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Математические заметки СВФУ
Октябрь—декабрь, 2023. Том 30, № 4

УДК 517.955

О ЗАДАЧЕ КОШИ ДЛЯ ОДНОЙ СИСТЕМЫ

ПСЕВДОГИПЕРБОЛИЧЕСКОГО ТИПА

Л. Н. Бондарь, С. Б. Мингнаров

Аннотация. Рассматривается задача Коши для одной системы, не разрешен-
ной относительно старшей производной по времени. Исследуемая система отно-
сится к классу псевдогиперболических. Cистема описывает поперечные изгибно-
крутильные колебания упругого стержня. Доказана однозначная разрешимость
задачи Коши в соболевских пространствах, получены оценки на решение.

DOI: 10.25587/2411-9326-2023-4-3-11

Ключевые слова: система, не разрешенная относительно старшей производной,
псевдогиперболическая система, изгибно-крутильные колебания.

1. Введение

В работе рассматривается следующая система:


I − αD2

x 0 a1

0 I − αD2
x −a2

ca1 −ca2 I − αD2
x


D2

t



u
v
θ




+ β



D4

x 0 0
0 D4

x 0
0 0 D4

x





u
v
θ


 =



f1(t, x)
f2(t, x)
f3(t, x)


 , (1)

где α, β > 0, 0 < c
(
a2
1 + a2

2

)
< 1. Система (1) является не разрешенной отно-

сительно старшей производной по времени и описывает поперечные изгибно-

крутильные колебания упругого стержня (см. [1]).

В монографии [2] была введена классификация уравнений, не разрешенных

относительно старшей производной:

L0(Dx)Dl
tu+

l−1∑

k=0

Ll−k(Dx)Dk
t u = f(t, x),

где L0(Dx), Ll−k(Dx) — линейные дифференциальные операторы. В частно-

сти, был введен класс псевдогиперболических уравнений и исследована задача

Коши для него. Дальнейшие исследования разрешимости задачи Коши для

Работа Бондарь Л. Н. выполнена в рамках государственного задания Института мате-

матики им. С. Л. Соболева СО РАН (проект № FWNF-2022-0008).

c© 2023 Бондарь Л. Н., Мингнаров С. Б.



4 Л. Н. Бондарь, С. Б. Мингнаров

псевдогиперболических уравнений проводились в [3–5] и др. Для псевдогипер-

болических систем общей теории разрешимости задачи Коши нет, есть лишь

единичные результаты для конкретных систем. Рассматриваемая система (1)

относится к классу псевдогиперболических систем (см. [2]).

Сделав замену

x̃ =
x√
α
, t̃ =

c

α
√
β
t, θ̃(t̃, x̃) =

θ(t, x)√
c
, ũ(t̃, x̃) = u(t, x),

ṽ(t̃, x̃) = v(t, x), ε1 =
√
ca1, ε2 =

√
ca2,

f̃1(t̃, x̃) =
α2β

c2
f1(t, x), f̃2(t̃, x̃) =

α2β

c2
f2(t, x), f̃3(t̃, x̃) =

α2β

c
3
2

f3(t, x),

систему (1) перепишем в виде


I −D2

x̃
0 ε1

0 I −D2
x̃

−ε2
ε1 −ε2 I −D2

x̃


D2

t̃



ũ
ṽ
θ̃




+ c2



D4

x̃
0 0

0 D4
x̃

0

0 0 D4
x̃





ũ
ṽ
θ̃


=



f̃1(t̃, x̃)

f̃2(t̃, x̃)

f̃3(t̃, x̃)


 .

Для сокращения записи в системе оставим прежние обозначения, т. е. далее

будем рассматривать следующую систему:


I −D2

x 0 ε1
0 I −D2

x −ε2
ε1 −ε2 I −D2

x


D2

t



u
v
θ




+ c2



D4

x 0 0
0 D4

x 0
0 0 D4

x





u
v
θ


=



f1(t, x)
f2(t, x)
f3(t, x)


 . (2)

Если ε2 = 0, ε1 > 0, то система (2) распадается на псевдогиперболическое

уравнение (
I −D2

x

)
D2

t v + c2D4
xv = f2(t, x) (3)

и псевдогиперболическую систему
{ (

I −D2
x

)
D2

t u+ c2D4
xu+ ε1D

2
t θ = f1(t, x),

(
I −D2

x

)
D2

t θ + c2D4
xθ + ε1D

2
tu = f3(t, x).

(4)

Если в системе (4) сделать замену

ũ = u+ θ, θ̃ = u− θ,

то она распадется на два псевдогиперболических уравнения
(
I −D2

x

)
D2

t ũ+ c2D4
xũ+ ε1D

2
t ũ = g1(t, x),

(
I −D2

x

)
D2

t θ̃ + c2D4
xθ̃ − ε1D2

t θ̃ = g2(t, x).
(5)
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Уравнение вида (3), (5) в литературе называют уравнением Власова [1, 6], а

также уравнением Релея — Бишопа [7–9]. Разрешимость задачи Коши в собо-

левском пространстве для таких уравнений следует из работы [3].

Если же ε1 = ε2 = 0, то система (2) распадается на три псевдогиперболи-

ческих уравнения вида (3).

Далее в системе (2) будем предполагать ε1 6= 0 и ε2 6= 0.

Наша цель — доказательство однозначной разрешимости задачи Коши для

псевдогиперболической системы (2) в соболевских пространствах, получение

оценок на решение.

2. Формулировка результатов

Рассмотрим задачу Коши для псевдогиперболической системы:


I −D2

x 0 ε1
0 I −D2

x −ε2
ε1 −ε2 I −D2

x


D2

tU + c2



D4

x 0 0
0 D4

x 0
0 0 D4

x


U = F (t, x),

t > 0, x ∈ R,
U |t=0 = �(x), DtU |t=0 = �(x),

(6)

где

U(t, x) = (u(t, x), v(t, x), θ(t, x))T , F (t, x) = (f1(t, x), f2(t, x), f3(t, x))T ,

�(x) = (ϕ1(x), ϕ2(x), ϕ3(x))T , �(x) = (ψ1(x), ψ2(x), ψ3(x))T ,

c > 0, 0 < ε21 + ε22 < 1, ε1 6= 0, ε2 6= 0.

Дадим определения анизотропных соболевских пространств (см., напри-

мер, [2]), которые понадобятся при доказательстве разрешимости задачи (6).

Определение 1. Функция u(t, x) ∈ L2(G) принадлежит анизотропному

соболевскому пространству W l1,l2
2 (G), G ⊆ R2, l1, l2 ∈ N , если существуют

обобщенные производные

Dα1

t Dα2

x u(t, x), α1/l1 + α2/l2 ≤ 1,

в области G, при этом Dα1

t Dα2
x u(t, x) ∈ L2(G). Введем норму

∥∥u,W l1,l2
2 (G)

∥∥ =
∑

(α1,α2):α1/l1+α2/l2≤1

∥∥Dα1

t Dα2

x u, L2(G)
∥∥.

Определение 2. Функция u(t, x) принадлежит анизотропному соболев-

скому пространству с экспоненциальным весомW l1,l2
2,γ (G), γ > 0, если e−γtu(t, x)

∈W l1,l2
2 (G). Полагаем

∥∥u(t, x),W l1,l2
2,γ (G)

∥∥ =
∥∥e−γtu(t, x),W l1,l2

2 (G)
∥∥.
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Определение 3. Функция f(t, x) принадлежит анизотропному соболев-

скому пространству W 0,1
2,γ (G), γ > 0, если e−γtf(t, x) ∈ L2(G), существует обоб-

щенная производная Dxf(t, x) в G, при этом e−γtDxf(t, x) ∈ L2(G). Полагаем

∥∥f(t, x),W 0,1
2,γ (R2

+)
∥∥ = ‖e−γtf(t, x), L2(G)‖ + ‖e−γtDxf(t, x), L2(G)‖.

Будем говорить, что V (t, x) = (v1(t, x), v2(t, x), v3(t, x))T принадлежит

W l1,l2
2,γ (G), если vj(t, x) ∈ W l1,l2

2,γ (G), j = 1, 2, 3. Полагаем

∥∥V (t, x),W l1,l2
2,γ (G)

∥∥ =

3∑

j=1

∥∥vj(t, x),W l1,l2
2,γ (G)

∥∥.

В работе доказана следующая

Теорема. Пусть F (t, x) ∈ W 0,1
2,γ (R2

+), �(x) ∈ W 4
2 (R), �(x) ∈ W 3

2 (R). Тогда

задача Коши (6) имеет единственное решение U(t, x) в пространстве вектор-

функций W 2,4
2,γ (R2

+), γ > 0, таких, что D2
tD

2
xU ∈ L2,γ(R2

+), при этом справедлива

оценка

∥∥U(t, x),W 2,4
2,γ (R2

+)
∥∥+

∥∥D2
tD

2
xU(t, x), L2,γ(R2

+)
∥∥

≤ c(γ)
(∥∥�(x),W 4

2 (R)
∥∥+

∥∥�(x),W 3
2 (R)

∥∥+
∥∥F (t, x),W 0,1

2,γ (R2
+)
∥∥), (7)

где c(γ) — константа, зависящая от коэффициентов системы и γ.

3. Разрешимость задачи Коши

Докажем однозначную разрешимость задачи Коши (6) в весовом соболев-

ском пространстве W 2,4
2,γ (R2

+) и получим оценку на решение.

Для построения решения задачи (6) рассмотрим вспомогательную задачу

Коши для системы обыкновенных дифференциальных уравнений с параметром

ξ ∈ R, которая получается при формальном применении оператора Фурье по x

к задаче (6):



1 + ξ2 0 ε1
0 1 + ξ2 −ε2
ε1 −ε2 1 + ξ2


D2

t Û + c2



ξ4 0 0
0 ξ4 0
0 0 ξ4


 Û = F̂ (t, ξ), t > 0, ξ ∈ R,

(8)

Û |t=0 = �̂(ξ), DtÛ |t=0 = �̂(ξ),

где через v̂(t, ξ) будем обозначать преобразование Фурье по x функции v(t, x) ∈
L2(R

2
+).

Поскольку матрица при производной D2
t Û не вырождается, нетрудно по-

лучить формулы решения задачи Коши (8). Представим решение в следующем

виде:

Û(t, ξ) = Û1(t, ξ) + Û2(t, ξ) + Û3(t, ξ), (9)
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где

Û1(t, ξ) = (A cos(a(ξ)t) +B cos(b(ξ)t) +D cos(d(ξ)t))�̂(ξ), (10)

Û2(t, ξ) =

(
A

sin(a(ξ)t)

a(ξ)
+B

sin(b(ξ)t)

b(ξ)
+D

sin(d(ξ)t)

d(ξ)

)
�̂(ξ), (11)

Û3(t, ξ) =

t∫

0

(
A

sin(a(ξ)(t− s))
a(ξ)

+B
sin(b(ξ)(t− s))

b(ξ)
+D

sin(d(ξ)(t − s))
d(ξ)

)
G(s, ξ) ds.

(12)

Здесь

A =




ε22
ε2

ε21
ε2 0

ε1ε2
ε2 1− ε1ε2

ε2 0
0 0 0


 , B =




ε21
2ε2 − ε21

2ε2 − ε1
2ε

− ε1ε2
2ε2

ε1ε2
2ε2

ε2
2ε

− ε1
2ε

ε1
2ε

1
2


 , (13)

D =




ε21
2ε2 − ε21

2ε2
ε1
2ε

− ε1ε2
2ε2

ε1ε2
2ε2 − ε2

2ε
ε1
2ε − ε1

2ε
1
2


 , ε =

√
ε21 + ε22, (14)

a(ξ) =
cξ2√
k(ξ)

, b(ξ) =
cξ2√
k(ξ)− ε

, d(ξ) =
cξ2√
k(ξ) + ε

, k(ξ) = 1 + ξ2,

G(t, ξ) =




(k2(ξ)−ε22)f̂1(t,ξ)−ε1ε2f̂2(t,ξ)−ε1k(ξ)f̂3(t,ξ)
k(ξ)((k(ξ))2−ε2)

−ε1ε2f̂1(t,ξ)+(k2(ξ)−ε21)f̂
2(t,ξ)+ε2k(ξ)f̂3(t,ξ)

k(ξ)((k(ξ))2−ε2)

−ε1f̂1(t,ξ)+ε2f̂2(t,ξ)+k(ξ)f̂3(t,ξ)
(k(ξ))2−ε2


 . (15)

Учитывая (10), (13), (14), равенство Парсеваля, оценку

|a(ξ)|+ |b(ξ)|+ |d(ξ)| ≤ c1|ξ|, (16)

имеем
∑

β1
2

+
β2
4
<1

∥∥(iξ)β2Dβ1

t Û1(t, ξ), L2,γ(R2
+)
∥∥

≤ c2√
γ

∑

β1
2

+
β2
4
<1

3∑

j=1

‖|ξ|β1+β2 ϕ̂j(ξ), L2(R)‖ ≤ c3√
γ

∥∥�(x),W 3
2 (R)

∥∥. (17)

Учитывая оценку (16), будем иметь
∣∣∣∣
sin(g(ξ)t)

g(ξ)

∣∣∣∣ ≤
c4
|ξ| , |ξ| ≥ 1, g(ξ) = a(ξ), b(ξ), d(ξ), (18)

а из представления

sin(g(ξ)t) = g(ξ)t

1∫

0

cos(sg(ξ)t) ds, g(ξ) = a(ξ), b(ξ), d(ξ),

следует, что
∣∣∣∣
sin(g(ξ)t)

g(ξ)

∣∣∣∣ ≤ t, |ξ| < 1, g(ξ) = a(ξ), b(ξ), d(ξ). (19)
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Оценки (18), (19) перепишем в одно неравенство:
∣∣∣∣
sin(g(ξ)t)

g(ξ)

∣∣∣∣ ≤
c3(t+ 1)

1 + |ξ| , ξ ∈ R, g(ξ) = a(ξ), b(ξ), d(ξ). (20)

В силу равенства Парсеваля, учитывая (11), (13), (14), (16), (20), получим

∑

β1
2

+
β2
4
<1

∥∥(iξ)β2Dβ1

t Û2(t, ξ), L2,γ(R2
+)
∥∥

≤ c4(γ)

(
3∑

j=1

‖ψ̂j(ξ), L2(R)‖+
∑

0<
β1
2

+
β2
4
<1

3∑

j=1

‖|ξ|β1+β2−1ψ̂j(ξ), L2(R)‖
)

≤ c5(γ)
∥∥�(x),W 2

2 (R)
∥∥. (21)

Рассуждая аналогично, получим

2∑

j=1

(∥∥D2
t Ûj(t, ξ), L2,γ(R2

+)
∥∥+

∥∥D2
t |ξ|2Ûj(t, ξ), L2,γ(R2

+)
∥∥

+ ‖|ξ|4Ûj(t, ξ), L2,γ(R2
+)‖
)
≤ c6(γ)

(∥∥�(x),W 4
2 (R2

+)
∥∥+

∥∥�(x),W 3
2 (R2

+)
∥∥), (22)

где константа c(γ) > 0 зависит от γ и не зависит от U1, U2.

Проведем оценку третьего слагаемого из (9).

Учитывая (12), функцию Хевисайда θ(t), неравенство Юнга, получим

∑

β≤4

‖|ξ|βÛ3(t, ξ), L2,γ(R2
+)‖ =

∥∥∥∥∥∥
|ξ|β

+∞∫

−∞

θ(t− s)e−γ(t−s)

(
A

sin(a(ξ)(t − s))
a(ξ)

+B
sin(b(ξ)(t− s))

b(ξ)
+D

sin(d(ξ)(t − s))
d(ξ)

)
G(s, ξ)θ(s)e−γsds, L2(R

2)

∥∥∥∥∥∥

≤

∥∥∥∥∥∥
|ξ|β

∞∫

−∞

θ(t)e−γt

∣∣∣∣A
sin(a(ξ)t)

a(ξ)
+B

sin(b(ξ)t)

b(ξ)
+D

sin(d(ξ)t)

d(ξ)

∣∣∣∣ dt

× ‖G(t, ξ)θ(t)e−γt, L2(R)‖, L2(R)

∥∥∥∥∥∥
.

Из явного вида вектор-функции G(t, ξ) из (15) получаем оценку

‖G(t, ξ)‖ ≤ c7
1 + ξ2

(
3∑

j=1

|f̂ j(t, ξ)|
)
, ξ ∈ R. (23)

Пользуясь (13), (14), (20), (23), будем иметь

∑

β≤4

‖|ξ|βÛ3(t, ξ), L2,γ(R2
+)‖ ≤ c8(γ)

∥∥F (t, x),W 0,1
2,γ (R2

+)
∥∥. (24)
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Учитывая (12), представим D2
t Û3(t, ξ) в виде

D2
t Û3(t, ξ) = G(t, ξ) +

t∫

0

(Aa(ξ) sin(a(ξ)(s − t))

+Bb(ξ) sin(b(ξ)(s− t)) +Dd(ξ) sin(d(ξ)(s− t)))G(s, ξ) ds.

Следуя схеме, использованной при получении оценки (24), будем иметь

∥∥D2
t Û3(t, ξ), L2,γ(R2

+)
∥∥+

∥∥|ξ|2D2
t Û3(t, ξ), L2,γ(R2

+)
∥∥ ≤ c9(γ)

∥∥F (t, x),W 0,1
2,γ (R2

+)
∥∥,

(25)

где константа c9(γ) > 0 зависит от γ > 0.

Учитывая представление (9) решения задачи Коши (8), из неравенств (17),

(21), (22), (24), (25) и критерия о принадлежности соболевским пространствам

W l
2(R

n) получаем, что обратное преобразование Фурье по ξ вектор-функции

U(t, x) = F−1[Û ](t, x)

принадлежит W 2,4
2,γ (R2

+), является решением задачи Коши (6). Из указанных

неравенств вытекает также оценка (7).

Доказательство единственности повторяет рассуждения из [2]. Теорема до-

казана.

Заключение

В работе доказана разрешимость задачи Коши в соболевском простран-

стве для одной псевдогиперболической системы (1), моделирующей изгибно-

крутильные колебания тонкого упругого стержня, получены L2-оценки на ре-

шение.

Благодарность. Авторы выражают благодарность Г. В. Демиденко за

постановку задачи и внимание к работе.
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Введение

Нелокальные задачи для параболических уравнений с условием А. А. Са-

марского в интегральной [1] или дифференциальной [1, 2] формах активно изу-

чаются с 1977 г. (см., например, [3–7]). Значительно меньшее число работ

посвящено исследованию разрешимости подобных задач для квазипараболиче-

ских уравнений, т. е. уравнений вида

D2p+1
t u+Au = f(x, t), (∗)

в которых Dk
t = ∂k

∂tk
, p — натуральное число, A — эллиптический оператор

второго порядка, действующий по пространственным переменным. Как наи-

более близкую по тематике к настоящей работе отметим статью [8], в которой

изучались нелокальные задачи для квазипараболических уравнений вида (∗) с

краевым условием А. А. Самарского (точнее говоря, с обобщенным условием

Самарского — Ионкина [1, 2]) по пространственной переменной.

Более точно, в настоящей работе изучаются задачи для уравнений (∗) в

случае p = 1 при задании обобщенных условий Самарского — Ионкина с ин-

тегральным возмущением. Целью работы будет доказательство существования

Работа выполнена в рамках госзадания Института математики им. С. Л. Соболева СО
РАН (проект FWNF–2022–0008).

c© 2023 Кожанов А. И., Хромченко Д. С.
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и единственности регулярных решений изучаемых задач — решений, имеющих

все обобщенные по С. Л. Соболеву производные, входящие в соответствующее

уравнение.

Функциональной основой для всех рассуждений и выкладок, представлен-

ных ниже, будут пространства Лебега Lp и Соболева W l
p. Определение и опи-

сание свойств функций из этих пространств имеются в монографиях [9–11].

В работе изучаются модельные уравнения (∗). О более общих уравнениях,

в частности, уравнениях со всеми младшими производными по переменным x и

t, будет сказано в конце статьи.

1. Постановка задач

Пусть b(x, t), c(x, t), f(x, t), α1(t), α2(t), β1(t), N1(x), N2(x) и R1(x) — задан-

ные функции, определенные при x ∈ [0, 1], t ∈ [0, T ], L — дифференциальный

оператор, действие которого на заданную функцию v(x, t) определяется равен-

ством

Lv = vttt + vxx + b(x, t)vx + c(x, t)v.

Нелокальная задача I. Найти функцию u(x, t), являющуюся в прямо-

угольнике Q = {(x, t) : x ∈ (0, 1), t ∈ (0, T )} решением уравнения

Lu = f(x, t) (1)

и такую, что для нее выполняются условия

u(x, 0) = ut(x, 0) = u(x, T ) = 0, x ∈ (0, 1), (2)

u(0, t) = α1(t)u(1, t) +

1∫

0

N1(x)u(x, t) dx, t ∈ (0, T ), (3)

ux(1, t) + β1(t)u(1, t) =

1∫

0

N2(x)u(x, t) dx, t ∈ (0, T ). (4)

Нелокальная задача II. Найти функцию u(x, t), являющуюся в прямо-

угольникеQ решением уравнения (1) и такую, что для нее выполняются условие

(2), а также условия

ux(0, t) = α2(t)ux(1, t) +

1∫

0

R1(x)u(x, t) dx, t ∈ (0, T ), (5)

u(1, t) = 0, t ∈ (0, T ). (6)

Нелокальные задачи I и II в случаях N1(x) ≡ 0, N2(x) ≡ 0, β1(t) ≡ 0

и R1(x) ≡ 0 соответственно являются нелокальными задачами с обобщенным

условием Самарского — Ионкина; в случае b(x, t) ≡ 0, α1(t) ≡ const, α2(t) ≡
const эти задачи изучены в работе [3]. Наличие в условиях (3)–(6) дополни-

тельных слагаемых, представляющих интегралы от решения с ядрами N1(x),
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N2(x), R1(x), отражает тот факт, что изучаемые задачи являются задачами с

интегрально-возмущенными обобщенными условиями Самарского — Ионкина.

Ранее такие задачи для квазипараболических уравнений (1) не были исследо-

ваны.

2. Разрешимость нелокальной задачи I

Доказательство разрешимости нелокальной задачи I будет проведено с по-

мощью метода регуляризации и метода продолжения по параметру. Поскольку

для применения метода регуляризации и для применения метода продолжения

по параметру нужны будут априорные оценки, установим вначале их наличие.

При получении оценок будем предполагать, что решение u(x, t) имеет все

производные, которые требуются при проведении тех или иных выкладок. Необ-

ходимые обоснования будут приведены ниже.

Введем обозначения:

Nj0 =




1∫

0

x−1N2
j (x) dx




1/2

, j = 1, 2,

α10 = max
[0,T ]
|α1(t)|, γ1 = min

[0,T ]

[
1− α2

1(t) + 2β1(t)− b(1, t)
]
−N10,

γ2 = min
Q

[
1

2x
(xb(x, t))x − c(x, t)

]
.

Определим квадратичную форму

F (ξ, η) = γ1ξ
2 − 2(α10N10 +N20)ξη + γ2η

2.

Лемма 1. Пусть выполняются следующие условия:

b(x, t) ∈ C(Q), bx(x, t) ∈ C(Q),
1

x
b(x, t) ∈ C(Q), c(x, t) ∈ C(Q);

α1(t) ∈ C([0, T ]), β1(t) ∈ C([0, T ]);

x−1/2Nj(x) ∈ L2([0, T ]), j = 1, 2;

F (ξ, η) ≥ γ0ξ
2, γ0 > 0, (ξ, η) ∈ R2.

Тогда для решений u(x, t) нелокальной задачи I из пространства W 2,3
2 (Q) вы-

полняется оценка
1∫

0

xu2
t (x, T ) dx+

∫

Q

(
xu2

x + xu2
)
dxdt ≤M1

∫

Q

xf2 dxdt (7)

с постоянной M1, определяющейся лишь функциями b(x, t), c(x, t), α1(t), β1(t),

N1(x) и N2(x).

Доказательство. Умножим уравнение (1) на функцию −xu(x, t) и про-

интегрируем по прямоугольнику Q. После несложных преобразований с ис-

пользованием формулы интегрирования по частям получим равенство

1

2

1∫

0

xu2
t (x, T ) dx+

∫

Q

xu2
x dxdt +

1

2

T∫

0

[
1− α2

1(t)− b(1, t) + 2β1(t)
]
u2(1, t) dt
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+

∫

Q

x

[
1

2x
(xb(x, t))x − c(x, t)

]
u2(x, t) dxdt =

∫

Q

xfu(x, t) dxdt

+
1

2

T∫

0




1∫

0

N1(x)u(x, t) dx




2

dt+

T∫

0

α1(t)u(1, t)




1∫

0

N1(x)u(x, t) dx


 dt

+

T∫

0

u(1, t)




1∫

0

N2(x)u(x, t) dx


 dt. (8)

Оценивая каждое слагаемое правой части (8) с помощью неравенства Гёльдера

и учитывая условия леммы, нетрудно получить требуемую оценку (7). Лемма

доказана.

Теорема 1. Пусть выполняются все условия леммы 1. Тогда нелокальная

задача I не может иметь в пространстве W 2,3
2 (Q) более одного решения.

Доказательство. Пусть в уравнении (1) f(x, t) есть тождественно нуле-

вая в Q функция. Вследствие оценки (7) будут выполняться равенства
∫

Q

xu2
x(x, t) dxdt = 0,

∫

Q

xu2(x, t) dxdt = 0. (9)

Далее, имеет место неравенство

u2(1, t) ≤ δ2
1∫

0

xu2
x(x, t) dx+

(
2 +

1

δ2

) 1∫

0

xu2(x, t) dx, (10)

в котором δ — произвольное положительное число (см. [8, 12]). Из этого нера-

венства, равенств (9) и условий (3) и (4) следует, что для функции u(x, t) вы-

полняются условия u(0, t) = 0, ux(1, t) = 0, t ∈ (0, T ). Но тогда функция u(x, t)

представляет собой решение однородной корректной краевой задачи для диф-

ференциального уравнения (1). Очевидно, что это решение может быть только

нулевой в Q функцией. А это и означает, что нелокальная задача I не может

иметь в пространстве W 2,3
2 (Q) более одного решения. Теорема доказана.

Лемма 2. Пусть выполняются условия леммы 1, и дополнительно пусть

для функций c(x, t), α1(t) и β1(t) выполняются включения

∂kb(x, t)

∂tk
∈ C(Q),

∂k+1b(x, t)

∂x∂tk
∈ C(Q),

∂kc(x, t)

∂tk
∈ C(Q), k = 1, 2, 3,

α1(t) ∈ C3([0, T ]), β1(t) ∈ C3([0, T ]).

Тогда для любой функции f(x, t) такой, что

∂kf(x, t)

∂tk
∈ L2(Q), k = 0, 1, 2, 3,

f(x, 0) = ft(x, 0) = f(x, T ) = 0, x ∈ [0, 1],
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и для любого решения u(x, t) нелокальной задачи I такого, что u(x, t) ∈ W 2,3
2 (Q),

uttt(x, t) ∈ W 2,3
2 (Q) выполняется оценка

1∫

0

xu2
tttt(x, T ) dx+

∫

Q

(
xu2

xttt + xu2
ttt

)
dxdt ≤M2

∫

Q

(
xf2 + xf2

ttt

)
dxdt (11)

с постоянной M2, определяющейся лишь функциями b(x, t), c(x, t), α1(t), β1(t),

N1(x) и N2(x).

Доказательство. Условия леммы позволяют перейти от уравнения (1)

к продифференцированному трижды по переменной t уравнению, при этом от

условий (3) и (4) также можно перейти к трижды продифференцированным

по переменной t условиям. Вследствие указанных выше условий на функции

f(x, t) для функции v(x, t) = uttt(x, t) будут выполняться условия (2). Повторяя

доказательство леммы 1 для функции v(x, t) и используя оценку (7) и условия

леммы, нетрудно получить требуемую оценку (11).

Лемма доказана.

Лемма 3. Пусть выполняются все условия леммы 2. Тогда для решений

u(x, t) нелокальной задачи I таких, что u(x, t) ∈ W 2,3
2 (Q), uttt(x, t) ∈ W 2,3

2 (Q),

справедлива оценка

T∫

0

[
u2
ttt(0, t) + u2

ttt(1, t)
]
dt ≤M3

∫

Q

(
f2 + f2

ttt

)
dxdt (12)

с постоянной M3, определяющейся лишь функциями b(x, t), c(x, t), α1(t), β1(t),

N1(x) и N2(x).

Доказательство. Указанная в формулировке леммы принадлежность

функций u(x, t), uttt(x, t) пространству W 2,3
2 (Q) означает, что от условия (3)

можно перейти к продифференцированному трижды по переменной t условию

uttt(0, t) = α1(t)uttt(1, t) + 3α′1(t)utt(1, t) + 3α′′1(t)ut(1, t) + α′′′1 (t)u(1, t)

+

1∫

0

N1(x)uttt(x, t) dx. (13)

Вследствие оценки (9) и неравенства (10) правая часть в (13) принадлежит

пространству L2([0, T ]). Но тогда и функция uttt(0, t) будет принадлежать про-

странству L2([0, T ]). Вместе с неравенством (10) это и означает требуемое.

Лемма доказана.

Лемма 4. Пусть выполняются все условия леммы 2. Тогда для решений

u(x, t) нелокальной задачи I таких, что u(x, t) ∈ W 2,3
2 (Q), uttt(x, t) ∈ W 2,3

2 (Q),

справедлива оценка

∫

Q

(
u2 + u2

xx

)
dxdt+

1∫

0

u2
xt(x, T ) dx ≤M4

∫

Q

(
f2 + f2

ttt

)
dxdt, (14)
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постоянная M4 в которой определяется лишь функциями b(x, t), c(x, t), α1(t),

β1(t), N1(x) и N2(x).

Доказательство. Прежде всего заметим, что из равенства

∫

Q

u2 dxdt =

T∫

0

u2(1, t) dt− 2

∫

Q

xuux dxdt

и оценок (7), (10) следует оценка
∫

Q

u2 dxdt ≤M5

∫

Q

(
f2 + f2

ttt

)
dxdt (15)

с постоянной M5, определяющейся лишь функциями b(x, t), c(x, t), α1(t), β1(t),

N1(x) и N2(x).

Умножим уравнение (1) на функцию uxx(x, t) и проинтегрируем по прямо-

угольнику Q. После несложных выкладок получим равенство

∫

Q

u2
xx dxdt+

1

2

1∫

0

u2
xt(x, T ) dx =

T∫

0

ux(0, t)uttt(0, t) dt−
T∫

0

ux(1, t)uttt(1, t) dt

−
∫

Q

buxuxx dxdt−
∫

Q

cuuxx dxdt+

∫

Q

fuxx dxdt. (16)

Оценивая слагаемые в правой части (16) с помощью неравенства Юнга, оценок

(12) и (15), а также неравенств

T∫

0

[u2
x(0, t) + u2

x(1, t)] dt ≤ δ
∫

Q

u2
xx dxdt+ C(δ)

∫

Q

u2 dxdt,

∫

Q

u2
x dxdt ≤ δ

∫

Q

u2
xx dxdt + C(δ)

∫

Q

u2 dxdt

(δ > 0 — произвольное число), нетрудно получить требуемую оценку (14).

Лемма доказана.

Полученных оценок достаточно для доказательства разрешимости нело-

кальной задачи I.

Теорема 2. Пусть выполняются все условия леммы 2. Тогда для любой

функции f(x, t) такой, что

∂kf(x, t)

∂tk
∈ L2(Q),

∂k+1f(x, t)

∂x∂tk
∈ L2(Q), f(x, 0) = ft(x, 0) = f(x, T ) = 0,

k = 1, 2, 3, x ∈ [0, 1], нелокальная задача I имеет решение u(x, t), принадлежа-

щее пространству W 2,3
2 (Q).

Доказательство. Воспользуемся методом регуляризации и методом про-

должения по параметру.



18 А. И. Кожанов, Д. С. Хромченко

Пусть ε— положительное число. Рассмотрим краевую задачу: найти функ-

цию u(x, t), являющуюся в прямоугольнике Q решением уравнения

Lu− εuxxtttttt = f(x, t) (17)

и такую, что для выполняются условия (2)–(4), а также условия

uttt(x, 0) = uttt(x, T ) = utttt(x, T ) = 0, x ∈ (0, 1). (18)

Заметим, что для регулярных решений u(x, t) краевой задачи (17), (2)–(4), (18)

при фиксированном ε справедливы оценки лемм 1–4, но с постоянными, опре-

деляющимися функциями b(x, t), c(x, t), α1(t), β1(t), N1(x) и N2(x), а также

числом ε и нормой функции f(x, t) в пространстве L2(Q). Кроме того, для

функции u(x, t) будет выполняться еще одна оценка
∫

Q

(
u2
ttt + u2

xx + u2
xxtttttt

)
dxdt ≤M6

∫

Q

f2 dxdt,

постоянная M6 в которой определяется функциями b(x, t), c(x, t), α1(t), β1(t),

N1(x) и N2(x), а также числом ε.

Для доказательства названных оценок достаточно проанализировать по-

следовательно равенства
∫

Q

x(Lu− εuxxtttttt)u dxdt =

∫

Q

xfu dxdt, (19)

∫

Q

x(Lu− εuxxtttttt)utttttt dxdt =

∫

Q

xfutttttt dxdt, (20)

∫

Q

x(Lu − εuxxtttttt)uxx dxdt =

∫

Q

xfuxx dxdt, (21)

∫

Q

x(Lu− εuxxtttttt)uxxtttttt dxdt =

∫

Q

xfuxxtttttt dxdt, (22)

при этом в правой части этих равенств использовать лишь неравенство Юнга.

Из вышеназванных оценок следует, что краевая задача (17), (2)–(4), (18)

при фиксированном ε имеет регулярное решение. Доказательство этого факта

следует из установленных выше оценок и теоремы о методе продолжения по

параметру [13, гл. III, § 14], если применить эту теорему к уравнению

uttt − εuxxtttttt + λ[uxx + bux + cu] = f

с условиями (2), а также с условиями

u(0, t) = λ


α1(t)u(1, t) +

1∫

0

N1(x)u(x, t) dx


 , t ∈ [0, T ],
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ux(1, t) = λ




1∫

0

N2(x)u(x, t) dx − β1(t)u(1, t)


 , t ∈ [0, T ]

(λ — число из отрезка [0, 1]).

Дальнейшие рассуждения основаны на априорных оценках, равномерных

по ε. Требуемые оценки легко выводятся с помощью тех же равенств (19)–(22),

но при этом в интегралах с функцией f(x, t) необходимо выполнить интегриро-

вание по частям (в целом можно сказать, что требуемые оценки доказываются

так же, как доказывались оценки лемм 1–4). Помимо оценок (10)–(12), (14) в

результате получим, что для решений u(x, t) краевой задачи (17), (2)–(4), (18)

выполняется оценка

ε

∫

Q

u2
xxtttttt dxdt ≤M7

∫

Q

(
f2 + f2

ttt + f2
xttt

)
dxdt (23)

с постоянной M7, определяющейся лишь функциями b(x, t), c(x, t), α1(t), β1(t),

N1(x) и N2(x).

Оценок (10)–(12), (14), (23) достаточно для организации процедуры пре-

дельного перехода. Действительно, выберем последовательность {εm}∞m=1 та-

кую, что εm > 0, εm → 0 при m → ∞. Числам εm соответствуют реше-

ния um(x, t) краевой задачи (17), (2)–(4), (18) с ε = εm. Из оценок (10)–(12),

(14), (23) и свойства рефлексивности гильбертова пространства следует, что су-

ществует подпоследовательность {umk
(x, t)}∞k=1, сходящаяся к решению u(x, t)

нелокальной задачи I.

Принадлежность предельной функции u(x, t) пространству W 2,3
2 (Q) выте-

кает из свойств слабого предела.

Теорема доказана.

3. Разрешимость нелокальной задачи II

Следуя [14], преобразуем нелокальную задачу II к нелокальной задаче I.

Положим v(x, t) = ux(x, t) и дополнительно потребуем, чтобы при t ∈ (0, T )

выполнялось равенство u(1, t) = 0. Для функции v(x, t) выполняются уравнение

vttt + vxx + b(x, t)vx + [c(x, t) + bx(x, t)]v − cx(x, t)
1∫

x

v(y, t) dy = fx(x, t), (24)

а также условия (2) и условия

v(0, t) = α2(t)v(1, t)−
1∫

0

R2(x)




1∫

x

v(y, t) dy


 dx, t ∈ (0, T ), (25)

vx(1, t) + b(1, t)v(1, t) = f(1, t). (26)

Пусть выполняются условия

f(1, t) = 0, t ∈ (0, T ).
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Тогда задача (24), (2), (25), (26) лишь незначительно будет отличаться от за-

дачи I. Используя технику доказательства теорем 1 и 2, нетрудно получить ре-

зультаты о единственности и существовании решения как задачи (24), (2), (25),

(26), так и задачи II. Не повторяя все выкладки, приведем лишь окончательный

результат.

Определим пространство

V0 =
{
v(x, t) : v(x, t) ∈ W 2,3

2 (Q), vx(x, t) ∈ W 2,3
2 (Q)

}
.

Обозначим c1(x, t) = c(x, t) + bx(x, t), α20 = max
[0,T ]
|α2(t)|.

Теорема 3. Пусть выполняются условия

b(x, t) ∈ C(Q), bx(x, t) ∈ C(Q), c(x, t) ∈ C(Q), cx(x, t) ∈ C(Q),

cxx(x, t) ∈ C(Q), α2(t) ∈ C([0, T ]),

(xb(x, t))x − 2xc1(x, t) − 2x‖R1‖L2([0,1]) > 0, (xcx(x, t))x ≤ 0, (x, t) ∈ Q;

1 + b(1, t)− 2α20 ≥ 0, t ∈ [0, T ].

Тогда нелокальная задача I не может иметь в пространстве V0 более одного

решения.

Доказательство этой теоремы проводится с помощью анализа равенства,

получаемого с помощью умножения уравнения (24) на функцию −xv(x, t) и

интегрирования по прямоугольнику Q.

Теорема 4. Пусть выполняются все условия теоремы 3, и пусть дополни-

тельно выполняются условия

∂kb(x, t)

∂tk
∈ C(Q),

∂k+1b(x, t)

∂x∂tk
∈ C(Q);

∂kc(x, t)

∂tk
∈ C(Q),

∂k+1c(x, t)

∂x∂tk
∈ C(Q);

∂k+2c(x, t)

∂x2∂tk
∈ C(Q), k = 1, 2, 3.

Тогда для любой функции f(x, t) такой, что

∂kf(x, t)

∂tk
∈ L2(Q),

∂k+1f(x, t)

∂x∂tk
∈ L2(Q),

f(x, 0) = ft(x, 0) = f(x, T ) = 0 при x ∈ [0, 1], f(1, t) = 0 при t ∈ [0, T ],

нелокальная задача II имеет решение u(x, t), принадлежащее пространству V0.

Доказательство. Краевая задача (24), (2), (25), (26) имеет решение v(x, t),

принадлежащее пространству W 2,3
2 (Q). Доказывается это так же, как доказы-

валась теорема 2, т. е. с помощью метода регуляризации, метода продолжения

по параметру и априорных оценок. Определим функцию u(x, t) как решение

задачи

ux(x, t) = v(x, t), u(1, t) = 0.

Эта функция и будет требуемым решением нелокальной задачи II.

Теорема доказана.
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ЛЕВОИНВАРИАНТНЫЕ МЕТРИКИ

НЕКОТОРЫХ ТРЕХМЕРНЫХ ГРУПП ЛИ

В. А. Кыров

Аннотация. Г. Г. Михайличенко была построена полная классификация двумер-
ных геометрий максимальной подвижности, которая содержит кроме хорошо из-
вестных геометрий еще и три геометрии гельмгольцева типа (собственно гельмголь-
цева, псевдогельмгольцева и дуальногельмгольцева). Каждая из этих геометрий
задается функцией пары точек (аналог евклидова расстояния) и является геомет-
рией локальной максимальной подвижности, т. е. допускает трехпараметрическую
группу движений. Группам движений этих геометрий однозначно сопоставляются

неунимодулярные матричные трехмерные группы Ли, изучению которых и посвя-
щена данная статья.

В этой работе построены левоинвариантные метрики изучаемых матричных
групп Ли, найдены связности Леви-Чивиты, а также найдена кривизна на этих
группах Ли. Исследованы геодезические на таких группах Ли.

DOI: 10.25587/2411-9326-2023-4-24-36

Ключевые слова: геометрии локальной максимальной подвижности, левоинва-
риантные римановы метрики, кривизна, геодезическая.

Введение

В данной работе интерес представляют следующие геометрии из списка

Г. Г. Михайличенко двумерных феноменологически симметричных геометрий

(двумерных геометрий локальной максимальной подвижности) [1, с. 54]:

псевдогельмгольцева геометрия:

f(1, 2) =
(y1 − y2)α
(x1 − x2)β

; (1)

собственно гельмгольцева геометрия:

f(1, 2) = [(x1 − x2)
2 + (y1 − y2)2]e2γ arctg

y1−y2
x1−x2 ; (2)

дуальногельмгольцева геометрия:

f(1, 2) = (x1 − x2)e
y1−y2
x1−x2 , (3)

причем α 6= 0, β 6= 0, α 6= ±β, γ 6= 0, f — функция пары точек (аналог евклидова

расстояния) плоскости R2, 1 = (x1, y1) и 2 = (x2, y2) — точки этой плоскости.

Группы движений этих геометрий, т. е. преобразований плоскости R2,

сохраняющих функции пары точек (1)–(3), являются подгруппами аффинной

c© 2023 Кыров В. А.
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группы плоскости и задаются соответственно следующими уравнениями [2, с. 41;

3, 4]:

x′ = eαax+ b, y′ = eβay + c; (4)

x′ = xe−γa cos a− ye−γa sin a+ b, y′ = xe−γa sina+ ye−γa cos a+ c; (5)

x′ = eax+ b, y′ = −aeax+ eay + c, (6)

причем a, b, c — параметры групп движений.

1. Матричные группы Ли и их алгебры Ли

Группам движений (4)–(6) можно однозначно поставить в соответствие

неунимодулярные матричные группы Ли:

G1 :



eαz 0 x
0 eβz y
0 0 1


 ; (7)

G2 :



e−γz cos z −e−γz sin z x
e−γz sin z e−γz cos z y

0 0 1


 ; (8)

G3 :




ez 0 x
−zez ez y

0 0 1


 , (9)

где (x, y, z) — точка группы Ли, α, β, γ — постоянные, о которых говорится во

введении. Как известно автору, данные группы Ли ранее не изучались, хотя

если в (7) допустить α = −1, β = 1, то эта группа будет совпадать с хорошо

изученной группой Sol [5–7].

Алгебры Ли групп Ли из списка (7)–(9) вычисляются просто. Приведем их

образующие, которые обозначим через e1, e2 и e3 соответственно:

алгебра Ли AG1:


0 0 1
0 0 0
0 0 0


 ,




0 0 0
0 0 1
0 0 0


 ,



α 0 0
0 β 0
0 0 0


 ;

алгебра Ли AG2:


0 0 1
0 0 0
0 0 0


 ,




0 0 0
0 0 1
0 0 0


 ,



−γ −1 0
1 −γ 0
0 0 0


 ;

алгебра Ли AG3:


0 0 1
0 0 0
0 0 0


 ,




0 0 0
0 0 1
0 0 0


 ,




1 0 0
−1 1 0
0 0 0


 .

Первое коммутационное соотношение для всех трех алгебр Ли одинаковое:

[e1, e2] = 0, а остальные различные:

AG1: [e2, e3] = −βe2, [e3, e1] = αe1;
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AG2: [e2, e3] = e1 + γe2, [e3, e1] = e2 − γe1;
AG3: [e2, e3] = −e2, [e3, e1] = e1 − e2.

Нетрудно доказать неизоморфность и разрешимость этих алгебр Ли [8, с. 183].

Каждая из этих трех алгебр Ли является полупрямой суммой двумерного абе-

лева радикала с образующими e1, e2 и одномерной подалгебры с образующей

e3 [8, с. 184]. Алгебры Ли AG1–AG3 изоморфны алгебрам Ли из классифика-

ции Бианки трехмерных вещественных алгебр Ли [9, с. 197]. Так, алгебра AG1

изоморфна алгебре V Ia, 0 < |a| < 1, для чего надо перейти к новому базису

e1 = (f2 + f3)/2, e2 = (f2 − f3)/2, e3 = αf1/(a − 1) при α и β разного знака и

к базису e2 = (f2 + f3)/2, e1 = (f2 − f3)/2, e3 = αf1/(a − 1) при α и β одного

знака; алгебра AG2 изоморфна алгебре V IIa, a > 0, что вытекает при переходе

к новому базису e1 = f3, e2 = f2, e3 = −f1, и ввести обозначение γ = a; алгебра

AG3 изоморфна алгебре IV , в чем легко убедиться, перейдя к базису e1 = −f2,
e2 = f3, e3 = f1.

Метрика 〈ξ, η〉 на группе Ли G называется левоинвариантной [5; 9, с. 181],

если она инвариантна относительно левых сдвигов: Lg : G −→ G, h → gh,

h ∈ G, т. е.

〈ξ, η〉 = 〈L∗gξ, L∗gη〉, ξ, η ∈ ThG, g, h ∈ G.
Отметим, что изучение трехмерных групп Ли актуально в современной

геометрии. Так, в частности, исследуются различные связности, кривизны и

уравнения Эйнштейна на трехмерных группах Ли [10].

2. Вычисление левоинвариантных метрик

Процедура вычисления левоинвариантных метрик хорошо известна (см.,

например, [5]).

1. Левоинвариантная метрика группы Ли G1. Произвольный элемент

и обратный к нему элемент:

g =



eαz 0 x
0 eβz y
0 0 1


 , g−1 =



e−αz 0 −xe−αz

0 e−βz −ye−βz

0 0 1


 .

Касательный вектор к группе G1 в единице:

� =



αZ 0 X
0 βZ Y
0 0 0


 , � =

(
αZ 0
0 βZ

)
.

Тогда

L∗g� = g−1� =



αZe−αz 0 Xe−αz

0 βZe−βz Y e−βz

0 0 0


 .

Скалярное произведение в единице группы Ли G1:

〈�,�〉 = pX2 + qY 2 +
r

αβ
det� = pX2 + qY 2 + rZ2.
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Легко получить, что

〈g−1�, g−1�〉 = pe−2αzX2 + qe−2βzY 2 + re−(α+β)zZ2.

Левоинвариантная метрика для группы Ли G1 принимает вид

ds2 = pe−2αz dx2 + qe−2βz dy2 + re−(α+β)z dz2.

2. Левоинвариантная метрика группы Ли G2. Произвольный элемент

и обратный к нему элемент:

g =



e−γz cos z −e−γz sin z x
e−γz sin z e−γz cos z y

0 0 1


 ,

g−1 =




eγz cos z eγz sin z −eγz(x cos z + y sin z)
−eγz sin z eγz cos z eγz(x sin z − y cos z)

0 0 1


 .

Касательный вектор к группе G2 в единице:

� =



−γZ −Z X
Z −γZ Y
0 0 0


 , � =

(
−γZ −Z
Z −γZ

)
.

Скалярное произведение в единице группы Ли G2:

〈�,�〉 = pX2 + qY 2 +
r

1 + γ2
det� = pX2 + qY 2 + rZ2.

Тогда

〈g−1�, g−1�〉 = e2γz((p cos2 z + q sin2 z)X2

+ (p− q) sin 2zXY + (p sin2 z + q cos2 z)Y 2 + rZ2).

Левоинвариантная метрика группы Ли G2 принимает вид

ds2 = e2γz((p cos2 z+q sin2 z) dx2+(p−q) sin 2z dxdy+(p sin2 z+q cos2 z) dy2+r dz2).

3. Левоинвариантная метрика для группы Ли G3. Произвольный

элемент и обратный к нему элемент:

g =




ez 0 x
−zez ez y

0 0 1


 , g−1 =



e−z 0 −xe−z

ze−z e−z −ye−z − xze−z

0 0 1


 .

Касательный вектор к группе G3 в единице:

� =




Z 0 X
−Z Z Y
0 0 0


 , � =

(
Z 0
−Z Z

)
.

Скалярное произведение в единице группы Ли G3:

〈�,�〉 = pX2 + qY 2 + r det� = pX2 + qY 2 + rZ2.
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Тогда

〈g−1�, g−1�〉 = e−2z[(p+ qz2)X2 + 2zqXY + qY 2 + rZ2].

Левоинвариантная метрика для группы Ли G3 будет иметь вид

ds2 = (p+ qz2)e−2z dx2 + 2zqe−2z dxdy + qe−2z dy2 + re−2z dz2.

Легко установить для всех трех алгебр AG1, AG2 и AG3:

〈e1, e1〉 = p, 〈e2, e2〉 = q, 〈e3, e3〉 = r,

т. е. скалярное произведение не ортонормировано.

3. Связность Леви-Чивиты

Найдем связности на группах Ли G1, G2 и G3. Связность Леви-Чивиты в

ортогональном, но не ортонормированном базисе имеет вид [5, 11]

∇ekej =
1

2

∑

i

(αkji + αikj + αijk)ei, αijk = 〈[ei, ej], ek〉, i, j, k = 1, 2, 3.

Результаты вычислений следующие:

для группы G1:

∇e1e1 = pαe3, ∇e1e2 = 0, ∇e1e3 = −pαe1, ∇e2e1 = 0,

∇e2e2 = qβe3, ∇e2e3 = −qβe2, ∇e3e1 = 0, ∇e3e2 = 0, ∇e3e3 = 0;

для группы G2:

∇e1e1 = −γpe3, ∇e1e2 =
1

2
(q − p)e3, ∇e1e3 = γpe1 +

1

2
(p− q)e2,

∇e2e1 =
1

2
(q − p)e3, ∇e2e2 = −γqe3, ∇e2e3 =

1

2
(p− q)e1 + γqe2,

∇e3e1 =
1

2
(p+ q)e2, ∇e3e2 = −1

2
(p+ q)e1, ∇e3e3 = 0;

для группы G3:

∇e1e1 = pe3, ∇e1e2 = −1

2
qe3, ∇e1e3 = −pe1 +

1

2
qe2, ∇e2e1 = −1

2
qe3,

∇e2e2 = qe3, ∇e2e3 =
1

2
qe1−qe2, ∇e3e1 = −1

2
qe2, ∇e3e2 =

1

2
qe1, ∇e3e3 = 0.

Заметим, что если в группе G1 допустить α = −1, β = 1 и p = q = 1, то ее

связность совпадет со связностью группы Sol [5]. Также заметим, что связность

не зависит от r.
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4. Геодезические на группе G1

Как известно, в локальных координатах геодезические в связности Леви-

Чивиты задаются уравнениями [12]

d2xi

dt2
+ � i

jk

dxj

dt

dxk

dt
, i, j, k = 1, 2, 3. (10)

Ниже используются более удобные обозначения для координат: x = x1, y = x2,

z = x3. Для группы G1 уравнения (10) принимают следующий вид:

d2x

dt2
− αpdx

dt

dz

dt
= 0,

d2y

dt2
− βq dy

dt

dz

dt
= 0,

d2z

dt2
+ αp

(
dx

dt

)2

+ βq

(
dy

dt

)2

= 0.

Решим первое уравнение разделением переменных:

x′′

x′
= αpz′, x′ =

dx

dt
, z′ =

dz

dt
.

Интегрируя, имеем

ln |x′| = αpz + c0,

следовательно
dx

dt
= c1e

αpz.

Аналогично поступаем и со вторым уравнением:

dy

dt
= c2e

βqz.

Найденное подставляем в третье уравнение геодезической:

z′′ + αpc21e
2αpz + βqc22e

2βqz = 0.

Умножая на z′, получаем

z′z′′ +
(
αpc21e

2αpz + βqc22e
2βqz

)
z′ = 0.

Далее, имеем

z′ dz′ +
(
αpc21e

2αpz + βqc22e
2βqz

)
dz = 0,

затем интегрируем:

z′2 + c21e
2αpz + c22e

2βqz − c3 = 0,

следовательно,

z′ =
√
c3 − c21e2αpz − c22e2βqz.

В результате получаем векторное поле геодезической:

(
c1e

αpz, c2e
βqz,

√
c3 − c21e2αpz − c22e2βqz

)
. (11)

В статье [5] для группы Sol, определяемой матрицами


e−z 0 x
0 ez y
0 0 1


 , (12)
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задается левоинвариантная метрика

ds2 = e2xdx2 + e−2ydy2 + dz2. (13)

Вычисляется связность:

∇e1e1 = −e3, ∇e1e2 = 0, ∇e1e3 = e1, ∇e2e1 = 0,

∇e2e2 = e3, ∇e2e3 = −e2, ∇e3e1 = 0, ∇e3e2 = 0, ∇e3e3 = 0.

Тогда уравнения на геодезическую принимают следующий вид:

d2x

dt2
+
dx

dt

dz

dt
= 0,

d2y

dt2
− dy

dt

dz

dt
= 0,

d2z

dt2
−
(
dx

dt

)2

+

(
dy

dt

)2

= 0.

Интегрируя один раз, получаем векторные поля на геодезическую:

(
c1e
−z, c2e

z,
√
c3 − c21e−2z − c22e2z

)
. (14)

Сравнивая формулы (11) и (14), приходим к выводу: геодезические на груп-

пе G1 с левоинвариантной метрикой при p = −1/α и q = 1/β совпадают с гео-

дезическими на группе Sol с левоинвариантной метрикой (13).

5. Геодезические на группе G2

Для группы G2 уравнения (10) принимают следующий вид:

d2x

dt2
+ γp

dx

dt

dz

dt
− q dy

dt

dz

dt
= 0,

d2y

dt2
+ p

dx

dt

dz

dt
+ γq

dy

dt

dz

dt
= 0,

d2z

dt2
− γp

(
dx

dt

)2

− γq
(
dy

dt

)2

+ (q − p)dx
dt

dy

dt
= 0.

Возможны следующие случаи.

1) p− q = 0. Решая первые два уравнения, получаем

dx

dt
= e−γpz(c1 sin pz − c2 cos pz),

dy

dt
= e−γpz(c1 cos pz + c2 sin pz).

Подставляя в третье, будем иметь

d2z

dt2
= γp

(
c21 + c22

)
e−2γpz,

поэтому
dz

dt
=
√
c3 −

(
c21 + c22

)
e−2γpz.

В результате получаем векторное поле геодезической

(
e−γpz(c1 sin pz−c2 cos pz), e−γpz(c1 cos pz+c2 sin pz),

√
c3 −

(
c21 + c22

)
e−2γpz

)
.

2) p− q 6= 0, γ2 = 4pq/(p− q)2. Решая первые два уравнения, получаем

dx

dt
= q(c1z + c2)e

−z p+q
p−q

√
pq,

dy

dt
= (c1

√
pqz + c1 + c2

√
pq)e−z p+q

p−q

√
pq.
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3) p − q 6= 0, D = γ2(p − q)2 − 4pq > 0. Из первых двух уравнений будем

иметь
dx

dt
= Re−

p+q
2

γz ch(
√
Dz/2 + α),

dy

dt
= Re−

p+q
2

γz

(
(p− q)γ

2pq
ch(
√
Dz/2 + α) +

√
D

2pq
sh(
√
Dz/2 + α)

)
.

4) p− q 6= 0, d = −γ2(p− q)2 + 4pq > 0. Тогда

dx

dt
= Re−

p+q
2

γz cos(
√
dz/2 + α),

dy

dt
= Re−

p+q
2

γz

(
(p− q)γ

2pq
cos(
√
dz/2 + α)−

√
d

2pq
sin(
√
dz/2 + α)

)
.

6. Геодезические на группе G3

Для группы G3 уравнения (10) принимают следующий вид:

d2x

dt2
− pdx

dt

dz

dt
+ q

dy

dt

dz

dt
= 0,

d2y

dt2
− q dy

dt

dz

dt
= 0,

d2z

dt2
+ p

(
dx

dt

)2

+ q

(
dy

dt

)2

− q dx
dt

dy

dt
= 0.

Возможны два случая

1) p = q. Решая первые два уравнения, получаем

dx

dt
= (c1 − c2pz)epz,

dy

dt
= c2e

pz.

Найденное подставляем в третье уравнение:

d2z

dt2
= p
(
−c22 + (c2(c1 − c2pz)− (c1 − c2pz)2)

)
e2pz .

Интегрируя, имеем

dz

dt
=
√
c3 − (c1 − c2pz)2e2pz − c22e2pz.

В результате приходим к векторному полю геодезической

(
(c1 − c2pz)epz, c2e

pz ,
√
c3 − (c1 − c2pz)2e2pz − c22e2pz

)
.

2) p 6= q. Решая первые два уравнения, получаем

dx

dt
= c1e

pz + c2e
qz,

dy

dt
= c2

p− q
q

eqz.
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7. Тензор кривизны

Тензор кривизны на группе Ли связности Леви-Чивиты задается формулой

[12]

R(X,Y )Z = ∇Y∇XZ −∇X∇Y Z +∇[X,Y ]Z.

Вычисления дают следующие ненулевые результаты для компонент тензора

кривизны, причем надо помнить, что по последним двум нижним индексам

тензор антисимметричен:

для группы G1:

R1
221 = pqαβ, R2

121 = pqαβ, R3
131 = −pα2,

R1
331 = pα2, R3

232 = −qβ2, R2
332 = qβ2;

для группы G2:

R2
121 = −R1

221 = (p− q)2/4− pqγ2,

R3
131 = −R1

331 = (p2 − q2)/4− γ2p+ (p− q)/2,
R3

231 = −R2
331 = −(p+ q)pγ/2 + γ(q − p)/2 + γq,

R3
132 = −R1

332 = (p+ q)qγ/2 + γ(q − p)/2− γp,
R3

232 = −R2
332 = −(p2 − q2)/4 + (q − p)/2− γ2q;

для группы G3:

R2
121 = −R1

221 = q2/4− pq, R3
131 = −R1

331 = −q2/4− p− q/2,

R3
231 = −R2

331 = −qp/2 + 3q/2,

R3
132 = −R1

332 = q2/2 + q/2, R3
232 = −R2

332 = q2/4− q.

8. Тензор кривизны Риччи и скалярная кривизна

Тензор кривизны Риччи определяется формулой [10]

r(X,Y ) = tr(Z → R(X,Z)Y ).

Вычисления дают следующие ненулевые результаты:

для группы G1:

r11 = −pqαβ − pα2, r22 = −pqαβ − qβ2, r33 = −pα2 − qβ2;

для группы G2:

r11 = (p− q)(p+ 1)/2− γ2p(q + 1), r22 = −(p− q)(q + 1)/2− γ2q(p+ 1),

r33 = −γ2(p+q), r12 = γq(p+q)/2−γp−γ(p−q), r21 = γp(p+q)/2+γq−γ(p−q);
для группы G3:

r11 = −pq − p− q/2, r12 = q2/2 + q/2, r21 = −pq/2 + 3q/2,
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r22 = q2/2− q − pq, r33 = −p− 3q/2.

Скалярная кривизна определяется формулой

S = rijg
ij ,

причем

gij =




1/p 0 0
0 1/q 0
0 0 1/r


 .

Вычисления дают следующие результаты:

для группы G1:

S = −qαβ − α2 − pαβ − β2 − pα2/r − qβ2/r;

для группы G2:

S = (p− q)
(

1

2p
− 1

2q

)
− γ2(p+ q + 2)− (p+ q)γ2/r;

для группы G3:

S = −q/2p− q/2− p− 2− p/r − 3q/2r.

Заключение

В работе найдены левоинвариантные метрики и символы Кристоффеля

связности Леви-Чивиты матричных групп Ли (7)–(9), компоненты тензоров Ри-

мана и Риччи, а также векторные поля геодезических. Все полученные ре-

зультаты можно отнести к дважды инвариантным метрикам, если положить

p = q = 1, r = α2 + β2 для G1, r = 2(1 + γ)2 для G2 и r = 3 для G3. Исследо-

вания в этом направлении можно продолжить, например, изучить двумерные

поверхности этих групп Ли, в частности, минимальные поверхности.
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Аннотация. Рассматривается класс систем разностных уравнений с переменным
запаздыванием и периодическими коэффициентами в линейных членах. Указаны
условия асимптотической устойчивости нулевого решения и получены оценки, ха-
рактеризующие скорость стабилизации решений на бесконечности.
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Ключевые слова: разностные уравнения с запаздыванием, асимптотическая устой-
чивость, функционал Ляпунова — Красовского, оценки решений.

1. Введение

В работе рассматриваются системы разностных уравнений с периодически-

ми коэффициентами в линейных членах следующего вида:

xn+1 = A(n)xn +B(n)xn−τ(n) + F (n, xn, xn−1, . . . , xn−τ ), n = 0, 1, . . . , (1.1)

где {A(n)}, {B(n)} — последовательности N -периодических матриц размера

m×m, т. е.

A(n+N) = A(n), B(n+N) = B(n), n = 0, 1, . . . ,

τ(n) ∈ N — параметр запаздывания, 1 ≤ τ(n) ≤ τ < ∞, F (n, v0, v1, . . . , vτ ) —

непрерывная вектор-функция, удовлетворяющая оценке

‖F (n, v0, v1, . . . , vτ )‖ ≤ q0‖v0‖+ q1‖v1‖+ · · ·+ qτ‖vτ‖, n = 0, 1, . . . , vj ∈ Rm,

(1.2)

qj ≥ 0, j = 0, 1, . . . , τ . Цель работы — изучение асимптотической устойчивости

нулевого решения систем вида (1.1) и получение оценок решений {xn}, харак-

теризующих скорость стабилизации при n→∞.

Обыкновенные разностные уравнения и уравнения с запаздыванием ис-

пользуются при моделировании различных процессов в биологии, экономике,

Работа выполнена в рамках государственного задания Института математики им. С.Л. Со-
болева СО РАН (проект № FWNF-2022-0008).

c© 2023 Матвеева И. И., Хмиль А. В.



38 И. И. Матвеева, А. В. Хмиль

социологии и др. Одной из важных является проблема устойчивости решений

возникающих уравнений и систем. Систематическое изучение устойчивости для

разностных уравнений началось в 50-е гг. прошлого столетия (см., например,

[1–3]). Это было обусловлено развитием численных методов и математического

моделирования. В настоящее время имеется ряд монографий по разностным

уравнениям, в которых изложены различные результаты по теории устойчиво-

сти и методы, которыми они получены (см., например, [4–6]).

В последнюю четверть века проводятся активные исследования устойчиво-

сти решений разностных уравнений с запаздыванием (см., например, [7–17] и

ссылки в этих работах). При изучении устойчивости применяются аналоги ме-

тодов, используемых в теории функционально-дифференциальных уравнений

(спектральные методы, метод неравенств типа Халаная, метод функций Ля-

пунова, построение решения в операторном виде, установление связей между

обыкновенными дифференциальными уравнениями и разностными уравнения-

ми с запаздыванием и т. д.).

Системы вида (1.1) с постоянными коэффициентами (A(n) ≡ A, B(n) ≡ B)

рассматривались в [19, 20]. С использованием функционала Ляпунова — Кра-

совского в работе [19] исследовалась устойчивость нулевого решения в линейном

случае (F (n, u0, u1, . . . , uτ ) ≡ 0), в [20] — в нелинейном случае. В [21] изучалась

асимптотическая устойчивость нулевого решения линейной системы вида (1.1)

(F (n, u0, u1, . . . , uτ ) ≡ 0) с N -периодическими коэффициентами.

В данной работе при изучении асимптотической устойчивости нулевого ре-

шения систем вида (1.1) с N -периодическими коэффициентами в линейных чле-

нах будем использовать функционал Ляпунова — Красовского

v(n, x) = 〈H(n)xn, xn〉+
n−1∑

j=n−τ

〈Kn−j−1xj , xj〉, (1.3)

где H(n), K0, K1, . . . ,Kτ−1 — некоторые эрмитовы положительно определенные

матрицы. Этот функционал был предложен в работе [21] и является дискрет-

ным аналогом функционала Ляпунова — Красовского

V (t, y) = 〈H(t)y(t), y(t)〉+
t∫

t−τ

〈K(t− s)y(s), y(s)〉 ds,

H(t) = H∗(t) > 0, K(s) = K∗(s) > 0, s ∈ [0, τ ],

введенного в работе [22] для исследования асимптотической устойчивости реше-

ний систем дифференциальных уравнений с запаздыванием и периодическими

коэффициентами в линейных членах [23]

d

dt
y(t) = A(t)y(t) +B(t)y(t− τ) + F (t, y(t), y(t− τ)), t > 0,

где A(t), B(t) — матрицы с T -периодическими коэффициентами. Используя

функционал (1.3), мы установим достаточные условия асимптотической устой-

чивости нулевого решения нелинейных систем вида (1.1) и получим оценки на

скорость стабилизации решений на бесконечности.
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2. Предварительные сведения

Рассмотрим линейную систему разностных уравнений с запаздыванием и

периодическими коэффициентами

xn+1 = A(n)xn +B(n)xn−τ(n), n = 0, 1, 2, . . . , (2.1)

где {A(n)}, {B(n)} — последовательности N -периодических матриц размера

m × m, τ(n) ∈ N — параметр запаздывания, 1 ≤ τ(n) ≤ τ < ∞. Очевидно,

эту систему можно записать в виде следующей системы линейных разностных

уравнений с переменными коэффициентами:

xn+1 = A(n)xn +
τ∑

j=1

Bj(n)xn−j , n = 0, 1, . . . , (2.2)

где

Bj(n) =

{
B(n) при j = τ(n),

0 при j 6= τ(n).
(2.3)

При изучении асимптотической устойчивости нулевого решения системы (2.2)

в работе [21] использовался функционал Ляпунова — Красовского (1.3). Бы-

ли установлены достаточные условия асимптотической устойчивости нулевого

решения системы (2.2), а следовательно, и (2.1), при этом также получены оцен-

ки на скорость убывания решения {xn} системы (2.1) с заданными начальными

условиями

x0, x−1, . . . , x−τ (2.4)

при n → ∞. Приведем соответствующие результаты из работы [21]. Всюду

далее S > 0 (S < 0) означает, что S — эрмитова положительно (отрицательно)

определенная матрица.

Теорема 1.1 [21]. Предположим, что существуют эрмитовы положительно

определенные матрицы H(n), Kj, j = 0, 1, . . . , τ, такие, что

H(0) = H(N), �j = Kj−1 −Kj > 0, j = 1, . . . , τ,

и составные матрицы

C(n) = −




C00(n) A∗(n)H(n+1)B1(n) ... A∗(n)H(n+1)Bτ (n)

B∗1 (n)H(n+1)A(n) C11(n) ... B∗1 (n)H(n+1)Bτ (n)

...
...

. ..
...

B∗τ (n)H(n+1)A(n) B∗τ (n)H(n+1)B1(n) ... Cττ (n)


 (2.5)

с элементами

C00(n) = A∗(n)H(n+ 1)A(n)−H(n) +K0,

Cjj(n) = B∗j (n)H(n+ 1)Bj(n)− 1

2
�j , j = 1, . . . , τ − 1,

Cττ (n) = B∗τ (n)H(n+ 1)Bτ (n)−Kτ ,
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положительно определены. Тогда нулевое решение системы (2.1) асимптотиче-

ски устойчиво.

Из определения матриц Bj(n) вытекает, что количество различных матриц

{C(n)} конечно. Следовательно, при выполнении условий теоремы 1.1 суще-

ствует константа c1 > 0 такая, что для любого n ∈ N справедлива оценка

〈
C(n)



v0
...
vτ


 ,



v0
...
vτ



〉
≥ c1

τ∑

i=0

‖vi‖2, vi ∈ Rm.

Теорема 1.2 [21]. Предположим, что выполнены условия теоремы 1.1.

Пусть κj ∈ (0, 1), j = 1, 2, . . . , τ , такие, что

−1

2
�i + κiKi−1 ≤ 0, i = 1, . . . , τ − 1, −�τ + κτKτ−1 ≤ 0. (2.6)

Тогда для решения начальной задачи (2.1), (2.4) справедлива оценка

‖xn‖2 ≤ (h1(n))−1
n−1∏

j=0

(1− εj)v(0, x), (2.7)

где h1(n) > 0 — минимальное собственное значение матрицы H(n),

v(0, x) = 〈H(0)x0, x0〉+
−1∑

j=−τ

〈K−j−1xj , xj〉, (2.8)

εj = min

{
κ1, . . . ,κτ ,

c1
‖H(j)‖

}
, 0 < εj < 1.

3. Основной результат

В этом разделе исследуем асимптотическую устойчивость решений нели-

нейных систем разностных уравнений с запаздыванием вида (1.1). Поскольку

запаздывание ограничено, систему (1.1) можно записать в виде

xn+1 = A(n)xn +

τ∑

j=1

Bj(n)xn−j + F (n, xn, xn−1, . . . , xn−τ ), n = 0, 1, . . . , (3.1)

где матрицы Bj(n) определены в (2.3). Рассмотрим для системы (1.1) (она же

(3.1)) начальную задачу с заданными начальными условиями

x0, x−1, . . . , x−τ . (3.2)

Будем предполагать, что выполнены условия теоремы 1.1 и определены матри-

цы H(n), Kj , j = 0, . . . , τ . Введем следующие обозначения:

α0 = α0(n) = 2q0‖H(n+ 1)‖‖A(n)‖+ q20‖H(n+ 1)‖,

αi = αi(n) = 2‖H(n+ 1)‖(‖A(n)‖qi + q0‖Bi(n)‖+ q0qi), i = 1, 2, . . . , τ,
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αj
0 = αj

0(n) = 2qj‖H(n+ 1)‖‖Bj(n)‖+ q2j ‖H(n+ 1)‖, j = 1, 2, . . . , τ,

αj
i = αj

i (n) = 2qi‖H(n+ 1)‖(‖Bi(n)‖+ qiθ(i− j)), i, j = 1, 2, . . . τ, i 6= j, (3.3)

где

θ(i− j) =

{
1, i > j,

0, i < j,

D(n) =




α0(n) α1(n)
2

α2(n)
2

α3(n)
2 . . . ατ (n)

2
α1(n)

2 α1
0(n)

α2
1(n)+α1

2(n)
2

α3
1(n)+α1

3(n)
2 . . .

ατ
1 (n)+α1

τ (n)
2

α2(n)
2

α2
1(n)+α1

2(n)
2 α2

0(n)
α3

2(n)+α2
3(n)

2 . . .
ατ

2 (n)+α2
τ (n)

2
α3(n)

2
α3

1(n)+α1
3(n)

2
α3

2(n)+α2
3(n)

2 α3
0(n) . . .

ατ
3 (n)+α3

τ (n)
2

...
...

...
...

. . .
...

ατ (n)
2

ατ
1 (n)+α1

τ (n)
2

ατ
2 (n)+α2

τ (n)
2

ατ
3 (n)+α3

τ (n)
2 . . . ατ

0(n)




.

(3.4)

Отметим, что количество различных матриц {D(n)} конечно. Следовательно,

существуют dj ≥ 0 такие, что для любого n ∈ N справедлива оценка

〈
D(n)



u0
...
uτ


 ,



u0
...
uτ



〉
≤

τ∑

j=0

dju
2
j . (3.5)

Введем матрицу

Cd(n) = C(n) −



d0I . . . 0
...

. . .
...

0 . . . dτ I


 .

Теорема 3.1. Пусть выполнены условия теоремы 1.1. Если параметры

q0, q1, . . . , qτ такие, что

〈
Cd(n)



v0
...

vτ


 ,



v0
...

vτ



〉
≥ d‖v0‖2, d > 0, vj ∈ Rm, (3.6)

то нулевое решение системы (1.1) асимптотически устойчиво.

Доказательство. Пусть {xn} — решение начальной задачи (1.1), (3.2).

Рассмотрим на этом решении функционал v(n, x), определенный в (1.3). В силу

условий на матрицы H(n), Kj , j = 0, . . . , τ , будет v(n, x) > 0 при {xn} 6= 0.

Рассмотрим разность v(n + 1, x) − v(n, x). Используя обозначения для матриц

�j , имеем

v(n+ 1, x)− v(n, x) = 〈H(n+ 1)xn+1, xn+1〉 − 〈H(n)xn, xn〉

+

n∑

j=n+1−τ

〈Kn−jxj , xj〉−
n−1∑

j=n−τ

〈Kn−j−1xj , xj〉 = 〈H(n+1)xn+1, xn+1〉−〈H(n)xn, xn〉

+ 〈K0xn, xn〉 −
n−1∑

j=n−τ

〈�n−jxj , xj〉 − 〈Kτxn−τ , xn−τ 〉.
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Учитывая, что {xn} является решением эквивалентной задачи (3.1), (3.2), по-

лучаем

v(n+ 1, x)− v(n, x) = 〈A∗(n)H(n+ 1)A(n)xn, xn〉 − 〈H(n)xn, xn〉+ 〈K0xn, xn〉

+

τ∑

j=1

〈A∗(n)H(n+ 1)Bj(n)xn−j , xn〉+
τ∑

j=1

〈B∗j (n)H(n+ 1)A(n)xn, xn−j〉

+
τ∑

j,i=1

〈B∗j (n)H(n+ 1)Bi(n)xn−i, xn−j〉 −
n−1∑

j=n−τ

〈�n−jxj , xj〉 − 〈Kτxn−τ , xn−τ 〉

+ 2 Re〈H(n+ 1)A(n)xn, F (n, xn, xn−1, . . . , xn−τ )〉

+ 2

τ∑

j=1

Re〈H(n+ 1)Bj(n)xn−j , F (n, xn, xn−1, . . . , xn−τ )〉

+ 〈H(n+ 1)F (n, xn, xn−1, . . . , xn−τ ), F (n, xn, xn−1, . . . , xn−τ )〉.
Используя матрицу C(n), заданную в (2.5), разность v(n+ 1, x)− v(n, x) можно

переписать в виде

v(n+ 1, x)− v(n, x) = −
〈
C(n)




xn
...

xn−τ


 ,




xn
...

xn−τ



〉

− 1

2

n−1∑

j=n−τ+1

〈�n−jxj , xj〉 − 〈�τxn−τ , xn−τ 〉+W (n, x), (3.7)

где

W (n, x) = 2 Re〈H(n+ 1)A(n)xn, F (n, xn, xn−1, . . . , xn−τ )〉

+ 2

τ∑

j=1

Re〈H(n+ 1)Bj(n)xn−j , F (n, xn, xn−1, . . . , xn−τ )〉

+ 〈H(n+ 1)F (n, xn, xn−1, . . . , xn−τ ), F (n, xn, xn−1, . . . , xn−τ )〉.
В силу (1.2) имеем

|W (n, x)| ≤ 2‖H(n+ 1)‖‖A(n)‖‖xn‖ (q0‖xn‖+ q1‖xn−1‖+ · · ·+ qτ‖xn−τ‖)

+ 2‖H(n+ 1)‖ (q0‖xn‖+ q1‖xn−1‖+ · · ·+ qτ‖xn−τ‖)
τ∑

j=1

‖Bj(n)‖‖xn−j‖

+ ‖H(n+ 1)‖ (q0‖xn‖+ q1‖xn−1‖+ · · ·+ qτ‖xn−τ‖)2

=

[
(
2‖H(n+ 1)‖‖A(n)

∥∥q0 + q20
∥∥H(n+ 1)‖

)
‖xn‖2

+ 2‖H(n+ 1)‖‖xn‖
τ∑

j=1

(‖A(n)‖qj + q0‖Bj(n)‖+ q0qj)‖xn−j‖
]

+

τ∑

j=1

{
(
2qj‖H(n+ 1)‖‖Bj(n)‖+ q2j ‖H(n+ 1)‖

)
‖xn−j‖2
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+ 2qj‖H(n+ 1)‖
(

τ∑

k=1,k 6=j

‖Bk(n)‖‖xn−k‖+

τ∑

i=j+1

qi‖xn−i‖
)
‖xn−j‖

}
= V (n).

Используя обозначения (3.3), V (n) можно записать в виде

V (n) = α0u
2
0 + u0(α1u1 + . . . ατuτ )

+ α1
0u

2
1 + u1

(
α1

2u2 + α1
3u3 + · · ·+ α1

τuτ + α2
1u2 + α3

1u3 + · · ·+ ατ
1uτ
)

+ α2
0u

2
2 + u2

(
α2

3u3 + α2
4u4 + · · ·+ α2

τuτ + α3
2u3 + α4

2u4 + · · ·+ ατ
2uτ
)

+ α3
0u

2
3 + u3

(
α3

4u4 + α3
5u5 + · · ·+ α3

τuτ + α4
3u4 + α5

3u5 + · · ·+ ατ
3uτ
)

+ · · ·+ ατ
0u

2
τ ,

где uj = ‖xn−j‖, j = 0, 1, . . . , τ. Перегруппировав слагаемые, получаем

V (n) = α0u
2
0 + u0(α1u1 + . . . ατuτ )

+ α1
0u

2
1 + u1

((
α2

1 + α1
2

)
u2 +

(
α3

1 + α1
3

)
u3 + · · ·+

(
α1
τ + ατ

1

)
uτ
)

+ α2
0u

2
2 + u2

((
α3

2 + α2
3

)
u3 +

(
α4

2 + α2
4

)
u4 + · · ·+

(
α2
τ + ατ

2

)
uτ
)

+ α3
0u

2
3 + u3

((
α4

3 + α3
4

)
u4 +

(
α5

3 + α3
5

)
u5 + · · ·+

(
α3
τ + ατ

3

)
uτ
)

+ · · ·+ ατ
0u

2
τ

=

〈
D(n)



u0
...
uτ


 ,



u0
...
uτ



〉
,

где матрица D(n) определена в (3.4). Следовательно, из (3.5) вытекает оценка

|W (n, x)| ≤ V (n) ≤ d0‖xn‖2 + · · ·+ dτ‖x2
n−τ‖.

Учитывая приведенные выше неравенства, из (3.7) получаем

v(n+ 1, x)− v(n, x) ≤ −
〈
Cd(n)




xn
...

xn−τ


 ,




xn
...

xn−τ



〉

− 1

2

n−1∑

j=n−τ+1

〈�n−jxj , xj〉 − 〈�τxn−τ , xn−τ 〉.

Используя (3.6), имеем

0 ≤ v(n+1, x) ≤ v(n, x)−d‖xn‖2−
1

2

n−1∑

j=n−τ+1

〈�n−jxj , xj〉−〈�τxn−τ , xn−τ 〉. (3.8)

В силу положительной определенности матриц �j получаем

v(n+ 1, x)− v(n, x) ≤ −d‖xn‖2.
Поскольку d > 0, имеем v(n+ 1, x)− v(n, x) < 0 при {xn} 6= 0. Тогда последова-

тельность {v(n, x)} является монотонно убывающей и ограниченной снизу. По

теореме Вейерштрасса она имеет предел. В силу единственности предела

0 ≤ d‖xn‖2 ≤ v(n, x) − v(n+ 1, x)→ 0 при n→∞.
Отсюда вытекает асимптотическая устойчивость нулевого решения системы (3.1)

и, следовательно, системы (1.1).

Теорема доказана.
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Теорема 3.2. Предположим, что выполнены условия теоремы 3.1. Тогда

для решения начальной задачи (3.1), (3.2) справедливо неравенство

‖xn‖2 ≤ (h1(n))−1
n−1∏

j=0

(1− ε̃j)v(0, x), (3.9)

где h1(n) > 0 — минимальное собственное значение матрицы H(n),

ε̃j = min

{
κ1, . . . ,κτ ,

d

‖H(j)‖

}
, 0 < ε̃j < 1,

κj , v(0, x) определены в (2.6) и (2.8) соответственно.

Доказательство. В силу (2.6) имеем

1

2

n−1∑

j=n−τ+1

〈�n−jxj , xj〉+ 〈�τxn−τ , xn−τ 〉

≥
n−1∑

j=n−τ+1

κn−j〈Kn−j−1xj , xj〉+ κτ 〈Kτ−1xn−τ , xn−τ 〉.

Следовательно, из (3.8) получаем

0 ≤ v(n+ 1, x) ≤ v(n, x)− d‖xn‖2 −
n−1∑

j=n−τ

κn−j〈Kn−j−1xj , xj〉. (3.9)

Тогда

v(n+ 1, x) ≤ v(n, x)− d

‖H(n)‖〈H(n)xn, xn〉 −
n−1∑

j=n−τ

κn−j〈Kn−j−1xj , xj〉.

Учитывая условия теоремы 3.2 и определение ε̃, имеем

v(n+1, x) ≤ v(n, x)− ε̃n


〈H(n)xn, xn〉+

n−1∑

j=n−τ

〈Kn−j−1xj , xj〉


 = (1− ε̃n)v(n, x).

Следовательно,

v(n, x) ≤
n−1∏

j=0

(1− ε̃j)v(0, x),

где v(0, x) определено в (2.8). Тогда

‖xn‖2 ≤ (h1(n))−1〈H(n)xn, xn〉 ≤ (h1(n))−1v(n, x) ≤ (h1(n))−1
n−1∏

j=0

(1− ε̃j)v(0, x).

Теорема доказана.

Замечание. Если qj = 0, j = 0, . . . , τ , то имеем линейную систему и d =

c1. Тогда оценка (3.9) дает неравенство (2.7), а утверждения теорем 3.1 и 3.2

переходят в утверждения теорем 1.1 и 1.2, полученных в работе [21].
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пол будущей особи зависит от температуры окружающей среды. Модель описыва-
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время нахождения особей в молодом возрасте. Изучается случай полного вымира-
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ность популяции достигнет равновесного состояния.
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ний, функционал Ляпунова — Красовского.

1. Введение

Настоящая работа продолжает исследования асимптотических свойств ре-

шений дифференциальных уравнений с запаздывающим аргументом (см., на-

пример, работы [1–8] для общих классов уравнений с запаздыванием и рабо-

ты [9–12] для конкретных биологических моделей). В данной работе рассмот-

рена модель динамики популяции рептилий, у которых пол будущей особи за-

висит от температуры окружающей среды, в которой находилось яйцо с заро-

дышем [13]. В модели предполагается, что самки могут откладывать яйца на

трех территориях, на каждой территории — своя температура. Самки предпо-

читают территорию с той температурой, где они сами родились, если же там

нет места, то они переходят на более теплую территорию.

Первая территория — мокрое болото, где температура самая низкая. На

этой территории появляются только самки.

Вторая территория — сухое болото, где температура средняя. На этой

территории появляются и самки, и самцы.

Третья территория — сухая насыпь, где температура самая высокая. На

этой территории появляются только самцы.

Работа выполнена в рамках государственного задания Института математики им. С. Л. Со-
болева СО РАН (проект № FWNF-2022-0008).

c© 2023 Скворцова М. А.
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На первой территории изменения численности популяции описываются диф-

ференциальными уравнениями следующего вида:

d

dt
F1(t) = νB1(F1(t− τ)) − aF1(t), (1)

d

dt
f1(t) = B1(F1(t))− νB1(F1(t− τ)) − αf1(t), (2)

где F1(t) — численность взрослых самок, рожденных на первой территории,

f1(t) — численность молодых самок, рожденных на первой территории, τ > 0 —

время нахождения в молодом возрасте, a > 0 — коэффициент смертности взрос-

лых особей, α > 0 — коэффициент смертности молодых особей, ν = e−ατ — веро-

ятность выживания особи к моменту достижения взрослого возраста, B1(F1) —

функция рождаемости:

B1(F1) = bF1

(
k1

k1 + F1

)
, (3)

b > 0 — коэффициент рождаемости, k1 > 0 — коэффициент, отвечающий за

ограниченность ресурсов на первой территории.

На второй территории изменения численности популяции описываются сле-

дующими дифференциальными уравнениями:

d

dt
F2(t) =

ν

2
B2(F1(t− τ), F2(t− τ)) − aF2(t), (4)

d

dt
f2(t) =

1

2
B2(F1(t), F2(t))−

ν

2
B2(F1(t− τ), F2(t− τ))− αf2(t), (5)

d

dt
M2(t) =

ν

2
B2(F1(t− τ), F2(t− τ)) − aM2(t), (6)

d

dt
m2(t) =

1

2
B2(F1(t), F2(t))−

ν

2
B2(F1(t− τ), F2(t− τ))− αm2(t), (7)

где F2(t) — численность взрослых самок, рожденных на второй территории,

f2(t) — численность молодых самок, рожденных на второй территории, M2(t) —

численность взрослых самцов, рожденных на второй территории, m2(t) — чис-

ленность молодых самцов, рожденных на второй территории, B2(F1, F2) — функ-

ция рождаемости:

B2(F1, F2) = b

(
F 2

1 (t)

k1 + F1
+ F2

)(
k2

k2 + F1 + F2

)
, (8)

k2 > 0 — коэффициент, отвечающий за ограниченность ресурсов на второй

территории.

Наконец, приведем дифференциальные уравнения, описывающие измене-

ния численности популяции на третьей территории:

d

dt
M3(t) = νB3(F1(t− τ), F2(t− τ)) − aM3(t), (9)

d

dt
m3(t) = B3(F1(t), F2(t)) − νB3(F1(t− τ), F2(t− τ)) − αm3(t), (10)
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где M3(t) — численность взрослых самцов, рожденных на третьей террито-

рии, m3(t) — численность молодых самцов, рожденных на третьей территории,

B3(F1, F2) — функция рождаемости:

B3(F1, F2) = b

(
F 2

1

k1 + F1
+ F2

)(
F1 + F2

k2 + F1 + F2

)(
k3

k3 + F1 + F2

)
, (11)

k3 > 0 — коэффициент, отвечающий за ограниченность ресурсов на третьей

территории.

Для системы (1)–(11) зададим начальные условия:

F1(t) = ϕ1(t) ≥ 0, t ∈ [−τ, 0], F1(+0) = ϕ1(0) ≥ 0, (12)

F2(t) = ϕ2(t) ≥ 0, t ∈ [−τ, 0], F2(+0) = ϕ2(0) ≥ 0, (13)

f1(0) = f10 ≥ 0, f2(0) = f20 ≥ 0, (14)

M2(0) = M20 ≥ 0, M3(0) = M30 ≥ 0, (15)

m2(0) = m20 ≥ 0, m3(0) = m30 ≥ 0, (16)

где ϕ1(t), ϕ2(t) ∈ C([−τ, 0]) — заданные непрерывные функции. Хорошо извест-

но, что решение начальной задачи (1)–(16) существует и единственно. Более

того, компоненты решения F1(t), F2(t), M2(t), M3(t) неотрицательны при всех

t > 0. Компоненты решения f1(t), f2(t), m2(t), m3(t) будут неотрицательными

только при выполнении дополнительного условия. Действительно, для опреде-

ленности рассмотрим уравнение (2). Применяя метод вариации произвольной

постоянной и учитывая, что ν = e−ατ , получим интегральное представление

для функции f1(t):

f1(t) =


f10 −

0∫

−τ

eαsB1(F1(s)) ds


 e−αt +

t∫

t−τ

e−α(t−s)B1(F1(s)) ds.

Тем самым для неотрицательности функции f1(t) достаточно потребовать вы-

полнение условия

f10 ≥
0∫

−τ

eαsB1(F1(s)) ds.

С биологической точки зрения данное неравенство означает, что численность

молодых особей в момент времени t = 0 больше или равна численности особей,

которые родились в промежуток времени t ∈ [−τ, 0] и дожили до момента време-

ни t = 0. Аналогичным образом можно получить условия на начальные данные

f20, m20, m30, гарантирующие неотрицательность функций f2(t), m2(t), m3(t).

Также нетрудно показать, что при выполнении вышеперечисленных условий

все компоненты решения начальной задачи (1)–(16) будут ограничены сверху.

Теперь рассмотрим положения равновесия системы (1)–(11). В зависимо-

сти от коэффициентов системы имеется не более трех положений равновесия с

неотрицательными компонентами:

(F1(t), F2(t),M2(t),M3(t), f1(t), f2(t),m2(t),m3(t)) ≡ (0, 0, 0, 0, 0, 0, 0, 0),
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(F1(t), F2(t),M2(t),M3(t), f1(t), f2(t),m2(t),m3(t)) ≡ (0, F ∗2 ,M
∗
2 ,M

∗
3 , 0, f

∗
2 ,m

∗
2,m

∗
3),

(F1(t), F2(t),M2(t),M3(t), f1(t), f2(t),m2(t),m3(t)) ≡ (x∗1, x
∗
2, x

∗
3, x

∗
4, x

∗
5, x

∗
6, x

∗
7, x

∗
8),

где

F ∗2 = k2

(
bν − 2a

2a

)
> 0, M∗

2 =
ν

2a
B2(0, F

∗
2 ), M∗

3 =
ν

a
B3(0, F

∗
2 ),

f∗2 =
(1 − ν)

2α
B2(0, F

∗
2 ), m∗2 =

(1− ν)
2α

B2(0, F
∗
2 ), m∗3 =

(1− ν)
α

B3(0, F
∗
2 ),

x∗1 = k1

(
bν − a
a

)
> 0, (17)

x∗2 > 0 — положительный корень уравнения

bν

2

(
k2

k2 + x∗1 + x∗2

)
=

ax∗2(
(x∗

1
)2

k1+x∗
1

+ x∗2

) , (18)

x∗3 =
ν

2a
B2(x

∗
1, x

∗
2), x∗4 =

ν

a
B3(x

∗
1, x

∗
2), x∗5 =

(1− ν)
α

B1(x
∗
1),

x∗6 =
(1− ν)

2α
B2(x

∗
1, x

∗
2), x∗7 =

(1− ν)
2α

B2(x
∗
1, x

∗
2), x∗8 =

(1 − ν)
α

B3(x
∗
1, x

∗
2).

Первое положение равновесия соответствует полному вымиранию всей по-

пуляции, второе положение равновесия — постоянной численности популяции,

когда детеныши появляются на свет только на второй и на третьей территори-

ях, третье положение равновесия — постоянной численности популяции, когда

детеныши появляются на свет на всех трех территориях. Второе положение

равновесия имеет биологический смысл только при 2a < bν, третье — только

при a < bν.

Приведем условия устойчивости положений равновесия. С помощью тео-

ремы об устойчивости по первому приближению нетрудно получить, что первое

положение равновесия асимптотически устойчиво при bν < a, и неустойчиво

при a < bν. Второе положение равновесия неустойчиво при любых значени-

ях параметров. Третье положение равновесия асимптотически устойчиво при

a < bν [13].

Наша цель — при выполнении условий, гарантирующих асимптотическую

устойчивость положений равновесия системы (1)–(11), получить оценки, харак-

теризующие скорость стабилизации решений на бесконечности.

Учитывая структуру системы (1)–(11), оценки достаточно получить для

компонент решения F1(t) и F2(t) [13]. Действительно, предположим, что для

функций F1(t) и F2(t) справедливы неравенства

|F1(t)− x∗1| ≤ C1e
−σt, |F2(t)− x∗2| ≤ C2e

−σt, t > 0.

Тогда каждая из компонент решения M2(t), M3(t), f1(t), f2(t), m2(t), m3(t)

удовлетворяет дифференциальному уравнению следующего вида:

d

dt
z(t) = f(t)− az(t),
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где

|f(t)− f∗| ≤ Ce−σt, t > 0.

С учетом обозначения z∗ = f∗

a , используя метод вариации произвольной посто-

янной, для функции z(t) нетрудно получить представление

z(t)− z∗ = e−at(z(0)− z∗) +

t∫

0

e−a(t−s)(f(s)− f∗) ds,

откуда следует оценка

|z(t)− z∗| ≤ |z(0)− z∗|e−at +

t∫

0

e−a(t−s)|f(s)− f∗| ds

≤ |z(0)− z∗|e−at + C

t∫

0

e−a(t−s)e−σs ds ≤ |z(0)− z∗|e−at + Cte−min{a,σ}t. (19)

Оценки такого вида характеризуют скорость сходимости компонент решения

M2(t), M3(t), f1(t), f2(t), m2(t), m3(t) к соответствующим компонентам поло-

жения равновесия x∗3, x
∗
4, x

∗
5, x

∗
6, x

∗
7, x

∗
8.

Перейдем к получению оценок для функций F1(t) и F2(t). Для дальнейших

рассуждений нам будет удобнее ввести переобозначения

x1(t) = F1(t), x2(t) = F2(t).

Тогда согласно (1), (4), (12), (13) вектор-функция (x1(t), x2(t)) является реше-

нием следующей начальной задачи:

d

dt
x1(t) = νB1(x1(t− τ))− ax1(t),

d

dt
x2(t) =

ν

2
B2(x1(t− τ), x2(t− τ)) − ax2(t),

(20)

x1(t) = ϕ1(t) ≥ 0, t ∈ [−τ, 0], x1(+0) = ϕ1(0) ≥ 0,

x2(t) = ϕ2(t) ≥ 0, t ∈ [−τ, 0], x2(+0) = ϕ2(0) ≥ 0,
(21)

где B1(x1) определено в (3), B2(x1, x2) определено в (8). В последующих раз-

делах получим оценки скорости сходимости решения (x1(t), x2(t)) к положе-

нию равновесия (0, 0) (в случае bν < a) и оценки скорости сходимости решения

(x1(t), x2(t)) к положению равновесия (x∗1, x
∗
2) (в случае a < bν).

2. Оценки скорости сходимости

к положению равновесия (0, 0)

В этом разделе будем предполагать, что выполнено условие bν < a, га-

рантирующее асимптотическую устойчивость нулевого решения системы (20).

Получим оценки для решения начальной задачи (20), (21), характеризующие

скорость убывания на бесконечности. Для первой компоненты решения x1(t)

соответствующая оценка была получена в работе [12]. Имеет место следующее

утверждение.
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Теорема 1 [12]. Пусть выполнено условие bν < a. Тогда для первой ком-

поненты решения x1(t) начальной задачи (20), (21) справедливы оценки

0 ≤ x1(t) ≤
√
U1(0, ϕ1)e

−δ1t/2, t > 0, (22)

где

U1(0, ϕ1) = ϕ2
1(0) +

0∫

−τ

p1e
δ1sϕ2

1(s)

(
k1

k1 + ϕ1(s)

)
ds, p1 = bνeδ1τ/2,

δ1 > 0 — положительный корень уравнения

δ1 = 2(a− bνeδ1τ/2).

Укажем оценки для второй компоненты решения x2(t). Справедлива сле-

дующая

Теорема 2. Пусть выполнено условие bν < a. Тогда для второй компонен-

ты решения x2(t) начальной задачи (20), (21) справедливы следующие оценки:

1) если t ∈ [0, τ ], то

0 ≤ x2(t) ≤
(
√
U2(0, ϕ1, ϕ2) + bν

(
ϕ2

1,max

k1 + ϕ1,max

)
(eδ2τ/2 − 1)

δ2

)
e−δ2t/2, (23)

где

U2(0, ϕ1, ϕ2) = ϕ2
2(t) +

0∫

−τ

p2e
δ2sϕ2

2(s)

(
k2

k2 + ϕ1(s) + ϕ2(s)

)
ds, p2 =

bν

2
eδ2τ/2,

(24)

δ2 > 0 — положительный корень уравнения

δ2 = 2a− bνeδ2τ/2, (25)

ϕ1,max = max
t∈[−τ,0]

ϕ1(t),

2) если t > τ , то

0 ≤ x2(t) ≤
(
√
U2(0, ϕ1, ϕ2) + bν

(
ϕ2

1,max

k1 + ϕ1,max

)
(eδ2τ/2 − 1)

δ2

)
e−δ2t/2

+ bν

(
U1(0, ϕ1)

k1 +
√
U1(0, ϕ1)

)
(e−δ1(t−τ)/2 − e−δ2(t−τ)/2)

(δ2 − δ1)
. (26)

Доказательство. Если ϕ1(t) = 0 при t ∈ [−τ, 0], то x1(t) = 0 при t > 0 и

оценки (23), (26) на функцию x2(t) следуют из теоремы 1.

В дальнейшем будем предполагать, что ϕ1(t) 6≡ 0, t ∈ [−τ, 0]. Отсюда, в

частности, вытекают неравенства x1(t) > 0, x2(t) > 0 при всех t > 0.
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Рассмотрим функционал Ляпунова — Красовского следующего вида:

U2(t, x1, x2) = x2
2(t) +

t∫

t−τ

p2e
−δ2(t−s)x2

2(s)h0(x1(s), x2(s)) ds, (27)

где h0(x1, x2) = k2

k2+x1+x2
. Продифференцируем его вдоль решения начальной

задачи (20), (21):

d

dt
U2(t, x1, x2) = 2x2(t)

(
bν

2

(
x2

1(t− τ)
k1 + x1(t− τ)

+ x2(t− τ)
)

× h0(x1(t− τ), x2(t− τ))− ax2(t)

)

+ p2x
2
2(t)h0(x1(t), x2(t)) − p2e

−δ2τx2
2(t− τ)h0(x1(t− τ), x2(t− τ))

− δ2
t∫

t−τ

p2e
−δ2(t−s)x2

2(s)h0(x1(s), x2(s)) ds.

Учитывая неравенства

bνx2(t)x2(t− τ)− p2e
−δ2τx2

2(t− τ) ≤
eδ2τ

p2

(
bν

2

)2

x2
2(t),

h0(x1(ξ), x2(ξ)) ≤ 1, ξ ≥ −τ,
и используя обозначение (24) величины p2, отсюда получим оценку

d

dt
U2(t, x1, x2) ≤ bνx2(t)

(
x2

1(t− τ)
k1 + x1(t− τ)

)
− (2a− bνeδ2τ/2)x2

2(t)

− δ2
t∫

t−τ

p2e
−δ2(t−s)x2

2(s)h0(x1(s), x2(s)) ds.

В силу определения (25) величины δ2 и определения функционала U2(t, x1, x2)

из этой оценки следует неравенство

d

dt
U2(t, x1, x2) ≤ bν

(
x2

1(t− τ)
k1 + x1(t− τ)

)√
U2(t, x1, x2)− δ2U2(t, x1, x2),

при этом U2(t, x1, x2) > 0 при всех t > 0. Следовательно, это неравенство можно

переписать в виде

d

dt
(
√
U2(t, x1, x2)) ≤

bν

2

(
x2

1(t− τ)
k1 + x1(t− τ)

)
− δ2

2

√
U2(t, x1, x2).

Отсюда нетрудно установить оценку

x2(t) ≤
√
U2(t, x1, x2) ≤

√
U2(0, ϕ1, ϕ2)e

−δ2t/2

+
bν

2

t∫

0

e−δ2(t−s)/2

(
x2

1(s− τ)
k1 + x1(s− τ)

)
ds. (28)
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1. Вначале рассмотрим случай t ∈ [0, τ ]. Учитывая, что при s ∈ (0, t)

справедливо x1(s− τ) = ϕ1(s− τ) ≤ ϕ1,max, из неравенства (28) получим оценку

x2(t) ≤


√U2(0, ϕ1, ϕ2) +

bν

2

τ∫

0

eδ2s/2
(

ϕ2
1(s− τ)

k1 + ϕ1(s− τ)

)
ds


 e−δ2t/2

≤
(√

U2(0, ϕ1, ϕ2) + bν

(
ϕ2

1,max

k1 + ϕ1,max

)
(eδ2τ/2 − 1)

δ2

)
e−δ2t/2.

Неравенство (23) доказано.

2. Теперь предположим, что t > τ . В этом случае оценку (28) можно

переписать в виде

x2(t) ≤


√U2(0, ϕ1, ϕ2) +

bν

2

τ∫

0

eδ2s/2
(

ϕ2
1(s− τ)

k1 + ϕ1(s− τ)

)
ds


 e−δ2t/2

+
bν

2

t∫

τ

e−δ2(t−s)/2

(
x2

1(s− τ)
k1 + x1(s− τ)

)
ds.

Первое слагаемое оценивается так же, как и в предыдущем случае. Оценим

второе слагаемое. Для этого воспользуемся неравенством (22). Имеем

bν

2

t∫

τ

e−δ2(t−s)/2

(
x2

1(s− τ)
k1 + x1(s− τ)

)
ds

≤ bν

2

(
U1(0, ϕ1)

k1 +
√
U1(0, ϕ1)

) t∫

τ

e−δ2(t−s)/2e−δ1(s−τ)/2 ds

= bν

(
U1(0, ϕ1)

k1 +
√
U1(0, ϕ1)

)
(e−δ1(t−τ)/2 − e−δ2(t−τ)/2)

(δ2 − δ1)
.

Отсюда вытекает оценка (26).

Теорема доказана.

Замечание. С биологической точки зрения оценки (22), (23), (26), а так-

же оценки вида (19) характеризуют скорость вымирания всей популяции при

условии, что особей умирает больше, чем доживает до взрослого возраста.

3. Оценки скорости сходимости

к положению равновесия (x∗
1
, x∗

2
)

В этом разделе будем предполагать, что выполнено условие a < bν, гаран-

тирующее асимптотическую устойчивость положения равновесия (x∗1, x
∗
2) систе-

мы (20), где x∗1 и x∗2 определены в (17), (18). Получим оценки для решения

(x1(t), x2(t)) начальной задачи (20), (21), характеризующие скорость сходимо-

сти к положению равновесия (x∗1, x
∗
2). Сделаем замену переменных

x1(t) = x∗1 + y1(t), x2(t) = x∗2 + y2(t).
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Тогда начальная задача (20), (21) преобразуется к виду

d

dt
y1(t) =

a2

bν
y1(t− τ)

( bνk1

a
bνk1

a + y1(t− τ)

)
− ay1(t),

d

dt
y2(t) = g(y1(t− τ))h(y1(t− τ), y2(t− τ))

+

(
bν

2
− ax∗2

k2

)
y2(t− τ)h(y1(t− τ), y2(t− τ))− ay2(t),

(29)

y1(t) = ϕ1(t)− x∗1 ≥ −x∗1, t ∈ [−τ, 0],

y1(+0) = ϕ1(0)− x∗1 ≥ −x∗1,
y2(t) = ϕ2(t)− x∗2 ≥ −x∗2, t ∈ [−τ, 0],

y2(+0) = ϕ2(0)− x∗2 ≥ −x∗2,

(30)

где

g(y1) =
bν

2

(
(x∗1 + y1)

2

k1 + x∗1 + y1
− (x∗1)

2

k1 + x∗1

)
− ax∗2

k2
y1, (31)

h(y1, y2) =
k2

k2 + x∗1 + x∗2 + y1 + y2
. (32)

Для первой компоненты решения y1(t) оценки скорости сходимости были

получены в работе [12]. Приведем соответствующий результат. Вначале введем

обозначения:

ϕ1,min = min
t∈[−τ,0]

ϕ1(t), ϕ1,max = max
t∈[−τ,0]

ϕ1(t).

Справедлива следующая

Теорема 3 [12]. Пусть выполнено условие a < bν.

1 Если ϕ1,min ≥ x∗1, то для первой компоненты решения y1(t) начальной

задачи (29), (30) справедливы оценки

0 ≤ y1(t) ≤
√
V0(0, ϕ1 − x∗1)e−ε0t/2, t > 0,

где

V0(0, ϕ1−x∗1) = (ϕ1(0)−x∗1)2 +

0∫

−τ

q0e
−ε0(t−s)(ϕ1(s)−x∗1)2

( bνk1

a
bνk1

a + ϕ1(s)− x∗1

)
ds,

q0 =
a2

bν
eε0τ/2,

ε0 > 0 — положительный корень уравнения

ε0 =
2a

bν
(bν − aeε0τ/2).

2 Если 0 < ϕ1,min < x∗1, ϕ1,max > x∗1, то для первой компоненты решения

y1(t) начальной задачи (29), (30) справедливы оценки

−
√
V1(0, ϕ1 − x∗1)e−ε1t/2 ≤ y1(t) ≤

√
V1(0, ϕ1 − x∗1)e−ε1t/2, t > 0,
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где

V1(0, ϕ1−x∗1) = (ϕ1(0)−x∗1)2 +

0∫

−τ

q1e
−ε1(t−s)(ϕ1(s)−x∗1)2

( bνk1

a
bνk1

a + ϕ1(s)− x∗1

)
ds,

q1 =
a2

bν
eε1τ/2,

ε1 > 0 — положительный корень уравнения

ε1 = 2a

(
1− eε1τ/2

(
k1

k1 + ϕ1,min

))
.

3 Если 0 < ϕ1,min < x∗1, ϕ1,max ≤ x∗1, то для первой компоненты решения

y1(t) начальной задачи (29), (30) справедливы оценки

−
√
V1(0, ϕ1 − x∗1)e−ε1t/2 ≤ y1(t) ≤ 0, t > 0.

Следствие [12]. Пусть выполнены условия a < bν и ϕ1,min > 0. Тогда

для первой компоненты решения y1(t) начальной задачи (29), (30) справедливо

неравенство

|y1(t)| ≤
√
V (0, ϕ1 − x∗1)e−εt/2, t > 0, (33)

где

V (0, ϕ1 − x∗1) = (ϕ1(0)− x∗1)2 +

0∫

−τ

qe−ε(t−s)(ϕ1(s)− x∗1)2
( bνk1

a
bνk1

a + ϕ1(s)− x∗1

)
ds,

q =
a2

bν
eετ/2, ε = min{ε0, ε1}.

Перейдем к получению оценок для второй компоненты решения y2(t). Вна-

чале сформулируем вспомогательное утверждение.

Лемма. Пусть выполнено условие a < bν. Тогда справедливы следующие

неравенства:

0 <

(
bν

2
− ax∗2

k2

)(
k2

k2 + x∗1

)
< a, (34)

где x∗1 > 0 и x∗2 > 0 определены в (17), (18).

Доказательство. Оценки (34) получаются из формул (17), (18) путем

несложных арифметических преобразований.

Лемма доказана.

Сформулируем основной результат данного раздела.
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Теорема 4. Пусть выполнено условие a < bν и (y1(t), y2(t)) — решение

начальной задачи (29), (30) с начальной вектор-функцией (ϕ1(t)−x∗1 , ϕ2(t)−x∗2)
такой, что ϕ1,min > 0. Тогда для второй компоненты решения y2(t) справедливы

следующие оценки:

1) если t ∈ [0, τ ], то

|y2(t)| ≤ eJ0(
√
W (0, ϕ1 − x∗1, ϕ2 − x∗2) + κ0ψ1,max)e

−ωt/2, (35)

где

W (0, ϕ1 − x∗1, ϕ2 − x∗2) = (ϕ2(0)− x∗2)2

+

0∫

−τ

reωs(ϕ2(s)− x∗2)2
(

k2

k2 + ϕ1(s) + ϕ2(s)

)
ds, (36)

r =

(
bν

2
− ax∗2

k2

)
eωτ/2,

ω > 0 — положительный корень уравнения

ω = 2

(
a−

(
bν

2
− ax∗2

k2

)(
k2

k2 + x∗1

)
eωτ/2

)
, (37)

J0 =
1

2

(
bν

2
− ax∗2

k2

)
eωτ/2

k2 + x∗1

(
τψ1,max +

2

ε
(1− e−ετ/2)

√
V (0, ϕ1 − x∗1)

)
, (38)

κ0 =

(
bν

2
+
ax∗2
k2

)
2

ω
(eωτ/2 − 1), (39)

ψ1,max = max
t∈[−τ,0]

|ϕ1(t)− x∗1|, (40)

2) если t > τ , то

|y2(t)| ≤ eJ((
√
W (0, ϕ1 − x∗1, ϕ2 − x∗2) + κ0ψ1,max)e

−ωt/2

+ σ0

√
V (0, ϕ1 − x∗1)(t− τ)e−µ(t−τ)/2), (41)

где

J =
1

2

(
bν

2
− ax∗2

k2

)
eωτ/2

k2 + x∗1

(
τψ1,max +

4

ε

√
V (0, ϕ1 − x∗1)

)
, (42)

σ0 =

(
bν

2
+
ax∗2
k2

)
, (43)

µ = min{ω, ε}. (44)

Доказательство. Рассмотрим функционал Ляпунова — Красовского сле-

дующего вида:

W (t, y1, y2) = y2
2(t) +

t∫

t−τ

re−ω(t−s)y2
2(s)h(y1(s), y2(s)) ds, (45)
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где h(y1, y2) определено в (32). Продифференцируем его вдоль решения началь-

ной задачи (29), (30):

d

dt
W (t, y1, y2) = 2y2(t)

(
g(y1(t− τ))h(y1(t− τ), y2(t− τ))

+

(
bν

2
− ax∗2

k2

)
y2(t− τ)h(y1(t− τ), y2(t− τ)) − ay2(t)

)

+ ry2
2(t)h(y1(t), y2(t))− re−ωτy2

2(t− τ)h(y1(t− τ), y2(t− τ))

− ω
t∫

t−τ

re−ω(t−s)y2
2(s)h(y1(s), y2(s)) ds.

Учитывая неравенства

2

(
bν

2
− ax∗2

k2

)
y2(t)y2(t− τ)− re−ωτy2

2(t− τ) ≤
eωτ

r

(
bν

2
− ax∗2

k2

)2

y2
2(t),

h(y1(ξ), y2(ξ)) ≤
k2

k2 + x∗1 + y1(ξ)
, ξ ≥ −τ,

и используя обозначение (36) величины r, отсюда получим оценку

d

dt
W (t, y1, y2) ≤ 2|y2(t)||g(y1(t− τ))|

(
k2

k2 + x∗1 + y1(t− τ)

)

−
(

2a−
(
bν

2
− ax∗2

k2

)
eωτ/2

(
k2

k2 + x∗1 + y1(t− τ)
+

k2

k2 + x∗1 + y1(t)

))
y2
2(t)

− ω
t∫

t−τ

re−ω(t−s)y2
2(s)h(y1(s), y2(s)) ds.

В силу определения (37) величины ω и определения (45) функционалаW (t, y1, y2)

данное неравенство преобразуется к виду

d

dt
W (t, y1, y2) ≤ 2|y2(t)||g(y1(t− τ))|

(
k2

k2 + x∗1 + y1(t− τ)

)

−
(
bν

2
− ax∗2

k2

)
eωτ/2

k2 + x∗1

(
k2y1(t− τ)

k2 + x∗1 + y1(t− τ)
+

k2y1(t)

k2 + x∗1 + y1(t)

)
y2
2(t)

− ωW (t, y1, y2).

Отсюда, используя неравенства

k2

k2 + x∗1 + y1(ξ)
≤ 1, ξ ≥ −τ, y2

2(t) ≤W (t, y1, y2),

получим оценку

d

dt
W (t, y1, y2) ≤ 2|g(y1(t− τ))|

√
W (t, y1, y2)

+

[(
bν

2
− ax∗2

k2

)
eωτ/2

k2 + x∗1
(|y1(t− τ)|+ |y1(t)|) − ω

]
W (t, y1, y2).



Оценки решений в модели динамики популяции рептилий 61

Теперь оценим |g(y1(t− τ))|. Учитывая явный вид (31) функции g(y1), получим

представление

g(y1) =

(
bν

2

(
k1x

∗
1 + (x∗1 + y1)(k1 + x∗1)

(k1 + x∗1 + y1)(k1 + x∗1)

)
− ax∗2

k2

)
y1.

Следовательно,

|g(y1(t− τ))| ≤
(
bν

2
+
ax∗2
k2

)
|y1(t− τ)|.

Итак, для производной от функционала W (t, y1, y2) справедлива следующая

оценка:

d

dt
W (t, y1, y2) ≤ β(t)

√
W (t, y1, y2) + (γ(t)− ω)W (t, y1, y2),

где

β(t) = 2

(
bν

2
+
ax∗2
k2

)
|y1(t− τ)|, (46)

γ(t) =

(
bν

2
− ax∗2

k2

)
eωτ/2

k2 + x∗1
(|y1(t− τ)| + |y1(t)|). (47)

Отсюда вытекает неравенство

|y2(t)| ≤
√
W (t, y1, y2) ≤ exp


1

2

t∫

0

γ(ξ) dξ




×



√
W (0, ϕ1 − x∗1, ϕ2 − x∗2)e−ωt/2 +

1

2

t∫

0

e−ω(t−s)/2β(s) ds


 . (48)

1. Вначале рассмотрим случай t ∈ [0, τ ]. Из неравенства (48) получим

оценку

|y2(t)| ≤ exp


1

2

τ∫

0

γ(ξ) dξ




×



√
W (0, ϕ1 − x∗1, ϕ2 − x∗2) +

1

2

τ∫

0

eωs/2β(s) ds


 e−ωt/2. (49)

Воспользуемся определением (47) функции γ(t), определением (40) величины

ψ1,max и оценкой (33):

1

2

τ∫

0

γ(ξ) dξ =
1

2

(
bν

2
− ax∗2

k2

)
eωτ/2

k2 + x∗1

τ∫

0

(|ϕ1(ξ − τ)− x∗1|+ |y1(ξ)|) dξ

≤ 1

2

(
bν

2
− ax∗2

k2

)
eωτ/2

k2 + x∗1

τ∫

0

(ψ1,max +
√
V (0, ϕ1 − x∗1)e−εξ/2) dξ = J0, (50)
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где J0 определено в (38). Далее, учитывая определение (46) величины β(t),

нетрудно установить неравенство

1

2

τ∫

0

eωs/2β(s) ds =

(
bν

2
+
ax∗2
k2

) τ∫

0

eωs/2|ϕ1(s− τ)− x∗1| ds ≤ κ0ψ1,max, (51)

где κ0 определено в (39). Из неравенств (49)–(51) вытекает оценка (35).

2. Теперь предположим, что t > τ . Используя определение (47) функции

γ(t), определение (40) величины ψ1,max и неравенство (33), получим оценку

1

2

t∫

0

γ(ξ) dξ =
1

2

(
bν

2
− ax∗2

k2

)
eωτ/2

k2 + x∗1

×




τ∫

0

|ϕ1(ξ − τ) − x∗1| dξ +

t∫

τ

|y1(ξ − τ)| dξ +

t∫

0

|y1(ξ)| dξ




≤ 1

2

(
bν

2
− ax∗2

k2

)
eωτ/2

k2 + x∗1


τψ1,max + 2

√
V (0, ϕ1 − x∗1)

∞∫

0

e−εξ/2 dξ


 = J, (52)

где J определено в (42). Далее, учитывая определение (46) величины β(t),

нетрудно установить неравенство

1

2

t∫

0

e−ω(t−s)/2β(s) ds =

(
bν

2
+
ax∗2
k2

)

×




τ∫

0

e−ω(t−s)/2|ϕ1(ξ − τ) − x∗1| ds+

t∫

τ

e−ω(t−s)/2|y1(s− τ)| ds




≤ κ0ψ1,maxe
−ωt/2 + σ0

√
V (0, ϕ1 − x∗1)

t∫

τ

e−ω(t−s)/2e−ε(s−τ)/2 ds

≤ κ0ψ1,maxe
−ωt/2 + σ0

√
V (0, ϕ1 − x∗1)(t− τ)e−µ(t−τ)/2, (53)

где κ0, σ0, µ определены в (39), (43), (44). Из неравенств (48), (52), (53) вытекает

оценка (41).

Теорема доказана.

Замечание. С биологической точки зрения оценки (33), (35), (41), а так-

же оценки вида (19) характеризуют скорость стабилизации численности всей

популяции к постоянному значению при условии, что особей умирает меньше,

чем доживает до взрослого возраста.
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В ДВУХСКОРОСТНОЙ ГИДРОДИНАМИКЕ

М. В. Урев, Х. Х. Имомназаров,
И. К. Искандаров, С. Б. Куйлиев

Аннотация. В полуплоскости R2
+ рассматривается стационарная система двух-

скоростной гидродинамики с одним давлением и однородными дивергентными и
неоднородными краевыми условиями для двух скоростей. Такая система является
переопределенной. Решение данной системы сводится к последовательному реше-
нию двух краевых задач: задачи Стокса для одной скорости и давления и переопре-
деленной краевой задачи для векторного уравнения Пуассона для другой скорости.
При надлежащем выборе функциональных пространств доказаны существование и
единственность обобщенного решения с соответствующей оценкой устойчивости.

DOI: 10.25587/2411-9326-2023-4-66-80

Ключевые слова: переопределенная система, задача Стокса, уравнение Пуассо-
на, анизотропное весовое пространство Соболева, полуплоскость, вязкая жидкость.

Введение

В данной работе рассматривается краевая задача в полуплоскости R2
+ =

{x = (x1, x2) ∈ R2 : x2 > 0} двумерного евклидова пространства с границей

S = {(x1, 0) : x1 ∈ R} для линеаризованной стационарной системы уравнений

двухскоростной гидродинамики с неоднородными краевыми условиями нели-

нейной модели В. Н. Доровского [1]

ν1�u1 −∇p = −ρf , div u1 = 0 в R2
+, u1|S = a1(x1), (1)

ν2�u2 −∇p = −ρf , div u2 = 0 в R2
+, u2|S = a2(x1), (2)

и условием ограниченности |ui(x1, x2)| при |x| → +∞, где f = (f1, f2) — мас-

совая сила, ui = (ui1, ui2), i = 1, 2, ∇ — оператор градиента по x, ρ = ρ1 + ρ2,

ρi — парциальная плотность i-й фазы, ν1 и ν2 — соответствующие сдвиговые

вязкости фаз.

Работа Искандарова И. К. выполнена в Дальневосточном центре математических иссле-
дований при финансовой поддержке Минобрнауки России, соглашение № 075-02-2023-932 от
16 февраля 2023 г. по реализации программ развития региональных научно-образовательных
математических центров.
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Решение системы (1), (2) с одним давлением p сводится к последовательно-

му решению двух краевых задач. Либо сначала решается задача Стокса (1) для

u1 и p, а затем определяется скорость u2 как решение задачи (2) при найденном

из (1) давлении p:

�u2 = ν−1
2 (∇p− ρf), div u2 = 0 в R2

+, u2|S = a2(x1). (3)

Другими словами, давление p перенормирует массовую силу f и поле скорости

u2 является соленоидальным решением краевой задачи для векторного уравне-

ния Пуассона. Либо сначала определяются u2 и p из задачи Стокса (2), а затем

при известном p определяется u1 из (1). Нетрудно видеть, что последователь-

ное решение системы (1), (2) в любом порядке приводит к одному и тому же

результату. В стационарном случае, когда имеет место равновесие фаз по дав-

лению и диссипация энергии происходит только за счет вязкостей фаз, система

уравнений (1), (2) оказывается переопределенной [2]. Система (1), (2) с неод-

нородными дивергентными и граничными условиями в ограниченных областях

� ⊂ R3 рассматривалась в работе [3]. В [4] получено классическое решение

второй краевой задачи для стационарной системы типа Стокса (1), (2) в полу-

пространстве R3
+. В [5] двумерная система (1), (2) изучается в полуплоскости

R
2
+ при однородных дивергентных и краевых условиях.

В [6] рассмотрена задача в полупространстве для системы односкоростной

гидродинамики для случая регулярных данных в пространстве функций конеч-

ной гладкости. В [7] также рассмотрена задача в полупространстве для системы

односкоростной гидродинамики в весовых пространствах Соболева.

Обобщенное решение системы (1), (2) так же, как и решение задачи Сток-

са в двумерных неограниченных областях, в частности в полуплоскости, име-

ет существенное отличие от трехмерного случая [8, 9]. Именно, в двумерном

случае для скоростей невозможно удовлетворить наперед поставленным усло-

виям на бесконечности и ставится условие ограниченности на бесконечности.

В [10] показано, что обобщенное решение u1 задачи Стокса (1), принадлежащее

V(R2
+), имеет вполне определенный предел lim

x2→+∞
u1(x) = u∞1 = const, если

f имеет компактный носитель или достаточно быстро убывает при |x| → +∞.

Таким образом, вектор u∞1 определяется f и граничной функцией a1 и не мо-

жет задаваться произвольно. Напротив, в трехмерном случае на бесконечности

возможно задание произвольного постоянного вектора [9, с. 58].

В п. 2 приводятся вспомогательные сведения. Выводится неравенство типа

Лэре в полуплоскости и вводится анизотропное весовое пространство Соболева.

Рассматривается решение уравнения Пуассона в полуплоскости, что является

наряду с дивергентным уравнением необходимым шагом к решению уравнений

Стокса в полуплоскости. Неоднородная задача Стокса (1) сводится к однород-

ной задаче.

В п. 3 показана разрешимость однородной краевой задачи Стокса, получен-

ной в п. 2, и разрешимость переопределенной краевой задачи для векторного

уравнения Пуассона. Там же установлены некоторые основные свойства опе-
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ратора дивергенции в полуплоскости, т. е. теорема о следе и соответствующая

формула Грина.

2. Вспомогательные сведения

Векторы и пространства, состоящие из вектор-функций u = (u1, u2), будем

обозначать полужирными буквами. Кроме того, будем применять следующие

обозначения:

x = (x1, x2), |u| = (u2
1 + u2

2)
1/2, |ux| = |∇u| =

(
2∑

i,k=1

u2
ixk

)1/2

.

Через D(�) обозначим основное пространство всех бесконечно дифферен-

цируемых финитных в области � ⊆ R2 функций [11, с. 85], через D ′(�) —

двойственное пространство, называемое пространством обобщенных функций,

D(�) := (D(�))2, L2(�) := (L2(�))2 — гильбертово пространство вектор-функ-

ций u(x) с компонентами ui из L2(�). Скалярное произведение в L2(�) опреде-

ляется равенством

(u,v) =

∫

�

u · v dx =

∫

�

(u1v1 + u2v2) dx.

Определим D(�) и D(�):

D(�) := {φ|� : φ ∈ D(R2)}, D(�) := (D(�))2.

Пусть

ω(x2) = 1/((3 + x2) ln(3 + x2)), L2,ω(R2
+) = {u ∈ D

′(R2
+) : ωu ∈ L2(R

2
+)}.

Пусть u(x) ∈ D(R2
+). Тогда для такой u(x) верно неравенство

∫

R
2
+

u2(x)

(3 + x2)2 ln2(3 + x2)
dx ≤ 4

∫

R
2
+

u2
x2

(x) dx. (4)

Действительно,

2

∫

R
2
+

ux2
u

1

(3 + x2) ln(3 + x2)
dx =

∫

R
2
+

∂u2

∂x2

1

(3 + x2) ln(3 + x2)
dx

= −
∫

R
2
+

u2 ∂

∂x2

(
1

(3 + x2) ln(3 + x2)

)
dx

=

∫

R
2
+

u2

(3 + x2)2 ln(3 + x2)
dx +

∫

R
2
+

u2

(3 + x2)2 ln2(3 + x2)
dx

≥
∫

R
2
+

u2

(3 + x2)2 ln2(3 + x2)
dx.
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Применим неравенство Коши — Буняковского:
∫

R
2
+

u2

(3 + x2)2 ln2(3 + x2)
dx ≤ 2

∫

R
2
+

ux2
u

1

(3 + x2) ln(3 + x2)
dx

≤ 2

(∫

R
2
+

u2

(3 + x2)2 ln2(3 + x2)
dx

)1/2(∫

R
2
+

u2
x2
dx

)1/2

.

Отсюда следует неравенство (4).

Введем в D(R2
+) скалярное произведение

[u, v] =

∫

R
2
+

(∇u · ∇v) dx =

∫

R
2
+

(ux1
vx1

+ ux2
vx2

) dx. (5)

Из неравенства (4) видно, что (5) действительно определяет скалярное произ-

ведение в D(R2
+), которому соответствует норма

‖u‖D(R2
+
) =

√
[u, u].

Обозначим через V 1
0 (R2

+) пополнение D(R2
+) в метрике, соответствующей это-

му скалярному произведению и с соответствующей этому замыканию нормой

‖u‖V 1
0

(R2
+

), u ∈ V 1
0 (R2

+), после чего V 1
0 (R2

+) становится гильбертовым простран-

ством со скалярным произведением (5). После замыкания по норме простран-

ства V 1
0 (R2

+), неравенство (4) становится верным для всех u ∈ V 1
0 (R2

+).

Покажем, что на каждой линии �h = (x2 = h) для п.в. h > 0 функция

u ∈ V 1
0 (R2

+) квадратично суммируема и u = 0 как элемент L2(S).

Для u ∈ D(R2
+) имеем

[u(x1, h)]2 =




h∫

0

ux2
dx2




2

≤ h
h∫

0

u2
x2
dx2 ≤ h

+∞∫

0

u2
x2
dx2. (6)

Проинтегрируем обе части неравенства (6) по линии �h:
∫

R

u2(x1, h) dx1 ≤ h
∫

R
2
+

u2
x2
dx ≤ h

∫

R
2
+

|∇u|2 dx = h‖u‖2V 1
0

(R2
+

). (7)

В неравенстве (7) выполним замыкание в норме пространства V 1
0 (R2

+), после

чего (7) становится верным при п.в. h > 0 для всех u ∈ V 1
0 (R2

+). Теперь из (7)

следует, что u|�h ∈ L2(�h), u ∈ V 1
0 (R2

+) при п.в. h > 0 и

lim
h→0

+∞∫

−∞

u2(x1, h) dx1 = 0.

Обозначим через V −1(R2
+) пространство ограниченных линейных функци-

оналов над V 1
0 (R2

+). Рассмотрим для уравнения Пуассона в R2
+ обобщенную

постановку в V 1
0 (R2

+) задачи Дирихле

−�u = f в R2
+, u|S = 0.
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Для f ∈ V −1(R2
+) требуется найти u ∈ V 1

0 (R2
+):

[u, v] = f(v) ∀v ∈ V 1
0 (R2

+). (8)

Непрерывность билинейной формы [u, v] : V 1
0 (R2

+) × V 1
0 (R2

+) → R следует из

неравенства Буняковского, а коэрцитивность — из равенства

[u, u] = ‖∇u‖2
L2(R2

+
) = ‖u‖2V 1

0
(R2

+
).

Теперь существование и единственность решения u ∈ V 1
0 (R2

+) задачи (8) следует

из леммы Лакса — Мильграма с оценкой

‖u‖V 1
0

(R2
+

) = ‖∇u‖L2(R2
+

) ≤ ‖f‖V−1(R2
+

).

Функционал f в правой части (8) часто имеет вид обычной функции f(x),

которая определяет функционал как элемент пространства V −1(R2
+), если f(x)

∈ L2,ω−1(R2
+) и

f(v) = (f, v) ∀v ∈ V 1
0 (R2

+),

где (·, ·) — скалярное произведение в L2(R
2
+). Для таких f покажем непрерыв-

ность линейной формы (f, v) на V 1
0 (R2

+). Из неравенства (4) следует, что

‖v‖L2,ω(R2
+

) ≤ 2‖v‖V 1
0

(R2
+

) ∀v ∈ V 1
0 (R2

+). (9)

Применяя неравенство Буняковского и неравенство (9), получим

|(f, v)| = |(ω−1f, ωv)| ≤ ‖f‖L
2,ω−1(R2

+
)‖v‖L2,ω(R2

+
) ≤ C‖v‖V 1

0
(R2

+
),

где C = 2‖f‖L
2,ω−1(R2

+
).

Введем гильбертово пространство V 1(R2
+):

V 1(R2
+) :=

{
u ∈ D

′(R2
+) : u ∈ L2,ω(R2

+), ∇u ∈ L2(R
2
+)
}
,

снабженное нормой

‖u‖1,ω = ‖u‖L2,ω(R2
+

) + ‖∇u‖L2(R2
+

), u ∈ V 1(R2
+).

Из определения пространства V 1(R2
+) и теоремы Фубини следует, что на каждой

линии �h для п.в. h ≥ 0 функция u ∈ V 1(R2
+) квадратично суммируема.

Рассмотрим вопрос о следе функции u ∈ V 1(R2
+) на линии x2 = 0. Пусть

a > 0 и φa(t) ∈ C∞([0,∞)) определяется как φa(t) = 1, если 0 ≤ t ≤ a, 0 ≤
φa(t) ≤ 1, если t ∈ [a, 2a], φa(t) = 0, если t ≥ 2a. Для каждой u ∈ V 1(R2

+)

функция ua(x1, x2) = φa(x2)u(x1, x2) принадлежит H1(R2
+) и γ0ua — след ua на

S — совпадает с γ0u — следом u на S. По теореме о следах функций из Hk(Rn
+)

[12, с. 87] γ0u = γ0ua ∈ H1/2(R) и

‖γ0u‖H1/2(R) ≤ C‖ua‖H1(R2
+

) ≤ C1‖u‖V 1(R2
+

).

Справедлива также «обратная» теорема [12, с. 88], которая для нашего

частного случая пространства H1(R2
+) формулируется так: существует линей-

ное ограниченное отображение

Z : H1/2(R)→ H1(R2
+)
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такое, что если g ∈ H1/2(R), то γ0u = g для u = Zg. Отсюда следует, что

существует линейное ограниченное отображение

Z̃ : H1/2(R)→ V 1(R2
+)

такое, что если g ∈ H1/2(R), то γ0ũ = g для ũ = Z̃g.

Сведем решение неоднородной задачи Стокса (1) относительно (u1, p) к

решению однородной задачи Стокса для пары (v1, p). Для этого представим

u1 в виде суммы: u1 = v1 + z
(1)
0 + z

(1)
1 . Пусть граничное условие a1(x1) в

(1) принадлежит H1/2(R) = (H1/2(R))2. Тогда для z
(1)
0 = Z̃a1 ∈ V1(R2

+) =

(V 1(R2
+))2 имеем γ0z

(1)
0 = a1(x1).

Для определения z
(1)
1 рассмотрим следующую дивергентную задачу: тре-

буется найти z
(1)
1 ∈ V1

0(R
2
+) =

(
V 1

0 (R2
+)
)2

такую, что

div z
(1)
1 = − div z

(1)
0 в R

2
+, (10)

∥∥z(1)
1

∥∥
V1

0
(R2

+
)
≤ C

∥∥div z
(1)
0

∥∥
L2(R2

+
)
. (11)

Имеем z
(1)
0 ∈ V1(R2

+), откуда div z
(1)
0 ∈ L2(R

2
+). Решение более общей дивер-

гентной задачи, чем (10), с соответствующей оценкой решения получено в явном

виде М. Е. Боговским [13, с. 65; 14]. Для нашего двумерного гильбертова случая

в R2
+ это будет соответствовать существованию решения задачи (10) в V1

0(R
2
+)

с оценкой (11).

Функцию v1 определим как решение следующей задачи Стокса с однород-

ными дивергентными и краевыми условиями:

ν1�v1 −∇p = −f1, div v1 = 0 в R2
+, v1|S = 0, (12)

где −f1 = −ρf − ν1�z(1), z(1) = z
(1)
0 + z

(1)
1 ∈ V1(R2

+), так как z
(1)
0 ∈ V1(R2

+)

и z
(1)
1 ∈ V1

0(R
2
+) ⊂ V1(R2

+). Линейный функционал �z(1) над пространством

V1
0(R

2
+) определяется формулой

〈�z(1),v〉 = −
∫

R
2
+

(∇z(1)(x) : ∇v(x)) dx = −
2∑

i,j=1

∫

R
2
+

∂z
(1)
i

∂xj

∂vi
∂xj

dx, v ∈ V1
0(R

2
+),

и является ограниченным на V1
0(R

2
+):

|〈�z(1),v〉| ≤ C‖v‖V1
0
(R2

+
), где C =

(∫

R
2
+

|∇z(1)|2 dx
)1/2

.

Пусть массовая сила f в (1) и (2) принадлежит V−1(R2
+), тогда f1 в (12) также

принадлежит V−1(R2
+).
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3. Обобщенное решение однородной системы (12)

Обозначим через J̇(R2
+) множество бесконечно дифференцируемых финит-

ных в R2
+ соленоидальных векторов. В J̇(R2

+) введем скалярное произведение

[u,v] =

∫

R
2
+

ux : vx dx =

∫

R
2
+

(ux1
· vx1

+ ux2
· vx2

) dx.

Из (4) получим неравенство

‖u‖L2,ω(R2
+

) ≤ 2‖ux‖(L2(R2
+

))2 , u ∈ C∞0 (R2
+), (13)

из которого следует, что [u,v] действительно определяет скалярное произведе-

ние в J̇(R2
+) ⊂ C∞0 (R2

+), которому соответствует норма

‖u‖
J̇(R2

+
) =

√
[u,u] ≡ ‖ux‖(L2(R2

+
))2 .

Обозначим через Z(R2
+) пополнение J̇(R2

+) по введенной норме с соответ-

ствующей этому замыканию нормой ‖u‖Z(R2
+

), u ∈ Z(R2
+). Легко видеть, что

Z(R2
+) является замкнутым подпространством в гильбертовом пространстве

вектор-функций V1
0(R

2
+) =

(
V 1

0 (R2
+)
)2

. После замыкания по норме простран-

ства V1
0(R

2
+) неравенство (13) становится верным для всех u ∈ V1

0(R
2
+).

Обозначим через Ẑ(R2
+) замкнутое подпространство в V1

0(R
2
+), определяе-

мое как

Ẑ(R2
+) =

{
v ∈ V1

0(R
2
+) : divv = 0

}
.

Хейвудом доказано [15, теорема 9], что Ẑ(R2
+) = Z(R2

+) (в его обозначениях

J∗0 (R2
+) = J0(R

2
+)).

Перейдем к рассмотрению однородной задачи Стокса (12) относительно па-

ры (v1, p). Введем линейный непрерывный оператор π ∈ L (V−1(R2
+);Z′(R2

+)):

〈πg,v〉 = 〈g,v〉, g ∈ V−1(R2
+), v ∈ Z(R2

+),

‖πg‖Z′(R2
+

) ≤ ‖g‖V−1(R2
+

).

В работах О. А. Ладыженской [8, 9] предложена и исследована обобщенная

формулировка задачи Стокса (12) в пространстве Z(�) для любых областей � ⊂
R

n, n = 2, 3 (� 6= R2), в частности, для � = R2
+: найти функцию v1 ∈ Z(R2

+),

для которой выполняется тождество

ν1[v1, z] = 〈πf1, z〉 ∀z ∈ Z(R2
+). (14)

Оказывается [8, 9], что (14) несет ту же информацию, что и система (12), и поз-

воляет полностью отделить нахождение v1 от p. Последующее нахождение p

следует из теоремы, доказанной О. А. Ладыженской [9, с. 42]. Из этой теоре-

мы следует разложение Вейля для случая ограниченной области с достаточно

гладкой границей [9, с. 41], которое также справедливо и для полуплоскости R2
+

[13, с. 43], а именно, пространство L2(R
2
+) раскладывается в прямую сумму

L2(R
2
+) =

◦
J(R2

+)⊕G(R2
+),
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где
◦
J(R2

+) — замыкание J̇(R2
+) по норме L2(R

2
+), а G(R2

+) — ортогональное

дополнение
◦
J(R2

+) в L2(R
2
+).

Для краткости обозначим через X = V1
0(R

2
+), M = L2(R

2
+), X′ = V−1(R2

+)

пространства с нормами ‖ · ‖X, ‖ · ‖M , ‖ · ‖X′ , и пусть 〈·, ·〉 — отношение двой-

ственности между элементами X′ и X. Теоретическое исследование задачи (12)

весьма просто: надо воспользоваться обобщенной формулировкой (14) и приме-

нить лемму Лакса — Мильграма. Другое дело, когда в рамках данного подхода

рассматривается численное решение методом конечных элементов. Тогда возни-

кают трудности с построением соленоидального конечноэлементного решения.

Чтобы обойти эти трудности, будем рассматривать для задачи (12) смешанную

обобщенную постановку в исходных переменных, при которой скорость ищется

во всем пространстве V1
0(R

2
+), а не в его соленоидальном подпространстве: для

заданной f1 ∈ X′ требуется найти вектор-функцию v1 ∈ X и функцию p ∈ M ,

удовлетворяющие равенствам
{
a1(v1,v) + b1(v, p) = 〈f1,v〉, v ∈ X,

b1(v1, q) = 0, q ∈M,
(15)

и оценке

‖v1‖X + ‖p‖M ≤ C‖f1‖X′ , (16)

где билинейные формы a1(·, ·) : X×X→ R и b1(·, ·) : X×M → R определяются

как

a1(u,v) = ν1

∫

R
2
+

(∇u(x) : ∇v(x)) dx = ν1

2∑

i,j=1

∫

R
2
+

∂ui
∂xj

∂vi
∂xj

dx, u,v ∈ X,

b1(v, q) = −
∫

R
2
+

q div v dx, v ∈ X, q ∈M.

Теорема 1. Для задачи Стокса (12) существует единственное обобщенное

решение (v1, p) ∈ V1
0(R

2
+)× L2(R

2
+) как решение системы (15) с оценкой (16).

Доказательство. Для доказательства существования и единственности

решения задачи (15) вместе с оценкой (16) нужно показать [16, с. 61 ], что били-

нейные формы a1(·, ·) и b1(·, ·) непрерывны, билинейная форма a1(·, ·) является

Z(R2
+)-эллиптичной, т. е. существует такая положительная постоянная α > 0,

что

a1(v,v) ≥ α‖v‖2X, v ∈ Z(R2
+), (17)

а билинейная форма b1(·, ·) удовлетворяет inf-sup условию: существует констан-

та β > 0 такая, что

inf
q∈M\{0}

sup
v∈X\{0}

b1(v, q)

‖v‖X‖q‖M
≥ β. (18)

Неравенство Z(R2
+)-эллиптичности (17) очевидно, так как

a1(v,v) = ν1‖v‖2X, v ∈ Z(R2
+).
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Для доказательства (18) рассмотрим следующую дивергентную задачу. Дана

q ∈M , требуется найти v0 ∈ X:

div v0 = q в R
2
+, (19)

‖v0‖X ≤ C‖q‖M . (20)

Решение более общей дивергентной задачи в Rn
+, n ≥ 2, с соответствующей оцен-

кой решения получено в явном виде М. Е. Боговским [13, с. 65; 14]. Для нашего

двумерного гильбертова случая это будет соответствовать существованию ре-

шения v0 ∈ X задачи (19) с оценкой (20). Пусть теперь q — любая функция из

M . Функции q сопоставим вектор-функцию −v0 ∈ X, где v0 — решение задачи

(19) с оценкой (20). Имеем

sup
v∈X\{0}

b1(v, q)

‖v‖X
≥ b1(v0, q)

‖v0‖X
≥ 1

C‖q‖M

∫

R
2
+

q2(x) dx =
1

C
‖q‖M ,

что доказывает (18) с β = C−1. Таким образом, получаем существование и

единственность обобщенного решения (v1, p) ∈ X × M задачи Стокса (15) с

оценкой (16). �

Перейдем к рассмотрению второй неоднородной системы уравнений (3) от-

носительно скорости u2 второй фазы жидкости с уже известным давлением

p ∈M . Аналогично сведению неоднородной задачи Стокса (1) к однородной за-

даче (12) выполним аналогичные действия для неоднородной задачи (3). Для

этого представим u2 в виде суммы: u2 = v2+z
(2)
0 +z

(2)
1 , где z

(2)
0 = Z̃a2 ∈ V1(R2

+),

а z
(2)
1 — решение дивергентной задачи, аналогичной задаче (10), (11): найти

вектор-функцию z
(2)
1 ∈ V1

0(R
2
+) такую, что

div z
(2)
1 = − div z

(2)
0 в R

2
+, (21)

∥∥z(2)
1

∥∥
X
≤ C

∥∥div z
(2)
0

∥∥
M
. (22)

Для p ∈ M = L2(R
2
+) градиент ∇p есть линейный непрерывный функционал

над пространством X = V1
0(R

2
+), действующий по правилу

〈∇p,v〉 = −
∫

R
2
+

p(x) div v(x) dx, v ∈ X,

т. е. ∇p ∈ X′ = V−1(R2
+).

Лемма 1. Справедливо неравенство

‖p‖M ≤ C‖∇p‖X′ , p ∈M,

где C > 0 — постоянная из неравенства (20).

Доказательство.

‖∇p‖X′ = sup
v∈X\{0}

〈∇p,v〉
‖v‖X

= sup
v∈X\{0}

−1

‖v‖X

∫

R
2
+

p(x) div v(x) dx.
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Для p ∈ M возьмем −v0 ∈ X, где v0 — решение дивергентной задачи (19) с

правой частью p и оценкой (20). Тогда

‖∇p‖X′ ≥
‖p‖2M
‖v0‖X

≥ C−1‖p‖M ∀p ∈M. �

Функцию v2 определим как решение следующей переопределенной задачи

для векторного уравнения Пуассона с однородными дивергентными и краевыми

условиями:

�v2 = −f2, div v2 = 0 в R2
+, v2|S = 0, (23)

где −f2 = ν−1
2 (∇p− ρf)−�z

(2)
0 −�z

(2)
1 , z

(2)
0 ∈ V1(R2

+), z
(2)
1 ∈ V1

0(R
2
+) ⊂ V1(R2

+).

Имеем ∇p ∈ X′ и в (23) правая часть −f2, как и в задаче (12), принадлежит

X′. Существование и единственность обобщенного решения переопределенной

задачи (23), следуя [8, 9], можно достаточно просто установить в замкнутом

подпространстве Z(R2
+) соленоидальных векторных функций пространства X.

Требуется найти v2 ∈ Z(R2
+):

[v2,v] = 〈πf2,v〉, v ∈ Z(R2
+). (24)

Имеем

[u,u] = ‖u‖2
X
, u ∈ Z(R2

+),

т. е. билинейная форма в левой части (24) Z(R2
+) коэрцитивна. Правая часть

в (24) есть линейный непрерывный функционал над элементами пространства

Z(R2
+). Тогда по лемме Лакса — Мильграма задача (24) имеет единственное

решение v2 ∈ Z(R2
+) и

‖v2‖X ≤ C‖f2‖X′ .
Однако для численного решения методом конечных элементов переопре-

деленной задачи (23) ее удобно расширить путем введения в первое уравнение

системы (23) дополнительного неизвестного слагаемого в виде градиента ска-

лярной функции с нулевым граничным условием. Более подробно для случая

ограниченной области см. [3, 17].

Введем гильбертово пространство Hω(div;R2
+):

Hω(div;R2
+) = {v ∈ D′(R2

+) : v ∈ L2(R
2
+), ω−1 div v ∈ L2(R

2
+)},

снабженное нормой

‖v‖Hω(div;R2
+

) =
(
‖v‖2

L2(R2
+

) + ‖ω−1 div v‖2L2(R2
+

)

)1/2
.

Лемма 2. D(R2
+) плотно в Hω(div;R2

+).

Доказательство основывается на следующей характеристике плотного

линеала D в гильбертовом пространстве V [18, с. 60]: линеал D плотен в V в

том и только в том случае, если любой непрерывный линейный функционал,

определенный на V и обращающийся в нуль на D, обращается в нуль также и

на V .
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Пусть L принадлежит (Hω(div;R2
+))′. По теореме Рисса существует l ∈

Hω(div;R2
+):

〈L ,u〉 = (l,u) + (ω−1 div l, ω−1 div u), u ∈ Hω(div;R2
+).

Предположим, что L обращается в нуль на D(R2
+), т. е.

(l,v) + (ω−1 div l, ω−1 div v) = 0 ∀v ∈ D(R2
+).

Для l = (l1, l2) и l3 = ω−2 div l обозначим через l̃ = (l̃1, l̃2) и l̃3 продолжение

функций li, i = 1, 3, нулем в R2. Тогда предыдущая формула может быть

переписана в виде
∫

R2

(l̃1v1 + l̃2v2 + l̃3 divv) dx = 0, v ∈ D(R2).

Это равенство показывает, что

l̃ = grad l̃3

в смысле обобщенных функций в R2. Так как l̃ ∈ L2(R
2), то l̃3 ∈ H1(R2) и по

теореме 1.2.20 из [16, с. 5] l3 ∈ H1
0 (R2

+). Тогда l3 — предел функций {ψn}n≥1 ⊂
D(R2

+) по норме пространства H1(R2
+) и окончательно получаем

〈L ,u〉 = lim
n→∞

{(gradψn,u) + (ψn, div u)} = 0 ∀u ∈ Hω(div;R2
+). �

Отметим, что аналогично доказательству леммы 2 можно показать, что

D(R2
+) плотно в V 1(R2

+). Ниже для f ∈ H−1/2(R), g ∈ H1/2(R) через 〈f, g〉−1/2,1/2

будем обозначать скалярное произведение между H−1/2(R) и H1/2(R).

Лемма 3. Отображение v = (v1, v2) → v2(x1, 0), определенное на D(R2
+),

можно продолжить до линейного непрерывного отображения Hω(div;R2
+) →

H−1/2(R) (также обозначаемого через v → v2(x1, 0)). Кроме того, имеет место

формула Грина

(v,∇ϕ) + (div v, ϕ) = −〈v2, ϕ〉−1/2,1/2, v ∈ Hω(div;R2
+), ϕ ∈ V 1(R2

+).

Доказательство. Пусть v ∈ D(R2
+) и ϕ ∈ D(R2

+). Тогда

(v,∇ϕ) + (div v, ϕ) = −
∫

R

v2ϕdx1.

Так как D(R2
+) плотно в V 1(R2

+), это равенство остается справедливым, когда

ϕ из V 1(R2
+) и v из D(R2

+). Поэтому

∣∣∣∣
∫

R

v2ϕdx1

∣∣∣∣ ≤ ‖v‖Hω(div;R2
+

)‖ϕ‖V 1(R2
+

), ϕ ∈ V 1(R2
+), v ∈ D(R2

+).
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Пусть g — произвольный элемент из H1/2(R). Возьмем ϕ = Z̃g ∈ V 1(R2
+) так,

что γ0ϕ = g (см. выше). Тогда
∣∣∣∣
∫

R

v2g dx1

∣∣∣∣ ≤ c0‖v‖Hω(div;R2
+

)‖g‖H1/2(R) ∀g ∈ H1/2(R), v ∈ D(R2
+),

где c0 — норма оператора Z̃. Следовательно,

g →
∫

R

v2(x1, 0)g(x1) dx1

— непрерывное линейное отображение из H1/2(R) в R. По теореме Рисса суще-

ствует f = f(v) ∈ H−1/2(R):
∫

R

v2(x1, 0)g(x1) dx1 = 〈f, g〉−1/2,1/2.

Отображение v→ f(v) линейно и

‖f‖H−1/2(R) ≤ c0‖v‖Hω(div;R2
+

), v ∈ D(R2
+).

Это доказывает, что отображение v → f(v) = v2(x1, 0), определенное в D(R2
+),

непрерывно в норме Hω(div;R2
+). Так как D(R2

+) плотно в Hω(div;R2
+), это

отображение может быть продолжено по непрерывности до отображения из

Hω(div;R2
+) в H−1/2(R). �
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Abstract: In the half-plane R2
+ we consider a stationary system of two-velocity hydro-

dynamics with one pressure and homogeneous divergent and inhomogeneous boundary
conditions for two velocities. Such system is overridden. The solution to this system is
reduced to the sequential solution of two boundary value problems: the Stokes problem
for one velocity and pressure and an overdetermined boundary value problem for the vec-
tor Poisson equation for the other speed. With an appropriate choice of function spaces,
the existence and uniqueness are proven for generalized solution with the corresponding
stability estimate.
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ЗАДАЧА РАСПРОСТРАНЕНИЯ ПОВЕРХНОСТНОЙ

ВОЛНЫ РЕЛЕЯ В ПОЛУПРОСТРАНСТВЕ

СРЕДЫ КОССЕРА В СЛУЧАЕ ОДНОРОДНЫХ

И УПРУГО–СТЕСНЕННЫХ ГРАНИЧНЫХ УСЛОВИЙ

Ю. М. Григорьев, A. A. Гаврильева

Аннотация. Исследуется задача о распространении поверхностной волны Рэлея в
бесконечном полупространстве в рамках микрополярной теории упругости. Пред-
полагается, что деформированное состояние среды описывается независимыми век-
торами перемещения и вращения (среда Коссера). Получено общее решение, опи-
сывающей распространение поверхностной волны Рэлея. Методом построения ма-
жорант показано, что не существует поверхностных волн Релэя в полупространстве
упругой среды Коссера, когда на поверхности заданы однородные граничные усло-
вия, соответствующие основным задачам классической теории упругости: «жесткая
заделка», «скользящая заделка», «жесткая сетка». Для случаев граничных усло-
вий, соответствующих задачам классической теории упругости: «свободная поверх-
ность», «упругого стеснения», методом построения мажорант показано, что суще-
ствует поверхностная волна Рэлея, когда моментные напряжения равны нулю на
поверхности, при этом фазовая скорость волны стремится к конечному пределу при
больших частотах волны; когда вектор вращения равен нулю на поверхности найде-
ны достаточные условия на параметры среды Коссера существования поверхност-
ных волн Релэя, при этом фазовая скорость волны стремится к конечному пределу
при больших частотах волны. Качественный анализ полученных дисперсионных
соотношений показал, что поверхностная волна Рэлея обладает дисперсией, упру-
гое стеснение приводит к отсутствию поверхностной волны при малых частотах.
В случае микрополярной среды из полиуретановой пены построены численные зна-
чения параметров волны и деформации среды. Затухание вектора перемещений
с глубиной в микрополярной теории упругости более медленное, чем затухание в
классической теории упругости. Значительное отличие в значениях вектора пе-
ремещения в классической и микрополярной среде наблюдается по направлению
упругого стеснения.
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Введение

В 1885 г. Рэлей теоретически обосновал существование плоских волн, рас-

пространяющихся вдоль свободной поверхности однородного несжимаемого изо-

тропного линейно-упругого полупространства и экспоненциально затухающих
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20079).
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с глубиной [1], которые сейчас называются волнами Рэлея. При этом волны

Рэлея не испытывают дисперсию, скорость волн определяется из трансцендент-

ного дисперсионного уравнения Рэлея, а частицы свободной поверхности дви-

жутся по эллипсам. Детальное исследование уравнения Рэлея проведено в [2] и

показано, что только одно решение уравнения Рэлея имеет физический смысл.

В случае неоднородной среды в монографии [3] детально описаны эффекты

гравитации, искривления поверхности.

Экспериментальное и теоретическое изучение поверхностных волн имеет

неослабевающее практическое значение. Дело в том, что вскоре после работы

Рэлея были обнаружены поверхностные волны, генерированные землетрясени-

ями. Выявлено, что поверхностные сейсмические волны имеют дисперсию и

являются основной причиной разрушительных явлений, так как они являются

основными переносчиками энергии при землетрясениях [4]. Высокочастотные

рэлеевские и другие типы поверхностных волн находят широкое применение

в методах неразрушающего контроля при обследовании поверхностного слоя

материалов, в акустоэлектронике и для других технических целей [5]. Более

того, практическую значимость имеет изучение закономерностей распростране-

ния поверхностных волн в тонкостенных элементах конструкций — пластинах и

оболочках. На сегодняшний день с целью теоретического объяснения наблюда-

емых на практике свойств поверхностных волн исследуются усложненные моде-

ли деформируемых сред. В [6] использован формализм Стро при исследовании

микрополярных волн Рэлея. В [7, 8] применяется шестимерный подход, отлич-

ный от формализма Стро, позволяющий эффективно решать проблемы поверх-

ностных волн в анизотропных средах. Огромное количество работ публикуется

по поверхностным волнам типа Рэлея для деформируемых сред с сопряжения-

ми различных физических полей.

В данной работе мы изучаем поверхностные волны в рамках линейной мик-

рополярной теории упругости. Эта модель деформируемого тела представляет

собой один из вариантов модели обобщенной среды, когда элемент среды обла-

дает шестью степенями свободы и его кинематика описывается независимыми

векторами перемещения и вращения (среда Коссера). В отличие от классиче-

ской модели деформируемого тела учет вектора вращения позволяет описать

поведение материала со сложной внутренней структурой. Идея модели среды с

вращательным взаимодействием ее частиц восходит к трудам Фойхта [9] 1887 г.

Первая попытка полного построения теорий упругости с несимметричным тен-

зором напряжений и моментных напряжений была изложена в работе Эжена и

Франсуа Коссера в 1909 г. [10]. Далее активное развитие микрополярной тео-

рии упругости относится уже к 60-м годам XX века. Оно связано с именами

В. Гюнтера, К. А. Трусделла, Дж. Л. Эриксена, Р. А. Тупина, Р. Д. Миндли-

на, Г. Ф. Тирстена, В. Т. Койтера, А. К. Эрингена, А. Е. Грина, В. Новацкого,

Е. В. Кувшинского, Э. Л. Аэро, В. А. Пальмова, Г. Н. Савина [11–16] и многих

других.
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В обзоре [17] детально разобраны достоинства и недостатки различных обо-

значений упругих постоянных, применяемые в линейной микрополярной упру-

гости. Отмечено, что неудачные обозначения, используемые Эрингеном [13] и

др., приводят к некоторым ошибочным результатам. Учитывая выводы этой

работы, мы применяем подход и обозначения В. Новацкого [15]. В этой теории

волны Рэлея впервые рассмотрены в [14]. В [18] исследованы микрополярные

термоупругие поверхностные волны и, как частный случай, сделаны выводы по

микрополярным волнам Рэлея. Отмечается, что результаты статьи [14] по вол-

нам Рэлея являются приближенными и справедливы только для определенного

частного случая микрополярной среды. В [19] проведено более полное исследо-

вание плоских волн Рэлея, отмечено наличие дисперсии и показан экстремаль-

ный характер частотной зависимости минимального по абсолютной величине

коэффициента затухания амплитуды. В [20] показано, что поверхностная волна

рэлеевского типа может распространяться на микрополярной цилиндрической

поверхности, если смещения частиц являются чисто азимутальными и что бла-

годаря микрополярному эффекту скорость волны Рэлея увеличивается. В этой

работе отсутствуют ссылки на предыдущие исследования по микрополярным

волнам Рэлея. В цикле работ М. А. Кулеша (см. [21, 22] и др.) использованы

два подхода для изучения микрополярных волн Рэлея, в том числе рассмат-

ривались решения в форме волновых пакетов, определяемых спектром Фурье

произвольной формы.

Не менее практическую и теоретическую значимость имеют исследования

распространения поверхностных волн в случае несвободной от напряжений по-

верхности. Такие задачи актуальны с точки зрения разработки сейсмических

барьеров для защиты сооружений от поверхностных волн [23, 24]. Вместе с тем

в работе [25] показана возможность защиты чувствительных к разрушитель-

ным волнам Рэлея конструкций. Механизм защиты заключается в том, что

разрушительные волны Рэлея перенаправляются микрополярным материалом,

накрывающим конструкцию, не достигая защищаемую конструкцию. В настоя-

щее время в случае классической теории упругости показано, что могут возни-

кать трехмерные поверхностные волны в полупространстве в случае смешанных

граничных условий на поверхности [26].

В данной работе сначала методом построения мажорант будет показано,

что не существует поверхностных волн Релэя в полупространстве упругой среды

Коссера, когда на поверхности заданы однородные граничные условия, соответ-

ствующие основным задачам классической теории упругости: «жесткая задел-

ка», «скользящая заделка», «жесткая сетка». Затем для случаев однородных

граничных условий, соответствующих задачам классической теории упругости:

«свободная поверхность», «упругого стеснения», методом построения мажорант

будет показано существование поверхностных волн Релэя, будут найдены доста-

точные условия на параметры среды существования конечного предела фазовой

скорости распространения волны при больших частотах колебания волны и сам
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предел. В завершение в случае среды из полиуретановой пены будут построе-

ны численные значения параметров волны и деформации среды с целью выяв-

ления количественного отличия решений, построенных в классической теории

упругости и в микрополярной теории упругости при однородных и «упруго-

стесненных» граничных условиях.

1. Постановка задач

Рассматривается упругая изотропная среда Коссера D(ρ, µ, λ, α, β, γ, ε, j),

упруго-динамическое состояние которой, соответствующее массовой силе X и

массовому моменту Y , описывается четверткой (u,ω, σ̃, µ̃) [15]:

∇ · σ̃ +X = ρü, σ̃T : Ẽ +∇ · µ̃+ Y = jω̈;

γ̃ = ∇u− Ẽ · ω, χ̃ = ∇ω;

σ̃ = 2µγ̃(S) + 2αγ̃(A) + λI1(γ̃)ẽ, µ̃ = 2γχ̃(S) + 2εχ̃(A) + βI1(χ̃)ẽ.

(1.1)

Исключая σ̃ и µ̃ в (1.1), получим уравнение динамики в перемещениях u и

вектор вращения ω:

(2µ+ λ) graddiv u− (µ+ α) rot rotu + 2α rotω +X = ρü,

(2γ + β) graddivω − (γ + ε) rot rotω + 2α rotu− 4αω + Y = jω̈,
(1.2)

где γ̃, χ̃ — тензоры деформаций и изгиба-кручения; σ̃, µ̃ — тензоры напряжений

и моментных напряжений; µ, λ — постоянные Ламе; α, β, γ, ε — физические

постоянные материала в рамках упругой среды Коссера; ρ — плотность; j –

плотность момента инерции (мера инерции среды при вращении); Ẽ — тен-

зор Леви-Чевиты третьего ранга; (·)(S) — операция симметрирования; (·)(A) —

операция альтернирования; ∇(·) — набла-оператор; I1(·) — первый инвариант

тензора; ẽ — единичный тензор.

Упругая изотропная среда заполняет полупространство, массовые силы и

моменты отсутствуют. Оси декартовых координат x и y направлены по поверх-

ности, а ось z — вглубь полупространства.

Поверхностная волна Релэя ищется в виде

u(x, y, t) = (Ux(z), 0, Uz(z)) exp(i(kx− ft)),
ω(x, y, t) = (0,Wy(z), 0) exp(i(kx− ft)), (1.3)

где i =
√
−1 — мнимая единица; k — вещественное волновое число; f — ве-

щественная круговая частота; Ux(z), Uz(z), Wy(z) — амплитудные функции,

зависящие от глубины. Физический смысл имеют вещественные части рассмат-

риваемых комплекснозначных решений.

Далее исследуются 16 краевых задач распространения поверхностных волн

Рэлея в упругом полупространстве Коссера в случае однородных граничных

условий основных задач микрополярной теории упругости на поверхности, сфор-

мулированных В. Д. Купрадзе [27], и 8 краевых задач — в случае граничных

условий «упруго-стесненной» поверхности [33].
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1.1. Построение общего решения. Все величины приведем к безраз-

мерному виду с использованием характерного размера X0 и характерной часто-

ты f0:

A = X0

√
µ

B(γ + ε)
, B =

α+ µ

α
;

C2
1 =

λ+ 2µ

ρX2
0f

2
0

, C2
2 =

µ

ρX2
0f

2
0

, C2
3 =

α+ µ

ρX2
0f

2
0

, C2
4 =

γ + ε

jX2
0f

2
0

.

(1.4)

Здесь первые две величины, как и две последние, обусловлены наличием новых

материальных констант среды Коссера.

Подставляя безразмерное точное решение (1.3) в безразмерное уравнение

динамики (1.2), получим систему линейных дифференциальных уравнений с

постоянными коэффициентами второго порядка для амплитудных функций Ux,

Uz, Wy:

d2Ux

dz2
+

(
f2

C2
3

− k2C
2
1

C2
3

)
Ux + ik

C2
1 − C2

3

C2
3

dUz

dz
− 2

B

dWy

dz
= 0,

d2Uz

dz2
+

(
f2

C2
1

− k2C
2
3

C2
1

)
Uz + ik

C2
1 − C2

3

C2
1

dUx

dz
+

2ikC2
3

BC2
1

Wy = 0,

d2Wy

dz2
+

(
f2

C2
4

− k2 − 4A2B

B − 1

)
Wy +

2A2B

B − 1

dUx

dz
− 2ikA2B

B − 1
Uz = 0.

(1.5)

Построим общее решение системы линейных дифференциальных уравне-

ний с постоянными коэффициентами второго порядка (1.5). Применив замену

искомых функций в виде

Ux(z) = ikF (z)− dY (z)

dz
, Uz(z) =

dF (z)

dz
+ ikY (z), Wy(z) = �(z), (1.6)

получим равносильную систему уравнений третьего порядка (1.7)–(1.9):

d2�

dz2
+

(
f2

C2
4

− k2 − 4A2B

B − 1

)
�+ 2

4A2B

B − 1

(
−d

2Y

dz2
+ k2Y

)
= 0, (1.7)
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1
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d2F
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C2
1
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d
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Заметим, что сложение продифференцированного по z уравнения (1.9) и

умноженного на ik
C2

1

C2
3

уравнения (1.8) приводит к одному уравнению только на

искомую функцию F (z):

d2

dz2

(
d2F

dz2
+

(
f2

C2
1

− k2

)
F

)
− k2

(
d2F

dz2
+

(
f2

C2
1

− k2

))
F = 0,

общее решение которого

F (z) =
C2

1

f2
F ′0e

kz +
C2

1

f2
F0e

−kz +D′0e
ν0z +D0e

−ν0z , ν0 ≡
√
k2 − f2/C2

1 , (1.10)
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где F0, F
′
0, D0, D

′
0 — произвольные постоянные.

Далее, умножаем уравнение (1.8) на
C2

3

C2
1

и дифференцируем по z, умножаем

на i уравнение (1.9). Полученные уравнения подставляем в умноженное на

2
C2

3−C2
2

C2
1

уравнение (1.7), получим уравнение на искомую функцию Y (z):

C2
1

C2
3

(
f2

C2
4

− 4A2B

B − 1

)
(iF0e

−kz − iF ′0ekz) +
d4Y

dz4
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C2
3

+
f2
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C2
4
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)(
f2

C2
3

− k2

)
− 4A2

(
f2

C2
2

− k2

))
Y = 0.

Общее решение последнего уравнения

Y (z) = D1e
−ν1z+D2e

−ν2z+D′1e
ν1z+D′2e

ν2z−iC2
1F0e

−kz/f2+iC2
1F
′
0e

kz/f2, (1.11)

где D1, D2, D
′
1, D

′
2 — произвольные постоянные, ν1 ≡

√
k2 − a1, ν2 ≡

√
k2 − a2,
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2C2
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− 2
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C2
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2

C4
3

.

Наконец, подставляя F (z) (1.10), Y (z) (1.11) в (1.6) и в (1.9), получим ре-

шение, соответствующее затухающей поверхностной волне Релэя (1.3) исходной

системы (1.5):

Ux(z) = ikD0e
−ν0z +D1ν1e

−ν1z +D2ν2e
−ν2z,

Uz(z) = −ν0D0e
−ν0z + ikD1e

−ν1z + ikD2e
−ν2z,

Wy(z) = (B/2)
(
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(
k2 − ν2

1 − f2/C2
3

)
e−ν1z +D2

(
k2 − ν2

2 − f2/C2
3

)
e−ν2z

)
,

(1.12)

где D0, D1, D2 — произвольные постоянные; ν0, ν1, ν2 — положительные веще-

ственные собственные значения, определяемые выражениями

ν0 =
√
k2 − f2/C2

1 > 0, ν1 =
√
k2 − a1 > 0, ν2 =

√
k2 − a2 > 0, (1.13)

в которых

a1,2 =
f2

2C2
3

+
f2

2C2
4

− 2A2 ±
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3 − C2
4

2C2
3C

2
4

f2

)2

+ 4A2f2
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3 − C2
2

C2
3C

2
2

.

Отметим, что согласно (1.13) фазовая скорость C0,1,2(f) ≤ min(C1, C3, C4)

при f →∞.

Принимая во внимание, что α > 0 [27], нетрудно показать, что верны сле-

дующие оценки.

Оценка 1. 0 < ν0 < k.

Оценка 2. 0 < ν1 < k.

Оценка 3. 0 < ν1 < ν2.

Оценка 4. ν2
2 > k2 − f2/C2

3 .

Оценка 5. ν2
1 < k2 − f2/C2

3 .
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Выпишем размерное затухающее решение для вектора перемещения и по-

ворота:

u = X0(Ux, 0, Uz)e
i(kx−ft), ω = (0,Wy, 0)ei(kx−ft),

где Ux, Uz и Wy из (1.12), f , k, t, x, z — безразмерные величины. Согласно

геометрическому соотношению и физическому уравнению (1.1) выпишем раз-

мерное решение для тензора напряжений и моментных напряжений

σ̃ = µ



σxx 0 σxz
0 σyy 0
σzx 0 σzz


 ei(kx−ft), µ̃ =

γ + ε

X0




0 µxy 0
µyx 0 µyz

0 µzy 0


 ei(kx−ft),

(1.15)

где безразмерные амплитудные компоненты тензора напряжений

σxx =
( f2

C2
2

− 2f2

C2
1

− 2k2
)
D0e

−ν0z + 2ikν1D1e
−ν1z + 2ikν2D2e

−ν2z ,

σxz = −2ν0ikD0e
−ν0z −

(
2ν2

1 +
f2

C2
2

)
D1e

−ν1z −
(

2ν2
2 +

f2

C2
2

)
D2e

−ν2z,

σyy = −
(
f2

C2
2

− 2f2

C2
1

)
D0e

−ν0z,

σzx = −2ν0ikD0e
−ν0z −

(
2k2 − f2

C2
2

)
D1e

−ν1z −
(

2k2 − f2

C2
2

)
D2e

−ν2z,

σzz =
(
2k2 − f2/C2

2

)
D0e

−ν0z − 2ν1ikD1e
−ν1z − 2ν2ikD2e

−ν2z

(1.16)

и безразмерные амплитудные компоненты тензора моментных напряжений

µxy = ik
B

2

((
−ν2

1 −
f2

C2
3

+ k2

)
D1e

−ν1z +

(
−ν2

2 −
f2

C2
3

+ k2

)
D2e

−ν2z

)
,

µyx =
γ − ε
γ + ε

ik
B

2

((
−ν2

1 −
f2

C2
3

+ k2

)
D1e

−ν1z +

(
−ν2

2 −
f2

C2
3

+ k2

)
D2e

−ν2z

)
,

µyz =
γ − ε
γ + ε

B

2

(
− ν1

(
k2 − ν2

1 −
f2

C2
3

)
D1e

−ν1z − ν2
(
k2 − ν2

2 −
f2

C2
3

)
D2e

−ν2z

)
,

µzy =
B

2

(
− ν1

(
k2 − ν2

1 −
f2

C2
3

)
D1e

−ν1z − ν2
(
k2 − ν2

2 −
f2

C2
3

)
D2e

−ν2z

)
.

(1.17)

2. Основные однородные краевые задачи

Рассмотрим шестнадцать однородных основных краевых задач динами-

ки микрополярной теории упругости [27], соответствующих основным зада-

чам классической теории упругости с однородными граничными условиями:

«жесткая заделка», «скользящая заделка», «жесткая сетка», «свободная поверх-

ность».

2.1. Случай «жесткой заделки» на поверхности. Исследуем краевые

задачи: первые три условия соответствуют первой основной задаче в классиче-

ской теории упругости — «жесткая заделка», последние три условия возникают
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в микрополярной теории упругости,

ux = 0, uy ≡ 0, uz = 0, ωx ≡ 0, ωy = 0, ωz ≡ 0,

ux = 0, uy ≡ 0, uz = 0, ωx ≡ 0, ωy = 0, µzz ≡ 0;
(2.1)

ux = 0, uy ≡ 0, uz = 0, µzx ≡ 0, µzy = 0, µzz ≡ 0,

ux = 0, uy ≡ 0, uz = 0, µzx ≡ 0, µzy = 0, ωz ≡ 0.
(2.2)

Рассмотрим граничные условия (2.1). Подставляя общее решение для век-

тора перемещения и вектора поворота (1.14) в граничные условия (2.1), получим

систему линейных алгебраических уравнений относительно постоянных Dk:



ik ν1 ν2
−ν0 ik ik
0 a1 − f2/C2

3 a2 − f2/C2
3





D0

D1

D2


 = 0. (2.3)

Условием существования нетривиального решения этой системы является

равенство нулю ее определителя. Это приводит к следующему дисперсионному

уравнению:

(ν2 − ν1)
(
ν0f

2/C2
3 − (k2(ν0 − ν1 − ν2) + ν0ν1ν2)

)
= 0. (2.4)

Рассмотрим дисперсионную функцию

d1(f, k) ≡ (ν2 − ν1)
(
ν0f

2/C2
3 − (k2(ν0 − ν1 − ν2) + ν0ν1ν2)

)
. (2.5)

1. Пусть ν2 ≥ k. В силу оценки 2 верна цепочка неравенств −(k2(ν0 − ν1 −
ν2) + ν0ν1ν2) > (ν2 − k)(k − ν1) ≥ 0, тогда согласно оценке 3 и d1(f, k) > 0.

2. Пусть ν2 < k. Согласно оценке 4 и оценке 1

ν0f
2/C2

3 −
(
k2(ν0 − ν1 − ν2) + ν0ν1ν2

)
> (ν1 + ν2)(k

2 − ν2ν0) > 0,

тогда согласно оценки 3 и d1(f, k) > 0.

Следовательно, дисперсионное уравнение (2.4) имеет только тривиальное

решение.

Аналогично рассмотрим дисперсионную функцию в случае граничных усло-

вий (2.2):

d2(f, k) ≡ (ν2 − ν1)
(
k2
(
f2/C2

3 − k2 + ν2
2

)
+ (k2 − ν0ν2)

(
ν2
1 + ν1ν2

))
. (2.6)

1. Пусть ν2 < k. В силу оценок 4, 1 и 3 видно, что d2(f, k) > 0.

2. Пусть ν2 ≥ k. В силу оценки 1 и оценки 2

−k4 + k2ν2
2 + (k2 − ν0ν2)

(
ν2
1 + ν1ν2

)
> (ν2 − k)(k2(ν2 + k)− kν1(ν2 + ν1)) > 0,

поэтому согласно оценке 3 d2(f, k) > 0.

Следовательно, дисперсионное уравнение для (2.6) имеет только тривиаль-

ное решение.

Таким образом, поверхностная волна Рэлея (1.3), (1.12) в случае граничных

условиях «жесткая заделка» (2.1), (2.2) на поверхности не существует.
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2.2. Случай «скользящей заделки» на поверхности. Исследуем кра-

евые задачи: первые три условия соответствуют третьей основной задаче в клас-

сической теории упругости — «скользящая заделка» — и оставшиеся условия

соответствуют граничным условиям микрополярной теории:

σzx = 0, σzy ≡ 0, uz = 0, ωx ≡ 0, ωy = 0, ωz ≡ 0,

σzx = 0, σzy ≡ 0, uz = 0, ωx ≡ 0, ωy = 0, µzz ≡ 0;
(2.7)

σzx = 0, σzy ≡ 0, uz = 0, µzx ≡ 0, µzy = 0, µzz ≡ 0,

σzx = 0, σzy ≡ 0, uz = 0, µzx ≡ 0, µzy = 0, ωz ≡ 0.
(2.8)

Рассмотрим дисперсионную функцию в случае граничных условий (2.7):

d5(f, k) ≡ f2ν0
(
ν2
2 − ν2

1

)
/C2

2 . (2.9)

Согласно оценке 1 ν0 > 0 и оценке 3 ν2 > ν1, тогда d5(f, k) > 0. Следовательно,

дисперсионное уравнение для (2.9) имеет только тривиальное решение.

Дисперсионная функция в случае граничных условий (2.7) будет иметь вид

d6(f, k) ≡ ν0(ν2 − ν1)
(
f2/C2

3 − k2 + ν2
1 + ν1ν2 + ν2

2

)
f2/C2

2 . (2.10)

Согласно оценке 1 ν0 > 0, оценке 3 ν2 > ν1 и согласно оценке 5 ν2
2 > k2− f2/C2

3 ,

откуда видно, что верна оценка снизу

d6(f, k) ≡ f2ν0(ν2 − ν1)
(
f2/C2

3 − k2 + ν2
1 + ν1ν2 + ν2

2

)
> 0.

Аналогично дисперсионное уравнение для (2.10) имеет только тривиальное ре-

шение.

Следовательно, поверхностная волна Рэлея (1.3), (1.12) в случае граничных

условий «скользящей заделки» (2.7), (2.8) не существует.

2.3. Случай поверхности, армированной жесткой сеткой. Иссле-

дуем краевые задачи: первые три граничных условия соответствуют четвертой

основной задаче в классической теории упругости, в которой касательные пере-

мещения на границе отсутствуют, а сетка при этом не сопротивляется изгибу;

последние три граничные условия возникают в микрополярной теории упруго-

сти:
ux = 0, uy ≡ 0, σzz = 0, ωx ≡ 0, ωy = 0, ωz ≡ 0

ux = 0, uy ≡ 0, σzz = 0, ωx ≡ 0, ωy = 0, µzz ≡ 0;
(2.11)

ux = 0, uy ≡ 0, σzz = 0, µzx ≡ 0, µzy = 0, µzz ≡ 0,

ux = 0, uy ≡ 0, σzz = 0, µzx ≡ 0, µzy = 0, ωz ≡ 0.
(2.12)

Дисперсионная функция для граничных условий (2.11) будет иметь вид

d7(f, k) ≡ −(ν2 − ν1)
(
k2 − f2/C2

3 + ν1ν2
)
f2/C2

2 . (2.13)

Из оценки 5 k2 − f2/C3
2 > ν2

1 , тогда и k2 − f2/C3
2 + ν1ν2 > ν2

1 + ν1ν2 > 0 в

силу ν1 > 0 и ν2 > 0, наконец, из оценки 3 следует, что d7(f, k) < 0.
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Далее, дисперсионная функция в случае граничных условий (2.12) будет

иметь вид

d8(f, k) ≡ f2ν1ν2
(
ν2
1 − ν2

2

)
. (2.14)

Согласно оценке 2 ν1 > 0 и оценке 3 ν2 > ν1 > 0, так что дисперсионная функция

d8(f, k) < 0.

Итак, не существует поверхностной волны Рэлея (1.3), (1.12) в случае по-

верхности, армированной жесткой сеткой (2.11) и (2.12).

2.4. Случай свободной поверхности. Исследуем краевые задачи: пер-

вые три условия соответствуют второй основной задаче в классической теории

упругости — «свободной поверхности», и вторые три граничных условия соот-

ветствуют микрополярной теории упругости:

σzx = 0, σzy ≡ 0, σzz = 0, µzx ≡ 0, µzy = 0, µzz ≡ 0,

σzx = 0, σzy ≡ 0, σzz = 0, µzx ≡ 0, µzy = 0, ωz ≡ 0;
(2.15)

σzx = 0, σzy ≡ 0, σzz = 0, ωx ≡ 0, ωy = 0, ωz ≡ 0,

σzx = 0, σzy ≡ 0, σzz = 0, ωx ≡ 0, ωy = 0, µzz ≡ 0.
(2.16)

Решение (1.3), (1.12), (1.15) удовлетворим граничным условиям (2.15), по-

лучим систему линейных алгебраических уравнений относительно произволь-

ных постоянных Dk:


2ikν0 2k2 − f2/C2
2 2k2 − f2/C2

2

2k2 − f2/C2
2 −2ikν1 −2ikν2

0 ν1
(
a1 − f2/C2

3

)
ν2
(
a2 − f2/C2

3

)





D0

D1

D2


 = 0. (2.17)

Определитель этой системы формирует дисперсионную функцию в виде

d3(f, k) ≡ ν2
(
f2/C2

3 + ν2
2 − k2

)((
f2/C2

2 − 2k2
)2 − 4k2ν0ν1

)

− ν1
(
f2/C2

3 + ν2
1 − k2

)((
f2/C2

2 − 2k2
)2 − 4k2ν0ν2

)
. (2.18)

Покажем, что дисперсионное уравнение для (2.18) имеет нетривиальное

решение.

1. Рассмотрим асимптотику дисперсионной функции:

d3(f, k) ∼ −4
C2

1

(
C2

3 − C2
2

)
+ C2

3

(
C2

1 − C2
2

)

C2
1C

2
2C

2
3

f2

×

√(
2A2 −

(
C2

3 − C2
4

)
f2

2C2
3C

2
4

)2

+
4A2

(
C2

3 − C2
2

)
f2

C2
2C

2
3

k3, k→ +∞.

Для изотропной упругой среды Коссера 3λ + 2µ > 0, µ > 0, α > 0 [27], тогда

по определению (1.4) C2
3 − C2

2 > 0 и C2
1 − C2

2 > 0, следовательно, для f > 0

d3(f, k)→ −∞ при k → +∞.

2. Пусть выполняется ν0(f0, k0) = 0 и ν1(f0, k0) ≥ 0, тогда согласно оценке 4

и оценке 5 дисперсионная функция неотрицательна:

d3(f0, k0) = ν2
(
f2
0 /C

2
3 + ν2

2 − k2
0

)(
f2
0 /C

2
2 − 2k2

0

)2

− ν1
(
f2
0 /C

2
3 + ν2

1 − k2
0

)(
f2
0 /C

2
2 − 2k2

0

)2 ≥ 0.
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3. Пусть теперь выполняется случай ν1(f1, k1) = 0 и ν0(f1, k1) ≥ 0, тогда

согласно оценке 4 дисперсионная функция неотрицательна:

d3(f1, k1) = ν2
(
f2
1 /C

2
3 +

(
ν2
2 − k2

1

))(
f2
1/C

2
2 − 2k2

1

)2 ≥ 0.

В силу непрерывности дисперсионной функции обязательно найдутся решения

дисперсионного соотношения d3(f
∗, k∗) = 0.

Таким образом, в случае граничных условиях (2.15) на поверхности суще-

ствует поверхностная волна Релэя (1.3), (1.12), где константы связаны соотно-

шениями

D1 = ik∗
2ν0ν2

(
a2 − f∗2/C2

3

)
(
2k∗2 − f∗2/C2

2

)(
ν1
(
a1 − f∗2/C2

3

)
− ν2

(
a2 − f∗2/C2

3

))D0,

D2 = −ik∗ 2ν0ν1
(
a1 − f∗2/C2

3

)
(
2k∗2 − f∗2/C2

2

)(
ν1(a1 − f∗2/C2

3

)
− ν2

(
a2 − f∗2/C2

3

))D0.

(2.19)

При этом фазовая скорость распространения CR(f) = f/k(f) поверхностной

волны Релэя стремится к конечному пределу при f →∞.

Действительно, асимптотика дисперсионной функции (2.18) имеет вид

d3(CR, k) ∼ sign(C2
4 − C2

3 )

√
1− C2

R

C2
4

(
C2

R

C2
3

− C2
R

C2
4

)

× 4

[(
1− C2

R

2C2
2

)2

−
√

1− C2
R

C2
1

√
1− C2

R

C2
3

]
k7, f →∞.

Видно, что корнями асимптотики являются Ca
R = C4, C

a
R = 0 и корни полинома

третьего порядка R
(
C2

R

)
:

R(C2
R) ≡

(
1

C2
1

+
1

C2
3

− 2

C2
2

)
+

(
3

2C4
2

− 1

C2
1C

2
3

)
C2

R −
1

2C6
2

C4
R +

1

16C8
2

C6
R, (2.20)

так как множитель в квадратных скобках однозначно преобразуется в

(
1− C2

R

2C2
2

)2

−
√

1− C2
R

C2
1

√
1− C2

R

C2
3

= C2
R

(
1
C2

1

+ 1
C2

3

− 2
C2

2

)
+
(

3
2C4

2

− 1
C2

1
C2

3

)
C2

R −
C4

R

2C6
2

+
C6

R

16C8
2

(
1− C2

R

2C2
2

)4
+

√
1− C2

R

C2
1

√
1− C2

R

C2
3

.

Полином R(C2
R) обладает следующими свойствами:

R(0) =
1

C2
1

+
1

C2
3

− 2

C2
2

< 0, R(C2
1 ) > 0, R(C2

3 ) > 0.

Тогда минимальный корень Cp
R полинома удовлетворяет неравенству 0 < Cp

R <

min(C1, C3).
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Асимптотическому корню CR = 0 соответствует тривиальное решение (1.14).

Таким образом, предел фазовой скорости при f →∞
Ca

R = min(Cp
R, C4) <∞.

Граничные условия (2.16) формирует следующую дисперсионную функ-

цию:

d4(f, k) ≡ (ν2−ν1)
(
(ν1 +ν2)

(
f2/C2

2 −2k2
)2

+4k2ν0
(
f2/C2

3 − (ν1ν2 +k2)
))
. (2.22)

Покажем, что дисперсионное уравнение для (2.22) имеет нетривиальное

решение.

1. Для этого рассмотрим асимптотику дисперсионной функции (2.22):

d4(f, k) ∼ −4
C2

1

(
C2

3 − C2
2

)
+ C2

3

(
C2

1 − C2
2

)

C2
1C

2
2C

2
3

× f2

√(
2A2 −

(
C2

3 − C2
4

)
f2

2C2
3C

2
4

)2

+
4A2

(
C2

3 − C2
2

)
f2

C2
2C

2
3

k2, k→ +∞.

Согласно определению изотропной среды и (1.4) всегда C2
3 −C2

2 > 0 и C2
1 −C2

2 >

0, следовательно, d4(f, k)→ −∞ при k → +∞.

2. Пусть параметры среды таковы, что выполняется случай ν0(f0, k0) = 0,

ν1(f0, k0) ≥ 0, тогда

d4(f0, k0) = C2
3 (ν1 + ν2)

(
f2
0 − 2C2

2k
2
0

)2 ≥ 0.

3. Пусть параметры среды таковы, что выполняется случай ν1(f1, k1) = 0,

ν0(f1, k1) ≥ 0, тогда

d4(f1, k1(f1)) ∼
4A2

C4
2

f4
1 > 0, f1 → 0.

Таким образом, в силу непрерывности обязательно найдутся решения дис-

персионного соотношения d4(f
∗, k∗) = 0, где f∗ > 0, k∗ > 0. Компоненты

вектора перемещения и поворота примут вид (1.3), (1.12) с константами

D1 = ik∗
2ν0
(
a2 − f∗2/C2

3

)
(
2k∗2 − f∗2/C2

2

)
(a1 − a2)

D0,

D2 = −ik∗ 2ν0
(
a1 − f∗2/C2

3

)
(
2k∗2 − f∗2/C2

2

)
(a1 − a2)

D0.

(2.23)

При этом фазовая скорость распространения стремится к конечному пределу

при f →∞, только если C4 ≥ Cp
R.

Действительно, асимптотика дисперсионной функции (2.22) выглядит сле-

дующим образом:

d4(CR, k) ∼ sign(C2
4 − C2

3 )

(
C2

R

C2
3

− C2
R

C2
4

)

× 4

[(
1− C2

R

2C2
2

)2

−
√

1− C2
R

C2
1

√
1− C2

R

C2
3

]
k7, f →∞, .



Задача распространения поверхностной волны 93

корни которой равны Ca
R = 0 и корням полинома третьего порядка. Аналогично

исключаем Ca
R = 0 и существует асимптотический корень

Ca
R = min

(
Cp

R, C1, C3

)
, C4 ≥ Cp

R, (2.24)

но если C4 < Cp
R, то d4(CR, k) < 0 при f →∞.

Таким образом, существует поверхностная волна Рэлея в случае гранич-

ных условий «свободной поверхности» (2.15), при этом фазовая скорость волны

стремится к конечному пределу Ca
R = min

(
Cp

R, C4

)
при f → ∞. Существует

поверхностная волна Рэлея в случае граничных условий «свободной поверхно-

сти» (2.16), при этом фазовая скорость волны стремится к конечному пределу

Ca
R = min

(
Cp

R, C1, C3

)
при f →∞ в том и только в том случае, если C4 ≥ Cp

R.

3. Случай упруго-стесненной поверхности

Сформулируем граничные условия в случае упруго-стесненной поверхности

в микрополярной теории упругости. В первом случае нормальное напряжение

стесненно в направлении перпендикулярной к поверхности нормали, так что

σzz = ηuz, где η > 0 — коэффициент упругости [33], а касательное равно нулю.

Во втором случае нормальное напряжение равно нулю, а касательное напряже-

ние σxz = θux, где θ > 0 — коэффициент упругости [33], стесненно. И в третьем

случае касательные перемещения на границе отсутствуют, а сетка упруго со-

противляется изгибу σzz = ηuz, где η > 0. В микрополярной теории в каждом

случае добавляются четыре граничных условия.

В первом случае со стороны упругой заделки действует поперечная сила

на поверхность:

σzx = 0, σzy ≡ 0, σzz − ηuz = 0, µzx ≡ 0, µzy = 0, µzz ≡ 0,

σzx = 0, σzy ≡ 0, σzz − ηuz = 0, µzx ≡ 0, µzy = 0, ωz ≡ 0;
(3.1)

σzx = 0, σzy ≡ 0, σzz − ηuz = 0, ωx ≡ 0, ωy = 0, ωz ≡ 0,

σzx = 0, σzy ≡ 0, σzz − ηuz = 0, ωx ≡ 0, ωy = 0, µzz ≡ 0.
(3.2)

Рассмотрим задачу с граничными условиями (3.1), получим систему линей-

ных алгебраических уравнений относительно произвольных постоянных Dk:



2ikν0 2k2 − f2/C2
2 2k2 − f2/C2

2

2k2 − f2/C2
2 + ην0 −2ν1ik − ηik −2ν2ik − ηik

0 ν1(a1 − f2/C2
3 ) ν2(a2 − f2/C2

3 )





D0

D1

D2


 = 0. (3.3)

Определитель этой системы формирует дисперсионное уравнение в виде

d9(f, k) ≡ ν2
(
f2/C2

3 + ν2
2 − k2

)((
f2/C2

2 − 2k2
)2 − 4k2ν0ν1 − ην0f2/C2

2

)

− ν1
(
f2/C2

3 + ν2
1 − k2

)((
f2/C2

2 − 2k2
)2 − 4k2ν0ν2 − ην0f2/C2

2

)
= 0. (3.4)

В силу того, что вклад от упругой заделки (слагаемое с η) на порядок меньше по

f и по k, чем вклад от «свободной поверхности» (η = 0), обязательно найдутся
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решения дисперсионного соотношения d9(f
∗, k∗) = 0 и фазовая скорость рас-

пространения поверхностной волны (3.1) стремится к конечному пределу при

больших частотах колебаний волны.

Рассмотрим задачу с граничными условиями (3.2), формирующими дис-

персионную функцию в виде

d10(f, k) ≡ (ν2 − ν1)
(
(ν1 + ν2)

((
f2/C2

2 − 2k2
)2 − ην0f2/C2

2

)

+ 4k2ν0
(
f2/C2

3 − (ν1ν2 + k2)
))
. (3.5)

1. Асимптотика дисперсионной функции d10(f, k)→ −∞ при k → +∞, так

как вклад от упругой заделки c η 6= 0 на три порядка меньше, чем в случае

η = 0.

2. Пусть min
(
C2

1 , C
2
3 , C

2
4

)
= C2

1 , тогда ν0 ∼ 0, ν1 > 0, ν2 > 0 и d10 ∼(
ν2
2 − ν2

1

)(
f2/C2

2 − 2k2
)2
> 0 при f →∞.

3. Пусть min
(
C2

1 , C
2
3 , C

2
4

)
= C2

3 , тогда ν0 > 0, ν2
1 ∼ k2 − f2/C2

3 , ν2 > 0 и

d10 ∼
(
ν2
2 − ν2

1

)((
f2/C2

2 − 2k2
)2 − 4k2ν0ν1

)
> 0 при f → ∞, если ν2

1 ∼ 0, то

d10 > 0.

4. Пусть min
(
C2

1 , C
2
3 , C

2
4

)
= C2

4 , тогда ν0 > 0, ν2
1 ∼ k2 − f2/C2

4 , ν2
2 ∼

k2 − f2/C2
3 и d10 ∼

(
ν2
2 − ν2

1

)((
f2/C2

2 − 2k2
)2 − 4k2ν0

√
k2 − f2/C2

3

)
при f →∞,

если C4 ≥ Cp
R, то d10 ≥ 0, но в случае C4 < Cp

R будет d10 < 0 при f →∞.

Таким образом, в силу непрерывности дисперсионной функции обязатель-

но найдутся нетривиальные решения дисперсионного соотношения для (3.5) при

выполнении условия C4 ≥ Cp
R. При этом фазовая скорость стремится к конеч-

ному пределу при больших частотах колебаний волны.

Во втором случае исследуем краевую задачу динамики с граничными усло-

виями
σzx − θux = 0, σzy ≡ 0, σzz = 0, µzx ≡ 0, µzy = 0, µzz ≡ 0,

σzx − θux = 0, σzy ≡ 0, σzz = 0, µzx ≡ 0, µzy = 0, ωz ≡ 0;
(3.6)

σzx − θux = 0, σzy ≡ 0, σzz = 0, ωx ≡ 0, ωy = 0, ωz ≡ 0,

σzx − θux = 0, σzy ≡ 0, σzz = 0, ωx ≡ 0, ωy = 0, µzz ≡ 0.
(3.7)

Определитель в случае граничных условий (3.6) равен разности определителя

в случае граничных условий (2.15) и определителя в случае граничных условий

(2.12), умноженного на θ. Вследствие того, что последний на порядок ниже и

положителен, краевая задача (1.1), (3.6) будет иметь нетривиальные решения

и фазовая скорость распространения поверхностной волны (3.6) стремится к

конечному пределу при больших частотах колебаний волны.

Аналогично определитель в случае граничных условий (3.7) равен разно-

сти определителя в случае граничных условий (2.16) и определителя в случае

граничных условий (2.11), умноженного на θ. В силу того, что последний по-

ложителен и на порядок ниже, краевая задача (1.1), (3.7) будет иметь нетри-

виальные решения и фазовая скорость распространения поверхностной волны
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(3.7) будет стремиться к конечному пределу при больших частотах колебаний

волны при выполнении достаточных условий C4 ≥ Cp
R.

Наконец, исследуем задачу упругой заделки с граничными условиями

ux = 0, uy ≡ 0, σzz − ηuz = 0, ωx ≡ 0, ωy = 0, ωz ≡ 0,

ux = 0, uy ≡ 0, σzz − ηuz = 0, ωx ≡ 0, ωy = 0, µzz ≡ 0;
(3.8)

ux = 0, uy ≡ 0, σzz − ηuz = 0, µzx ≡ 0, µzy = 0, µzz ≡ 0,

ux = 0, uy ≡ 0, σzz − ηuz = 0, µzx ≡ 0, µzy = 0, ωz ≡ 0.
(3.9)

Определитель в случае граничных условий (3.8) равен разности определителя

в случае граничных условий (2.11) и определителя в случае граничных условий

(2.1), умноженного на η. В силу знакопостоянства последнего дисперсионное

уравнение в случае граничных условий (3.8) не имеет нетривиальных решений.

Аналогично можно показать, что дисперсионное уравнение в случае граничных

условий (3.9) не имеет нетривиальных решений.

Таким образом, в полупространстве среды Коссера в случаях упругого

стеснения вида (3.1), (3.6) на поверхности существует поверхностная волна Рэ-

лея, при этом фазовая скорость волны стремится к конечному пределу Ca
R =

min(Cp
R, C4) при f → ∞. В случае упругого стеснения вида (3.2), (3.7) на по-

верхности будет существовать поверхностная волна Рэлея при выполнении до-

статочных условий C4 ≥ Cp
R на физические параметры среды Коссера с асимп-

тотическими свойствами фазовой скорости Ca
R = min

(
Cp

R, C1, C3

)
при f → ∞.

Наконец, в случае упругого стеснения вида (3.8), (3.9) на поверхности не суще-

ствует поверхностной волны Рэлея.

4. Параметрический анализ решений

Цель параметрического анализа — выявление качественной и количествен-

ной взаимосвязей решений рассмотренных в этой работе краевых задач дина-

мики. Параметрами анализа являются «упругий» параметр неоднородных гра-

ничных условий η или θ и физические параметры среды Коссера (α, β, γ, ǫ).

4.1. Решения, связанные с упругим параметром η. В случае, когда

нормальное напряжение стесненно в направлении перпендикулярной к поверх-

ности нормали при η 6= 0 и α, β, γ, ǫ → 0, решение задачи для микрополярной

среды со стеснением типа (3.1) сводится к решению задачи распространения

волны с тем же типом стеснения в классической среде, рассмотренной М. В. Бе-

лубекяном в [33].

В микрополярной среде при η → 0 и α, β, γ, ǫ 6= 0 задача распространения

волны c упругой заделкой (3.1) сводится к задаче со «свободной поверхностью»

(2.15). В классической среде при η → 0 и α, β, γ, ǫ = 0 волна c тем же стеснением

типа [33] сводится к классической волне Рэлея.

Для микрополярной среды при η → ∞ и α, β, γ, ǫ 6= 0 задача с упругой

заделкой типа (3.1) сводится к задаче «скользящего контакта» (2.7). Для клас-

сической среды, как известно, также при η →∞ и α, β, γ, ǫ = 0 задача с упругой
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заделкой рассматриваемого типа сводится к классической задаче «скользящего

контакта» [33]. Следовательно, при η →∞ поверхностной волны не существует

как для классической, так и для микрополярной среды.

Таким образом, сравниваются задачи упругого стеснения типа (2.15) и ти-

па (3.1) микрополярной среды с соответствующими задачами для классической

среды [33]. Из вида дисперсионных соотношений в случае микрополярной сре-

ды (2.18), (3.4) и в случае классической среды [33] следует, что скорость волны

не зависит от частоты только для классической среды со «свободной поверх-

ностью». В остальных рассматриваемых случаях волна обладает дисперсией.

При этом дисперсия волны Релэя (2.18) для среды Коссера согласуется с экс-

периментальными исследованиями [32]. В случае упругой заделки возникает

конечная нижняя граница для (f, k) и (CR, k) в отличие от случая однородных

граничных условий в связи с тем, что в «упругих» дисперсионных функциях

(3.4) и [33] «упругий» вклад всегда отрицателен и более низкого порядка отно-

сительно «неупругого» вклада.

Для количественного анализа решений возьмем микрополярную среду с

физическими постоянными полиуретановой пены с ячейками r = 1.2 мм [31]:

ρ = 30 кг/м3, λ = 1023 Н/м2, µ = 45 · 103 Н/м2, α = 9093 Н/м2, γ + ε = 15 Н,

плотность момента инерции оценим как j ∼ ρr2 = 4 · 10−5 кг/м. Характер-

ные величины X0 = 1, f0 = 1. Сплошные линии соответствуют решениям в

микрополярной среде, штриховые — для классической среды.

Рис. 1.

На рис. 1(а),(б) представлена зависимость безразмерного волнового числа

волны и безразмерной фазовой скорости распространения поверхностной вол-

ны от безразмерной круговой частоты колебаний волны. Сравнительный анализ

полученных численных решений подтверждают следующие качественные выво-

ды: волновые числа классической и микрополярной сред различаются; скорость
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волны не зависит от частоты только для классической среды со «свободной» по-

верхностью; в случае «упругой заделки» возникает конечная нижняя граница

для (f, k) и (CR, k), т. е. для малых (f, k) и (CR, k) не существует поверхност-

ной волны; скорость волны в микрополярной среде в случае (2.15) при малых

частотах исходит от скорости волны в классическом случае C∗R ≈ 33.94, в слу-

чае (3.1) исходит от нижнего предела скорости волны, а при больших частотах

скорость волны в случае (2.15) и (3.1) стремится к одному конечному пределу

Ca
R ≈ 40.5. Зависимости параметров волны в микрополярной среде в случае

(3.1) мало отличается от случая (2.15). Зависимости параметров волны в клас-

сической среде в случае [33] мало отличаются от классического случая волны

Рэлея. А вот зависимости параметров волны в микрополярной среде и класси-

ческой среде относительно большое.

Рис. 2.

Зависимость безразмерных компонент вектора перемещений и вращения

от относительной глубины показана на рис. 2(а),(б), глубина отнесена к длине

волны (f = 2000) в случае граничных условий (3.1). Упругое стеснение по

направлению z приводит в микрополярной теории упругости к значительно-

му увеличению z-компоненты вектора перемещений, тогда как увеличение x-

компоненты вектора перемещений незначительно по сравнению с классической

теории упругости. Затухание вектора перемещений и вектора вращения с глу-

биной в микрополярной теории упругости более медленное, чем затухание в

классической теории упругости.

4.2. Решения, связанные с упругим параметром θ. В случае, когда

касательное напряжение стесненно при θ 6= 0 и α, β, γ, ǫ → 0, решение задачи

для микрополярной среды с таким стеснением (3.6) сводится к решению задачи

с соответствующим стеснением, найденному М. В. Белубекяном в [33].
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Опять-таки в микрополярной среде при θ → 0 и α, β, γ, ǫ 6= 0 задача рас-

пространения волны c «упругой поверхностью» (3.6) сводится к задаче со «сво-

бодной поверхностью» (2.11). В классической среде при θ → 0 и α, β, γ, ǫ = 0

волна c «упругой поверхностью» [33] сводится к классической волне Рэлея.

Для микрополярной среды при θ →∞ и α, β, γ, ǫ 6= 0 задача c «упругой по-

верхностью» (3.6) сводится к задаче «жесткой сетки» (2.11). Для классической

среды, как известно, при θ → ∞ и α, β, γ, ǫ = 0 граничные условия c «упру-

гой поверхностью» (3.6) сводятся к условиям Навье [33]. Следовательно, при

θ → ∞ поверхностной волны не существует как для классической, так и для

микрополярной среды.

Таким образом, сравниваются решения задач с граничными условиями

(2.15), (3.6) микрополярной среды и соответствующие решения задач для клас-

сической среды [33]. Скорость волны также не зависит от частоты только для

классической среды со свободной поверхностью. Во всех задачах существует

решение дисперсионных соотношений.

Рис. 3.

Для количественного анализа решений также возьмем микрополярную сре-

ду с физическими постоянными полиуретановой пены. На рис. 3(а),(б) пред-

ставлена зависимость безразмерного волнового числа волны и безразмерной

фазовой скорости распространения поверхностной волны от безразмерной кру-

говой частоты колебаний волны. Сравнительный анализ полученных числен-

ных решений подтверждают следующие качественные выводы: волновые числа

классической и микрополярной сред различаются; скорость волны не зависит

от частоты только для классической среды со «свободной» поверхностью; во

всех случаях существует поверхностная волна; скорость волны в микрополяр-

ной среде в случае (2.15) при малых частотах исходит от скорости волны в

классическом случае C∗R ≈ 33.94, в случае (3.6) — от нулевой скорости волны,
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а при больших частотах скорость волны в случае (2.15) и (3.6) стремится к

одному конечному пределу Ca
R ≈ 40.5. Зависимости параметров волны в мик-

рополярной среде в случае (3.6) мало отличаются от случая (2.15) только при

больших частотах f . Аналогично зависимости параметров волны в классиче-

ской среде в случае [33] мало отличаются от классического случая волны Рэлея

только при больших частотах f . А вот отличие зависимости параметров волны

в микрополярной среде и классической среде при увеличении частоты растет.

Рис. 4.

Зависимость безразмерных компонент вектора перемещений и вращения

от относительной глубины показана на рис. 4(а),(б), глубина отнесена к длине

волны (при f = 2000) в случае граничных условий (3.6). Упругое стеснение

по направлению x приводит в микрополярной теории упругости к значитель-

ному увеличению x-компоненты вектора перемещений, тогда как увеличение

z-компоненты вектора перемещений в микрополярной теории упругости незна-

чительно по сравнению с классической теорией упругости. Затухание вектора

перемещений и вектора вращения с глубиной в микрополярной теории упруго-

сти более медленное, чем затухание в классической теории упругости.

5. Заключение

В настоящей работе в рамках линейной микрополярной теории упругости

(среда Коссера) рассмотрена задача о распространении поверхностной волны

Рэлея в бесконечном полупространстве, когда на поверхности заданы однород-

ные граничные условия, соответствующие задачам классической теории упру-

гости: «жесткая заделка», «скользящая заделка», «жесткая сетка», «свободная

поверхность», «упругого стеснения». Предполагалось отсутствие массовых сил

и массовых моментов. Для описания упругих свойств среды Коссера использо-

вались физические постоянные в обозначениях В. Новацкого. Найдено общее
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решение в виде затухающей поверхностной волны Рэлея для вектора переме-

щения (1.3) и вращения (1.12) для несимметричного тензора напряжений (1.16)

и моментных напряжений (1.17).

Построением мажорант и асимптотики дисперсионного соотношения дока-

зано, что в случаях однородных граничных условиях «жесткого закрепления»

(2.1), (2.2) «скользящего контакта» (2.7), (2.8) на поверхности в случае поверх-

ности, армированной нерастяжимой сеткой (2.11), (2.12), и в случае граничных

условий на поверхности, когда касательные перемещения на границе отсутству-

ют, а сетка упруго сопротивляется изгибу согласно (3.8), (3.9), не существует

поверхностной волны Рэлея.

Существует поверхностная волна Рэлея в случае граничных условий «сво-

бодной поверхности» (2.15), упругого стеснения (3.1) и (3.6), когда моментные

напряжения равны нулю на поверхности, при этом фазовая скорость волны

стремится к конечному пределу (2.21) при больших частотах волны. Найде-

ны достаточные условия на параметры среды Коссера существования поверх-

ностной волны Рэлея в случае граничных условий «свободной поверхности»

(2.16), упругого стеснения (3.2) и (3.7), когда вектор вращения равен нулю на

поверхности, при этом фазовая скорость волны стремится к конечному пре-

делу (2.24) при больших частотах волны. Качественный анализ полученных

дисперсионных соотношений показал, что поверхностная волна Рэлея обладает

дисперсией. Количественный анализ полученных решений для классической

и микрополярной сред с физическими постоянными полиуретановой пены, по-

казал, что упругое стеснение вида (3.1) приводит к отсутствию поверхностной

волны при малых частотах. Затухание вектора перемещений с глубиной в мик-

рополярной теории упругости более медленное, чем затухание в классической

теории упругости. Значительное отличие в значениях вектора перемещения в

классической и микрополярной средах наблюдается по направлению упругого

стеснения.

В число перспективных направлений применения результатов настоящей

работы входит развитие теории возникновения трехмерных поверхностных волн

Рэлея.
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PROPAGATION PROBLEM OF A RAYLEIGH
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OF A COSSERAT MEDIUM IN THE CASE

OF HOMOGENEOUS AND ELASTICALLY

CONSTRAINED BOUNDARY CONDITION
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Abstract: The problem of propagation of a Rayleigh surface wave in an infinite half-
space is studied within the framework of the micropolar theory of elasticity. It is assumed
that the deformed state of the medium is described by independent vectors of displace-
ment and rotation (a Cosserat medium). A general solution describing the propagation
of a surface Rayleigh wave is obtained. Using the method of constructing majorants, it is
shown that there are no surface Rayleigh waves when boundary conditions are specified
on the surface corresponding to the main problems of the classical theory of elasticity:
“rigid embedding”, “sliding embedding”, and “rigid mesh”. For the cases of boundary
conditions “free surface” and “elastic constraint,” corresponding to the problems of the
classical theory of elasticity, it is shown by the method of constructing majorants that
there is a surface Rayleigh wave when moment stresses are zero on the surface, while
the phase velocity of the wave tends to a finite limit at high wave frequencies; when the

rotation vector is equal to zero on the surface, sufficient conditions are found for the pa-
rameters of the Cosserat medium for the existence of surface Rayleigh waves, while the
phase velocity of the wave tends to a finite limit at high wave frequencies. A qualitative
analysis of the obtained dispersion relations showed that the Rayleigh surface wave has
dispersion; the elastic constraint leads to the absence of a surface wave at low frequen-
cies. In the case of a micropolar medium made of polyurethane foam, numerical values
of the parameters of the wave and deformation of the medium are constructed. The
attenuation of the displacement vector with depth in the micropolar theory of elasticity
is slower than the attenuation in the classical theory of elasticity. A significant difference
in the values of the displacement vector in the classical and micropolar environments is
observed in the direction of elastic constraint.

DOI: 10.25587/2411-9326-2023-4-81-104

Keywords: micropolar theory of elasticity, Cosserat medium, Rayleigh surface wave,
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к столетию которого приурочен доклад. Наряду с кратким обзором основных

результатов самого И. А.Киприянова также приведены результаты его учеников

В. В. Катрахова и В. З. Мешкова. Более подробно рассмотрена задача В. В. Ка-

трахова с существенными особыми точками для уравнения Пуассона. Также в

докладе рассмотрена известная задача Е. М. Ландиса об убывании решений

стационарного уравнения Шрёдингера, неожиданное решение которой было по-

лучено другим учеником И. А. Киприянова — В. З. Мешковым. В последние

годы эта задача получила неожиданное продолжение. В конце приведены неко-

торые последние публикации последователей школы И. А. Киприянова.
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18 ноября 2023 г.
«Регулярные решения уравнения дробной диффузии с переменным показа-

телем производной».
Докладчик: А. Н. Артюшин (Институт математики СО РАН им. С. Л. Со-

болева, Новосибирск, Россия).
Рассмотрена смешанная задача для уравнения дробной диффузии с пере-

менным показателем производной (зависит от пространственных переменных).
Начальные данные однородные. Рассмотрены вопросы существования регуляр-
ных решений для гладких и негладких показателей производной.

2 декабря 2023 г.
«Вырождающиеся решения нелинейного параболического уравнения вто-

рого порядка».
Докладчик: А. Л. Казаков (Институт динамики систем и теории управле-

ния имени В. М. Матросова СО РАН, Иркутск, Россия)
Доклад посвящен изучению нелинейного эволюционного параболического

уравнения второго порядка с вырождением, являющегося математической мо-
делью ряда физических и биологических процессов. Для него рассматривают-
ся решения, имеющие тип диффузионной (тепловой, фильтрационной) волны,
распространяющейся по нулевому фону с конечной скоростью. Доказывает-
ся теорема существования и единственности в классе кусочно-аналитических
функций. Находятся и исследуются точные решения, построение которых сво-
дится к интегрированию задачи Коши для обыкновенного дифференциального
уравнения.

16 декабря 2023 г.
«Задача Самарского — Ионкина и обратные коэффициентные задачи вре-

менного типа для параболических уравнений».
Докладчики: А. И. Кожанов (Институт математики СО РАН им. С. Л. Со-

болева, Новосибирск, Россия), Т. Н. Шипина (Сибирский федеральный универ-
ситет, Красноярск, Россия).

Связь обратных коэффициентных задач и нелокальных краевых задач хо-
рошо известна. Новые результаты о разрешимости нелокальных задач часто
влекут за собой новые результаты о разрешимости обратных задач. Именно
о такой ситуации шла речь в докладе — о связи нелокальных задач для па-
раболических уравнений второго порядка с обобщенным граничным условием
Самарского — Ионкина и обратных коэффициентных задачах временного типа.

23 декабря 2023 г.
«Метод Фурье и построение обобщенного решения смешанной задачи для

неоднородного волнового уравнения».
Докладчик: И. С. Ломов (Московский государственный университет им.

М. В. Ломоносова, Москва, Россия).
При минимальных условиях на правую часть волнового уравнения постро-

ено обобщенное решение смешанной задачи. Решение представлено в виде ря-
да из метода Фурье, найдена его сумма. Формулируется также теорема о виде
обобщенного решения смешанной задачи для неоднородного телеграфного урав-
нения. Рассмотрен случай достаточно общих двухточечных краевых условий на
отрезке, краевые формы содержат производные. Потенциал в уравнении может
зависеть от времени, что не позволяет решать задачу методом разделения пе-
ременных. Решение получено в виде быстро сходящегося ряда.
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Номер

Абулов М. О. Нелокальная задача для одного класса уравнений

третьего порядка

3

Асфандияров Д. Г.,

Сороковикова О. С.

Численный метод решения уравнений мелкой воды

повышенной точности на основе модифицированной

схемы КАБАРЕ

3

Аюпова Н. Б.,

Голубятников В. П.

Фазовые портреты двух нелинейных моделей коль-

цевых генных сетей

2

Бондарь Л. Н.,

Мингнаров С. Б.

О задаче Коши для одной системы псевдогипербо-

лического типа

4

Бубякин И. В. К проективно-дифференциальной геометрии ком-

плексов m-мерных плоскостей проективного про-

странства Pn, содержащих конечное число торсов

1

Варламова Г. А.,

Кожанов А. И.

Нелокальные задачи с интегральными условиями

для гиперболических уравнений с двумя временны-

ми переменными

3

Волокитин Е. П. Кубические системы типа Дарбу с неэлементарной

особой точкой на экваторе Пуанкаре

3

Гаврильева A. A. см. Григорьев Ю. М., Гаврильева A. A.

Голубятников В. П. см. Аюпова Н. Б., Голубятников В. П.

Григорьев В. В. Идентификация скоростей гомогенно-гетерогенной

реакции в масштабе пор в пористых средах

2

Григорьев Ю. М.,

Гаврильева A. A.

Аналитическое решение задачи о гармонических

колебаниях тела прямоугольной формы в микропо-

лярной теории упругости

2

Григорьев Ю. М.,

Гаврильева A. A.

Задача распространения поверхностной волны Ре-

лея в полупространстве среды Коссера в случае од-

нородных и упруго-стесненных граничных условий

4

Егоров И. Е.,

Федотов Е. Д.

Краевая задача на полуоси для обыкновенного диф-

ференциального уравнения с дробной производной

Капуто

2

Иванов В. А.,

Рожин И. И.

Численное исследование диссоциации гидрата при-

родного газа в лабораторном образце песчаника

при депрессионном режиме

1

Имомназаров Х. Х,

Михайлов А. А.,

Омонов А. Т.,

Тордье С.

Численное моделирование распространения в по-

ристой среде сейсмических волн от сингулярных

источников

1

Имомназаров Х. Х. см. Урев М. В., Имомназаров Х. Х., Искандаров И. К.,

Куйлиев С. Б.
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Искандаров И. К. см. Урев М. В., Имомназаров Х. Х., Искандаров И. К.,

Куйлиев С. Б.

Капицына Т. В. см. Петрушко И. М., Капицына Т. В., Петруш-

ко М. И.

Кожанов А. И.,

Хромченко Д. С.

Нелокальные задачи с интегрально-возмущенным

условием А. А. Самарского для квазипараболиче-

ских уравнений третьего порядка

4

Кожанов А. И. см. Варламова Г. А., Кожанов А. И.

Конов Д. С. см. Муратов М. В., Конов Д. С., Петров Д. И., Пет-

ров И. Б.

Куйлиев С. Б. см. Урев М. В., Имомназаров Х. Х., Искандаров И. К.,

Куйлиев С. Б.

Кыров В. А. Левоинвариантные метрики некоторых трехмерных

групп Ли

4

Лазарев Н. П.,

Романова Н. А.

Оптимальное управление углом между двумя тон-

кими жесткими включениями в двумерном неодно-

родном теле

3

Матвеева И. И.,

Хмиль А. В.

Устойчивость решений одного класса разностных

уравнений с переменным запаздыванием и периоди-

ческими коэффициентами в линейных членах

4

Мингнаров С. Б. см. Бондарь Л. Н., Мингнаров С. Б.

Михайлов А. А. см. Имомназаров Х. Х, Михайлов А. А., Омонов А. Т.,

Тордье С.

Муратов М. В.,

Конов Д. С.,

Петров Д. И.,

Петров И. Б.

Применение сверточных нейронных сетей для поис-

ка и определения физических характеристик неод-

нородностей в геологической среде по сейсмическим

данным

1

Николаев О. Ю. Разрешимость линейной обратной задачи для псевдо-

параболического уравнения

3

Омонов А. Т. см. Имомназаров Х. Х, Михайлов А. А., Омонов А. Т.,

Тордье С.

Петров Д. И. см. Муратов М. В., Конов Д. С., Петров Д. И., Пет-

ров И. Б.

Петров И. Б. см. Муратов М. В., Конов Д. С., Петров Д. И., Пет-

ров И. Б.

Петрушко И. М.,

Капицына Т. В.,

Петрушко М. И.

О первой смешанной задаче для вырождающихся

параболических уравнений в звездных областях

с ляпуновской границей в банаховых пространствах

1

Петрушко М. И. см. Петрушко И. М., Капицына Т. В., Петруш-

ко М. И.

Попова Т. С. Задача о T-образном сопряжении двух тонких вклю-

чений Тимошенко в двумерном упругом теле

2

Пятков С. Г.,

Соколков О. И.

О некоторых классах коэффициентных обратных

задач об определении теплофизических параметров

в слоистых средах

2

Рожин И. И. см. Иванов В. А., Рожин И. И.
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Ройтенберг В. Ш. О полиномиальных дифференциальных уравнениях

второго порядка на окружности, имеющих первую

степень негрубости

1

Ройтенберг В. Ш. Бифуркация полицикла, образованного сепаратри-

сами седла с нулевой седловой величиной динамиче-

ской системы с центральной симметрией

3

Романова Н. А. см. Лазарев Н. П., Романова Н. А.

Скворцова М. А. Оценки решений в модели динамики популяции реп-

тилий

4

Собиров Ш. К. см. Хоитметов У. А., Собиров Ш. К.

Соколков О. И. см. Пятков С. Г., Соколков О. И.

Сороковикова О. С. см. Асфандияров Д. Г., Сороковикова О. С.

Тордье С. см. Имомназаров Х. Х, Михайлов А. А., Омонов А. Т.,

Тордье С.

Урев М. В.,

Имомназаров Х. Х.,

Искандаров И. К.,

Куйлиев С. Б.

Краевая задача для одной переопределенной систе-

мы, возникающей в двухскоростной гидродинамике

4

Федотов Е. Д. см. Егоров И. Е., Федотов Е. Д.

Хмиль А. В. см. Матвеева И. И., Хмиль А. В.

Хоитметов У. А.,

Собиров Ш. К.

Интегрирование нагруженного уравнения МКДФ

с источником в классе быстроубывающих функций

2

Хромченко Д. С. см. Кожанов А. И., Хромченко Д. С.

K. S. Fayazov,

Y. K. Khudayberganov

An ill-posed boundary value problem for a mixed type

second-order differential equation with two degenerate

lines

1

L. I. Kononenko An inverse problem of chemical kinetics in a nondegen-

erate case

1

R. Shamoyan, O. Mihić Some remarks on Blaschke type products in large area

Nevanlinna spaces in the unit disk

3

N. Vani, D. Vamshee

Krishna, B. Rath

Sharp bounds associated with the Zalcman conjecture

for the initial coefficients and second Hankel determi-

nants for certain subclass of analytic functions

2
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