(Z ).

Пусть {ϕk : k ∈ N} — ортонормированная в смысле скалярного произве-

дения 〈·, ·〉 в пространстве L2(�) система собственных функций оператора A,

занумерованная в порядке невозрастания собственных значений {λk : k ∈ N}
этого оператора с учетом их кратностей.

Следующие два утверждения могут быть доказаны аналогично тому, как

это сделано для лемм 6 и 7 в [37].

Лемма 1. Пусть A ∈ C l(Z ), α > 1,

∃θ1 ∈ (π/2, π) ∃a1 ≥ 0 ∀λ ∈ Sa1,θ1
λα ∈ ρ(A);

∃C > 0 ∀λ ∈ Sa1,θ1
‖Rλα(A)‖L (Z ) ≤

C

|λα − a1|
.

Тогда существуют такие θ0 ∈ (π/2, θ1), a0 ≥ a1, a0 > 1, K > 0, что

∀λ ∈ Sθ0,a0
‖Rλα(A)‖L (Z ) ≤

K

|λ|α .

Лемма 2. Пусть A ∈ C l(Z ), α ∈ (0, 1),

∃θ1 ∈ (π/2, π) ∃a0 ∈ [0, 1) ∀λ ∈ Sa0,θ1
λα ∈ ρ(A);

∃C > 0 ∀λ ∈ Sa0,θ1
‖Rλα(A)‖L (Z ) ≤

C

|λα − a0|
.

Тогда существует такие θ0 ∈ (π/2, θ1), K > 0, что

∀λ ∈ Sθ0,a0
‖Rλα(A)‖L (Z ) ≤

K

|λ|α .

Лемма 3. Пусть α0, α1, . . . , αn ∈ (0, 1], α0 + αn > 1, σn ∈ (0, 2), ν > 0,

j ∈ N0 := N ∪ {0}, Z = Hj(�), A = �, DA = Hj+2
0 (�). Тогда A ∈ A{αk}(θ0, a0)

при некоторых θ0 ∈ (π/2, π/σn), a0 ≥ 0.

Доказательство. При θ1 ∈ (π/2, π/σn), a1 ≥ 0, λ ∈ Sθ1,a1
, v ∈ Hj(�)

имеем

‖Rλσn (A)v‖2Hj (�) =

∞∑

k=1

(1 + λ2j
k )|〈v, ϕk〉|2

|λσn − νλk|2

≤ sin−2(θ1σn)

|λσn − a1|2
∞∑

k=1

(
1 + λjk

)
|〈v, ϕk〉|2 =

sin−2(θ1σn)

|λσn − a1|
‖v‖2Hj(�).
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При σn = 1 утверждение получено. С помощью леммы 1 при σn ∈ (1, 2) или

леммы 2 при σn ∈ (0, 1) получаем, что A ∈ A{αk}(θ0, a0) при некоторых θ0 ∈
(π/2, π/σn), a0 ≥ 0. �

Теорема 5. Пусть α0, α1, . . . , αn ∈ (0, 1], α0 + αn > 1, αn−1 + αn > 1,

σn = 1, ν ∈ R+, b ∈ R \ {0}, j ∈ 2N, j− 2 > d/2, xk ∈ Hj+2
0 (�), k = 0, 1, . . . , n− 1,

xT ∈ Hj+2
0 (�),

T < min

{(αn

2

)1/αn

,

(
αn

2|b|

)1/αn
}
, −λ1|b| > 1. (26)

Тогда обратная задача (22)–(25) имеет единственное обобщенное решение. Если

при этом αn = 1, то обратная задача (22)–(25) имеет единственное классическое

решение.

Доказательство. Для yk ∈ Z , k = 0, 1, . . . , n− 1, t ∈ [0, T ]

B(t, y0, y1, . . . , yn−1) = arctan

(
n−1∑

k=0

yk

)
.

В силу бесконечной дифференцируемости функции в правой части этого равен-

ства имеем B : [0, T ]×Z n → Z по теореме 1 из [38, приложение B].

Заметим, что

Yβ(t) :=
1

2πi

∫

�

λβ
∞∑

k=1

〈·, ϕk〉ϕk

λσn − νλk
eλt dλ

=
1

2πi

∫

�

λβ
∞∑

k=1

∞∑

l=0

λ−σn(l+1)νlλlk〈·, ϕk〉ϕke
λt dλ

=
1

2πi

∞∑

l=0

νltσn(l+1)−β−1

∫

t�

µβ−σn(l+1)
∞∑

k=1

λlk〈·, ϕk〉ϕke
µ dµ

=

∞∑

k=1

∞∑

l=0

νltσn(l+1)−β−1λlk
� (σn(l + 1)− β)

〈·, ϕk〉ϕk = tσn−β−1
∞∑

k=1

Eσn,σn−β(tσnνλk)〈·, ϕk〉ϕk,

отсюда

‖Y0(t)‖L (Z ) = sup
k∈N

etνλk ≤ 1,

‖Yσk
(t)‖L (Z ) = t−σk sup

k∈N
E1,1−σk

(tνλk)

≤ t−σk sup
k∈N

E1,αn
(tνλk) ≤ t−σk

� (αn)
, k = 0, 1, . . . , n− 1.

Здесь использована отрицательность чисел λk, k ∈ N. Поэтому C0 ≤ 1, Cσk
≤

1/� (αn), k = 0, 1, . . . , n− 1.

Поскольку σn = 1, имеем

Y0(t) := tσn−1
∞∑

k=1

Eσn,σn
(tσnνλk)〈·, ϕk〉ϕk =

∞∑

k=1

eνλkt〈·, ϕk〉ϕk.



Нелинейные обратные задачи 67

Отсюда

� :=


b

T∫

0

Y0(s) ds



−1

= b−1

( ∞∑

k=1

eνλkT − 1

νλk
〈·, ϕk〉ϕk

)−1

= b−1
∞∑

k=1

νλk
eνλkT − 1

〈·, ϕk〉ϕk ∈ L (DA; Z ),

так как для v ∈ Hj+2
0 (�)

‖�v‖2Z = |b|−2
∞∑

k=1

|νλk|2|〈v, ϕk〉|2
|eνλkT − 1|2

≤ |b|−2 sup
k∈N

1

|eνλkT − 1|2 ν
2‖Av‖2Z =

|b|−2ν2‖Av‖2
Z

|eνλ1T − 1|2 .

Отсюда можно показать, что

‖�‖L (DA;Z ) =
|b|−1ν

1− eνλ1T
.

Заметим, что
νT

1− eνλ1T
≤ νT

−νλ1T
=

1

−λ1
.

Так как в данном случае µ — функция единичного скачка, то V T
0 µ = 1.

Для оператора B константа Липшица L = 1, поэтому

q := max

{ |b|−1νT

1− eνλ1T
,

2T 1−σk

1− σk
,

2T 1−σk

1− σk
|b|, k = 0, 1, . . . , n− 1

}

= max

{ |b|−1νT

1− eνλ1T
,

2Tαn

αn
,

2Tαn

αn
|b|, k = 0, 1, . . . , n− 1

}
< 1

в силу условия (26). По лемме 3 и теореме 4 получим требуемое. �

Замечание 2. Разрешимость в данном случае гарантирует помимо мало-

сти T также условие −λ1|b| > 1.
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4. Hasanov Hasanoǧlu A., Romanov V. G. Introduction to inverse problems for differential equa-

tions. Cham: Springer, 2017.
5. Klibanov M. V., Timonov A. A. Carleman estimates for coefficient inverse problems and

numerical applications. Utrecht; Boston: VSP, 2004.
6. Ramm A. G. Inverse problems. Mathematical and analytical techniques with applications to

engineering. New York: Springer, 2004.
7. Kabanikhin S. I. Inverse and ill-posed problems: Theory and applications. Utrecht: Walter

de Gruyter, 2012.



68 В. Е. Федоров, М. В. Плеханова, А. О. Сагимбаева

8. Пятков С. Г., Потапков А. А. О некоторых классах коэффициентных обратных задач
определения теплофизических параметров в слоистых средах // Мат. заметки СВФУ.
2024. Т. 31, № 2. C. 31–45.

9. Самко С. Г., Килбас A. A., Маричев O. И. Интегралы и производные дробного порядка
и некоторые их приложения. Минск: Наука и техника, 1987.

10. Нахушев A. M. Дробное исчисление и его применение. M.: Физматлит, 2003.
11. Псху A. В. Уравнения в частных производных дробного порядка. M.: Наука, 2005.
12. Kilbas A. A., Srivastava H. M., Trujillo J. J. Theory and applications of fractional differential

equations. Amsterdam: Elsevier, 2006.
13. Глушак A. В. Об обратной задаче для абстрактного дифференциального уравнения дроб-

ного порядка // Мат. заметки. 2010. Т. 87, № 5. C. 684–693.
14. Орловский Д. Г. Parameter determination in a differential equation of fractional order with

Riemann–Liouville fractional derivative in a Hilbert space // Журн. Сиб. федер. ун-та.
Математика и физика. 2015. Т. 8, № 1. C. 55–63.

15. Fedorov V. E., Ivanova N. D. Identification problem for degenerate evolution equations of
fractional order // Fract. Calc. Appl. Anal. 2017. V. 20, N 3. P. 706–721.

16. Fedorov V. E., Nazhimov R. R. Inverse problems for a class of degenerate evolution equations
with Riemann–Liouville derivative // Fract. Calc. Appl. Anal. 2019. V. 22, N 2. P. 271–286.

17. Orlovsky D. G. Determination of the parameter of the differential equation of fractional order
with the Caputo derivative in Hilbert space // J. Phys., Conf. Ser. 2019. V. 1205, N 1. 012042.

18. Федоров В. Е., Костич М. Задача идентификации для сильно вырожденных эволюци-
онных уравнений с производной Герасимова — Капуто // Дифференц. уравнения. 2021.
Т. 57, № 1. С. 100–113.

19. Fedorov V. E., Nagumanova A. V., Avilovich A. S. A class of inverse problems for evolution
equations with the Riemann–Liouville derivative in the sectorial case // Math. Methods Appl.
Sci. 2021. V. 44, N 15. P. 11961–11969.
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1. Introduction

The goal of this paper is to provide new results on boundedness of Bergman type

projections in tubular domains over symmetric cones and in products of such type

domains. Note that for particular values of parameters our results are well-known.

Our results on Bergman type projections may have various interesting applications in

complex function theory of several variables namely in spaces of analytic functions

in tubular domains over symmetric cones. We provide first basic notations and

definitions of complex function theory in tubular domains over symmetric cones

which are needed for this paper. The theory of analytic spaces in tubular domains

over symmetric cones is an active research area (see, for example, [1–7] and references

there).

Let T� = V + i� be the tube domain over an irreducible symmetric cone � in

the complexification V C of an n-dimensional Euclidean space V . H (T�) denotes

the space of all holomorphic functions on T�. Following the notation of [8] and [5]

we denote the rank of the cone � by r and by � the determinant function on V .

Letting V = Rn, we have as an example of a symmetric cone on Rn the Lorentz

cone �n which is a rank 2 cone defined for n ≥ 3 by

�n =
{
y ∈ Rn : y2

1 − . . .− y2
n > 0, y1 > 0

}
.

The determinant function in this case is given by the Lorentz form

�(y) = y2
1 − . . .− y2

n.

c© 2024 R. F. Shamoyan, E. B. Tomashevskaya
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(see for example [5])

For τ ∈ R+ and the associated determinant function �(x) [5] we set

A∞τ (T�) = {F ∈H (T�) : ‖F‖A∞τ = sup
x+iy∈T�

|F (x+ iy)|�τ (y) <∞} (1)

It can be checked that this is a Banach space. For 1 ≤ p, q < +∞ and ν ∈ R, and

ν > −1 we denote by Ap,q
ν (T�) the mixed-norm weighted Bergman space consisting

of analytic functions f in T� such that

‖F‖Ap,q
ν

=

(∫

�

(∫

V

|F (x+ iy)|p dx
) q

p

�ν(y) dy

) 1
q

<∞.

This is a Banach space. Replacing above A by L we will get as usual the corre-

sponding larger space of all measurable functions in tube over symmetric cone with

the same quazinorm (see [1, 8]). It is known that the Ap,q
ν (T�) space is nontrivial if

and only if ν > −1 (see [5, 9]). When p = q we write (see [5])

Ap,q
ν (T�) = Ap

ν(T�).

This is the classical weighted Bergman space with usual modification when

p =∞.

The (weighted) Bergman projection Pν is the orthogonal projection from the

Hilbert space L2
ν(T�) onto its closed subspace A2

ν(T�) and it is given by the following

integral formula (see [5])

Pνf(z) = Cν

∫

T�

Bv(z, w)f(w) dVνw, (2)

where

Bv(z, w) = Cν�
ν+n

r ((z − w)/i)

is the Bergman reproducing kernel for A2
ν(T�) (see [5, 8]).

Here we used the notation

dVν(w) = �ν−n
r (v) dudv.

Below and here we use constantly the following notations w = u+ iv ∈ T� and also

z = x+ iy ∈ T�. Hence for any analytic function from A2
ν(T�) the following integral

formula is valid (see also [5]):

f(z) = Cν

∫

T�

Bv(z, w)f(w) dVνw. (3)

In this case sometimes below we say simply that the f function allows Bergman

representation via Bergman kernel with ν index. Note that these assertions have

direct copies in simpler cases of analytic function spaces in unit disk, polydisk, unit

ball, upperhalfspace C+ and in spaces of harmonic functions in the unit ball or

upperhalfspace of Euclidean space Rn. These classical facts are well-known and can

be found, for example, in [2, 5, 10] and in some items from references there. Above

and throughout the paper we write C (sometimes with indexes) to denote positive

constants which might be different each time we see them (and even in a chain of

inequalities), but are independent of the functions or variables being discussed.
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2. Preliminaries on geometry of tubular

domains over symmetric cones

In this section we will collect several very useful assertions from [1, 5, 8, 9] mainly

concerning so-called r-lattices that will be used rather often in all proofs of our sharp

embedding theorems below.

Let T� ⊂ Cn be a bounded tubular domains over symmetric cones in Cn. We

shall use the following notations:

• δ : T� → R+ will denote the determinant function from the boundary, that

is δ(z) = �(Im z). Let dνt(Z) = (δ(z))t dν(z), t > −1;

• ν will be the Lebesgue measure on T�;

• H(T�) will denote the space of holomorphic function on T�, endowed with

the topology of uniform convergence on compact subsets;

• B : T�×T� → C will be the Bergman kernel of T�. Note that if B is kernel

of type t, t ∈ N, then Bs is kernel of type st, s ∈ N, t ∈ N. This follows

directly from definition. Note B = B2n/r (see [1, 5, 8, 9, 11, 12]);

• given r ∈ (0,∞) and z0 ∈ T�, we shall denote by BT�
(z0, r) the Bergman

ball.

See, for example, [1, 5, 8, 9, 11, 12], for definitions, basic properties and applica-

tions to geometric function theory of the Bergman distance and [1, 5, 8, 9, 11, 12]) for

definitions and basic properties of the Bergman kernel. Let us now recall a number

of vital results proved in T�. The first two give information about the shape of

Bergman balls.

Lemma 1 [1, 5, 8, 9, 11, 12]. Let T� ⊂ Cn be a bounded tubular domains over

symmetric cones, and r ∈ (0,∞). Then

ν(BT�
(·, t)) ≈ δ2r/n

Lemma 2 [1, 5, 8, 9, 11, 12]. Let T� ⊂ Cn be a bounded tubular domains over

symmetric cones. Then there is C > 0 such that

C

1− r δ(z0) ≤ δ(z) ≤
1− r
C

δ(z0)

for all r ∈ (0,∞), z0 ∈ T� and z ∈ BT�
(z0, r).

Definition 1. Let T� ⊂ Cn be a tubular domains over symmetric cones, and

r > 0. An r-lattice in T� is a sequence ak ⊂ T� such that T� =
⋃
k

BT�
(ak, r) and

there exists m > 0 such that any point in T� belongs to at most m balls of the form

BT�
(ak, R), where R = 1

2 (1 + r). Note by Lemma 2,

να(BT�
(ak, R)) =

∫

BT�
(ak,R)

δα(z) dν(z) = (δα(ak))ν(BT�
(ak, R)), α > −1.

The existence of r-lattice intubular domains over symmetric cones is ensured by the

following
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Lemma 3 [1, 3–6, 8, 9, 11, 12]. Let T� ⊂ Cn be a bounded tubular domains over

symmetric cones. Then for every r ∈ (0,∞) there exists an r-lattice in T�, that is

there exists m ∈ N and a sequence ak ⊂ T� of points such that

T� =

∞⋃

k=0

BT�
(ak, r)

and no point of T� belongs to more than m of the balls BT�
(ak, R), where R =

1
2 (1 + r).

We will call r-lattice sometimes the family BT�
(ak; r). Dealing with B Bergman

kernel we always assume |B(z; ak)| ≍ |B(ak; ak)| for any z ∈ BT�
(ak; r), r ∈ (0;∞)

(see [1, 5, 8, 9, 11, 12]). Let m = (2n/r)l, l ∈ N. Then |Bm(z; ak)| ≍ |Bm(ak; ak)|, z ∈
BT�

(ak; r), r ∈ (0;∞). This fact is crucial for embedding theorems in tubular do-

mains over symmetric cones(see also [13]).

Lemma 4 (see [1, 3–6, 8, 9, 11, 12]). Let T� ⊂ Cn be a tubular domains over

symmetric cones. Given r ∈ (0;∞), set R = 1
2 (1 + r) ∈ (0;∞). Then there exists a

Cr > 0 depending on r such that

∀z0 ∈ T�, ∀z ∈ BT�
(z0, r), χ(z) ≤ Cr

ν(BT�
(z0, r))

∫

BT�

χdν

for every nonnegative plurisubharmonic function χ : T� → R+.

Lemma 5 (see [1, 3–6, 8, 9, 11, 12]). (1) Let λ > n
r − 1 be fixed. Then

�(y + y′) ≥ �(y)∀y, y′ ∈ �,
∣∣�−λ

(x+ iy

i

)∣∣ ≥ �(y)−λ; ∀x ∈ Rn, y ∈ �.

(2) Let α, β are real, then

Iα,β(t) =

∫

�

(�α(y + t))(�β(y)) dy <∞,

if β > −1, α+ β < 1− 2n
r , and

Iα,β(t) = (cα,β)�α+β+n
r (t).

Moreover

Iα(y) =

∫

Rn

∣∣∣∣�
−α

(
x+ iy

i

)∣∣∣∣ dx <∞,

if α > 2n
r − 1; and

Iα(y) = (cα)�α+n
r (y),

where y ∈ �.
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Lemma 6. For any analytic function from A2
α(T�) the following integral for-

mula is valid:

f(z) = c̃α

∫

T�

Bα(z, w)f(w) dνα(w), z ∈ T�.] (⋆)

Let 1 ≤ p <∞, 1 ≤ q <∞, n
r ≤ p1,

1
p1

+ 1
p = 1, n

r < γ. Let f ∈ Ap,q
γ , then (⋆) with

α > n
r − 1 is valid (Bergman representation formula with α index is valid).

We now collect a few facts on the (possibly weighted) Lp-norms of the Bergman

kernel and the normalized Bergman kernel. The first result is classical (see, for

example, [1, 5, 8]).

Proposition 1 (Forelly–Rudin estimates). Let T� ⊂ Cn be a tubular domains

over symmetric cones, and let z0 ∈ T� and 1 ≤ p <∞. Then

∫

T�

|B(ζ, z0)|pδβ(ζ) dν(ζ) ≤ Cδβ−2(2n/r)(p−1)(z0), −1 < β < (2n/r)(p− 1).

The same result is valid for weighted Bergman kernel (see [11]).

We define new Banach mixed norm analytic Bergman-type spaces in T�×. . .×T�
in product of tubular domains over symmetric cones as follows. Let m ≥ 1, pj ∈
(1;∞); νj >

n
r − 1; αj , . . . ,m,

A~p
~ν =

{
f ∈ H

(
Tm
�

)
= H(T� × . . .× T�)

=

(∫

T�

. . .

(∫

T�

|f(z1, . . . , zm)|p1�ν1−n
r (y1) dx1dy1

) p2
p1

. . . �νm−n
r (ym) dxmdym

) 1
pm

<∞
}

;

Replacing A by L as usual we get larger space of measurable functions with the same

norms.

Note first for case of polydisk (when T� is a unit disk) or even T� is a unit

ball in Cn these analytic spaces are not new. They were introduced and studied in

[14, 15]. Note also very similar spaces in Rn were introduced and studied before by

various authors. Our theorem for mentioned particular cases are not new. They can

be seen in [14]: For m = 1 case our theorem is also known (see [3–5).

Theorem 1. Let

T~βf(~z) =

∫

Tm
�

f(w1, . . . , wm)
m∏
j=1

�βj−n
r (wj) dv(wj)

�β1+
n
r ( z1−w1

i ) . . . �βm+n
r ( zm−wm

i )
,

dv(w) = dudv; w = u+ iv ∈ T�, ~z = (z1, . . . , zm) ∈ T�.
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Let βj > β0, j = 1, . . . ,m, for some fixed enough large β0. Then T~β operator maps

L~p
~ν(T

m
� ) into A~p

~ν(Tm
� ), pj > 1; νj >

n
r − 1, j = 1, . . . ,m.

Remark 1. For unit ball and unit disk this theorem can be seen in [14, 15].

We provide for simplisity our proof in the unit disk case since repetition of same

arguments leads to the proof of Theorem 1. The proof use only Minkowski and

Holder’s inequality and Forelly–Rudin estimate (A) which is avialable in tubular

domaines over symmetric cones τ > −1, τ1 > τ + 2n
r

∫

T�

�τ (Imw) dv(w)

�
(
Imτ1

(
w−z
i

)) ≤ c�τ−τ1+
2n
r (Im z), z ∈ T�. (A)

Remark 2. In the unit disk or for m = 1 this result is classical and well-known

fact (Bergman projection theorem in tubular domain [10, 12]. The proof uses only

Forelly–Rudin estimate from Lemma 1 and Holders and Minkowski inequalities and

m = 2 and unit disk case is typical. We have in the unit disk U = {|z| < 1}, m = 2

case the following estimates.

We denote as usual by dm2 the normalized Lebegues measure in the unit disk

U . Put first

Dαj
(ξj , zj) =

αj + 1

π
· (1− |ξj |)αj

(1− ξjzj)αj+2
, j = 1, 2;

Dα(z, ξ) = Dα1
(z1, ξ1)×Dα2

(z2, ξ2);

1

pj
+

1

qj
= 1, j = 1, 2, χ(z1, z2) = (1− |z1|)

γ
p1q1 · (1− |z2|)

γ
p2q2 ,

zj ∈ U, ξj ∈ U, j = 1, 2.

‖V~βf(·, z2)‖Ap
α1

=

(∫

U

|F (z1, z2)|p1(1− |z1|)α1 dm2(z1)

)1/p1

≤ C17

(∫

U

(∫

U

|Dβ1
(z1, ξ1)| · |Dβ2

(z2, ξ2)| · |f(ξ1, ξ2)| dm2(ξ1)dm2(ξ2)

)p1

× (1− |z1|)α1 dm2(z1)

)

≤ C18

∫

U

|Dβ2
(z2, ξ2)|

(∫

U

(∫

U

|Dβ1
(z1, ξ1)| · |f(ξ1, ξ2)| dm2(ξ1)

)p1

× (1− |z1|)α1 dm2(z1)

)1/p1

dm2(ξ2)

≤ C19

∫

U

|Dβ2
(z2, ξ2)|

(∫

U

(∫

U

|Dβ1
(z1, ξ1)| · |f(ξ1, ξ2)|p1dm1(ξ1)

|χp1(ξ1, ξ2)|

)

×
(∫

U

|Dβ1
(z1, ξ1)| · χp1(ξ1, ξ2) dm2(ξ1)

)p1/q1

(1− |z1|)α1 dm2(z1)

)1/p1

dm2(ξ2)
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≤ C20

∫

U

|Dβ2
(z2, ξ2)|

×
(∫

U

|f(ξ1, ξ2)|p
χp1(ξ1, ξ2)

∫

U

|Dβ1
(z1, ξ1)|χp1(ξ1, ξ2)(1− z1|)α1 dm2(z1)dm2(ξ2)

) 1
p1

dm2(ξ2)

≤ C21

∫

U

|Dβ2
(z2, ξ2)| · ‖f(·, ξ2)‖Lp1

α1
dm2(ξ2).

Then we have that

‖V~βf(·, z2)‖Ap1,p2
α1,α2

≤ C22

(∫

U

|Dβ2
(z2, ξ2)| · ‖f(·, ξ2)‖Lp1

α1
dm2(ξ2)

)p2

(1 − |z2|)α2 dm2(z2).

Using again Holders inequality with p2 and Forelly–Rudin estimate and changing

the order of integration we get what we need

‖V~βf‖
p2

A
p1,p2
α1,α2

≤ C‖f‖p2

L
p1,p2
α1,α2

.

We showed our theorem in case of two variables. The general case can be covered

by ordinary induction. Theorem is proved.

The following theorem for m = 1 is well-knowns.

For any two n-tuples of real numbers x = (x1, . . . , xn) and y = (y1, . . . , yn) we

consider integral operator

(Rx,yg)(w) = �(Imw)
−m( 2n

r )+
m∑

i=1

yi
∫

T�

. . .

∫

T�

g(z1, . . . , zm)

×
m∏

j=1

(�(Im zj))
xj

�
(
Im
( zj−w

i

))xj+yj
dV (z1) . . . dV (zm)

for g ∈ L1
(
Tm
� ; dVx1

, . . . , dVxm

)
; w ∈ T�, xj > −1; xj + yj > 0; j = 1, . . . ,m.

Theorem 2. Let sj > (−1) and msj + 1 > m
(

2n
r − yj

)
− (m − 1)

(
2n
r

)
; j =

1, . . . ,m. Then there is exist a constant C > 0 such that

∫

T�

|Rx,yg)(w)| ·�(Imw)
(m−1) 2n

r
+

m∑

j=1

sj

dV (w)

≤ C
∫

T�

. . .

∫

T�

g(z1, . . . , zm) ·
m∏

j=1

(�sj (Im, zj)) dV (zj).

Proof. We have that τ = (m− 1)2n
r +

m∑
j=1

sj ;

∫

T�

|Rx,yg)(w)|�τ (Imw) dV (w) ≤ C
∫

T�

. . .

∫

T�

|g(z1, . . . , zm)| ·
m∏

j=1

(�xj (Im zj))
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×
( ∫

T�

�(Imw)
− 2n

r
+

m∑

j=1

(yj+sj)

∣∣∣∣
m∏
j=1

�xj+yj

(
Im
( zj−w

i

))∣∣∣∣
dV (w)

)
dV (z1) . . . dV (zm);

By Holder’s inequality we have

∫

T�

�τ (Imw)
m∏
j=1

∣∣�τ1
(
Im
( zj−w

i

))∣∣
dV (w) ≤ C




m∏

j=1

∫

T�

�τ2(Imw) dV (w)
∣∣�τ3

(
Im
(w−zj

i

))∣∣




1/m

= I ,

where

τ = −2n

r
+

m∑

j=1

(yj + sj), τ > −1, τ1 = (xj + yj);

xj + yj > 0, j = 1, . . . ,m, τ2 = −2n

r
+myj +msj, τ3 = mxj +myj .

Since

−2n

r
+m(yj + sj) > (−1); m(xj + yj) >

(
−2n

r
+myj +msj

)
+

2n

r

for each j from 1 to m. By Forelly–Rudin estimate we have

I ≤ C
m∏

j=1

(�sj−xj(Im zj)).

From this we arrive at estimate we need. Theorem 2 is proved.

Remark 3. This theorem is valid probably for all p > 1. Our Theorem 2 for

m = 1 case can be seen in [1] and [3]. We note this theorem 2 is valid for all p>1 in

the ball (see for example [15, 14]).
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МОДЕЛИРОВАНИЕ ВЛИЯНИЯ СТРОЕНИЯ

И ФИЗИЧЕСКИХ СВОЙСТВ СРЕДЫ

НА ХАРАКТЕР РАСПРОСТРАНЕНИЯ

СЕЙСМИЧЕСКИХ ВОЛН ОТ ЗЕМЛЕТРЯСЕНИЙ

Х. Х. Имомназаров,

А. А Михайлов, И. К. Искандаров

Аннотация. Распространение волн в упругих пористых средах представляет ин-
терес для различных областей науки и техники. Теория этого явления широко
изучалась в механике грунтов, сейсмологии, акустике, сейсмотехнике, океанотех-
нике, геофизике и многих других дисциплинах. В настоящей работе рассматрива-
ется решение прямой динамической задачи теории упругости, которая моделирует
формирование и распространение сейсмических волн от землетрясений. Постав-
ленная задача записывается в виде динамических уравнений теории упругости в
терминах компонент скоростей смещений и напряжений для двумерной декартовой
системы координат. В настоящей статье рассматривается эффективный алгоритм
решения данной прямой динамической задачи сейсмики. Численное решение зада-
чи основано на методе комплексирования аналитического преобразования Лагерра
и конечно-разностного метода. Представлены численные результаты моделирова-
ния сейсмических волновых полей для реалистичной модели среды Байкальской
рифтовой зоны.

DOI: 10.25587/2411-9326-2024-3-82-92

Ключевые слова: упругая среда, сейсмические волны, землетрясения, прямая
задача, преобразование Лагерра, разностная схема.

1. Введение

Регистрируемые сейсмические волны характеризуют не только очаг зем-

летрясения, но и среду, через которую они распространяются, поэтому они

являются основным носителем информации в сейсмологии. Самыми разру-

шительными при землетрясениях являются поверхностные волны, так как они

имеют низкую частоту, большую амплитуду и внушительное время действия.

Большую разрушительную силу имеют также прямые продольные сейсмиче-

ские волны, возникающие в результате сдвига тектонических плит земной коры

на больших по площади пространственных участках. В результате такого типа

Работы Имомназарова Х. Х. и Искандарова И. К. выполнены при поддержке Хабаров-
ского отделения регионального научно-образовательного математического центра «Дальнево-
сточный центр математических исследований» (дополнительное соглашение с Минобрнауки
России от 28 февраля 2024 года № 075-02-2024-1432).

c© 2024 Имомназаров Х. Х., Михайлов А. А, Искандаров И. К.
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очагов землетрясений генерируется протяженная плоская продольная волна с

большой амплитудой. На амплитуду этих волн влияет не только геологическая

структура в очаге землетрясения, но также структура и физические свойства

вышележащих слоев среды.

Математические методы, основанные на распространении сейсмических

волн в акустической или идеально упругой среде, успешно применяются к раз-

личным геофизическим задачам для идентификации геологических структур.

В данной работе для моделирования процесса распространения сейсмиче-

ских волн в упругой среде численно решается прямая динамическая задача,

которая записывается в виде гиперболической системы в терминах скоростей

смещений и тензора напряжений. Для численного решения поставленной зада-

чи используется метод комплексирования аналитического преобразования Ла-

герра по времени и конечно-разностного метода по пространству. Данный метод

решения динамических задач теории упругости был впервые рассмотрен в ра-

ботах [1, 2], а затем развит и для задач вязкоупругости [3, 4]. Предлагаемый

метод решения можно рассматривать как аналог известного спектрального ме-

тода на основе Фурье-преобразования, только вместо частоты мы имеем пара-

метр m — степень полиномов Лагерра. Однако в отличие от Фурье применение

интегрального преобразования Лагерра по времени позволяет свести исходную

задачу к решению системы уравнений, в которой параметр разделения присут-

ствует только в правой части уравнений и имеет рекуррентную зависимость.

В отличие от конечно-разностного в спектрально-разностном методе с помощью

аналитического преобразования можно свести исходную задачу к решению си-

стемы дифференциальных уравнений, в которой имеются производные только

по пространственным координатам. Это позволяет применить известные устой-

чивые разностные схемы для последующего решения подобных систем. В рабо-

тах [2, 4] рассмотрены отличительные особенности данного метода от принятых

подходов и обсуждаются преимущества применения преобразования Лагерра.

2. Постановка задачи

Распространение сейсмических волн в упругой среде записывается извест-

ной системой уравнений первого порядка теории упругости через взаимосвязь

компонент вектора скорости смещений и компонент тензора напряжений в де-

картовой системе координат (x1, x2):

∂ui
∂t

=
1

ρ

∂σik
∂xk

+ Fif(t), t > 0, −∞ < x1 <∞, x2 > 0, (1)

∂σik
∂t

= µ

(
∂uk
∂xi

+
∂ui
∂xk

)
+ λδik div u + δikFif(t), t > 0, −∞ < x1 <∞, x2 > 0.

(2)

Здесь δij — символ Кронекера, λ(x1, x2), µ(x1, x2) — упругие параметры среды,

ρ(x1, x2) — плотность среды, u = (u1, u2) — вектор скорости смещений, σij —
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компоненты тензора напряжений, F(x1, x2) = F1ex + F2ez описывает простран-

ственное распределение источника, f(t) — заданный временной сигнал в источ-

нике. Для точечного источника типа центр давления: Fi = δ(x − x0)δ(z − z0),
(x0, z0) — координата источника.

Задача решается при нулевых начальных данных:

ui|t=0 = σij |t=0 = 0 −∞ < x1 <∞, x2 > 0, (3)

и граничных условиях на свободной поверхности x2 = 0:

σ12|x2=0 = σ22|x2=0 = 0, t > 0, −∞ < x1 <∞. (4)

Исследование вопросов корректности начально-краевой задачи (1)–(4) можно

найти в [5–7] и указанной там литературе. Предполагаем, что функции u1, u2,

σij обладают достаточной гладкостью для применения последующих преобра-

зований.

3. Алгоритм решения

Для решения поставленной задачи (1)–(4) используем интегральное преоб-

разование Лагерра по времени вида [1–4]

−→
Wm(x1, x2) =

∞∫

0

−→
W (x1, x2, t)(ht)

−α
2 lαm(ht) d(ht) (5)

с формулой обращения

−→
W (x1, x2, t) = (ht)

α
2

∞∑

m=0

m!

(m+ α)!

−→
Wm(x1, x2)l

α
m(ht), (6)

где lαm(ht) — ортогональные функции Лагерра.

Для удовлетворения начальных условий (3) необходимо и достаточно поло-

жить α ≥ 1. Кроме того, введен параметр сдвига h > 0, смысл и эффективность

применения которого подробно обсуждается в работах [2–4].

После применения интегрального преобразования Лагерра по времени ис-

ходная начально-краевая задача (1)–(4) сводится к решению системы диффе-

ренциальных уравнений только по пространственным координатам (x1, x2):

h

2
umi +

1

ρ

∂σm
ik

∂xk
= −h

m−1∑

n=0

uni , (7)

h

2
σm
ik + µ

(
∂umk
∂xi

+
∂umi
∂xk

)
+ λδik div ~um = δikFif

m − h
m−1∑

n=0

σn
ik, (8)

где

fm =

∞∫

0

f(t)(ht)−
α
2 lαm(ht) d(t).
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Для дальнейшего решения задачи используется конечно-разностная аппрок-

симация производных на сдвинутых сетках [8] с четвертым порядком точности.

Определим искомые компоненты вектора решения в следующих узлах сеток:

u1(m) ∈ ωxi1 × ωxj2, u2(m) ∈ ωxi+1/2
1 × ωxj+1/2

2 ,

σ11(m), σ22(m) ∈ ωxi+1/2
1 × ωxj2, σ12(m) ∈ ωxi1 × ωx

j+1/2
2 .

В результате конечно-разностной аппроксимации задачи (7), (8) получим

систему линейных алгебраических уравнений. Представим искомый вектор ре-

шения W в следующем виде:

W(m) = (V0(m),V1(m), . . . ,VK+N(m))T ,

Vi+j =
(
ui,j1 , u

i+ 1
2
,j+ 1

2

2 , σ
i+ 1

2
,j

11 , σ
i+ 1

2
,j

22 , σ
i,j+ 1

2

12

)T
.

Тогда полученная в результате преобразований система линейных алгебраиче-

ских уравнений в векторной форме может быть записана так:
(
A� +

h

2
E

)
W(m) = F�(m− 1).

На главной диагонали матрицы решаемой системы уравнений специаль-

но располагаются компоненты, входящие в уравнения системы как слагаемые,

имеющие в качестве сомножителя параметр h (параметр преобразования по

Лагерру). За счет выбора значения параметра h можно существенно улучшать

обусловленность матрицы системы. Для решения данной системы линейных ал-

гебраических уравнений используется итерационный метод сопряженных гра-

диентов [9, 10]. Преимуществом этого метода является быстрая сходимость к

искомому решению при условии хорошей обусловленности матрицы системы.

Полученная в результате преобразования Лагерра матрица системы обладает

этим свойством за счет введенного параметра сдвига h, специально располо-

женного на главной диагонали. Выбор значения параметра h дает возможность

существенно улучшать обусловленность матрицы системы. Решив систему ли-

нейных алгебраических уравнений, можно определить спектральные значения

для всех компонент волнового поля
−→
W (m). Затем, воспользовавшись формула-

ми обращения преобразования Лагерра (6), получим решение исходной задачи

(1)–(4).

4. Численное моделирование

Для численного моделирования распространения сейсмических волн, воз-

никающих в процессе землетрясения, были заданы две модели среды, описыва-

ющие предполагаемое строение байкальской рифтовой зоны [11]. Данная гео-

графическая область характеризуется высокой сейсмической активностью. За-

даваемые для расчетов модели среды изображены на рис. 1 и рис. 2. На изобра-

женных моделях, можно увидеть небольшие структурные различия в строении

среды.
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Рис 1. Модель среды № 1.

Рис 2. Модель среды № 2.

На представленных рисунках изображены границы слоев и подписаны зна-

чения скоростей продольных волн vP в этих слоях. Значения скоростей по-

перечных волн задавались по формуле vS = vP /
√

3. Плотность среды в слоях

рассчитывалась по известной формуле Гарднера ρ = 1.74∗v0.25
P . Физические ха-

рактеристики для водного слоя − скорость продольной волны vP = 1480 м/сек,

плотность ρ = 1.0 г/см3.

Как видно из представленной на рисунках модели данная среда имеет слож-

ное геологическое строение. Полагаем, что в результате сдвига тектонических

плит на границе земной коры и мантии генерируется плоская продольная волна,

параллельная этой границе.

Генерация плоской продольной волны, образующаяся в процессе землетря-

сения, задавалась с помощью определения пространственного распределения

источника в исходных уравнениях системы (2) в виде суперпозиции точечных
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Рис 3. Мгновенный снимок волнового поля uz — компоненты в момент времени
T = 6 с для модели среды № 1.

Рис 4. Мгновенный снимок волнового поля uz — компоненты в момент времени
T = 6 с для модели среды № 2.

источников, располагающихся на одной горизонтальной линии, в виде функции

F (x, z) = δ(z − z0)
N∑

k=1

δ(x− xk),

где N — количество узлов сетки по координате x, а z0 — глубина формирова-

ния плоской волны. Значение глубины генерации плоской волны для численных

расчетов волновых полей было задано равным 45 км. Временной сигнал в ис-

точнике задавался в виде импульса Пузырева с частотой f0 = 8 Гц.

На мгновенных снимках волнового поля, представленных на рис. 3–6, изоб-

ражены мгновенные снимки волнового поля для uz-компоненты скорости сме-

щений в моменты времени T = 6 и T = 10 с. Видно, что при распространении

сейсмической волны, сгенерированной в эпицентре землетрясения, на границах

раздела слоев формируются различные типы отраженных волн.
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Рис 5. Мгновенный снимок волнового поля uz — компоненты в момент времени
T = 10 с для модели среды № 1.

Рис 6. Мгновенный снимок волнового поля uz — компоненты в момент времени
T = 10 с для модели среды № 2.

На рис. 3 и рис. 4 изображены мгновенные снимки волнового поля uz —

компоненты в момент времени падения прямой продольной волны на свободную

поверхность в моделях среды № 1 и № 2. Из рассмотрения волнового поля видно

различие формирования волновых фронтов в моделях № 1 и № 2 в зависимо-

сти от геометрии границ слоев. Общая интерференционная волновая картина

складывается в зависимости от геометрии этих границ и толщины слоев по

сравнению с пространственной длиной волны.

На рис. 5 и рис. 6 изображены мгновенные снимки uz — компоненты вол-

нового поля для моделей среды № 1 и № 2 соответственно в момент времени

T = 10 с. На представленных снимках видно образование сложной интерфе-

ренционной картины вследствие отражения различных сейсмических волн от

свободной поверхности и границ слоев среды. Из рассмотрения этих снимков

волнового поля видно, что даже небольшое различие в строении моделей среды

№ 1 и № 2 приводит к изменению областей фокусировки энергии сейсмических
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волн на различных участках среды.

5. Заключение

Результаты численных расчетов показывают эффективность используемо-

го алгоритма для решения поставленной задачи моделирования распростране-

ния сейсмических волн в сложнопостроенных неоднородных средах. Анализ

полученных расчетов визуальной картины волнового поля в результате распро-

странения сейсмических волн в таких средах показывает возможность фоку-

сировки энергии сейсмических колебаний на определенных участках среды в

области происходящего землетрясения, что приводит к значительному увеличе-

нию амплитуды данных колебаний. Этот эффект, как видно из представленных

результатов моделирования, зависит от строения среды и частоты распростра-

няющихся в ней колебаний. Результаты моделирования возникающей волновой

картины в зависимости от частоты сейсмических колебаний приводятся в работе

[12]. Этот факт следует учитывать при строительстве технических сооружений

на поверхности, а также внутри среды и производить подобного рода числен-

ное моделирование. В дальнейших исследованиях предполагается изучить эф-

фект возникновения резонанса собственных колебаний в данных сооружениях

и внешних сейсмических колебаний от землетрясений.

ЛИТЕРАТУРА

1. Mikhailenko B. G. Spectral Laguerre method for the apиproximate solution of time dependent
problems // Appl. Math. Let. 1999. N 12. P. 105–110.

2. Konyukh G. V., Mikhailenko B. G., Mikhailov A. A. Application of the integral Laguerre
transforms for forward seismic modeling // J. Comput. Acoustics. 2001. V 9, N 4. P. 1530–
1541.

3. Mikhailenko B. G., Mikhailov A. A., Reshetova G. V. Numerical modeling of transient seismic
fields in viscoelastic media based on the Laguerre spectral method // Pure Apll. Geophys.
2003. N 160. P. 1207–1224.

4. Mikhailenko B. G., Mikhailov A. A., Reshetova G. V. Numerical viscoelastic modeling by the
spectral Laguerre method // Geophysical Prospecting. 2003. N 51. P. 37–48.

5. Годунов С. К. Уравнения математической физики. М.: Наука, 1971.

6. Тихонов А. Н., Самарский А. А. Уравнения математической физики. М.: Наука, 2004.

7. Коновалов А. Н., Попов Ю. П. Оптимальные явно разрешимые дискретные модели с
контролируемым дисбалансом полной механической энергии для динамических задач
линейной теории упругости // Сиб. мат. журн. 2015. Т. 56, № 5. C. 1092–1099.

8. Levander A. R. Fourth-order finite-difference P-SV seismograms // Geophysics. 1988. V. 53.
P. 1425–1436.

9. Saad Y., Van der Vorst H. A. Iterative solution of linear systems in the 20th century // J.
Comput. Appl. Math. 2000. N 123. P. 1–33.

10. Sonneveld P. CGS, a fast Lanczos-type solver for nonsymmetric linear system // SIAM J.
Sci. Statist. Computing. 1989. N 10. P. 36–52.

11. Nielsen C., Thybo H. Lower crustal intrusions beneath the southern Baikal Rift Zone: Evidens
from full-waveform modeling of wide-angle siesmic data // Tectonophysics. 2009. V. 470, N 3.
P. 298–318.

12. Mikhailov A., Imomnazarov Kh., Iskandarov I., Omonov A. Modeling then seismic waves



90 Х. Х. Имомназаров, А. А Михайлов, И. К. Искандаров

propagation while earthquakes // AIP Conf. Proc. 2024. V. 3147, N 1. 030008.

Поступила в редакцию 15 июня 2024 г.

После доработки 24 июля 2024 г.

Принята к публикации 1 октября 2024 г.

Имомназаров Холматжон Худайназарович
Институт вычислительной математики и математической геофизики СО РАН,
пр. Академика Лаврентьева, 6, Новосибирск, 630090
imom@omzg.sscc.ru

Михайлов Александр Анатольевич
Институт вычислительной математики и математической геофизики СО РАН,
пр. Академика Лаврентьева, 6, Новосибирск, 630090
alex mikh@omzg.sscc.ru

Искандаров Илхам Кучкарович
Тихоокеанский государственный университет,
ул. Тихоокеанская, 136, Хабаровск 680035
iskandarovilkham@mail.ru



Математические заметки СВФУ
Июль—сентябрь, 2024. Том 31, № 3

UDC 517.95

MODELING THE INFLUENCE OF STRUCTURE

AND PHYSICAL PROPERTIES OF A MEDIUM

ON THE NATURE OF PROPAGATION OF

SEISMIC WAVES FROM EARTHQUAKES

Kh. Kh. Imomnazarov,

A. A. Mikhailov, and K. Iskandarov

Abstract: A direct dynamic problem of the theory of elasticity is considered, which
models the formation of seismic wave fields from earthquakes that occur during tectonic
processes in the lower layers of Earth’s crust. The numerical solution to the stated
problem is based on the method of complexing the analytical Laguerre transform and
the finite difference method. A series of numerical calculations for a test model of media
has been carried out.

DOI: 10.25587/2411-9326-2024-3-82-92

Keywords: elastic medium, longitudinal wave, earthquakes, direct problem, Laguerre
transform, difference scheme.

REFERENCES

1. Mikhailenko B. G., “Spectral Laguerre method for the approximate solution of time dependent
problems,” Appl. Math. Lett., No. 12, 105–110 (1999).

2. Konyukh G. V., Mikhailenko B. G., and Mikhailov A. A., “Application of the integral Laguerre
transforms for forward seismic modeling,” J. Comput. Acoust., 9, No. 4, 1523–1541 (2001).

3. Mikhailenko B. G., Mikhailov A. A., and Reshetova G. V., “Numerical modeling of tran-
sient seismic fields in viscoelastic media based on the Laguerre spectral method,” Pure Appl.
Geophys., No. 160, 1207–1224 (2003).

4. Mikhailenko B. G., Mikhailov A. A., and Reshetova G. V., “Numerical viscoelastic modeling
by the spectral Laguerre method,” Geophys. Prospect., No. 51, 37–48 (2003).

5. Godunov S. K., Equations of Mathematical Physics [in Russian], Nauka, Moscow (1971).
6. Tikhonov A. N. and Samarsky A. A., Equations of Mathematical Physics [in Russian], Nauka,

Moscow (2004).
7. Konovalov A. N. and Popov Yu. P., “Optimal explicitly solvable discrete models with con-

trolled imbalance of total mechanical energy for dynamic problems of linear theory of elastic-
ity,” Sib. Math. J., 56, No. 5, 1092–1099 (2015).

8. Levander A. R., “Fourth-order finite-difference P-SV seismograms,” Geophys., 53, 1425–1436
(1988).

9. Saad Y. and Van der Vorst H. A., “Iterative solution of linear systems in the 20th century,”
J. Comput. Appl. Math., No. 123, 1–33 (2000).

10. Sonneveld P., “CGS, a fast Lanczos-type solver for nonsymmetric linear system,” SIAM J.
Sci. Stat. Comput., No. 10, 36–52 (1989).

11. Nielsen C. and Thybo H., “Lower crustal intrusions beneath the southern Baikal Rift Zone:
Evidence from full-waveform modeling of wide-angle seismic data,” Tectonophys., 470, No. 3,
298–318 (2009).

c© 2024 Kh. Kh. Imomnazarov, A. A. Mikhailov, K. Iskandarov



92 Kh. Kh. Imomnazarov, A. A. Mikhailov, and K. Iskandarov

12. Mikhailov A., Imomnazarov Kh., Iskandarov I., and Omonov A., “Modeling the seismic waves
propagation while earthquakes,” AIP Conf. Proc., 3147, No. 1, 030008 (2024).

Submitted June 15, 2024

Revised July 24, 2024

Accepted October 1, 2024

Kholmatzhon Kh. Imomnazarov, Aleksandr A. Mikhailov
Institute of Conputational Mathematics and Mathematical Physics,
6 Lavrentiev Avenue, Novosibirsk 630090, Russia
imom@omzg.sscc.ru, alex mikh@omzg.sscc.ru

Ilkham K. Iskandarov
Pacific State University,
136 Tikhookeanskaya Street, Khabarovsk 680035, Russia
iskandarovilkham@mail.ru



Математические заметки СВФУ
Июль—сентябрь, 2024. Том 31, № 3

УДК 517.9

ЧИСЛЕННОЕ РЕШЕНИЕ ЗАДАЧИ О Т–ОБРАЗНОМ

СОПРЯЖЕНИИ ДВУХ ТОНКИХ ВКЛЮЧЕНИЙ

ТИМОШЕНКО В ДВУМЕРНОМ УПРУГОМ ТЕЛЕ

Т. С. Попова

Аннотация. Разработан алгоритм численного решения задачи о равновесии дву-
мерного упругого тела, содержащего два тонких упругих включения. Включения
моделируются в рамках теории балок Тимошенко и пересекаются под прямым уг-
лом во внутренней точке одного из них, образуя Т-образную конструкцию в упругом
теле. Одно из включений отслаивается от упругой матрицы, образуя трещину. На
берегах трещины как на части границы области задаются граничные условия вида
неравенств. Наличие данного вида краевых условий приводит к нелинейности за-
дачи и постановке в виде вариационного неравенства. Для разработки алгоритма
численного решения поставленной задачи формулируется приближенная задача о
поиске седловой точки лагранжиана. Доказана сходимость по прямой переменной
решений приближенной задачи к решению исходной задачи. Построен итераци-
онный алгоритм типа Удзавы и показана его сходимость. Приведены примеры
численной реализации
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Ключевые слова: вариационное неравенство, включение Тимошенко, тонкое вклю-
чение, трещина, условия непроникания, нелинейные граничные условия, задача со-
пряжения, алгоритм Удзавы, метод конечных элементов.

1. Введение

Задачи сопряжения составляют отдельный класс краевых задач в матема-

тическом моделировании и имеют широкий спектр применений. Рассматри-

ваемая в данной работе задача относится к области изучения деформирования

упругих тел, содержащих тонкие включения. В литературе известно множество

результатов теоретического характера и численный анализ для задач о равно-

весии упругих и неупругих тел с одиночными тонкими включениями. При этом

упругие включения могут моделироваться в рамках теории тонких балок Тимо-

шенко [1–3] или Бернулли — Эйлера [4–6]. Модели тонких жестких включений

предполагают иной подход, а именно ограничения на структуру функций пе-

ремещений точек включения: данные функции должны иметь вид аффинных

Исследование выполнено за счет гранта Российского научного фонда (проект № 23-21-
00469), https://rscf.ru/project/23-21-00469/.

c© 2024 Попова Т. С.
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непрерывных функций [5, 7]. Причем, как показано в работе [5], задача о тон-

ком жестком включении может быть рассмотрена как предельная для семейства

задач о тонком упругом включении при стремлении параметра ее жесткости к

бесконечности. В опубликованных позднее работах рассмотрены также модели

так называемых полужестких включений, характеризующиеся анизотропными

свойствами, т. е. в направлении одной из осей перемещения включения соответ-

ствуют перемещениям упругой балки, а в ортогональном направлении — пере-

мещениям жесткого включения [8]. В статьях [9–12] приведены общая иерархия

моделей тонких включений в двумерном упругом теле и асимптотические моде-

ли включений, приводящие к их различным модификациям, включая трещины

как один из предельных случаев. Отметим также результаты для различных

моделей тонких включений в вязкоупругих и термоупругих двумерных телах

[13–15], а также криволинейных включений [16]. Модели, рассмотренные в при-

веденных работах, предполагают возможное отслоение включения от окружаю-

щей упругой матрицы с образованием трещины. Формулировки задач содержат

выписанные на берегах трещины граничные условия типа неравенств, которые

интерпретируются как взаимное непроникание точек противоположных бере-

гов. Нелинейность вводимых краевых условий приводит к постановке задач в

виде вариационных неравенств. Дальнейшее исследование вариационных нера-

венств позволяет получить результаты о разрешимости задач, различных свой-

ствах решений и вывести эквивалентную дифференциальную постановку. Для

численного решения данных задач возможно использование метода декомпози-

ции области и построение алгоритма типа Удзавы [17–20]. Для данного типа

моделей получены также результаты в случае сопряжения двух тонких вклю-

чений в концевых точках [21–24]. Дифференциальная постановка этих задач

содержит условия сопряжения в общей точке включений. Вид этих условий

зависит не только от типа включений, но и от типа сопряжения: контакт от-

дельных включений или их соединение с различной степенью повреждения.

Имеются также работы [25–27], посвященные исследованию сопряжений, в ко-

торых контакт или соединение включений происходит во внутренней точке од-

ного из них. При этом сопряжение приобретает Т-образную геометрическую

структуру. В этом случае модель имеет более сложный вид и дифференци-

альная постановка должна учитывать большую систему условий сопряжения.

Отметим также современные подходы в моделировании различного типа соеди-

нений и сопряжений, включая односторонние ограничения на части границы, в

работах [28, 29].

В статье [27] рассмотрена задача о Т-образном сопряжении двух тонких

включений Тимошенко, доказана однозначная разрешимость задачи и получе-

на полная система уравнений и краевых условий, выполненных в области с
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Рис. 1. Т-образное сопряжение тонких Рис. 2. Разбиение �c на подобласти

включений в упругом теле. �0, �1, �2.

разрезом и на кривых, задающих форму включений. Целью настоящей работы

является разработка алгоритма численного решения данной задачи. Наличие

граничных условий типа неравенств и формулировка задачи в форме вариаци-

онного неравенства обуславливает применение метода декомпозиции области и

построение алгоритма типа Удзавы. В работе исследуются вопросы сходимости

для приближенной задачи и итерационного алгоритма.

2. Постановка задачи

В плоскости Ox1x2 рассмотрим квадратную область � = (−2, 2)× (−2, 2) с

границей � , при этом � = �D∪�N , где �D = {±2}× (−2, 2), �N = (−2, 2)×{±2},
черта сверху означает замыкание множества. Единичный вектор внешней нор-

мали к � обозначим через n. В области � рассмотрим прямолинейные пересека-

ющиеся линии γ и γ3, где γ = γ1∪γ2∪{(0; 0)}, γ1 = (−1, 0)×{0}, γ2 = (0, 1)×{0},
γ3 = {0} × (−1, 0). Задачу будем рассматривать в области �c = � \

(
3⋃

I=1

γI

)

(рис. 1).

Область �c задает форму двумерного тела из упругого материала, линии

γ и γ3 соответствуют двум сопрягающимся включениям. Поскольку точка со-

пряжения является внутренней для включения γ, постановка задачи включает

отдельные части γ1 и γ2 для этого включения. Тело закреплено по краю вдоль

части границы �D и испытывает внешние нагрузки на �N .

Введем также обозначения для линий � = (−2, 2)×{0} и S = {0}× (−2, 0),

разбивающих область �c на подобласти �I , I = 0, 1, 2. Заметим, что γ ⊂ �,

γ3 ⊂ S, (0; 0) ∈ ∂S, meas(∂�I ∩ �D) > 0, I = 0, 1, 2 (рис. 2). Единичные векторы

нормали и касательной к � и S обозначим через ν = (ν1, ν2) и τ = (ν2,−ν1).
Будем считать, что горизонтальное включение γ отслаивается от упругой

матрицы с образованием трещины. При этом разрез, соответствующий тре-
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щине, имеет два берега γ+ и γ− и включение остается прикрепленным к ниж-

нему берегу γ−. Вертикальное включение γ3 не имеет отслоений.

Пусть вектор-функция u = (u1, u2) задает перемещения точек тела �c, при

этом ui соответствует перемещениям вдоль оси xi, i = 1, 2. Для компонент

тензоров деформаций и напряжений тела введем следующие формулы:

εij(u) =
1

2
(ui,j + uj,i), i, j = 1, 2,

σ11(u) = (2µ+ λ)ε11(u) + λε22, σ22(u) = λε11 + (2µ+ λ)ε22(u),

σ12(u) = σ21(u) = 2µε12(u),

где

ξ,j =
∂ξ

∂xj
, λ =

2νµ

1− 2ν
, µ =

E

2(1 + ν)

— коэффициенты Ламе, E и ν — модуль упругости и коэффициент Пуассона

материала упругого тела соответственно.

Тонкие включения γ и γ3 моделируются в рамках теории тонкой упругой

балки Тимошенко. Для описания модели данных включений введем вектор-

функции ψ(I) = (w(I), v(I), ϕ(I)), I = 1, 2, 3, где w(I) и v(I) — перемещения точек

γI вдоль осей x1 и x2 соответственно, ϕ(I) — угол поворота нормального сечения

γI . Поскольку включение γ отслаивается от упругой матрицы с образованием

трещины, то перемещения точек на противоположных берегах разреза γ могут

не совпадать. Для значений некоторой функции ξ на берегах γ+ и γ− введем

обозначения с верхним индексом: ξ+ и ξ−, а также обозначение для скачка

функции на берегах разреза: [ξ] = ξ+ − ξ−. Аналогичное обозначение будет

использовано и для скачка на γ3. Горизонтальное включение отслаивается от

берега γ+ и прикреплено к берегу γ−, поэтому на γ− задаются условия склейки

перемещений точек тела и включения: u−1 = w(I), u−2 = v(I) на γI , I = 1, 2.

Вертикальное включение не отслаивается, поэтому на γ3 выполнены условия

u1 = w(3), u2 = v(3). В дальнейшем все функции, заданные на γ1, γ2, будем

отождествлять с функциями одной переменной x1, а функции, заданные на

γ3 — с функциями переменной x2.

Отметим, что подход к моделированию тонких включений, использованный

в настоящей работе, позволяет рассматривать как случаи включений, отслоив-

шихся от матрицы, так и без отслоения. Предполагается, что отслоение при-

водит к образованию трещины, на одном из берегов которой (в данном случае

на нижнем) включение остается прикрепленным. Известно, что современные

волокнисто-композитные материалы, например, из полимерной матрицы с угле-

родными волокнами, характеризуются низкой степенью адгезии на межфазной

границе, что может приводить к частичному или полному отделению волок-

на от матрицы. Рассматриваемая задача является модельной и включает два
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различных случая взаимодействия включения и матрицы — отслоившееся от

матрицы горизонтальное включение и вертикальное включение без отслоения.

Приведем вариационную формулировку задачи о равновесии двумерного

упругого тела, содержащего сопрягающиеся тонкие упругие включения. Рас-

смотрим функциональное пространство

H =
{
χ = (u, ψ(1), ψ(2), ψ(3)) | u ∈ H1

�D(�c)
2; ψ(I) ∈ H1(γI)

3, I = 1, 2, 3
}
,

где

H1
�D (�c)

2 = {u ∈ H1(�c)
2 | u = 0 на �D},

и введем множество допустимых перемещений следующего вида:

K = {χ ∈ H | u−1 = w(I), u−2 = v(I) на γI , I = 1, 2;

u1 = w(3), u2 = v(3) на γ3; [u]ν ≥ 0 на γ; ϕ(1)(0) = ϕ(2)(0)}.

Вариационная постановка задачи состоит в следующем: найти элемент χ ∈ K,

доставляющий минимум функционалу энергии �:

�(χ) = inf
χ∈K

�(χ). (1)

Функционал энергии рассматриваемой системы взаимодействующих объектов

имеет вид

�(χ) =
1

2

∫

�c

σ(u)ε(u) dx−
∫

�N

fu ds

+
1

2

2∑

I=1

∫

γI

�(ψ(I), ψ(I)) ds+
1

2

∫

γ3

�(ψ(3), ψ(3)) ds,

где первые два слагаемых соответствуют потенциальной энергии деформирова-

ния упругого тела �c и работе внешних сил f = (f1, f2), а остальные слагаемые

заданы посредством билинейных форм вида

�(ξ, ξ) = δ1p,1p,1 + δ2r,1r,1 + δ3(q,1 + r)(q,1 + r), ξ = (p, q, r), ξ = (p, q, r),

�(φ, φ) = δ1l,2l,2 + δ2m,2m,2 + δ3(k,2 +m)(k,2 +m), φ = (k, l,m), φ = (k, l,m),

и соответствуют энергии деформирования включений. Здесь также приняты

обозначения: σ(u)ε(u) = σij(u)εij(u), i, j = 1, 2. Всюду в тексте по повторя-

ющимся индексам предполагается суммирование. Через δ1, δ2, δ3 обозначены

параметры, характеризующие упругие свойства включений и вычисляемые по

формулам

δ1 = EincSinc, δ2 = EincIinc, δ3 =
Einc

2(1 + ν)
, Sinc = h2, Iinc =

h4

12
,
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где Einc, h — модуль упругости и толщина включения соответственно. Задача

(1) имеет единственное решение, удовлетворяющее вариационному неравенству

[27]:

χ ∈ K :

∫

�c

σ(u)ε(u − u) dx

+

2∑

I=1

∫

γI

�(ψ(I), ψ
(I) − ψ(I)) ds+

∫

γ3

�(ψ(3), ψ
(3) − ψ(3)) ds

≥
∫

�N

f(u− u) ds, χ = (u, ψ
(1)
, ψ

(2)
, ψ

(3)
) ∈ K. (2)

Как показано в [27], в предположении достаточной гладкости решений из ва-

риационного неравенства (2) можно получить дифференциальную постановку

рассматриваемой задачи в виде следующей краевой задачи.

Для заданной на �N функции f = (f1, f2) внешних нагрузок найти в �c

поле перемещений u = (u1, u2) точек тела и тензор напряжений σ = {σij(u)},
i, j = 1, 2, кроме того, на γI найти функции ψ(I) = (w(I), v(I), ϕ(I)), I = 1, 2, 3,

такие, что

− divσ = 0, σ = Aε(u) в �c, (3)

u = 0 на �D, σ(u)n = f на �N , (4)

−δ1w(I)
,11 = [στ ], −δ3

(
v
(I)
,11 + ϕ

(I)
,1

)
= [σν ] на γI , I = 1, 2, (5)

−δ2ϕ(I)
,11 + δ3

(
v
(I)
,1 + ϕ(I)

)
= 0 на γI , I = 1, 2, (6)

δ1v
(3)
,22 = [στ ], −δ3

(
w

(3)
,22 + ϕ

(3)
,2

)
= [σν ] на γ3, (7)

−δ2ϕ(3)
,22 + δ3

(
w

(3)
,2 + ϕ(3)

)
= 0 на γ3, (8)

w
(I)
,1 = v

(I)
,1 + ϕ(I) = ϕ

(I)
,1 = 0 при x1 = (−1)I , I = 1, 2, (9)

v
(3)
,2 = w

(3)
,2 + ϕ(3) = ϕ

(3)
,2 = 0 при x2 = −1, (10)

u−1 = w(I), u−2 = v(I) на γI , I = 1, 2, u1 = w(3), u2 = v(3) на γ3, (11)

w(1)(0) = w(2)(0) = w(3)(0); v(1)(0) = v(2)(0) = v(3)(0), (12)

ϕ(1)(0) = ϕ(2)(0), (13)

δ3
(
w

(3)
,2 + ϕ(3)

)
(0) = δ1

(
w

(2)
,1 − w

(1)
,1

)
(0), δ1v

(3)
,2 (0) = δ3

(
v
(2)
,1 − v

(1)
,1

)
(0), (14)

ϕ
(1)
,1 (0) = ϕ

(2)
,1 (0), ϕ

(3)
,2 (0) = 0, (15)

[u]ν ≥ 0, σ+
ν ≤ 0, σ+

τ = 0, σ+
ν · [u]ν = 0 на γ. (16)

Здесь div σ = (σ1j,j , σ2j,j); Aε = aijklεij , i, j = 1, 2, A — тензор модулей упру-

гости; σn = (σ1jnj , σ2jnj); σijνj = σννi + στi, i = 1, 2; σν , στ — нормальная и

касательная составляющие вектора σijνj соответственно.
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Соотношения (3) — уравнения равновесия и закон Гука для упругого те-

ла, соотношения (4) — краевые условия на внешней границе �c. Уравнения

(5)–(8) и граничные условия (9), (10) описывают равновесие включений и соот-

ветствуют модели балки Тимошенко со свободными концами в точках (±1, 0) и

(0,−1). В то же время скачки [σν ] и [στ ] в правых частях (5) и (7) выражают

воздействие на балку окружающей упругой среды. Согласно условиям (11) вер-

тикальные и горизонтальные перемещения включений Тимошенко совпадают с

соответствующими перемещениями тела на γ−1 , γ−2 и γ3. Равенства (12)–(15) —

условия сопряжения включений в точке (0, 0). Из условий (12), (13) следует

совпадение горизонтальных и вертикальных перемещений всех включений, а

также углов поворота для γ1 и γ2. Угол поворота γ3 не участвует в условиях

сопряжения (13), поскольку в точке сопряжения включения γ и γ3 не соеди-

нены. Случай идеального сцепления между включениями γ и γ3 представляет

собой отдельную модель и требует специального рассмотрения. Условия (14)

характеризуют соотношения для продольных и поперечных сил для γ1, γ2 и γ3.

Соотношения (15) показывают, что изгибающие моменты γ1 и γ2 в точке сопря-

жения также совпадают, в то время как изгибающий момент γ3 в этой точке

равен нулю. Система (16) представляет собой стандартный набор краевых усло-

вий, описывающих возможный контакт берегов трещины на γ, включая условие

их взаимного непроникания (первое из представленных соотношений).

Задача (1), а значит, и вариационное неравенство (2), эквивалентны (3)–

(16) при условии достаточной гладкости решений [27].

3. Декомпозиция области

Для построения алгоритма численной реализации в области с разрезом

применим метод декомпозиции области [20]. Для простоты в этом разделе в

соотношениях будем опускать коэффициенты δ1, δ2, δ3. Произведем разбиение

области �c на три подобласти �0, �1 и �2, как показано на рис. 2.

Будем рассматривать задачи о равновесии в подобластях и на γ1, γ2, γ3,

неизвестными в которых являются вектор-функции

u(I) =
(
u

(I)
1 , u

(I)
2

)
в �I , I = 0, 1, 2,

ψ(I) = (w(I), v(I), ϕ(I)) на γI , I = 1, 2, 3.

Введем дополнительные обозначения на интерфейсе контактирующих подобла-

стей:

�+ = ∂�0 ∩ �, �− =

2⋃

I=1

(∂�I ∩�);

gI = ∂�I ∩ (� \ γI), I = 1, 2, g = g1 ∪ g2, g3 = S \ γ3.
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Определим следующие функциональные пространства для вектор-функций u(0),

χ(1) = (u(1), ψ(1), ψ(3)) и χ(2) = (u(2), ψ(2)):

V0 = {u(0) ∈ H1(�0)
2 | u(0) = 0 на �D ∩ ∂�0},

V1 =
{
χ(1) ∈ H1(�1)

2 ×H1(γ1)
3 ×H1(γ3)

3 | u(1) = 0 на �D ∩ ∂�1;

u
(I)
1 = w(I), u

(I)
2 = v(I) на γI , I = 1, 3

}
,

V2 =
{
χ(2) ∈ H1(�2)

2 ×H1(γ2)
3 | u(2) = 0 на �D ∩ ∂�2;

u
(2)
1 = w(2), u

(2)
2 = v(2) на γ2

}

с нормами

‖u(0)‖2V0
=

∫

�0

σ(u(0))ε(u(0)) dx,

‖χ(1)‖2V1
=

∫

�1

σ(u(1))ε(u(1)) dx+

∫

γ1

�(ψ(1), ψ(1)) ds+

∫

γ3

�(ψ(3), ψ(3)) ds,

‖χ(2)‖2V2
=

∫

�2

σ(u(2))ε(u(2)) dx +

∫

γ2

�(ψ(2), ψ(2)) ds

и обозначим V = V0 × V1 × V2.

Рассмотрим выпуклое множество Kd ⊂ V , имеющее следующий вид:

Kd =
{
U = (u(0), χ(1), χ(2)) ∈ V | u(0)

2 − v(I) ≥ 0 на γI , I = 1, 2;

u(0) = u(I) на gI , I = 1, 2; u(2) = u(1) на S
}
.

Для функционалов

�0(u
(0)) =

1

2

∫

�0

σ(u(0))ε(u(0)) dx−
∫

�N∩∂�0

fu(0) ds,

�1(χ
(1)) =

1

2

∫

�1

σ(u(1))ε(u(1)) dx−
∫

�N∩∂�1

fu(1) ds

+
1

2

∫

γ1

�(ψ(1), ψ(1)) ds+
1

2

∫

γ3

�(ψ(3), ψ(3)) ds,

�2(χ
(2)) =

1

2

∫

�2

σ(u(2))ε(u(2)) dx−
∫

�N∩∂�2

fu(2) ds+
1

2

∫

γ1

�(ψ(2), ψ(2)) ds

будем решать следующую задачу минимизации:

inf
U∈Kd

(�0(u
(0)) +�1(χ

(1)) +�2(χ
(2))). (17)
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Соответствующее вариационное неравенство имеет вид

U ∈ Kd :

2∑

I=0

(∫

�I

σ(u(I))ε(u(I) − u(I)) dx−
∫

�N∩∂�I

f(u(I) − u(I)) ds

)

+

2∑

I=1

∫

γI

�(ψ(I), ψ
(I) − ψ(I)) ds+

∫

γ3

�(ψ(3), ψ
(3) − ψ(3)) ds ≥ 0, (18)

U = (u(0), χ(1), χ(2)) ∈ Kd. Более того, будем иметь

u(I) = u|�I
, I = 0, 1, 2,

где χ = (u, ψ(1), ψ(2), ψ(3)) — решение (1).

4. Приближенная задача

Для произвольной постоянной p > 0 можно определить множества

�p
γI

= {µ ∈ L2(γI) | 0 ≤ µ ≤ p на γI}, I = 1, 2,

�p
l = {µ ∈ L2(l) | −p ≤ µ ≤ p на l}, l ∈ {g1, g2, S},

�p = �p
γ1
× �p

γ2
×
(
�p
g1

)2 ×
(
�p
g2

)2 ×
(
�p
S

)2
.

Обозначим также

λγ = (λγ1 , λγ2), λgI =
(
λgI1 , λ

gI
2

)
, I = 1, 2, λS =

(
λS1 , λ

S
2

)
,

λ = (λγ , λg1 , λg2 , λS),

и на множестве W p = V × �p введем функцию Лагранжа

L(U, λ) = �0(u
(0)) +�1(χ

(1)) +�2(χ
(2))−

2∑

I=1

∫

γI

λγI
(
u

(0)
2 − v(I)

)
ds

−
2∑

I=1

2∑

k=1

∫

gI

λgIk
(
u

(0)
k − u

(I)
k

)
ds−

2∑

k=1

∫

S

λSk
(
u

(2)
k − u

(1)
k

)
ds.

Для рассматриваемой формы лагранжиана L сформулируем следующую задачу

отыскания седловой точки. При фиксированном p ≥ 0 найти элемент (Up, λp) ∈
W p, где Up =

(
u

(0)
p , χ

(1)
p , χ

(2)
p

)
, λp =

(
λγp , λ

g1
p , λ

g2
p , λ

S
p

)
, такой, что

L(Up, λ) ≤ L(Up, λp) ≤ L(U, λp) (19)

для любых (U, λ) = (u(0), χ(1), χ(2), λ) ∈ W p. Поскольку множества, входящие

в произведение W p, выпуклы и замкнуты в соответствующих рефлексивных

пространствах, а L выпуклый полунепрерывный снизу на V и вогнутый полу-

непрерывный сверху на �p, то при любом p ≥ 0 задача (19) имеет решение

[30].
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Теорема 1. Пусть U — решение (18), (Up, λp) — решение (19). Тогда при

p→∞
Up → U сильно в V.

Доказательство. Неравенства (19) эквивалентны следующей системе:

2∑

I=0

(∫

�I

σ
(
u(I)
p

)
ε
(
u(I) − u(I)

p

)
dx−

∫

�N∩∂�I

f
(
u(I) − u(I)

p

)
ds

)

+

2∑

I=1

∫

γI

�
(
ψ(I)
p , ψ

(I) − ψ(I)
p

)
ds+

∫

γ3

�
(
ψ(3)
p , ψ

(3) − ψ(3)
p

)
ds

−
2∑

I=1

∫

γI

λγI
p

(
u

(0)
2 −u(0)

p2
−
(
v(I)−v(I)

p

))
ds−

2∑

I=1

2∑

k=1

∫

gI

λgIpk

(
u

(0)
k −u(0)

pk
−
(
u

(I)
k −u(I)

pk

))
ds

−
2∑

k=1

∫

S

λSpk

(
u

(2)
k − u(2)

pk
−
(
u

(1)
k − u(1)

pk

))
ds ≥ 0, U ∈ V, (20)

∫

γI

λ
γI
(
v(I)
p − u(0)

p2

)
ds ≤

∫

γI

λγI
p

(
v(I)
p − u(0)

p2

)
ds, λ

γI ∈ �p
γ , I = 1, 2, (21)

∫

gI

λ
gI
k

(
u(I)
pk
− u(0)

pk

)
ds ≤

∫

gI

λgIpk

(
u(I)
pk
− u(0)

pk

)
ds, λ

gI
k ∈ �p

g, I = 1, 2, k = 1, 2, (22)

∫

S

λ
S

k

(
u(1)
pk
− u(2)

pk

)
ds ≤

∫

S

λSpk

(
u(1)
pk
− u(2)

pk

)
ds, λ

S

k ∈ �p
S , k = 1, 2. (23)

Подставим в (20) пробный элемент U = 0. Будем иметь

2∑

I=0

∫

�I

σ
(
u(I)
p

)
ε
(
u(I)
p

)
dx+

2∑

I=1

∫

γI

�
(
ψ(I)
p , ψ(I)

p

)
ds+

∫

γ3

�
(
ψ(3)
p , ψ(3)

p

)
ds

+

2∑

I=1

∫

γI

λγI
p

(
v(I)
p − u(0)

p2

)
ds+

2∑

I=1

2∑

k=1

∫

gI

λgIpk

(
u(I)
pk
− u(0)

pk

)
ds

+

2∑

k=1

∫

S

λSpk

(
u(1)
pk
− u(2)

pk

)
ds ≤

2∑

I=0

∫

�N∩∂�I

f
(
u(I)
p

)
ds. (24)

Подставим также λ
γI

= λ
gI
k = λ

S

k = 0, k = 1, 2, в (21)–(23). Получим
∫

γI

λγI
p

(
v(I)
p − u(0)

p2

)
ds ≥ 0, I = 1, 2, (25)

∫

gI

λgIpk

(
u(I)
pk
− u(0)

pk

)
ds ≥ 0, I = 1, 2, k = 1, 2, (26)
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∫

S

λSpk

(
u(1)
pk
− u(2)

pk

)
ds ≥ 0, k = 1, 2. (27)

Отсюда

∥∥u(0)
p

∥∥2

V0
+
∥∥χ(1)

p

∥∥2

V1
+
∥∥χ(2)

p

∥∥2

V2
≤

2∑

I=0

C(I)‖f‖L2(∂�I )2 ·
∥∥u(I)

p

∥∥
VI
.

Тогда существует такая константа C > 0, что при любом p > 0 имеют место

оценки ∥∥u(0)
p

∥∥
V0
≤ C,

∥∥χ(1)
p

∥∥
V1
≤ C,

∥∥χ(2)
p

∥∥
V2
≤ C. (28)

Из ограниченности последовательностей {u(0)
p }, {χ(1)

p }, {χ(2)
p } следует, что мож-

но выделить подпоследовательности, сохраняя обозначение для которых, можно

утверждать, что 



u
(0)
p → ũ(0) слабо в V0,

χ
(1)
p → χ̃(1) слабо в V1,

χ
(2)
p → χ̃(2) слабо в V2.

(29)

Покажем, что Ũ = (ũ(0), χ̃(1), χ̃(2)) ∈ Kd. Из (21)–(23) следует, что

λγI
p =

{
0, v

(I)
p − u(0)

p2
< 0,

p, v
(I)
p − u(0)

p2
> 0,

I = 1, 2, (30)

λgIpk
=

{
−p, u

(I)
pk − u(0)

pk < 0,

p, u
(I)
pk − u(0)

pk > 0,
I = 1, 2, k = 1, 2, (31)

λSpk
=

{
−p, u

(1)
pk − u(2)

pk < 0,

p, u
(1)
pk − u(2)

pk > 0,
k = 1, 2. (32)

Введем обозначения:

Jc
p =

2∑

I=1

∫

γI

max
{
0, v(I)

p − u(0)
p2

}
ds,

Jg
p =

2∑

I=1

2∑

k=1

∫

gI

(
max

{
0, u(I)

pk
− u(0)

pk

}
+ max

{
0,−

(
u(I)
pk
− u(0)

pk

)})
ds,

JS
p =

2∑

k=1

∫

S

(
max

{
0, u(1)

pk
− u(2)

pk

}
+ max

{
0,−

(
u(1)
pk
− u(2)

pk

)})
ds.

Из (30)–(32) следует, что

2∑

I=1

∫

γI

λγI
p

(
v(I)
p − u(0)

p2

)
ds = pJc

p ,
2∑

I=1

2∑

k=1

∫

gI

λgIpk

(
u(0)
pk
− u(I)

pk

)
ds = pJg

p ,
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2∑

k=1

∫

S

λSpk

(
u(1)
pk
− u(2)

pk

)
ds = pJS

p .

Из (24)–(27) можем получить

0 ≤
∥∥u(0)

p

∥∥2

V0
+
∥∥χ(1)

p

∥∥2

V1
+ ‖χ(2)‖2V2

+ p
(
Jc
p + Jg

p + JS
p

)
≤

2∑

I=0

∫

�N∩∂�I

fu(I)
p ds.

Из (28) заключаем, что существует такая постоянная C1 > 0, что выполнено

0 ≤ p
(
Jc
p + Jg

p + JS
p

)
≤ C1, p > 0.

Тогда, очевидно,

lim
p→∞

(
Jc
p + Jg

p + JS
p

)
= 0. (33)

Возьмем произвольную неотрицательную функцию η ∈ C∞0 (γ) и запишем

∫

γI

η
(
ṽ(I) − ũ(0)

2

)
ds = lim

p→∞

∫

γI

η
(
v(I)
p − u(0)

p2

)
ds

≤ max
x∈γI

η(x) lim
p→∞

∫

γI

max
{
0, v(I)

p − u(0)
p2

}
ds = 0, I = 1, 2.

Из произвольности η ≥ 0 следует, что

ṽ(I) − ũ(0)
2 ≤ 0 на γI , I = 1, 2.

Выбирая произвольные функции αkI ∈ C∞0 (gI), k, I = 1, 2, можем записать

∫

gI

αkI

(
ũ

(0)
k − ũ

(I)
k

)
ds = lim

p→∞

∫

gI

αkI

(
u(0)
pk
− u(I)

pk

)
ds, k, I = 1, 2.

Тогда

−max
x∈gI
|αkI(x)|

∫

gI

max
{
0,−

(
u(I)
pk
− u(0)

pk

)}
ds ≤

∫

gI

αkI

(
u(I)
pk
− u(0)

pk

)
ds

≤ max
x∈gI
|αkI(x)|

∫

gI

max
{
0, u(I)

pk
− u(0)

pk

}
ds.

Переходя в последних неравенствах к пределу при p→ ∞ с учетом (33), полу-

чим ∫

gI

αkI

(
ũ

(0)
k − ũ

(I)
k

)
ds = 0,

откуда в силу произвольности αkI заключаем, что

ũ
(0)
k = ũ

(I)
k на gI , I = 1, 2, k = 1, 2.



Численное решение задачи о Т-образном сопряжении 105

Аналогично можно показать, что

ũ
(1)
k = ũ

(2)
k на S, k = 1, 2.

Таким образом, Ũ ∈ Kd.

Покажем, что Ũ совпадает с U . Зафиксируем произвольный элемент Û =

(û(0), χ̂(1), χ̂(2)) ∈ Kd и подставим его в (20) в качестве тестового. Будем иметь

2∑

I=0

∫

�I

σ
(
u(I)
p

)
ε
(
û(I) − u(I)

p

)
dx+

2∑

I=1

∫

γI

�
(
ψ(I)
p , ψ̂(I) − ψ(I)

p

)
ds

+

∫

γ3

�
(
ψ(3)
p , ψ̂(3)−ψ(3)

p

)
ds ≥

2∑

I=0

∫

�N∩∂�I

f
(
û(I)−u(I)

p

)
ds+

2∑

I=1

(∫

γI

λγI
p

(
û

(0)
2 −v̂(I)

)
ds

+

∫

γI

λγI
p

(
v(I)
p − u(0)

p2

)
ds

)
+

2∑

I=1

2∑

k=1

(∫

gI

λgIpk

(
û

(0)
k − û

(I)
k

)
ds+

∫

gI

λgIpk

(
u(I)
pk
− u(0)

pk

))

+

2∑

k=1

(∫

S

λSpk

(
û

(2)
k − û

(1)
k

)
ds+

∫

S

λSpk

(
u(1)
pk
− u(2)

pk

))
, Û ∈ Kd.

Учитывая (25)–(27) и принадлежность Û множеству Kd, отсюда имеем

2∑

I=0

∫

�I

σ
(
u(I)
p

)
ε
(
û(I) − u(I)

p

)
dx+

2∑

I=1

∫

γI

�
(
ψ(I)
p , ψ̂(I) − ψ(I)

p

)
ds

+

∫

γ3

�
(
ψ(3)
p , ψ̂(3) − ψ(3)

p

)
ds ≥

2∑

I=0

∫

�N∩∂�I

f
(
û(I) − u(I)

p

)
ds. (34)

В силу слабой полунепрерывности снизу нормы в (34) можно перейти к пределу

при p→∞. В результате получим неравенство

2∑

I=0

∫

�I

σ
(
ũ(I)

)
ε
(
û(I) − ũ(I)

)
dx+

2∑

I=1

∫

γI

�(ψ̃(I), ψ̂(I) − ψ̃(I)) ds

+

∫

γ3

�(ψ̃(3), ψ̂(3) − ψ̃(3)) ds ≥
2∑

I=0

∫

�N∩∂�I

f(û(I) − ũ(I)) ds, (35)

выполненное в силу произвольности выбора для всех Û ∈ Kd. С другой сторо-

ны, (35) совпадает с вариационным неравенством (18). Принимая во внимание

единственность решения (18), можем сделать вывод, что Ũ совпадает с U .

Докажем, что Up → U сильно в V . Переходя к пределу в (24) при p→∞,

с учетом слабой полунепрерывности снизу нормы получим

‖u(0)‖2V0
+ ‖χ(1)‖2V1

+ ‖χ(2)‖2V2
≤ lim

(∥∥u(0)
p

∥∥2

V0
+
∥∥χ(1)

p

∥∥2

V1
+
∥∥χ(2)

p

∥∥2

V2

)

≤ lim
(∥∥u(0)

p

∥∥2

V0
+
∥∥χ(1)

p

∥∥2

V1
+
∥∥χ(2)

p

∥∥2

V2

)
≤

2∑

I=0

∫

�N∩∂�I

fu(I) ds.
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Из (18) следует, что

2∑

I=0

∫

�I

σ(u(I))ε(u(I)) dx+

2∑

I=1

∫

γI

�(ψ(I), ψ(I)) ds

+

∫

γ3

�(ψ(3), ψ(3)) ds =

2∑

I=0

∫

�N∩∂�I

f(u(I)) ds,

это равенство можно переписать в виде

‖u(0)‖2V0
+ ‖χ(1)‖2V1

+ ‖χ(2)‖2V2
=

2∑

I=0

∫

�N∩∂�I

fu(I) ds.

Сравнивая это равенство с последним неравенством, можно сделать вывод о

том, что Up сильно сходится к U в V . Теорема доказана.

5. Итерационный алгоритм

Заметим, что вариационное неравенство (20) эквивалентно следующим со-

отношениям:

∫

�0

σ
(
u(0)
p

)
ε(u(0)) dx−

2∑

I=1

∫

γI

λγI
p u

(0)
2 ds−

2∑

I=1

2∑

k=1

∫

gI

λgIpk
u

(0)
k ds

=

∫

�N∩∂�0

fu(0) ds, u(0) ∈ V0. (36)

∫

�1

σ
(
u(1)
p

)
ε(u(1)) dx+

∫

γ1

�
(
ψ(1)
p , ψ

(1))
ds+

∫

γ3

�
(
ψ(3)
p , ψ

(3))

+

∫

γ1

λγ1

p v
(1) ds+

∫

g1

(
λg1

p1
u

(1)
1 + λg1

p2
u

(1)
2

)
ds+

∫

S

(
λSp1

u
(1)
1 + λSp2

u
(1)
2

)
ds

=

∫

�N∩∂�1

fu(1) ds, χ(1) = (u(1), ψ
(1)
, ψ

(3)
) ∈ V1. (37)

∫

�2

σ
(
u(2)
p

)
ε(u(2)) dx+

∫

γ2

�
(
ψ(2)
p , ψ

(2))
ds

+

∫

γ2

λγ2

p v
(2) ds+

∫

g2

(
λg2

p2
u

(2)
1 + λg2

p2
u

(2)
2

)
ds−

∫

S

(
λSp1

u
(2)
1 + λSp2

u
(2)
2

)
ds

=

∫

�N∩∂�2

fu(2) ds, χ(2) = (u(2), ψ
(2)

) ∈ V2. (38)
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Далее выберем p достаточно большим и рассмотрим операторы Pλ
γI
p

, P�
gI
p

, P�S
p

проектирования на множества �γI
p , �gI

p , �S
p в L2(γI), L

2(gI), L
2(S) соответствен-

но. Нетрудно видеть, что

P�
γI
p
ξ(x) =





0, ξ(x) ≤ 0,

ξ(x), 0 < ξ(x) < p,

p, ξ(x) ≥ p,
I = 1, 2,

P�
gI
p
ξ(x) = P�S

p
ξ(x) =





−p, ξ(x) ≤ −p,
ξ(x), −p < ξ(x) < p,

p, ξ(x) ≥ p,
I = 1, 2.

Итерационный алгоритм численного решения исходной задачи составим на ос-

нове алгоритма Удзавы в следующем виде.

1. Итерация m = 0. Задаем

λ0 = (λγ1,0, λγ2,0, λg1,0, λg2,0, λS,0) ∈ �γ1

p × �γ2

p ×
(
�g1

p

)2 ×
(
�g2

p

)2 ×
(
�S
p

)2
.

2. Итерация m ≥ 0. Найдем элемент Um = (u(0),m, χ(1),m, χ(2),m) такой, что

∫

�0

σ(u(0),m)ε(u(0)) dx−
2∑

I=1

∫

γI

λγI ,mu
(0)
2 ds

−
2∑

I=1

∫

gI

(
λgI ,m1 u

(0)
1 + λgI ,m2 u

(0)
2

)
ds =

∫

�N∩∂�0

fu(0) ds, u(0) ∈ V0, (39)

∫

�1

σ(u(1),m)ε(u(1)) dx+

∫

γ1

�(ψ(1),m, ψ
(1)

) ds+

∫

γ3

�(ψ(3),m, ψ
(3)

) ds

+

∫

γ1

λγ1,mv(1) ds+

∫

g1

(
λg1,m

1 u
(1)
1 + λg1,m

2 u
(1)
2

)
ds

+

∫

S

(
λS,m1 u

(1)
1 + λS,m2 u

(1)
2

)
ds =

∫

�N∩∂�1

fu(1) ds, χ(1) ∈ V1, (40)

∫

�2

σ(u(2),m)ε(u(2)) dx+

∫

γ2

�(ψ(2),m, ψ
(2)

) ds+

∫

γ2

λγ2,mv(2) ds

+

∫

g2

(
λg2,m

1 u
(2)
1 + λg2,m

2 u
(2)
2

)
ds−

∫

S

(
λS,m1 u

(2)
1 + λS,m2 u

(2)
2

)
ds

=

∫

�N∩∂�2

fu(2) ds, χ(2) ∈ V2. (41)
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3. Проверка критерия остановки вида

max

(‖χ(1),m − χ(1),m−1‖V1

‖χ(1),m‖V1

,
‖χ(2),m−1χ(2),m−1‖V2

‖χ(2),m‖V2

,
‖u(0),m − u(0),m−1‖V0

‖u(0),m‖V0

)
≤ ǫ,

где ǫ — заданный параметр алгоритма. При выполнении критерия алгоритм

останавливается и в качестве решения задачи принимается элемент, найденный

на данном шаге итерации. Иначе при m+ 1 определяем λm+1 по формулам

λγI ,m+1 = P�
γI
p

(
λgI ,m + θ

(
v(I),m − u(0),m

2

))
, I = 1, 2,

λgI ,m+1
k = P�

gI
p

(
λgI ,mk + θ

(
u

(I),m
k − u(0),m

k

))
, I = 1, 2, k = 1, 2,

λS,m+1
k = P�S

p

(
λS,mk + θ

(
u

(1),m
k − u(2),m

k

))
, k = 1, 2,

и переходим к шагу 2.

Здесь θ > 0 может быть выбрано таким, чтобы итерационный алгоритм

сходился, а именно имеет место следующая

Теорема 2. Существует θ∗ > 0 такое, что Um сильно сходится к элементу

Up в пространстве V при m→∞ для всех θ ∈ (0, θ∗).

Доказательство. Введем обозначения:

rγI ,m = λγI ,m − λγI
p , rgI ,mk = λgI ,mk − λgIpk

, I = 1, 2, k = 1, 2,

rS,mk = λS,mk − λSpk
, k = 1, 2.

Учитывая, что оператор проектирования на замкнутое выпуклое множество

является нерастягивающим оператором, для каждого θ > 0 будем иметь

2∑

I=1

‖rγI ,m+1‖2L2(γI)
+

2∑

I=1

2∑

k=1

‖rgI ,m+1‖2L2(gI ) +

2∑

k=1

‖rS,m+1‖2L2(S)

≤
2∑

I=1

(
‖rγI ,m‖2L2(γI)

+ 2θ

∫

γI

rγI ,m
((
v(I),m − u(0),m

2

)
−
(
v(I)
p − u(0)

p2

))
ds

+ θ2
∥∥(v(I),m − u(0),m

2

)
−
(
v(I)
p − u(0)

p2

)∥∥2

L2(γI )

)

+

2∑

I=1

2∑

k=1

(∥∥rgI ,mk

∥∥2

L2(gI )
+ 2θ

∫

gI

rgI ,mk

((
u

(I),m
k − u(0),m

k

)
−
(
u(I)
pk
− u(0)

pk

))
ds

+ θ2
∥∥(u(I),m

k − u(0),m
k

)
−
(
u(I)
pk
− u(0)

pk

)∥∥2

L2(gI )

)

+

2∑

k=1

(
‖rS,m‖2L2(S) + 2θ

∫

S

rS,mk

((
u

(1),m
k − u(2),m

k

)
−
(
u(1)
pk

)− u(2)
pk

))
ds

+ θ2
∥∥(u(1),m

k − u(2),m
k

)
−
(
u(1)
pk
− u(2)

pk

)∥∥2

L2(S)

)
. (42)



Численное решение задачи о Т-образном сопряжении 109

Подставим в (36)–(38) пробные элементы вида

u(0) = u(0)
p − u(0),m, χ(1) =

(
u(1)
p − u(1),m, ψ(1)

p − ψ(1),m, ψ(3)
p − ψ(3),m

)
,

χ(2) =
(
u(2)
p − u(2),m, ψ(2)

p − ψ(2),m
)
,

а в (39)–(41) — элементы вида

u(0) = u(0),m − u(0)
p , χ(1) =

(
u(1),m − u(1)

p , ψ(1),m − ψ(1)
p , ψ(3),m − ψ(3)

p

)
,

χ(2) =
(
u(2),m − u(2)

p , ψ(2),m − ψ(2)
p

)
.

Сложим полученные равенства и получим

2∑

I=1

∫

γI

rγI ,m
((
v(I),m − v(I)

p

)
−
(
u

(0),m
2 − u(0)

p2

))
ds

+

2∑

I=1

2∑

k=1

∫

gI

rgI ,mk

((
u

(I),m
k − u(I)

pk

)
−
(
u

(0),m
k − u(0)

pk

))
ds

+

2∑

k=1

∫

S

rS,mk

((
u

(1),m
k − u(1)

pk

)
−
(
u

(2),m
k − u(2)

pk

))
ds

= −
(∥∥u(0),m − u(0)

p

∥∥2

V0
+
∥∥χ(1),m − χ(1)

p

∥∥2

V1
+
∥∥χ(2),m − χ(2)

p

∥∥2

V2

)
.

Тогда из (42) можно записать

2∑

I=1

‖rγI ,m+1‖2L2(γI)
+

2∑

I=1

2∑

k=1

‖rgI ,m+1‖2L2(gI ) +

2∑

k=1

‖rS,m+1‖2L2(S)

≤
2∑

I=1

(
‖rγI ,m‖2L2(γI ) + 2θ2

(∥∥v(I),m − v(I)
p

∥∥2

L2(γI)
+
∥∥u(0),m

2 − u(0)
p2

∥∥2

L2(γI)

))

+

2∑

I=1

2∑

k=1

(∥∥rgI ,mk

∥∥2

L2(gI)
+ 2θ2

(∥∥u(I),m
k − u(I)

pk

∥∥2

L2(gI )
+
∥∥u(0),m

k − u(0)
pk

)
∥∥2

L2(gI )

))

+

2∑

k=1

(
‖rS,m‖2L2(S) + 2θ2

(∥∥u(1),m
k − u(1)

pk

∥∥2

L2(S)
+
∥∥u(2),m

k − u(2)
pk

)
∥∥2

L2(S)

))

− 2θ
∥∥u(0),m − u(0)

p

∥∥2

V0
− 2θ

∥∥χ(1),m − χ(1)
p

∥∥2

V1
− 2θ

∥∥χ(2),m − χ(2)
p

∥∥2

V2
.

Ввиду ограниченности оператора следа можно заключить, что существует такая

константа C∗ > 0, что имеет место неравенство

2∑

I=1

‖rγI ,m+1‖2L2(γI)
+

2∑

I=1

2∑

k=1

‖rgI ,m+1‖2L2(gI ) +

2∑

k=1

‖rS,m+1‖2L2(S)

≤
2∑

I=1

‖rγI ,m‖2L2(γI)
+

2∑

I=1

2∑

k=1

∥∥rgI ,mk

∥∥2

L2(gI )
+

2∑

k=1

‖rS,m‖2L2(S)
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− 2θ(1− θC∗)
(
∥∥u(0),m − u(0)

p

∥∥2

V0
+

2∑

I=1

∥∥χ(I),m − χ(I)
p

∥∥2

VI

)
.

Пусть θ∗ — такая постоянная, что 0 < θ∗ < 1
C∗ . Тогда для любых θ ∈ (0, θ∗]

будем иметь θ(1 − θC∗) > 0 и из последнего неравенства следует монотонная

сходимость последовательности

2∑

I=1

‖rγI ,m‖2L2(γI ) +

2∑

I=1

2∑

k=1

∥∥rgI ,mk

∥∥2

L2(gI )
+

2∑

k=1

‖rS,m‖2L2(S).

Переходя к пределу, также будем иметь

lim
m→∞

‖Um − Up‖2V = 0.

Теорема доказана.

6. Численная реализация

Рассмотрим примеры численной реализации для поставленной задачи. Фи-

зические постоянные материала упругого тела (матрицы) приняты равными

E = 21 × 103 МПа, ν = 0.16. Параметры, характеризующие физические и гео-

метрические свойства включений Тимошенко, выбраны следующими: Einc =

21 × 104 МПа, h = 0.02 м, ν = 0.16. Построенный алгоритм реализован с ис-

пользованием свободно распространяемого пакета FreeFem++. Для решения

линейных подзадач на каждом итерационном шаге использован метод конеч-

ных элементов. Области �0, �1, �2 разбиты на 11722, 10480 и 10454 треуголь-

ников, количество их вершин — 6022, 5369 и 5356 соответственно. Параметры

алгоритма взяты равными θ = 103, p = 107, ǫ = 10−6. Пространства V1, V2,

V0 аппроксимируются конечно-элементными пространствами, состоящими из

кусочно-гладких функций P1 — элементами Лагранжа. При численной реа-

лизации рассмотрены два случая нагружения — растяжение параллельно γ3,

приводящее к полному раскрытию трещины, а также растяжение правой поло-

вины квадрата при одновременном сжатии левой его части, такой вид нагру-

жения приводит к частичному смыканию берегов трещины. В обоих случаях

правый и левый края области считаются закрепленными.

Пример 1. Полное раскрытие трещины. Пусть на нижней и верхней

границах области заданы поверхностные силы f = (0,−0.01µ) и f = (0, 0.01µ)

соответственно. При данном типе нагружения деформированная конфигурация

области характеризуется полным раскрытием трещины (рис. 3, 4).
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Рис. 3. Деформированная конфигурация Рис. 4. Деформированная конфигурация

области и распределение напряжений кривых � ∪ γ3, пример 1.

Мизеса (МПа), пример 1.

Рис. 5. Горизонтальные перемещения Рис. 6. Вертикальные перемещения

u1 (м), пример 1. u2 (м), пример 1.

Рис. 7. Горизонтальные перемещения u1 Рис. 8. Вертикальные перемещения u2

на интерфейсе �, пример 1. на интерфейсе �, пример 1.
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Рис. 9. Вертикальные перемещения Рис. 10. Перемещения берегов трещины

точек на интерфейсе с тонким жестким включением на

(задача о концевом сопряжении одном из них (задача об изгибе

двух упругих включений [31]). мембраны [17).

Рис. 11. Скачок [u2] вертикальных Рис. 12. Значения σν на �+, пример 1.

перемещений на �, пример 1.

Рис. 13. Деформированная конфигурация Рис. 14. Деформированная конфигурация

области и распределение γ± ∪ γ3, кривых пример 2.

напряжений Мизеса (МПа), пример 2.
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Рис. 15. Горизонтальные перемещения u1 (м), Рис. 16. Вертикальные перемещения u2 (м),

пример 2 пример 2.

Рис. 17. Горизонтальные перемещения u1 Рис. 18. Вертикальные перемещения u2

на интерфейсе �, пример 2. на интерфейсе �, пример 2.

Рис. 19. Скачок [u2] вертикальных Рис. 20. Нормальные напряжения σν

перемещений на �, пример 2. на �+, пример 2.
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Значения функций u1 и u2, рассчитанные в области, представлены на рис. 5, 6,

а вычисленные на берегах �± построены на рис. 7, 8. При вертикальном од-

ноосном нагружении горизонтальные перемещения u1 совпадают почти на всей

кривой � (см. рис. 5, 7), в то время как вертикальные перемещения u2 имеют

скачок на γ (см. рис. 6, 8). Вне трещины перемещения точек �± совпадают,

поскольку выполнены условия их склейки. Также на рис. 7, 8 видно, что в кон-

цевых точках включений формируются угловые точки графиков функций пере-

мещений верхнего берега трещины, не подкрепленного включением, вследствие

наличия на нижнем берегу трещины упругих включений, параметр жесткости

которых в 10 раз превышает соответствующий параметр упругой матрицы. На

рис. 9 приведены графики вертикальных перемещений точек аналогичного ин-

терфейса � для задачи о концевом сопряжении двух упругих включений, распо-

ложенных также на нижнем берегу трещины, одно из которых моделируется в

рамках теории балок Бернулли — Эйлера (точки (−1, 0) на оси абсцисс), а дру-

гое — в рамках теории балки Тимошенко (точки (0, 1) на оси абсцисс). Данная

задача решена в работе [31] в условиях одинаковых параметров жесткости обоих

включений. Видно, что в концевой точке включения Тимошенко также обра-

зуется угловая точка графика функции перемещений. На рис. 10 приведены

результаты численного решения задачи о прогибе мембраны с отслоившимся

тонким жестким включением из статьи [17]. При наличии тонкого жесткого

включения, подкрепляющего один из берегов трещины, также образуются уг-

ловые точки графика перемещений.

Поскольку трещина имеет полное раскрытие, скачок вертикальных пере-

мещений [u2] на γ положителен, а в точках вне трещины равен нулю (рис. 11).

В соответствии с условиями (16) в точках, в которых [u2] > 0, значения σν

равны нулю (рис. 12).

Пример 2. Частичное смыкание берегов трещины. Пусть на ниж-

ней и верхней границах области заданы поверхностные силы f = (0,−0.1µx1)

и f = (0, 0.1µx1) соответственно. Данный тип нагружения соответствует сжа-

тию в левой части квадрата и растяжению — в правой. Наличие вертикального

включения γ3 приводит к тому, что растяжение и сжатие в нижней части дефор-

мированной конфигурации имеет меньшие абсолютные значения, чем в верхней

части (рис. 13). При этом берега трещины на участке −1 < x1 < 0.2 смыкаются,

а на остальной части трещины наблюдается ее раскрытие (рис. 13, 14).

На рис. 15, 16 приведено распределение в области�c значений горизонталь-

ных и вертикальных перемещений. Видно, что скачок перемещений u1 имеет

место по всей длине трещины (также см. рис. 17), а перемещений u2 — толь-

ко в точках раскрытия трещины (рис. 16, 18). Также отсутствует симметрия

в распределении значений перемещений, связанная с наличием вертикального
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Рис. 21. Вертикальные перемещения u2 (м) Рис. 22. Деформированная конфигурация

точек интерфейса (задача области и распределение напряжений

о концевом сопряжении Мизеса, МПа (задача о концевом

двух упругих включений [31]. сопряжении двух упругих включений [31].

включения (рис. 15–18).

На рис. 19, 20 изображены графики скачков вертикальных перемещений и

нормальных напряжений в точках �. В точках, где наблюдается смыкание тре-

щины, а также вне трещины скачки равны нулю, а в точках раскрытия трещины

скачок принимает положительные значения. В точках трещины в соответствии

с условиями (16) произведение [u2]σν равно нулю: при смыкании трещины вы-

полнены условия [u2] = 0 и σ+
ν < 0, а при раскрытии трещины — условия

[u2] > 0 и σ+
ν = 0. Также из рис. 20 видно, что в концевых точках включений

наблюдаются особенности графиков нормальных напряжений, что согласуется

с известными теоретическими результатами в механике [32]. Для сравнения

на рис. 21, 22 приведены график вертикальных перемещений интерфейса и де-

формированная конфигурация области в задаче о концевом сопряжении двух

упругих включений, расположенных на нижнем берегу трещины, в условиях с

аналогичным нагружением [31].
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NUMERICAL SOLUTION OF THE

PROBLEM OF T–SHAPED JUNCTION

OF TWO THIN TIMOSHENKO INCLUSIONS

IN A TWO–DIMENTIONAL ELASTIC BODY

T. S. Popova

Abstract: An algorithm for the numerical solution of the equilibrium problem of a
two-dimensional elastic body containing two thin elastic inclusions is developed. The
inclusions are modeled within the framework of the theory of Timoshenko beams and
intersect at right angle at an internal point of one of them, forming a T-shaped structure
in an elastic body. One of the inclusions delaminates from the elastic matrix, forming a
crack. On the crack faces, as part of the domain boundary, boundary conditions of the
inequality form are specified. The presence of this type of boundary conditions leads to
nonlinearity of the problem and formulation in the form of a variational inequality. To
develop an algorithm for the numerical solution of the problem, an approximate problem
of finding the saddle point of the Lagrangian is formulated. The convergence of solu-
tions of the approximate problem to the solution of the original problem is proven. An
iterative Uzawa-type algorithm is constructed and its convergence is shown. Examples
of numerical implementation are given.

DOI: 10.25587/2411-9326-2024-3-93-120

Keywords: variational inequality, Timoshenko inclusion, thin elastic inclusion, crack,
non-penetration conditions, nonlinear boundary conditions, junction problem, Uzawa
algorithm, finite element method.
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