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Жизнь, связанная с математикой

(к 75-летию д.ф.-м.н., профессора В.И. Васильева)

2 апреля 2024 года исполнтлось 75 лет Василию Ивановичу Васильеву, док-

тору физико-математических наук, профессору, заведующему кафедрой «Вы-

числительные технологии» Института математики и информатики Северо-Вос-

точного федерального университета имени М. К. Аммосова, председателю Дис-

сертационного Совета 24.2.396.02 при СВФУ имени М. К. Аммосова по специ-

альности 1.2.2 «Математическое моделирование, численные методы и комплек-

сы программ».

Василий Иванович Васильев родился 1949 г. в I Кулятском наслеге Верх-

невилюйского района Якутской АССР в семье колхозников. Отец — Иван Ми-

хайлович Титов, участник Великой Отечественной войны, был председателем

колхоза, погиб в 1951 г. в авиакатастрофе. Мать — Мария Никифоровна Васи-

льева, работала счетоводом колхоза им. П. Осипенко, умерла в 1953 г. Остав-

шись в детстве без родителей, Василий воспитывался у бабушки с ее детьми.

В 1956 г. поступил в подготовительный класс Далырской средней школы.

Далырская средняя школа, богатая своими традициями, известна в республике

своими выдающимися педагогами, которые впервые начали движение политех-

нического образования. Еще в школьные годы у Василия проявились интерес

и способности к математике. Под руководством своего учителя математики

А. А. Маччасынова Василий в 1964-68 гг. успешно выступал на районных и

республиканских турах Всесоюзной олимпиады школьников по математике.

Окончив Далырскую среднюю школу в 1967 г., Василий, успешно сдав всту-

пительные экзамены, поступил на механико-математический факультет Ново-

сибирского государственного университета, а через год, в 1968 г., вновь поступил

на физико-математический факультет Якутского государственного университе-

та, который окончил в 1973 г. С третьего курса по индивидуальному плану под

руководством к.ф.-м.н., доцента Н. М. Охлопкова специализировался по вычис-

лительной математике. Работа, написанная В. И. Васильевым и А. М. Карда-

шевским под научным руководством доцента Н. М. Охлопкова, в 1973 г. на

Всесоюзном конкурсе студенческих научных работ была отмечена дипломом

МВ и ССО СССР и ЦК ВЛКСМ.

После окончания университета в 1973-1974 гг. прошел годичную стажи-

ровку в Новосибирском государственном университете. С 1974 по 1980 гг. ра-

ботал на физико-математическом, затем на математическом факультете ЯГУ

в должности ассистента, математика-программиста, директора студенческого

вычислительного центра.

С апреля 1980 г. по 1991 г. работал в ИФТПС СО РАН, где прошел путь от

младшего до ведущего научного сотрудника, члена ученого совета института.
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В 1983 г. в Институте математики АН БССР под научным руководством про-

фессоров В. Н. Абрашина и Э. А. Бондарева защитил диссертацию «Численное

исследование неклассических задач подземной газодинамики» на соискание уче-

ной степени кандидата физико-математических наук по специальности 01.01.07

«Вычислительная математика» (ведущая организация — ВЦ РАН, официаль-

ные оппоненты: профессор А. Н. Коновалов и доцент В. В. Бобков). В годы

работы в ИФТПС им был выполнен ряд хоздоговорных работ по заказу Сиб-

НИИНП и ЦНИИСМ. В 1986 г. ему присвоено ученое звание старшего научного

сотрудника по специальности «вычислительная математика». В институте был

создан и функционировал филиал кафедры прикладной математики ЯГУ, ко-

торым руководил В. И. Васильев.

В апреле 1992 г. вернулся на математический факультет ЯГУ. Принимал

участие в создании на базе математического факультета ЯГУ и отдела при-

кладной математики ЯФ СО АН СССР научно-исследовательского института

прикладной математики и информатики при ЯГУ и, до избрания директором

ИМИ, по совместительству работал заместителем директора по научной рабо-

те НИИПМИ. В том же 1993 г. в ЯГУ был создан диссертационный совет

по защите кандидатских диссертаций по специальностям 05.13.16 «Применение

вычислительной техники, математического моделирования и математических

методов в научных исследованиях», 01.02.04 «Механика деформируемого твер-

дого тела», В. И. Васильев был назначен ученым секретарем совета. В 1995 г.

Василий Иванович в ВЦ СО РАН защитил диссертацию на соискание ученой

степени доктора физико-математических наук по специальности 05.13.16 на те-

му «Численное моделирование процессов тепло- и массопереноса в криолито-

зоне» (ведущая организация — ИПНГ РАН, оппоненты: д.ф.-м.н., профессор

П. Н. Вабищевич, ИММ РАН; д.ф.-м.н., профессор А. В. Федоров, ИТПМ СО

РАН; д.ф.-м.н., профессор В. И. Дробышевич, ВЦ СО РАН).

В октябре 1995 г. В. И. Васильев был избран на должность декана ма-

тематического факультета, в 1996–2014 гг. заведовал кафедрой прикладной

математики. В 1997 г. ему присвоено ученое звание профессора по кафедре

прикладной математики. В 1999 г. В. И. Васильев избран на должность дирек-

тора института математики и информатики ЯГУ, созданного на базе математи-

ческого факультета по инициативе первого президента РС(Я) М. Е. Николаева.

В 2003 г. в ЯГУ по инициативе В. И. Васильева был создан и функциони-

рует диссертационный совет Д 212.306.04 (по новой номенклатуре 24.2.396.02)

по защите диссертаций на соискание ученой степени доктора и кандидата наук

по специальности 05.13.18 «Математическое моделирование, численные методы

и комплексы программ (физико-математические и технические науки)».

В мае 2004 г. В. И. Васильев был назначен первым проректором ЯГУ и

проработал в этой должности 10 лет. В 2009 г. была создана республиканская

комиссия по подготовке к реорганизации ЯГУ в федеральный университет и

разработке главного конкурсного документа «Программы развития создавае-

мого федерального университета» под руководством вице-президента РС (Я)
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Е. И. Михайловой. Василий Иванович Васильев был одним из членов данной

комиссии. 2 апреля 2010 г. вышло распоряжение Правительства РФ №599-р об

открытии Северо-Восточного федерального университета имени М. К. Аммо-

сова. В 2014 г. В. И. Васильев, добровольно оставив пост первого проректора

университета, создал кафедру «Вычислительные технологии» и был избран на

должность заведующего.

В. И. Васильев является известным специалистом по вычислительной мате-

матике, математическому моделированию термомеханического взаимодействия

инженерных сооружений и зданий с окружающими средами в криолитозоне,

процессов разработки месторождений природного газа, по численным методам

решения обратных задач. Им опубликовано 178 статей, научных и научно-

методических работ, в том числе 5 монографий, 4 учебных пособия, он осу-

ществляет руководство аспирантами. Бывшие его дипломники О. А. Тихонова,

В. В. Попов, Ф. Ф. Широких, М. Н. Павлов и аспирант Су Линдэ из Китая под

его руководством защитили диссертации на соискание ученой степени кандида-

та физико-математических наук. В 2016 г. совместно с профессором Техасского

агротехнического университета Ялчином Эфендиевым кафедра «Вычислитель-

ные технологии» приняла участие в конкурсе Мегагрантов Правительства РФ

(5 очередь) с проектом “Multiscale model reduction”. Проект вошел в число по-

бедителей конкурса и финансировался 5 лет. Это был первый выигранный

Мегагрант в СВФУ.

С 2017 г., благодаря мегагранту, кафедра В. И. Васильева с привлечением

целой плеяды ведущих ученых, научно-исследовательской лаборатории, создан-

ной на базе мегагранта с участием молодых ребят, вчерашних выпускников и

молодых ученых осуществила большой научный прорыв в СВФУ: защищены 12

диссертаций на соискание ученой степени кандидата физико-математических

наук; опубликовано свыше 250 статей в научных изданиях, индексируемых в

Web of Science и Scopus, в том числе свыше 100 в математических журналах

1 и 2 квартилей; выиграны 10 грантов Российского научного фонда, из них 6

грантов являются коллективными; проведены 15 международных научных кон-

ференций в Якутске, Москве, Владивостоке и Сочи. Пятеро молодых ученых

получили Государственную премию РС (Я) по науке и технике и две премии по

науке и технике Государственного собрания (Ил Тумэн) Республики Саха (Яку-

тия); молодые сотрудники лаборатории выступали на конференциях ведущих

математических центров страны, в университетах Северной Америки, Европы и

Азии, двое удостоены гранта Президента РФ, трое — гранта Ил Дархана и др.,

четверо сотрудников кафедры готовят докторские диссертации. Установлены

крепкие научные связи с университетами Китая, так, в 2024-25 гг. под научным

руководством профессора В. И. Васильева обучение в аспирантуре завершают

три аспиранта.

В. И. Васильев внес большой личный вклад в развитие высшей школы и

науки в Республике Саха (Якутия), в становлении федерального университета,

в дело подготовки специалистов с высшим образованием, научных и научно-
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педагогических кадров высшей квалификации.

В 2002 г. Василий Иванович стал Лауреатом Государственной премии РС(Я)

в области науки и техники, в 2006 г. ему присвоено почетное звание «Заслу-

женный работник высшей школы Российской Федерации», в 2013 г. — «За-

служенный деятель науки Республики Саха (Якутия)», он является кавале-

ром Ордена Дружбы, награжден медалью Министерства образования и науки

РФ «За безупречный труд и отличие 3 степени». Также имеет нагрудные зна-

ки «Почетный работник высшего профессионального образования Российской

Федерации», «За выдающийся вклад в науку республики», Медаль академика

Н. В. Черского.

Василий Иванович с супругой Татьяной Семеновной воспитали и вырасти-

ли двух дочерей.

От имени многочисленных друзей, коллег, учеников поздравляем уважае-

мого Василия Ивановича с 75-летним юбилеем, желаем крепкого здоровья, бод-

рости, дальнейших успехов в работе, хороших научных достижений, активного

долголетия, счастья!

П. Н. Вабищевич, Я. Эфендиев, В. И. Афанасьева, И. Е. Егоров,

Н. П. Лазарев, Н. Р. Пинигина, С. В. Попов, Ю. И. Трофимцев
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Аннотация. Рассматриваются вопросы неединственности циклов в фазовых порт-
ретах систем обыкновенных дифференциальных уравнений биохимической кине-
тики с блочно-линейными правыми частями, моделирующими функционирование
простейших молекулярных репрессиляторов и других кольцевых генных сетей. Для
таких моделей различных размерностей ранее были установлены условия существо-
вания циклов и исследована их устойчивость.

В настоящей работе описана трехмерная динамическая система такого типа,
у которой в фазовом портрете построено три кусочно-линейных цикла, а также

описаны гомеоморфные тору их инвариантные окрестности, что позволяет локали-
зовать положение этих циклов и определить их взаимное расположение.

Самый маленький из этих трех циклов представляет собой несложный пример
«спрятанного аттрактора» нелинейной динамической системы, два других являют-
ся примерами нелокальных колебаний в фазовом портрете.

Проведены вычислительные эксперименты, иллюстрирующие полученные ре-
зультаты. Ранее примеры неединственности циклов у подобных моделей генных
сетей наблюдались только у систем бо́льших размерностей, начиная с пяти.

DOI: 10.25587/2411-9326-2024-1-7-20

Ключевые слова: модели кольцевых генных сетей, фазовые портреты нелиней-
ных динамических систем, инвариантные области, многоступенчатые функции, пе-
риодические траектории.

Введение

Неединственность периодических траекторий динамических систем давно

стала предметом рассмотрения во многих разделах чистой и прикладной мате-

матики, а также в небесной механике [1–4].

В наших предыдущих публикациях [5–7] (см. также [8–11]), ограниченных

рамками исследования моделей функционирования генных сетей, регулируемых

положительными и отрицательными связями, изучались системы дифференци-

альных уравнений кинетического типа, для которых в размерностях, бо́льших

пяти, были обнаружены примеры неединственности циклов и описаны взаимные

расположения этих циклов в фазовых портретах. С целью выявления осцилли-

рующих траекторий подобные системы уравнений изучаются также и во многих

биологических публикациях (см., например, [12–15].

Работа выполнена в рамках государственного задания FWNF-2022-0009 и FWNF-2022-
0005.

c© 2024 Аюпова Н. Б., Волокитин Е. П., Голубятников В. П.
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Целью настоящей работы является построение трехмерной динамической

системы биохимической кинетики, модели молекулярного репрессилятора, у ко-

торой имеется по крайней мере три различных цикла. Для таких систем урав-

нений

dx1

dt
= k1(L1(x3)− x1),

dx2

dt
= k2(L2(x1)− x2),

dx3

dt
= k3(L3(x2)− x3); (1)

в случаях, когда монотонно убывающие функции Lj , моделирующие отрица-

тельные связи между компонентами репрессилятора, одноступенчатые, в рабо-

тах [16–18] были установлены условия существования, единственности и устой-

чивости циклов (см. также [8, 9]. Здесь и далее j = 1, 2, 3, неотрицательные

переменные xj(t) обозначают концентрации этих компонент, а положительные

коэффициенты kj характеризуют скорости их естественного распада.

1. Модель простейшей многоступенчатой генной сети

Следуя [19], где были описаны обобщенные пороговые модели функциони-

рования подобных генных сетей, для простоты изложения будем рассматривать

симметричную безразмерную версию системы (1), в которой все коэффициенты

kj предполагаются равными единице, все функции Lj совпадают и монотонно

убывают «пятиступенчатым» образом:

L(w) = 2c при 0 ≤ w < c− ε; L(w) = c+ ε при c− ε ≤ w < c− δ;

L(w) = c+ δ при c− δ ≤ w < c; L(w) = c− δ при c ≤ w < c+ δ; (2)

L(w) = c− ε при c+ δ ≤ w < c+ ε; L(w) = 0 при c+ ε ≤ w.

Здесь c > ε > δ > 0. В доказательствах основных результатов этой работы

будем предполагать, что

c > 10ε > 100δ. (3)

Эти условия оказываются достаточными для существования трех циклов систе-

мы (1), (2).

Подобные динамические системы, симметричные относительно цикличе-

ских перестановок уравнений и переменных, рассматривались во многих био-

логических и математических публикациях [20–22], в том числе и в старших

размерностях, поскольку позволяют моделировать «в первом приближении»

функционирование кольцевых генных сетей, несмотря на искусственность пред-

положения о совпадении уравнений и параметров, описывающих изменение кон-

центраций различных компонент таких сетей. Впоследствии полученные здесь

результаты о периодических траекториях были распространены на более об-

щие случаи многомерных моделей кольцевых генных сетей, не имеющих таких

симметрий (см., например, [23–25]).

Так же, как и в работах [17, 18], устанавливается
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Лемма 1. В фазовом портрете системы (1), (2) кубы Q = [0; 2c]× [0; 2c]×
[0; 2c], Q∗ = [c− ε; c+ ε]× [c− ε; c+ ε]× [c− ε; c+ ε] и Q̂ = [c− δ; c+ δ]× [c− δ; c+

δ]× [c− δ; c+ δ] являются положительно инвариантными областями.

Доказательство состоит в проверке знаков производных dxj/dt на гранях

перечисленных областей.

Разобьем параллелепипед Q пятнадцатью плоскостями xj = c−ε, xj = c−δ,
xj = c, xj = c+δ и xj = c+ε на 216 блоков, которые будем нумеровать мультиин-

дексами {s1s2s3} шестибуквенного алфавита α,A, 0, 1, B, β следующим образом:

sj = α, если в блоке 0 ≤ xj < c− ε; sj = A, если в блоке c− ε ≤ xj < c− δ;

sj = 0, если в блоке c− δ ≤ xj < c; sj = 1, если в блоке c ≤ xj < c+ δ; (4)

sj = B, если в блоке c+ δ ≤ xj < c+ ε; sj = β, если в блоке c+ ε ≤ xj ;

Доказательства следующих двух лемм полностью повторяют доказатель-

ство леммы 1.

Лемма 2. Для любых двух соседних блоков S1 и S2 разбиения (4) инва-

риантной области Q траектории всех внутренних точек их общей грани S1 ∩ S2

переходят либо из блока S1 в S2, либо из блока S2 в S1.

Будем обозначать такие переходы через S1 → S2, соответственно через

S2 → S1. Отметим, что областьQ∗ лежит во внутренности области Q, а область

Q̂ — во внутренности области Q∗.

Лемма 3. В инвариантном кубе Q̂, состоящем из восьми блоков {s∗1s∗2s∗3}
разбиения (4), у которых индексы s∗j равны либо нулю, либо единице, перечис-

ленные в диаграмме (5) блоки образуют инвариантную область системы (1),

(2). Траектории точек этой области переходят из блока в блок в соответствии

со стрелками кольцевой диаграммы

{001} −−−−→ {011} −−−−→ {010}
x

y

{101} ←−−−− {100} ←−−−− {110} .

(5)

Замечание 1. В дальнейшем будем рассматривать только такие траек-

тории системы (1), (2), которые с ростом t не пересекаются с ребрами блоков

разбиения (4). В частности, все описанные ниже циклы системы (1), (2) с реб-

рами этого разбиения не пересекаются.

Обозначим через E точку (c, c, c) в центре куба Q̂, а объединение шести

блоков, перечисленных в (5), через Ŵ . Из каждого блока этой диаграммы

траектории могут переходить только в один соседний блок, как и в [17]; из

результатов этой работы вытекает следующее утверждение.
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Лемма 4. Динамическая система (1), (2) имеет в инвариантной области

Ŵ в точности один цикл Ĉ. Этот цикл проходит по блокам в соответствии со

стрелками диаграммы (5) и асимптотически устойчив.

Отметим, что пересечение цикла Ĉ с каждым блоком диаграммы (5) яв-

ляется прямолинейным отрезком и натянутая на этот цикл кусочно-линейная

коническая поверхность � с вершиной E инвариантна относительно сдвигов

вдоль траекторий системы (1), (2) (см. [16]).

Поведение траекторий системы (1), (2) за пределами инвариантного куба

Q̂ имеет более сложное описание.

Лемма 5. Внутри каждого из блоков разбиения (3) области Q система (1),

(2) распадается на три независимых линейных уравнения с постоянными коэф-

фициентами, ее траектории прямолинейны и их продолжения пересекаются в

одной точке.

Доказательство. 1. Рассмотрим блок {ββα}, с которого будет начинать-

ся построение цикла в области Q \Q∗. В этом блоке динамическая система (1),

(2) принимает вид

ẋ1 = 2c− x1; ẋ2 = −x2; ẋ3 = −x3.

Уравнения любого ее решения

x1(t) = 2c(1− e−t) + x1(0)e−t, x2(t) = x2(0)e−t, x3(t) = x3(0)e−t

описывают полупрямую, проходящую через точку (2c; 0; 0) при t→ +∞.

Аналогичным образом устанавливается, что

продолжения траекторий точек блока {βBα} пересекаются в точке (2c; 0; c− ε);
продолжения траекторий точек блока {β1α} — в точке (2c; 0; c− δ);
продолжения траекторий точек блока {β0α} — в точке (2c; 0; c+ δ);

продолжения траекторий точек блока {βAα} — в точке (2c; 0; c+ ε);

продолжения траекторий точек блока {βαα} — в точке (2c; 0; 2c);

продолжения траекторий точек блока {βαA} — в точке (c+ ε; 0; 2c);

продолжения траекторий точек блока {βα0} — в точке (c+ δ; 0; 2c);

продолжения траекторий точек блока {βα1} — в точке (c− δ; 0; 2c);

продолжения траекторий точек блока {βαB} — в точке (c− ε; 0; 2c);

продолжения траекторий точек блока {βαβ} — в точке (2c; 0; 2c); и т. д.

2. Построение цикла в области Q∗ \ Q̂ начнем с блока {BBA}. Точно так

же, как и в первой части доказательства,

продолжения траекторий точек блока {BBA} пересекаются в (c+ ε; c− ε; c− ε);
продолжения траекторий точек блока {B1A} — в точке (c+ ε; c− ε; c− δ);
продолжения траекторий точек блока {B0A} — в точке (c+ ε; c− ε; c+ δ);

продолжения траекторий точек блока {BAA} — в точке (c+ ε; c− ε; c+ ε);

продолжения траекторий точек блока {BA0} — в точке (c+ δ; c− ε; c+ ε);

продолжения траекторий точек блока {BA1} — в точке (c− δ; c− ε; c+ ε);

продолжения траекторий точек блока {BAB} — в точке (c−ε; c−ε; c+ε); и т. д.
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3. Описание траекторий системы (1), (2) в остальных блоках разбиения (4)

проводится подобным же образом; ограничимся здесь рассмотрением блоков,

которые потребуются для формулировки основного результата этой работы. �

Обозначим через W ∗ объединение перечисленных ниже в диаграмме (6)

восемнадцати блоков, лежащих в Q∗ \ Q̂.

. . .→ {BBA} → {B1A} → {B0A} → {BAA} → {BA0} → {BA1} → {BAB}
→ {1AB} → {0AB} → {AAB} → {A0B} → {A1B} → {ABB}

→ {AB1} → {AB0} → {ABA} → {0BA} → {1BA} → {BBA} → . . . (6)

Аналогичным образом конструируется кольцевая диаграмма

. . .→ {ββα} → {βBα} → {β1α} → {β0α} → {βAα} → {βαα}
→ {βαA} → {βα0} → {βα1} → {βαB} → {βαβ} → {Bαβ} → {1αβ}
→ {0αβ} → {Aαβ} → {ααβ} → {αAβ} → {α0β} → {α1β} → {αBβ}

→ {αββ} → {αβB} → {αβ1} → {αβ0} → {αβA} → {αβα}
→ {Aβα} → {0βα} → {1βα} → {Bβα} → {ββα} → . . . (7)

составленная из тридцати блоков, лежащих в области Q \Q∗. Обозначим через

W объединение блоков, перечисленных в диаграмме (7).

В отличие от диаграммы (5) траектории точек, лежащих в W ∗, могут вы-

ходить из объединения W ∗, а траектории точек, лежащих в W , могут выходить

из W ; таким образом, области W ∗ ⊂ Q∗ \ Q̂ и W ⊂ Q \Q∗ не являются инвари-

антными.

2. Основной результат

Диаграммы (6) и (7) построены по аналогии с диаграммой (5), которая в

простой ситуации одноступенчатых правых частей системы (1) без всяких пред-

положений о ее симметричности описывает инвариантную окрестность перио-

дической траектории этой системы. Такой подход позволяет распространить

результаты [16, 17] на случай системы (1), (2).

Теорема. Если выполнено условие (3), то

1) область W содержит по крайней мере один цикл C динамической систе-

мы (1), (2). Этот цикл переходит из блока в блок согласно стрелкам диаграммы

(7);

2) областьW ∗ содержит по крайней мере один цикл C∗ динамической систе-

мы (1), (2). Этот цикл переходит из блока в блок согласно стрелкам диаграммы

(6).

Этапы доказательства теоремы также следуют стрелкам этих диаграмм.

Рассмотрим грань F0 = {ββα} ∩ {Bβα}, разделяющую первые два блока

первой строки диаграммы (7) и определяемую соотношениями x1 = c+ε, c+ε ≤
x2 ≤ 2c, 0 ≤ x3 ≤ c− ε.
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Аналогичным образом обозначим остальные грани, разделяющие соседние

блоки этой диаграммы:

F1 = {ββα} ∩ {βBα}, где x2 = c+ ε; F2 = {βBα} ∩ {β1α}, где x2 = c+ δ;

F3 = {β1α} ∩ {β0α}, где x2 = c; F4 = {β0α} ∩ {βAα}, где x2 = c− δ;
F5 = {βAα} ∩ {βαα}, где x2 = c− ε; F6 = {βαα} ∩ {βαA}, где x3 = c− ε;
F7 = {βαA} ∩ {βα0}, где x3 = c− δ; F8 = {βα0} ∩ {βα1}, где x3 = c;

F9 = {βα1}∩{βαB}, где x3 = c+δ; F10 = {βαB}∩{βαβ}, где x3 = c+ε. . . .

Подобные обозначения введем и для граней, разделяющих соседние блоки

диаграммы (6):

F ∗0 = {1BA} ∩ {BBA}, где x1 = c+ δ, c+ δ ≤ x2 ≤ c+ ε, c− ε ≤ x3 ≤ c− δ;
F ∗1 = {BBA} ∩ {B1A}, где c+ δ ≤ x1 ≤ c+ ε, x2 = c+ δ, c− ε ≤ x3 ≤ c− δ;
F ∗2 = {B1A} ∩ {B0A}, где c+ δ ≤ x1 ≤ c+ ε, x2 = c, c− ε ≤ x3 ≤ c− δ;
F ∗3 = {B0A} ∩ {BAA}, где c+ δ ≤ x1 ≤ c+ ε, x2 = c− δ, c− ε ≤ x3 ≤ c− δ;
F ∗4 = {BAA} ∩ {BA0}, где c+ δ ≤ x1 ≤ c+ ε, c− ε ≤ x2 ≤ c− δ, x3 = c− δ;
F ∗5 = {BA0} ∩ {BA1}, где c+ δ ≤ x1 ≤ c+ ε, c− ε ≤ x2 ≤ c− δ, x3 = c;

F ∗6 = {BA1}∩{BAB}, где c+δ ≤ x1 ≤ c+ε, c−ε ≤ x2 ≤ c−δ, x3 = c+δ; . . .

2.1. Построение первых третей циклов C и C∗.

1. Пусть T0 ⊂ F0 — прямоугольный треугольник с вершиной в точке (c +

ε, c+ ε, c− ε), с вертикальным катетом

ζ1 =
2ε(ε− δ)(c+ ε)

(c− ε)(c− δ) +
2δ(εc+ δ2)(c+ ε)

c(c− δ)(c+ δ)

и с горизонтальным катетом

η0 =
ζ1(c+ ε)

c− ε− ζ1
.

Продолжение гипотенузы этого треугольника пересекает ось Ox1 в точке x1 =

c+ ε.

Траектории точек пятиугольника P0 = F0 \ T0 после прохождения через

блок {ββα} попадают в прямоугольник �1 ⊂ F1, задаваемый соотношениями

c+ ε ≤ x1 ≤
(c− ε)2

2c
, 0 ≤ x3 ≤ c− ε− ζ1.

Из первой части леммы 5 следует, что траектории точек прямоугольника

�1 после прохождения через блоки {βBα}, {β1α}, {β0α} и {βAα} из первой

строки диаграммы (7) попадают на грань F5 = {βAα} ∩ {βαα} в область �5,

задаваемую соотношением x1 ≥ c+ ε+
2ε(c−ε)

c+ε .

Аналогичным образом траектории точек области �5 после прохождения

через следующие блоки {βαA}, {βα0}, {βα1} и {βαB} диаграммы (7) попадают

на грань F10 = {βαB} ∩ {βαβ} в область �10, задаваемую соотношениями

(c+ ε)(ε− δ)
c− δ +

2δ(c2 + ε2)(c− ε)
c(c2 − ε2) +

(c− ε)2(3cε− cδ + ε2 + εδ)

(c+ ε)2(c+ δ)
≤ x1 − c− ε;

(8)

0 ≤ x2 ≤
(c− ε)2
c+ ε

.
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2. Построение цикла C∗ ⊂ W ∗ следует схеме построения цикла C ⊂ W , и

поскольку область W ∗ состоит всего из восемнадцати блоков, для построения

цикла C∗ потребуется меньшее количество шагов, чем в описанном выше случае

области W .

Пусть T ∗0 ⊂ F ∗0 — прямоугольный треугольник с вершиной в точке

(c + δ, c + δ, c − δ), с вертикальным катетом ζ∗1 =
2δ2(δ+ε)
ε(ε−δ) и с горизонтальным

катетом η∗0 =
ζ∗1 (δ+ε)
ε−δ−ζ1

. Продолжение гипотенузы этого треугольника пересекает

прямую x2 = c− ε, x3 = c− ε в точке x1 = c+ δ.

Траектории точек пятиугольника P ∗0 = F ∗0 \ T ∗0 после прохождения через

блок {BBA} попадают в прямоугольник �∗1 ⊂ F ∗1 , задаваемый соотношениями

c+ δ ≤ x1 ≤ c+ δ +
(ε− δ)2

2ε
, c− ε ≤ x3 ≤ c− δ − ζ∗1 .

Из второй части леммы 5 следует, что траектории точек прямоугольника �∗1 по-

сле прохождения через блоки {B1A} из первой строки диаграммы (6) попадают

на грань F ∗3 = {B0A} ∩ {BAA} в область �∗3, которая задается соотношениями

c− ε− (ε− δ)2
2ε

≥ x1 ≥ c+ δ +
2δ(ε− δ)
δ + ε

.

Подобным же образом траектории точек области �∗3 после прохождения

через блоки {BAA}, {BA0} и {BA1} первой строки диаграммы (6) попадают

на грань F ∗6 = {βαB} ∩ {βαβ} в область �∗6, задаваемую соотношениями

c+ δ +
2δ(ε− δ)
ε+ δ

≤ x1 ≤ c+ ε− (ε− δ)2
2ε

; c− ε ≤ x2 ≤ c− δ −
2δ(ε− δ)
ε+ δ

. (9)

2.2. Окончание доказательства теоремы. Ввиду симметричности си-

стемы (1), (2) относительно циклических перестановок переменных σ: x1 ⇒
x2 ⇒ x3 ⇒ x1 области W и W ∗ симметричны относительно поворотов вокруг

прямой x1 = x2 = x3 на углы, кратные 2π/3. Обозначим через ψ такой поворот,

который переводит грань F0 в грань F10, грань F ∗0 — в грань F ∗6 , грань F10 —

в грань F20 = {αBβ} ∩ {αββ}, грань F ∗6 — в грань F ∗12 = {A1B} ∩ {ABA}. При

этом повороте грань F20 переходит в грань F0, грань F ∗12 — в грань F ∗0 , пяти-

угольник P0 ⊂ F0 переходит в пятиугольник P10 ⊂ F10, пятиугольник P10 —

в пятиугольник P20 ⊂ F20 и пятиугольник P ∗0 ⊂ F ∗0 переходит в пятиугольник

P ∗6 ⊂ F ∗6 и т. д.

Обозначим через �0 сдвиг точек пятиугольника P0 ⊂ F0 вдоль их траекто-

рий при прохождении через перечисленные выше блоки диаграммы (7) до грани

F10. При выполнении неравенств (3) выполняются также неравенства (8) и (9),

откуда следует, что

ζ1 < c− ε− (c− ε)2
c+ ε

,

поэтому �0(P0) ⊂ P10. Пусть �10 — сдвиг точек пятиугольника P10 ⊂ F10 вдоль

их траекторий при прохождении через блоки {βαβ}, {Bαβ}, {1αβ}, {0αβ},
{Aαβ}, {ααβ}, {αAβ}, {α0β}, {α1β} и {αBβ} до грани F20. Аналогичным
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Рис. 1. Слева цикл Ĉ, справа циклы Ĉ и C∗.

Рис. 2. Три цикла системы (1), (2).

образом пусть �20 — сдвиг точек пятиугольника P20 ⊂ F20 вдоль их траекторий

при прохождении через оставшиеся блоки диаграммы (7) до грани F0 и �∗0 —

сдвиг точек пятиугольника

Рассмотрим композицию непрерывных отображений ψ−1 ◦ �0 : P0 → P0.

Пятиугольник P0 компактен и гомеоморфен кругу. Из теоремы Брауэра

о неподвижной точке, применяемой в подобных случаях при доказательствах

существования циклов в фазовых портретах автономных динамических систем

(см. [26]), следует, что в P0 существует по крайней мере одна точка X такая,

что ψ−1◦�0(X) = X . Пусть X1 = c+ε, X2, X3 — координаты этой точки. Тогда

координаты точки Y := �0(X) имеют вид Y1 = X3, Y2 = X1 = c+ ε, Y3 = X2.

Эта точка Y при сдвиге �10 вдоль своей траектории перейдет в точку
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Z ∈ P20 с координатами Z1 = X2, Z2 = X3, Z3 = c + ε. Ввиду симметрич-

ности системы (1), (2) относительно циклической перестановки σ траектория

C точки X после обхода диаграммы (7) возвращается в исходное положение:

�20(�10(�0(X))) = X , и, следовательно, является циклом.

Дословно теми же рассуждениями доказывается и вторая часть теоремы:

пусть �∗0 — сдвиг точек пятиугольника P ∗0 вдоль их траекторий при прохожде-

нии через блоки диаграммы (6) до грани F ∗6 , аналогично определим и сдвиги �∗6,

�∗12 Из неравенств (3), (9) вытекает оценка ζ∗1 <
2δ(ε−δ)
ε−δ . Поэтому �∗0(P

∗
0 ) ⊂ P ∗6 ,

�∗6(P
∗
6 ) ⊂ P ∗12, �

∗
12(P

∗
0 ) ⊂ P ∗0 . Композиция ψ−1�∗0 переводит пятиугольник P ∗0

в себя; согласно теореме Брауэра P ∗0 содержит по крайней мере одну точку X∗

такую, что P ∗0 (X∗) = ψ(X∗). Траектория этой точки после обхода по блокам

диаграммы (6) возвращается в исходное положение и, следовательно, является

циклом. �

На рис. 1 приведены результаты вычислительных экспериментов с системой

(1), (2) при c = 10, ε = 0.5, δ = 0.025. Слева изображен самый маленький

цикл этой системы, содержащийся в области Ŵ . Справа при тех же значениях

параметров системы изображены устойчивые циклы Ĉ и C∗.

Внутренности окрестностей Ŵ , W ∗, W циклов Ĉ, C∗ и C попарно не пере-

секаются. Следовательно, границы этих окрестностей разделяют содержащиеся

в них циклы.

Отметим, что неравенства (3) являются достаточными условиями суще-

ствования циклов C∗ и C. На рис. 2 изображены все три устойчивых цикла

этой системы при c = 10, ε = 1, δ = 0.25.

Все вычислительные эксперименты производились с помощью пакета

Mathematica 12.1, лицензия 3322-8225.

Заключение

Построенные циклы C ⊂W и C∗ ⊂W ∗ представляют собой примеры нело-

кальных колебаний; аналогичные периодические траектории широкого круга

динамических систем изучались в [26, 27] Цикл Ĉ, содержащийся в инвариант-

ной области Ŵ , и натянутая на него инвариантная поверхность � при δ → 0

стягиваются в точку E и потому этот цикл Ĉ является кусочно-линейным ана-

логом бифуркационного цикла (см. [28]).

Полученные результаты о неединственности циклов по-видимому допуска-

ют обобщения на модели генных сетей бо́льших размерностей и на динамиче-

ские системы с правыми частями общего вида, которые моделируют описанные

в [29–31] генные сети с более сложными положительными и отрицательными

связями и их комбинациями.

Благодарность. Авторы искренне благодарны А. В. Глубоких и Е. А. Сит-

няковской за полезные обсуждения.
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ПРЕОБРАЗОВАНИЕ ГАНКЕЛЯ –––

КАТРАХОВА И СИНГУЛЯРНЫЕ

K–ПСЕВДОДИФФЕРЕНЦИАЛЬНЫЕ ОПЕРАТОРЫ

Ю. Н. Булатов

Аннотация. Для исследования задач с сингулярным дифференциальным опера-
тором Бесселя B−γ с отрицательным параметром −γ ∈ (−1, 0) в работе вводится
интегральное преобразование на основе решения u = Jµ сингулярного уравнения
Бесселя B−γu+u = 0, которое выражено через функцию Бесселя первого рода с по-

ложительным параметром µ = γ+1
2

. Строятся четное, нечетное K-преобразования

Бесселя (Ганкеля — Киприянова — Катрахова) и класс сингулярных K-псевдодиф-
ференциальных операторов. Получены основные теоремы о порядках сингулярных
K-псевдодифференциальных операторов.

DOI: 10.25587/2411-9326-2024-1-21-34

Ключевые слова: сингулярный псевдодифференциальный оператор, преобразо-
вание Ганкеля — Киприянова — Катрахова, обобщенный псевдосдвиг, порядок опе-
раторов.

Введение

Применение специального преобразования Бесселя при исследовании задач

для уравнений, содержащих сингулярный дифференциальный оператор Бессе-

ля с отрицательным параметром, было предложено И. А. Киприяновым в нача-

ле 80-х гг. прошлого столетия. Такого рода исследования проведены в работе

[1] для �B-операторов вида

�B =

n∑

i=1

Bγi
, Bγ =

d2

dx2
i

+
γ

xi

d

dxi

с параметром γ ∈ (−1, 0). Представление оператора �B−γ
в виде оператора

Бельтрами на сфере позволяет считать сингулярный оператор Бесселя в каче-

стве среднего между операторами Лапласа в Rn и оператором Лапласа в Rn+1

(этот факт замечен в [2], доказан в [3]). Еще отметим, что в работе [4] ис-

следовалась задача Коши, решение которой построено в виде ряда Фурье по

функциям Бесселя tµJµ(x), где Jµ — функция Бесселя первого рода. Именно

на этих функциях (Jµ(t)) в [5] введено специальное преобразование Бесселя,

которое используется здесь для построения нового класса сингулярных псевдо-

дифференциальных операторов.

Работа выполнена при финансовой поддержке РНФ (проект № 24–21–00387).

c© 2024 Булатов Ю. Н.
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В работе вводится одномерное сингулярное преобразование Ганкеля —

Киприянова — Катрахова, в рамках которого определен символ первой произ-

водной от четной функции. Этот факт позволяет получить основные теоремы

о порядке введенных K-псевдодифференциальных операторов в соответствую-

щих функциональных пространствах Соболева — Киприянова.

1. Некоторые сведения,

ассоциированные с оператором B
−γ

Отметим, что ограниченность действия оператора Бесселя Bk обеспече-

на применением его к четным функциям [6]. Функции, заданные на полуоси

xi ∈ [0,∞), будем называть четными по Киприянову, если возможно их чет-

ное продолжение на всю ось xi с сохранением класса своей принадлежности [7,

с. 21].

J-функции Бесселя определены как линейно независимые решения сингу-

лярного дифференциального уравнения Бесселя [5]

B−γu+ u = 0, −1 < −γ < 0. (1)

Пусть µ = γ+1
2 . Фундаментальной системой решений этого уравнения являются

функции

J−µ(t) =

∞∑

m=0

(−1)m� (1− µ)

m!� (m+ 1− µ)

(
t

2

)2m

= � (1− µ)2−µtµJ−µ(t),

Jµ(t) =

∞∑

m=0

(−1)m� (1 + µ)

m!� (m+ 1 + µ)

t2(m+µ)

22m
= � (1 + µ)2µtµJµ(t).

где Jµ и J−µ соответственно функции Бесселя первого рода, 1
2 < µ < 1.

Константа � (1− µ) для первой из этих функций играет роль нормировоч-

ного коэффициента:

J−µ(0) = 1.

Для второй функции (т. е. для Jµ(t)) это не так, поскольку

Jµ(0) = 0,

ввиду того, что если выполнено условие 0 > −γ > −1, то µ = γ+1
2 > 0. Тем не

менее функция Jµ определена для всех положительных µ (в отличие от J−µ), а

введенная константа � (µ+ 1) играет важную роль при построении операторов

обобщенного T-псевдосдвига.

Решение J−µ более востребовано в спектральной теории сингулярных диф-

ференциальных уравнений, что продемонстрировано в работах [8, 9].
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1.1. Рекуррентное соотношение для производных J-функции Бес-

селя.

Лемма 1. Имеет место следующая формула:

(Jµ(t))′ = 2µtJµ−1(t),

где Jµ−1 удовлетворяет уравнению B2−γu+ u = 0.

Доказательство. Исходим из определения Jµ(t) = t2mjµ(t) [10]. Имеем

jµ =

∞∑

k=0

(−1)k

k!

� (µ+ 1)

� (k + µ+ 1)

t2k

22k
,

Jµ(t) = t2µjµ =

∞∑

k=0

(−1)k

k!

� (µ+ 1)

� (k + µ+ 1)

t2(k+µ)

22k
.

Следовательно,

(Jµ(t))′ = (t2µjµ(t))′ =
∞∑

k=0

(−1)k

k!

� (µ+ 1)2(k + µ)

� (k + µ)(k + µ)

t2(k+µ)−1

22k

=

[
∞∑

k=0

(−1)k

k!

� ([µ− 1] + 1)

� (k + [µ− 1] + 1)

(
t

2

)2k
]

2µt(2µ−2)t

=

[
∞∑

k=0

(−1)k

k!

� ([µ− 1] + 1)

� (k + [µ− 1] + 1)

(
t

2

)2k
]

2µt2(µ−1)t = jµ−1(t)t
2(µ−1)2µt

= 2µtJµ−1(t).

Доказательство закончено.

Из леммы 1 вытекает

Следствие 1. (Jµ(ξx))′x = 2µξxJµ−1(ξx).

1.2. Четное, нечетное и полное J-преобразования Бесселя на осно-

ве J-функций Бесселя. Формула Ганкеля представления L2-функций, при-

мененная к функции u(x)x−γ ∈ L2(0,∞), приводит к равенству (доказательство

приведено в [5])

u(x) =
1

22µ� 2(1 + µ)

∞∫

0

Jµ(xξ)ξ−γ

∞∫

0

Jµ(yξ)f(y)y−γ dydξ,

из которого вытекают следующие определения.

Четными прямым и обратным J-преобразованиями Ганкеля — Киприяно-

ва будем называть выражения

F[f ](ξ) = F
(1)
B−γ

[f ](ξ) = f̂(ξ) =

∞∫

0

Jµ(ξy)f(y)y−γ dy,
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F−1[f ](ξ) =
(
F

(1)
B−γ

)−1
[f ](ξ) =

1

(� (1 + µ))222µ

∞∫

0

Jµ(ξx)f̂ (ξ)ξ−γ dξ.

Обратимость этих преобразований вытекает из представления функций ин-

тегралом Фурье — Ганкеля.

Принимая во внимание [11] и следствие 1, введем нечетное J-преобразова-

ние Ганкеля — Киприянова — Катрахова1), основанное на функции 1
ξ (Jµ(ξx))′x =

2µ(ξx)Jµ−1(ξx), которое имеет вид

F
(2)
B−γ

[f ](ξ) = −1

2

∞∫

−∞

f(x)
1

ξ
(Jµ(ξx))′xx

−γ dx.

Несобственный интеграл здесь, как обычно, понимается в смысле главного зна-

чения по Коши. Как видим, ядро этого преобразования нечетно, поэтому для

четных функций F
(2)
B−γ

[f ](ξ) = 0.

Лемма 2. Пусть f — четная функция из пространства основных функций

Л. Шварца. Тогда

F
(2)
B−γ

[f ′](ξ) = ξF
(1)
B−γ

[f ](ξ) = ξf̂(ξ), (2)

где f̂(ξ) — четное J-преобразование Ганкеля — Киприянова.

Доказательство. Имеем

F
(2)
B−γ

[f ′](ξ) = −1

2

∞∫

−∞

df(x)

dx

1

ξ
(Jµ(ξx))′xx

−γ dx = −
∞∫

0

df(x)

dx

1

ξ
(Jµ(ξx))′xx

−γ dx

=

∞∫

0

f(x)
xγ

ξ

d

dx
(x−γ(Jµ(ξx))′x)x−γ dx.

Поскольку xγ d
dx(x−γ(Jµ(ξx))′x) = B−γJµ(ξx), имеем

F
(2)
B−γ

[f ′(x)](ξ) =

∞∫

0

f(x)
1

ξ
B−γ(Jµ(ξx))x−γ dx.

Согласно равенству (1) получим

F
(2)
B−γ

[f ′(x)](ξ) = ξ

∞∫

0

f(x)Jµ(ξx)x−γ dx = ξF(1)[f ](ξ) = ξf̂(ξ).

Доказательство закончено.

Из равенства (2) видно, что преобразование F
(2)
B−γ

производной четной функ-

ции свелось к преобразованию F
(1)
B−γ

. Поэтому удобно ввести одно преобразова-

ние со смешанным ядром

1

2
�(xξ) =

1

2
Jµ(xξ) − µxξJµ−1(xξ).

1)Это одно из преобразований Бесселя.
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При этом, полагая

f(x) =
f(x) + f(−x)

2
+
f(x)− f(−x)

2
= fev(x) + fod(x),

получим

K[f ](ξ) =
1

2

+∞∫

−∞

f(x)�(xξ)x−γ dx = F
(1)
B−γ

[fev](ξ) + F
(2)
B−γ

[fod](ξ),

где первое слагаемое представляет собой четное J-преобразование Бесселя, а

второе — нечетное J-преобразование Бесселя2).

Через Sev = Sev(R
+
1 ), R+

1 = (0,∞), будем обозначать пространство основ-

ных функций Л. Шварца.

Пусть α — целое неотрицательное число и 0 < γ < 1. Введем сингулярный

дифференциальный оператор

Dα
B−γ

=

{
Bk
−γ , если α = 2k,

d
dxB

k
−γ , если α = 2k + 1,

k = 0, 1, 2, . . . , B−γ =
d2

dx2
− γ

x

d

dx
.

Заметим, что этот оператор ограниченно действует на четную функцию u ∈
C2[0,∞), поскольку

lim
x→0

B±γu(x) = (1 ± γ)u′′(0).

Поэтому рассматриваемые далее функции удобно считать принадлежащими ос-

новному пространству функций Sev(R
+
1 ), R+

1 = (0,∞).

Теорема 1 (о символе Dα
B−γ

-оператора). Для f ∈ S(R1) имеет место фор-

мула

K[Dα
B−γ

f ](ξ) =

{
ξ2kf̂(ξ), если α = 2k четное,

ξ2k+1f̂(ξ), если α = 2k + 1 нечетное,
k = 0, 1, 2, . . . , (3)

где f̂(ξ) — четное преобразование Ганкеля — Киприянова.

Доказательство. Предположим, что функция f четная (по Киприянову,

если задана на положительной полуоси) и число α = 2k ≥ 0 четное. Тогда

K
[
Dα

B−γ
f
]
(ξ) = F

(1)
B−γ

[
Bk
−γf

]
(ξ) = ξ2kf̂(ξ), (4)

что доказано выше.

Пусть α = 2k + 1 — нечетное число. Воспользовавшись леммой 1 и равен-

ством (4), получим

K
[
Dα

B−γ
f
]
(ξ) = ξF

(1)
B−γ

[
Bk
−γf

]
(ξ) = ξ2k+1f̂(ξ). (5)

Из (5) и (4) следует равенство (3).

Доказательство закончено.

2)Как видим, прослеживается аналогия с синус и косинус преобразованиями Фурье.
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1.3. Пространства Соболева — Киприянова, ассоциированные с

Dα
B−γ

-оператором Бесселя. Функциональные пространства формально вво-

дятся по тем же схемам, что и в книге [6]. Весовую билинейную форму в

R+
1 = (0,∞) определим равенством

(u, v)−γ =

∫

R
+

1

u(x)v(x)x−γ dx. (6)

Определение (6) порождает весовое функциональное пространство

L−γ
2 = L−γ

2 (0,∞) = {u : ‖u‖L−γ
2

=

√
(u, u)−γ <∞}.

Пусть ϕ ∈ Sev = Sev(R
+
1 ), R+

1 = (0,∞). Соответствующее пространство

функционалов, порожденное весовой линейной формой (·, ·)−γ , будем обозна-

чать через S′ev. Топология в Sev определяется системой норм

|〈u〉|N = sup
∣∣(1 + x)kDℓ

B−γ
u(x)

∣∣,

где верхняя грань берется по всем x ∈ R+
1 и всем k и ℓ с k+ℓ ≤ N , а N пробегает

все целые неотрицательные числа.

Для любого вещественного s через Hs
−γ(0,∞) обозначим пополнение мно-

жества Sev по норме

‖u‖2Hs
−γ

=

∫

R
+

1

(1 + |ξ|2)s|û(ξ)|2ξ−γ dξ, (7)

где û — прямое J-преобразование Ганкеля — Киприянова. При целом положи-

тельном s = m норма (7) эквивалентна норме

‖u‖2Hm
−γ

=
∑

|α|≤s

∫

R
+

1

∣∣Dα
B−γ

u(x)
∣∣2x−γ dx,

а при дробном s эквивалентна норме, содержащей киприяновские операторы

дробного дифференцирования [12], порождаемые J-преобразованием Ганкеля —

Киприянова.

1.4. Теорема сложения для Jµ-функции Бесселя. В статье [6] приве-

дены свойства j-функции Бесселя

jν(x) = 2ν� (ν + 1)
Jµ(x)

xµ
, ν > −1

2
,

и доказана следующая теорема сложения:

jν(tx)jν(ty) = T y
x jν(tx),

где T y
x — обобщенный сдвиг Пуассона:

T y
x f(tx) =

�
(
ν+1
2

)

�
(

1
2

)
�
(
ν
2

)
π∫

0

f(t
√
x2 + y2 − 2xy cosα) sin2ν α dα.
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Функции jµ и Jµ положительного индекса связаны равенством Jµ(x) =

x2µjµ(x), из которого получаем теорему сложения для Jµ-функций Бесселя:

Jµ(xt)Jµ(yt) = TyxJµ(xt), (8)

где µ = γ+1
2 , 1

2 < µ < 1 и оператор Tyx, имеет следующий вид:

Tyxf(tx) =
�
(
µ+1

2

)

�
(

1
2

)
�
(
µ
2

) (txy)2µ
π∫

0

f(t
√
x2 + y2 − 2xy cosα)

(
√
x2 + y2 − 2xy cosα)2µ

sin2µ αdα. (9)

Оператор (9) будем называть обобщенным T-псевдосдвигом. Он не принадле-

жит классу обобщенных сдвигов Левитана (так как T0f(x) 6= f(x), Tyx1 6= 1).

Отметим, что далее будет указан только верхний индекс в обозначении (9), если

переменная нижнего индекса очевидна.

2. T-псевдосдвиг и некоторые свойства

Отметим, что особенность, возникающая в (9) при x = y и при α = 0,

слабая.

Здесь приведены лишь необходимые для этой работы свойства T-псевдо-

сдвига (доказательства см. в [5]).

Свойство 1. Если f и g функции суммируемые с весом x−γ , 0 < γ < 1, то

(Tyf, g)−γ = (f,Tyg)−γ .

Свойство 2. Пусть f — четная дважды непрерывно дифференцируемая

функция, 0 < γ<1 и x−γf(x) ∈ L2(0,∞). Тогда

B−γ,xT
y
xf(x) = TyB−γf(x).

Свойство 3. Переместительность T-псевдосдвига: если функция f пред-

ставлена равномерно сходящимся рядом Фурье по J-функциям Бесселя, то

TyxT
z
xf(x) = TzxT

y
xf(x).

Свойство 4. Ассоциативность T-псевдосдвига: если функция f представ-

лена равномерно сходящимся рядом Фурье по J-функциям Бесселя, то

TzyT
y
xf(x) = TzxT

y
xf(x).

2.1. J-Преобразование Киприянова псевдосвертки функций. Псев-

досверткой функций будем называть выражение

(ϕ ∗ ψ)−γ =

∞∫

0

Tyϕ(x)ψ(y)y−γ dy

=
�
(
γ+3

2

)

�
(

1
2

)
�
(
γ+2
2

)
∞∫

0

π∫

0

(xy)γ+1ϕ(

√
(x

α→ y))

(x
α→ y)γ+1

sinγ+1 αdαψ(y)y−γ dy,

где γ = 2µ− 1, 0 < γ < 1), и (x
α→ y) =

√
x2 + y2 − 2xy cosα.
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Теорема 2. Пусть ϕ, ψ ∈ L−γ
2 (0,∞) — четные функции. Тогда

F
(2)
B [(ϕ ∗ ψ)−γ ](ξ) = F

(1)
B [(ϕ ∗ ψ)−γ ](ξ) = ϕ̂(ξ)ψ̂(ξ).

Доказательство. Действительно, учитывая перестановочность T-псев-

досдвига в скалярном произведении в L−γ
2 и теорему сложения (8), получим

F[(ϕ ∗ ψ)−γ ](ξ) =

∞∫

0

Jµ(xξ)

∞∫

0

Tyϕ(x)ψ(y)y−γ dyx−γ dx

=

∞∫

0

Jµ(xξ)ϕ(x)x−γ dx

∞∫

0

Jµ(yξ)ψ(y)y−γ dy = ϕ̂(ξ)ψ̂(ξ).

Следствие 2. Если положить u = F−1ϕ, а v = F−1ψ, то

F[u v] = (û ∗ v̂)−γ .

2.2. Представление линейного сингулярного дифференциального

оператора в рамках преобразования Ганкеля — Киприянова — Катра-

хова. Рассмотрим линейный сингулярный дифференциальный оператор

L(DB−γ
) =

m∑

k=0

ak(x)D
k
B−γ

.

Если предположить, что функция u четная, достаточно гладкая и для нее имеет

место представление u(x) =
(
F

(1)
B−γ

)−1
[û](x), то

L(DB−γ
)u(x) = K−1

ξ→x

[
m∑

k=0

ak(x)(−ξ)kû(ξ)

]
(x).

Обычно используемая символьная запись действия L(B−γ) оператора имеет вид

L(B−γ)u(x) = K−1[a(x, ξ)F[u]], (10)

где функция

a(x, ξ) =

m∑

k=0

ak(x)(−ξ)k (11)

является символом сингулярного дифференциального оператора L(B−γ).

2.3. Представление L(B−γ)-сопряженного оператора в рамках пре-

образования Ганкеля — Киприянова — Катрахова. Рассмотрим весовую

линейную форму (6) в виде

(u, v)−γ =

∞∫

0

u(x)v(x)x−γ dx.
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Упрощая, предположим, что u, v ∈ Sev(0,∞). Тогда

(L(B−γ)u, v)−γ =

∞∫

0

L(B−γ)u(x)v(x)x−γ dx.

Исходя из Jµ-представления Ганкеля оператора L(B−γ), получим

(L(B−γ)u, v)−γ =
1

22µ� 2(1 + µ)

×
∞∫

0

x−γ dx

∞∫

0

ξ−γ dξ

∞∫

0

TyxJµ(xξ)a(x, ξ)v(x)u(y)y−γ dy

=
1

22µ� 2(1 + µ)

∞∫

0

u(y)y−γ dy

∞∫

0

ξ−γ dξ

∞∫

0

TyxJµ(xξ)a(x, ξ)v(x)x−γ dx.

Введем обозначение

L̃(B−γ)v(y) =
1

22µ� 2(1 + µ)

∞∫

0

x−γ dx

∞∫

0

T
y
xJµ(xξ)a(x, ξ)v(x)ξ−γ dξ.

Тогда

(L(B−γ)u, v)−γ = (u, L̃(B−γ)v)−γ .

Таким образом, оператор L̃(B−γ) с комплексно сопряженным символом a(x, ξ)

оказывается формально сопряженным оператору L(B−γ).

Подобно (10) имеем следующую формальную запись действия сопряжен-

ного оператора:

L(B−γ)u(x) = F−1[F[a(x; ξ)u]], (12)

где a(x; ξ) — символ оператора L̃(B−γ), комплексно сопряженный символу (11).

3. Сингулярные J-псевдодифференциальные

операторы Киприянова

j-Псевдодифференциальные операторы введены в [13]. Оказалось, что вве-

денные операторы образуют алгебру, истинный порядок которой −1. Впослед-

ствии в работе [14] введено специальное преобразование Фурье — Бесселя —

Киприянова — Катрахова, которое позволило построить алгебру таких псевдо-

дифференциальных операторов истинного порядка −∞. Но введенные ниже

псевдодифференциальные операторы построены по схеме j-псевдодифферен-

циальных операторов Киприянова и образуют алгебру истинного порядка −1.

Оператор DB имеет смысл рассматривать на дифференцируемых четных

функциях (так же, как и сингулярный дифференциальный оператор Бесселя).

Формулы (10) и (12) приводят к общим конструкциям операторов, вклю-

чающих линейные сингулярные операторы типа L(B−γ).
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Так как норма, записанная в образах J-преобразований Ганкеля — Киприя-

нова, приведет к умножения на символ, представляющий многочлен порядка m,

для многочлена с ограниченными коэффициентами справедливо неравенство
∣∣∣
∑

α≤m

aα(x)ξα
∣∣∣ ≤

∑

|α|≤m

|aα(x)|(1 + |ξ|)α.

Определение 1. Пусть s — действительное число. Через �s
−γ = �s

−γ(R+
1 ×

R+
1 ) будем обозначать класс бесконечно дифференцируемых четных по x и по

ξ функций a(x, ξ), удовлетворяющих неравенству

∣∣(Dα
B−γ

)
x

(
Dβ

B−γ

)
ξ
a(x, ξ)

∣∣ ≤ C(1 + ξ)s−β (13)

при любых α и β с константами C = Cα,β , не зависящими от x и ξ. Класс

функций �s
−γ будем называть пространством символов порядка s.

Топология в �m
−γ определяется счетным набором норм

|[a]|N = sup(1 + ξ2)
−m+β

2

∣∣(Dα
B−γ

)x
(
Dβ

B−γ

)
ξ
a(x, ξ)

∣∣,

где верхняя грань берется по всем x, ξ ∈ R+
1 и по всем неотрицательным целым

числам a, β таким, что α + β ≤ N , а N пробегает все неотрицательные целые

числа.

Из (13) следует, что

Fx→η((1 +B−γ)p)x
(
Dβ

B−γ

)
ξ
a(x, ξ) = (1 + η2)p

(
Dβ

B−γ

)1
ξ
â(η, ξ) ≤ C(1 + ξ2)

m−β
2 ,

где 1â — обозначение J-преобразования Ганкеля — Киприянова функции a(x, ξ)

по первой переменной. Для любого положительного числа p найдется такая

константа C, что
1â(η, ξ) ≤ C(1 + η2)−p(1 + ξ2)

m
2 ,

(
Dβ

B−γ

)1
ξ
â(η, ξ) ≤ C(1 + η2)−p(1 + ξ2)

m−β
2 .

Определение 2. Операторы, действующие на функцию, принадлежащую

пространству Sev(0,∞), по формулам

Au(x) =

∫

R1

∫

R1

Tyx�µ(xξ)a(x, ξ)u(y)y−γ dyξ−γ dξ, (14)

A u(x) =

∫

R1

∫

R1

Tyx�µ(xξ)a(y, ξ)u(y)y−γ dyξ−γ dξ, (15)

где −γ = −2µ + 1, будем называть сингулярными K-псевдодифференциальны-

ми операторами Киприянова — Катрахова. Функция a(x, ξ) ∈ �m
−γ называется

символом порядка m этих операторов. В рамках наших исследований нечетным

по переменной ξ символом является производная по переменной ξ четной по ξ

функции a(x, ξ). В результате преобразование Ганкеля — Киприянова — Катра-

хова K с ядром � превращается в преобразование F
(1)
B−γ

Ганкеля — Киприянова
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четных функций с ядром J после того, как первая производная интегрировани-

ем по частям окажется на функции x−γ(Jµ(ξx))′x, что приводит к равенству

xγ
d

dx
(x−γ(Jµ(ξx))′x) = B−γJµ(ξx) = −ξ2Jµ(ξx).

После такого рода преобразований операторы с «нечетным» символом ока-

жутся операторами с «четным» символом и мы имеем дело с четным преоб-

разованием Ганкеля — Киприянова, для которого соответствующие результаты

приведены в работах [15, 16].

Приведем формулировки теорем о порядках сингулярных J-псевдодиффе-

ренциальных операторов с символом из �m
ev и теоремы о произведении и ком-

мутаторах.

Теорема 3. Сингулярный J-псевдодифференциальный оператор (14), (15)

с символом a(x, ξ) ∈ �m
ev является оператором порядка m, т. е.

‖Au‖Hs
−γ
≤ C‖u‖Hs+m

−γ
.

Теорема 4. Сингулярный J-псевдодифференциальный оператор A − A с

символом a(x, ξ) ∈ �m
ev является оператором порядка m− 1, т. е.

‖(A−A )u‖Hs−m+1

−γ
≤ C‖u‖Hs

−γ
.

Пусть a1(x, ξ) ∈ �m1
ev , a2(x, ξ) ∈ �m2

ev , A1 и A2 — соответствующие этим сим-

волам сингулярные псевдодифференциальные операторы. Утверждение, ана-

логичное теореме 1, справедливо для произведения A1A2 и сингулярного псев-

додифференциального оператора с символом, равным произведению символов

операторов A1 и A2. Этот оператор будем обозначать A1 ◦A2.

Теорема 5. Оператор A1A2 − A1 ◦ A2 имеет порядок m1 + m2 − 1 в про-

странстве Hs
−γ(Rn), т. е.

‖(A1A2 −A1 ◦A2)u‖Hs−m1−m2+1

−γ

≤ C‖u‖Hs
−γ
.
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РАЗРЕШИМОСТЬ ПЕРВОЙ КРАЕВОЙ

ЗАДАЧИ ДЛЯ УРАВНЕНИЯ СМЕШАННОГО

ТИПА В ВЕСОВОМ ПРОСТРАНСТВЕ

И. Е. Егоров, С. В. Сафонов

Аннотация. Изучению различных краевых задач для уравнений смешанного типа
второго порядка посвящены работы Ф. Трикоми, А. В. Бицадзе, М. М. Смирнова
и многих других авторов. В данных работах применялась теория сингулярных ин-
тегральных уравнений. С 1970-х гг. к исследованию краевых задач для уравнения
смешанного типа начали применять функциональные методы и методы, связанные
с функциональным анализом. Началось построение общей теории краевых задач
для уравнений смешанного типа с произвольным многообразием изменения типа.
В частности, при некоторых предположениях и знакоопределенности коэффициен-
та при второй производной по времени вблизи оснований цилиндрической области
доказаны существование и единственность регулярного решения краевой задачи
врагова и первой краевой задачи для уравнения смешанного типа второго порядка
с помощью метода регуляризации.

В 2019 г. А. Н. Артюшин доказал существование, единственность обобщенного
и регулярного решений краевой задачи Врагова в весовом пространстве Соболева,
когда коэффициент при второй производной по времени может менять знак на
основаниях цилиндрической области.

В данной работе установлены существование обобщенного решения и одно-
значная регулярная разрешимость первой краевой задачи для уравнения смешан-
ного типа второго порядка в весовом пространстве Соболева, когда коэффициент

при старшей производной уравнения по времени может менять знак на нижнем
основании и отрицательный на верхнем основании цилиндрической области.

DOI: 10.25587/2411-9326-2024-1-35-47

Ключевые слова: уравнение смешанного типа, первая краевая задача, разреши-
мость, оценка.

1. Введение

Изучению различных краевых задач для уравнений смешанного типа вто-

рого и высокого порядков посвящено много работ [1–11]. Краткий обзор совре-

менных работ в данной области дан в статьях [12–16]. Работа В. Н. Врагова

[9] положила начало построению общей теории краевых задач для уравнений

смешанного типа с произвольным многообразием изменения типа в отличие от

работ [1–4], в которых применялась теория сингулярных интегральных уравне-

ний. К исследованию краевых задач для уравнений смешанного типа начали

Работа выполнена при поддержке Минобрнауки РФ в рамках государственного задания
(проект № FSRG-2023-0025).

c© 2024 Егоров И. Е., Сафонов С. В.
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применять функциональные методы, метод вспомогательного оператора, метод

регуляризации, метод Галеркина и другие методы. В частности, в [9] при неко-

торых условиях и знакоопределенности коэффициента уравнения при старшей

производной по времени вблизи оснований цилиндрической области были до-

казаны существование и единственность регулярного решения краевой задачи

Врагова с помощью метода регуляризации. В работах [12, 13] при аналогичных

условиях на коэффициенты уравнения нестационарный метод Галеркина при-

менен к регулярной разрешимости краевой задачи Врагова и получена оценка

погрешности метода Галеркина через параметр регуляризации и собственные

числа задачи Дирихле для оператора Лапласа по пространственным перемен-

ным. В [16] установлены существование и единственность регулярного решения

краевой задачи Врагова в весовом пространстве Соболева, когда коэффици-

ент при старшей производной по времени может менять знак на основаниях

цилиндрической области. В работе [10] впервые была сформулирована первая

краевая задача для уравнения смешанного типа второго порядка и исследована

регулярная разрешимость с помощью метода регуляризации, когда коэффици-

ент при старшей производной знакоопределен на основаниях цилиндрической

области. При аналогичных условиях на коэффициенты уравнения в [15] с помо-

щью нестационарного метода Галеркина исследована регулярная разрешимость

первой краевой задачи и получена оценка погрешности метода Галеркина.

В данной работе будут установлены существование и единственность ре-

гулярного решения первой краевой задачи в весовом пространстве Соболева,

когда коэффициент при старшей производной уравнения по времени может ме-

нять знак на нижнем основании и отрицательный на верхнем основании цилин-

дрической области.

2. Постановка первой краевой

задачи и предварительные сведения

Пусть � ⊂ Rn — ограниченная область с гладкой границей S,

Q = �t × (0, T ), � = S × (0, T ), �t = �× t, 0 ≤ t ≤ T.

В области Q рассмотрим уравнение смешанного типа

Lu ≡ k(x, t)utt −�u+ a(x, t)ut + c(x)u = f(x, t), (x, t) ∈ Q, (1)

где коэффициенты являются достаточно гладкими функциями. Введем множе-

ства

�±0 = {(x, 0) : k(x, 0) ≷ 0, x ∈ �}, �±T = {(x, T ) : k(x, T ) ≷ 0, x ∈ �}.

Краевая задача I [10]. Найти решение уравнения (1) в области Q такое,

что

u|� = 0, u|t=0 = 0, ut|�+

0

= 0, u|
�
−

T

= 0. (2)

ПустьCL — класс функций из W 2
2 (Q), удовлетворяющих краевым условиям

(2).
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Лемма 1 [7, 10, 15]. Пусть коэффициент c(x) > 0 достаточно большой и

выполнены условия

k(x, T ) < 0, a− 1

2
kt ≥ δ > 0.

Тогда существуют неотрицательные бесконечно дифференцируемые функции

ϕ(t), ψ(t) такие, что имеет место неравенство

(Lu, ϕut + ψu) ≥ C1‖u‖21, C1 > 0,

для всех функций u ∈ CL.

Здесь и в дальнейшем для целого k ≥ 1 норма в пространстве Соболева

W k
2 (Q) обозначается через ‖u‖k, скалярное произведение в L2(Q) — через (u, v)

для u, v из L2(Q), ‖u‖2 = (u, u),

(f, g)0 =

∫

�

f(x)g(x) dx, ‖f‖20 = (f, f)0, f, g ∈ L2(�).

Введем обозначения: k0(x) = k(x, 0), kT (x) = k(x, T ) и

k+
0 (x) =

{
k0(x), если k0(x) > 0,

0, если k0(x) ≤ 0,

k−0 (x) = k0(x)− k+
0 (x). Аналогично определяются срезки k±T (x), k±(x, t). Опре-

делим пространства

W̃ 1
2 (Q) =

{
u(x, t) ∈W 1

2 (Q) : u|� = 0, u|t=0 = 0, u|�−
T

= 0
}
,

Ŵ 1
2 (Q) =

{
η(x, t) ∈ W 1

2 (Q) : η|� = 0, η|t=T = 0
}
.

Определение 1. Функция u(x, t) ∈ W̃ 1
2 (Q) называется обобщенным ре-

шением краевой задачи I, если найдется χ0(x) ∈ L2(�) такая, что для любой

функции η(x, t) ∈ Ŵ 1
2 (Q) выполнено интегральное тождество

a(u, η) =

∫

Q

[
−kutηt + (a− kt)utη +

n∑

i=1

uxi
ηxi

+ cuη

]
dQ

= (f, η)−
∫

�−
0

√
|k0(x)|χ0(x)η(x, 0)) dx, f ∈ L2(Q). (3)

При k(x, T ) < 0, x ∈ �, будем предполагать, что для некоторой постоянной

R0 > 0 выполнено неравенство [16]

|∇k0(x)|2 ≤ R0|k0(x)|, x ∈ �. (4)

Определим вес R(x, t) следующим образом:

R(x, t) = |k0(x)|+ t.
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Лемма 2. Пусть выполнено условие (4). Тогда для некоторых констант

C2, C3 > 0 справедливы неравенства

|k(x, t)|+ |∇k(x, t)|2 ≤ C2R(x, t), (x, t) ∈ Q,

|∇R(x, t)|2 ≤ C3R(x, t) для п.в. (x, t) ∈ Q.

Доказательство. При 0 ≤ t ≤ T имеет место неравенство

|k(x, t) − k(x, 0)|+ |∇k(x, t)−∇k(x, 0)| ≤ C0(k)t.

С помощью условия (4) из этого неравенства нетрудно получить первую оценку

для k(x, t), (x, t) ∈ Q.

Снова в силу (4) будем иметь второе неравенство леммы 2:

|∇R(x, t)|2 ≤ C3R(x, t) для п.в.(x, t) ∈ Q, C3 > 0.

Лемма 2 доказана.

3. Разрешимость первой краевой задачи

Теорема 1. Пусть коэффициент c(x) > 0 достаточно большой, выполнены

условия

k(x, T ) < 0, a− 1

2
kt ≥ δ > 0

и δ достаточно велико.

Тогда первая краевая задача (1), (2) имеет обобщенное решение u(x, t) из

W̃ 1
2 (Q) и справедлива оценка

‖u‖1 ≤ C4‖f‖, C4 > 0.

Доказательство. Для ε > 0 положим

Lεv = −εD3
t v + Lv.

В качестве базисных функций берем ϕk(x), которые являются решением спек-

тральной задачи

−�ϕ = λϕ, ϕ|S = 0,

причем функции ϕk(x) образуют ортонормированный базис в L2(�). Рассмот-

рим регуляризованную краевую задачу

Lεv = f(x, t), (x, t) ∈ Q, (5)

v|� = 0, (6)

v|t=0, t=T = 0,
(
−εvtt + k+

0 vt
)∣∣

t=0
= 0. (7)

Приближенное решение задачи (5)–(7) ищем в виде

vN,ε(x, t) =

N∑

k=1

CN,ε
k (t)ϕk(x) = v(x, t),
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в котором CN,ε
k (t) определяется как решение следующей краевой задачи для

системы ОДУ третьего порядка:

(Lεv
N,ε, ϕe)0 = (f, ϕe)0, l = 1, N, (8)

CN,ε
l

∣∣
t=0,t=T

= 0,

(
−εD2

tC
N.ε
l +

N∑

k=1

aklDtC
N,ε
k

)∣∣∣∣
t=0

= 0, (9)

где

akl =

∫

�

k+
0 (x)ϕk(x)ϕe(x) dx, k, l = 1, N.

Найдется положительное число T0 < T такое что,

k(x, t) ≤ −δ1 < 0, t ∈ [T0, T ].

Выберем функции ϕ0 = T − t, ψ = 3
2 . Умножим уравнения (8) на ϕ0(t)DtC

N,ε
l +

ψ(t)CN,ε
l и просуммируем по l, затем проинтегрируем по t от 0 до T . После

интегрирования по частям с учетом (9) получаем равенство

(f, ϕ0vt + ψv) = ε

∫

Q

ϕ0v
2
tt dQ+

∫

Q

{[(
a− 1

2
kt

)
(T − t)− k

]
v2
t

+ 2

n∑

i=1

v2
xi

+ 2c(x)v2 +
3

2
(a− kt)vtv

}
dQ

+
T

2

∫

�0

|k0|v2
t dx+

ε

4

∫

�T

v2
t dx−

ε

4

∫

�0

v2
t dx. (10)

Считаем δ настолько большим, что

δ(T − T0)−max
Q
|k| ≥ δ2 > 0.

Тогда (
a− 1

2
kt

)
(T − t)− k ≥ min{δ1, δ2} > 0.

В силу теоремы о следах [17] справедлива оценка

∫

�0

v2
t dx ≤ γ

∫

�×(0,T
2

)

[
ϕ0v

2
tt +

n∑

i=1

v2
xi

]
dx+ Cγ

∫

�×(0,T
2

)

v2 dQ, γ > 0, Cγ > 0.

Для достаточно малых γ > 0 и 0 < ε < ε0 из равенства (10) получаем оценку

ε

∫

Q

ϕ0v
2
tt dQ+

∫

�0

|k0|v2
t dQ+ ‖v‖21 ≤ C5‖f‖2, C5 > 0. (11)

Из оценки (11) получаем единственность решения краевой задачи (8), (9), из

которой следует, что краевая задача (8), (9) разрешима.
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Выберем число T1 так, чтобы

T0 < T1 < T.

Возьмем неотрицательную функцию ξ(t) ∈ C∞[0, T ] такую, что

ξ(t) = 0, t ∈ [0, T0] : ξ(t) = 1, t ∈ [T1, T ].

Умножив уравнения (8) на −ξ(t)D2
tC

N,ε
l , как выше, получим соотношение

− (f, ξvtt) =
ε

2

∫

�T

v2
tt dx −

ε

2

∫

Q

ξtv
2
tt dQ

+

∫

Q

[
−kξv2

tt − ξvtt(avt + cv) + ξ
n∑

i=1

v2
txi
− 1

2
ξtt

n∑

i=1

v2
xi

]
dQ,

из которого в силу (11) следует неравенство
∫

�×(T1,T )

[
v2
tt +

n∑

i=1

v2
txi

]
dQ ≤ C6‖f‖2, C6 > 0. (12)

Из (12) в силу оценки (11) вытекает ограниченность множества {√εvtt} в L2(Q),

0 < ε < 1. Для натурального числа m положим v(m)(x, t) = vm, 1
m . В силу оцен-

ки (11) из последовательности {v(m)} можно выбрать подпоследовательность

{v(mk)} такую, что для некоторых u(x, t) ∈ W̃ 1
2 (Q), χ0(x) ∈ L2(�) имеет место

сходимость

vmk −→ u слабо в W 1
2 (Q),√

|k0|vmk
t (x, 0) −→ χ0(x) слабо в L2(�) при mk →∞.

v(mk)(x, 0) = 0, v(mk)(x, T ) = 0.

Рассмотрим функцию η(x, t) из

Mp =

{
η(x, t) =

p∑

l=1

dl(t)ϕl(x), dl(t) ∈W 1
2 (0, T ), dl(T ) = 0, p < N

}
.

Умножим уравнения (8) приN = mk, ε = 1
mk

на dl(t) и просуммируем по l, затем

проведем интегрирование по t. В полученном равенстве проведем интегрирова-

ние по частям и перейдем к пределу по mk, В результате получим интегральное

тождество (3), η(x, t) ∈ MP . Так как M =
∞⋃

P=1

Mp плотно в Ŵ 1
2 (Q), функция

u(x, t) является обобщенным решением краевой задачи (1), (2). Оценка теоре-

мы 1 следует из априорной оценки (11). Теорема 1 доказана.

Замечание 1. Вопрос единственности обобщенного решения краевой за-

дачи (1), (2) рассмотрен в [11].

Введем весовое пространство Соболева

WL =
{
u(x, t) : u ∈ W 1

2 (Q), �u ∈ L2(Q); utxi
∈ L2(Q), i = 1, n, R

1
2utt ∈ L2(Q)

}

с нормой

‖u‖2L = ‖u‖21 +

∫

Q

[
Ru2

tt + (�u)2 +

n∑

i=1

u2
txi

]
dQ.
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Теорема 2. Пусть коэффициент c(x) > 0 достаточно большой и выполне-

ны условия

k(x, T ) < 0, a− 1

2
|kt| ≥ δ > 0, f, ft ∈ L2(Q)

и δ достаточно велико. Тогда первая краевая задача (1), (2) имеет единственное

решение u(x, t) из WL и справедлива оценка

‖u‖L ≤ C7(‖f‖+ ‖ft‖), C7 > 0.

Доказательство. Умножим обе части уравнения (8) на λl(ϕ0DtC
N,ε
l +

3
2C

N,ε
l ) и просуммируем по l, затем проведем интегрирование по t. После инте-

грирования по частям в полученном равенстве с учетом (9) получаем

−
(
f, ϕ0�vt +

3

2
�v

)

= ε

∫

Q

ϕ0

n∑

i=1

v2
ttxi

dQ+

∫

Q

{[(
a− 1

2
kt

)
(T − t)− k

] n∑

i=1

v2
txi

+ 2(�v)2

+ ϕ0vtt

n∑

i=1

kxi
vtxi

+ ϕ0vt

n∑

i=1

axi
vtxi

+
3

2
vtt

n∑

i=1

kxi
vxi

− 3

2
kt

n∑

i=1

vtxi
vxi

+�v

[
c(ϕ0v)t −

3

2
(avt + cv)

]}
dQ+ I, (13)

где

I =
T

2

∫

�0

|k0|
n∑

i=1

v2
txi
dx+T

∫

�+

0

vt

n∑

i=1

k+
0xi
vtxi

dx+
1

4
ε

∫

�T

n∑

i=1

v2
txi
dx−1

4
ε

∫

�0

n∑

i=1

v2
txi
dx.

Cнова из уравнения (8) аналогично выводу (13) получаем равенства

− (f, ϕ0vtt) =
ε

2

∫

Q

v2
tt dQ+

∫

Q

[
−kϕ0v

2
tt + ϕ0

n∑

i=1

v2
txi

+
1

2
(aϕ0)tv

2
t + cϕ0v

2
t − cvvt

]
dQ− εT

2

∫

�0

v2
tt dx+

T

2

∫

�0

av2
t dx, (14)

(f, ξ�v) = −21ε

8T

∫

Q

n∑

i=1

v2
txi
dQ+

∫

Q

[�v(kξvtt + aξvt + cξv)− ξ(�v)2] dQ

+
7ε

8

∫

�0

n∑

i=1

v2
txi
dx, ξ =

7(T − t)
4T

. (15)
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Складывая равенства (13)–(15) и объединяя соответствующие интегралы, по-

лучим соотношение

ε

∫

Q

ϕ0(∇vtt)2 dQ+
ε

2

∫

Q

v2
tt dQ+

∫

Q

{[(
a− 1

2
kt

)
(T − t)− k + ϕ0 −

21

8T
ε

]
(∇vt)2

+ (2 − ξ)(�v)2 −Kϕ0v
2
tt +

3

2
vtt

n∑

i=1

kxi
vxi

+K

}
dQ+M

=

∫

Q

{[
ftϕ0 +

(
ξ − 5

2

)
f

]
�v + (fϕ0)tvt

}
dQ+

εT

2

∫

�0

v2
tt dQ+ T

∫

�0

fvt dx, (16)

где

K =

n∑

i=1

vtxi

(
ϕ0kxi

vtt + ϕ0axi
vt −

3

2
ktvtxi

)

+�v

[
kξvtt +

(
cϕ0 +

(
ξ − 3

2

)
a

)
vt + c

(
ξ − 5

2

)
v

]
+

[
1

2
(aϕ0)t + cϕ0

]
v2
t ,

M =
T

2

∫

�0

|k0|(∇vt)2 dx+ T

∫

�0

vt

n∑

i=1

k+
0xi
vtxi

dx

+
5

8
ε

∫

�0

(∇vt)2 dx+
ε

4

∫

�T

(∇vt)2 dx +
T

2

∫

�0

av2
t dx.

Заметим, что при выводе соотношения (16) использовали равенство∫

Q

cvvt dQ = 0.

В силу (4) и неравенства Коши имеем
∫

�+

0

∣∣∣∣∣vt
n∑

i=1

k+
0xi
vtxi

∣∣∣∣∣ dx ≤ γ
∫

�+

0

|k0|(∇vt)2 dx + Cγ

∫

�+

0

v2
t dx, γ > 0, Cγ > 0.

Ввиду неравенств(
a− 1

2
kt

)
(T − t)− k ≥ min{δ1, δ2}, 2− ξ(t) ≥ 1

4
, a(x, 0) ≥ δ

из соотношения (16), используя лемму 2 и оценку (11), неравенство Коши, тео-

рему о следах, при достаточно большом δ и малых ε, γ получаем оценку

ε

∫

�0

(∇vt)2 dx+ ε

∫

�T

(∇vt)2 dx+

∫

�0

[
v2
t + |k0|(∇vt)2

]
dx

+ ε

∫

Q

[
ϕ0(∇vtt)2 + v2

tt

]
dQ+

∫

Q

[(∇vt)2 + (�v)2] dQ

≤ C8

[
‖f‖20,1 +

∫

Q

Rv2
tt dQ+ ε

∫

�0

v2
tt dx

]
, C8 > 0, (17)
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где ‖f‖20,1 = ‖f‖2 + ‖ft‖2.
При выводе оценки (17) были использованы (11) и известное неравенство

Коши. Из (8) можно получить оценку vttt в норме L2(Q), что позволяет пере-

ходить к пределу в функции v = uN,ε по N , аналогично работе [16]. Обозначим

через ω(x, t) = vε(x, t) регулярное решение краевой задачи (5)–(7). Умножая

уравнение (5) на −2(Rωtt)t и проводя интегрирование по частям, получаем

∫

�0

k+
0 Rω

2
tt dx+

∫

�T

|kT |Rω2
tt dx− 2

∫

�

aRωtωtt dx
∣∣∣
t=T

t=0

+

∫

�

R(∇ωt)
2 dx

∣∣∣
t=T

t=0
+ 2ε

∫

Q

Rω2
ttt dQ+ 2ε

∫

Q

ωtttωtt dQ

+

∫

Q

{
[(2a+ kt)R− k]ω2

tt + 2cRωttωt + 2atRωtωtt−

−R(∇ωt)
2 + 2ωtt

n∑

i=1

Rxi
ωtxi

}
dQ = 2

∫

Q

Rωttft dQ− 2

∫

�

Rωttf dx
∣∣∣
t=T

t=0
.

Отсюда в силу условий теоремы 2, оценок (11), (17) и неравенства |kT |R(x, T ) ≥
δ1T получаем

∫

�0

(R2 + δε)ω2
tt dx+

∫

�T

ω2
tt dx+ δ

∫

Q

Rω2
tt dQ

≤ C9

[
‖f‖20,1 +

∫

Q

Rω2
tt dQ+ ε

∫

�0

ω2
tt dx+

∫

�T

a2ω2
t dx

]
, C9 > 0. (18)

Выберем δ > 0 так, чтобы

δ − C9 ≥ δ3 > 0.

Снова в силу теоремы о следах [17] имеем неравенство

∫

�T

ω2
t dx ≤ ν

∫

�×(T0,T )

[
Rω2

tt +

n∑

i=1

ω2
xi

]
dQ

+ C10(ν, δ1, T0)

∫

�×(T0,T )

ω2 dQ, ν > 0, C10 > 0. (19)

С учетом (19) из (18) получаем оценку

(δ − C9)ε

∫

�0

ω2
tt dx+ (δ − C9 − νC9 max

�
[a2(x, T )])

∫

Q

Rω2
tt dQ

≤ C11(ν)‖f‖20,1, C11 > 0, ν > 0.
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Поэтому если ν мало, то из последнего неравенства получаем
∫

Q

Rω2
tt dQ+ ε

∫

�0

ω2
tt dx ≤ C12‖f‖20,1, C12 > 0.

Из (17) следует оценка
∫

Q

[
Rω2

tt + (�ω)2 + (∇ωt)
2
]
dQ ≤ C13‖f‖20,1, C13 > 0.

Из краевых условий (7) имеем
∫

�0

(k+
0 )2ω2

t (x, 0) dx ≤ C14ε‖f‖20,1, C14 > 0.

Из полученных априорных оценок следует разрешимость краевой задачи

(1), (2) из весового пространства WL и
√
|k0|ut

∣∣
�+

0

= 0. (20)

Пусть u(x, t) ∈ WL является решением краевой задачи (1), (2) при f = 0.

Тогда в силу (20)

0 =

(
Lu, ϕ0ut +

3

2
u

)
=

∫

Q

{[(
a− 1

2
kt

)
ϕ0 − k

]
u2
t

+ 2

n∑

i=1

u2
xi

+ 2cu2 − 3

2
(at − ktt)u2

}
dQ− T

2

∫

�−
0

k−0 u
2
t dx.

Отсюда u(x, t) = 0. Следовательно, краевая задача (1), (2) имеет единственное

решение в пространстве WL. Теорема 2 доказана.
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SOLVABILITY OF THE FIRST BOUNDARY

VALUE PROBLEM FOR A MIXED TYPE

EQUATION IN A WEIGHT SPACE

I. E. Egorov and S. V. Safonov

Abstract: The works of F. Tricomi, A. V. Bitsadze, M. M. Smirnov and many other
authors are devoted to the study of various boundary value problems for equations of
mixed type of second order. In these works, the theory of singular integral equations
was used. Since the 1970s, functional methods and methods associated with functional
analysis began to be applied to the study of boundary value problems for mixed type
equations. The construction of a general theory of boundary value problems for equations
of mixed type with an arbitrary variety of changing type began. In particular, under
certain assumptions and the sign of the coefficient of the second derivative with respect
to time near the bases of the cylindrical region, the existence and uniqueness of a regular
solution to the enemy boundary value problem and the first boundary value problem for
a second order mixed type equation is proved using the regularization method.

In 2019 A. N. Artyushin proved the existence and uniqueness of a generalized and
regular solution to Vragov’s boundary value problem in the weighted Sobolev space,
when the coefficient of the second derivative with respect to time can change sign on the
bases of a cylindrical domain.

In this work, we will establish the existence of a generalized solution and the unique
regular solvability of the first boundary value problem for a second order mixed type
equation in the weighted Sobolev space, when the coefficient of the highest derivative
of the equation with respect to time can change sign on the lower base and negative on
the upper base of the cylindrical domain.
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К ВОПРОСУ О РАЗРЕШИМОСТИ НЕЛОКАЛЬНЫХ

ЗАДАЧ С УСЛОВИЯМИ ИОНКИНА

ДЛЯ ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ

С ЧАСТНЫМИ ПРОИЗВОДНЫМИ. II

А. И. Кожанов

Аннотация. Для дифференциальных уравнений произвольного порядка с пере-
менными коэффициентами исследована разрешимость в пространствах Соболева
нелокальных краевых задач с классическим условием Ионкина. Доказываются тео-
ремы существования и единственности регулярных решений, т. е. решений, имею-
щих все обобщенные по С. Л. Соболеву производные, входящие в соответствующее
уравнение.

DOI: 10.25587/2411-9326-2024-1-48-55

Ключевые слова: дифференциальные уравнения, переменные коэффициенты,
нелокальные задачи, условия Ионкина, регулярные решения, существование, един-
ственность.

Введение

В 1977 г. была опубликована работа Н. И. Ионкина [1], в которой исследо-

валось новая (для того времени) нелокальная краевая задача для одномерного

уравнения теплопроводности. Особенностью изучаемой задачи было то, что

собственные функции соответствующей спектральной задачи не давали фунда-

ментальную систему в пространстве L2, и тем самым классический метод Фурье

к задаче работы [1] не мог применяться. В [1] был предложен метод, основанный

на представлении решений в виде функционального ряда по некоторой специ-

альной биортогональной системе функций. Этот метод в дальнейшем неодно-

кратно применялся для исследования близких по постановке к задаче [1] задач

для параболических и гиперболических уравнений [2–8], дифференциальных

уравнений с вырождением [9, 10], уравнений смешанного типа [11, 12].

А. М. Нахушев в работе [13] предложил новый подход к исследованию раз-

решимости нелокальных задач с условиями Ионкина для параболических урав-

нений второго порядка. Этот подход фактически был реализован в [14]; близкие

к идеям Нахушева идеи использовались также в [15], где изучалась разреши-

мость нелокальных краевых задач также для параболических уравнений второ-

го порядка, и в работе [16], в которой изучалась разрешимость краевых задач с

Работа выполнена при поддержке РНФ, проект 23-21-00269.
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условиями Ионкина для дифференциальных уравнений произвольного порядка

по переменной t и произвольного четного порядка по переменной x.

Особенностью класса уравнений, рассмотренных в работе [16], было то,

что в него входили уравнения, содержащие производные по пространственной

переменной x только четного порядка и все коэффициенты уравнений зависели

только от переменной t.

Настоящую работу можно трактовать как продолжение работы [16] — в ней

результаты [16] будут распространены на некоторые уравнения, содержащие

все промежуточные производные по переменной x, и при этом коэффициенты

уравнений могут зависеть также от пространственной переменной x.

1. Постановка задач и основные результаты

Пусть Q — прямоугольник {0 < x < 1, 0 < t < T < +∞} пространства

R2 переменных x, t, akl(x, t), k = 0, . . . , p, l = 0, . . . , 2m, — заданные функции,

определенные при (x, t) ∈ Q. Через Dk
t и Dl

x будем обозначать частные про-

изводные ∂k

∂tk
и ∂l

∂xl соответственно. Пусть L — дифференциальный оператор,

действие которого на заданной функции v(x, t) определяется равенством

Lv =

p∑

k=0

2m∑

l=0

akl(x, t)D
k
tD

l
xv.

Дополним оператор L условиями

Uj(x,Dt, 0) = 0, j = 1, . . . , p1, x ∈ � = (0, 1), (1)

Uj(x,Dt, T ) = 0, j = p1 + 1, . . . , p, x ∈ � = (0, 1) (2)

(одна или обе группы условий могут отсутствовать).

Нелокальная задача I. Найти функцию u(x, t), являющуюся в прямо-

угольнике Q решением уравнения

Lu = f(x, t) (3)

(f(x, t) — заданная функция) и такую, что для нее выполняются условия (1),

(2), а также условия

D2l
x u(x, t)

∣∣
x=0

= 0, l = 0, . . . ,m− 1, t ∈ (0, T ), (4)

D2l+1
x u(x, t)

∣∣
x=0

= D2l+1
x u(x, t)

∣∣
x=1

, l = 0, . . . ,m− 1, t ∈ (0, T ). (5)

Нелокальная задача II. Найти функцию u(x, t), являющуюся в прямо-

угольнике Q решением уравнения (3) и такую, что для нее выполняются усло-

вия (1), (2), а также условия

D2l+1
x u(x, t)

∣∣
x=0

= 0, l = 0, . . . ,m− 1, t ∈ (0, T ), (6)

D2l
x u(x, t)

∣∣
x=0

= D2l
x u(x, t)

∣∣
x=1

, l = 0, . . . ,m− 1, t ∈ (0, T ). (7)

Нелокальная задача I в случае, когда L — оператор теплопроводности, и

является задачей Ионкина [1, 2].

Определим линейное пространство V :

V = {v(x, t) : v(x, t) ∈ L2(Q), Dk
tD

l
xv(x, t) ∈ L2(Q), k = 0, . . . , p, l = 0, . . . , 2m}.

Следуя [16], определим две вспомогательные задачи.
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Задача A. Найти функцию v(x, t), являющуюся в прямоугольнике Q ре-

шением уравнения

Lv = f(x, t) + f(1− x, t)
и такую, что для нее выполняются условия (1), (2), а также условия

D2l+1
x v(x, t)

∣∣
x=0

= D2l+1
x v(x, t)

∣∣
x=1

= 0, l = 0, . . . ,m− 1, t ∈ (0, T ).

Задача B. Найти функцию w(x, t), являющуюся в прямоугольнике Q ре-

шением уравнения (3) и такую, что для нее выполняются условия (1), (2), а

также условия

D2l
x w(x, t)

∣∣
x=0

= 0, l = 0, . . . ,m− 1, t ∈ (0, T ),

D2l
x w(x, t)

∣∣
x=1

= D2l
x v(x, t)

∣∣
x=0

, l = 0, . . . ,m− 1, t ∈ (0, T )

(v(x, t) — решение задачи A).

Основное условие разрешимости нелокальной задачи I совпадает с условием

работы [16]:

функции akl(x, t), k = 0, . . . , p, l = 0, . . . , 2m, f(x, t), а также

условия (1), (2) таковы, что краевые задачи A и B

имеют решения v(x, t) и w(x, t), принадлежащие пространству V. (8)

Основной результат. Пусть выполняется основное условие, и пусть вы-

полняются также условия

akl(x, t) = akl(1− x, t), k = 0, . . . , p, l = 2l1, l1 = 0, . . . ,m, (x, t) ∈ Q; (9)

akl(x, t) = −akl(1− x, t), k = 0, . . . , p, l = 2l1 + 1, l1 = 0, . . . ,m− 1, (x, t) ∈ Q.
(10)

Тогда нелокальная задача I имеет решение, принадлежащее пространству V .

Доказательство этой теоремы проводится полностью аналогично дока-

зательству соответствующей теоремы работы [16].

Нелокальная задача II в работе [16] (см. также [17]) после дифференци-

рования по переменной x сводится к нелокальной задаче I — соответствующие

условия легко выписываются и потому приводить их здесь не будем.

2. Примеры

Приведем несколько примеров, показывающих новизну представленного

выше основного результата.

В прямоугольнике Q рассмотрим дифференциальное уравнение

L1u = (−1)p+1D2p
t u+D2

x

(
a(x, t)D2

xu
)

+ b(x, t)Dtu = f(x, t). (11)

В этом уравнении a(x, t) и b(x, t) суть положительные в Q гладкие функции, p —

натуральное число. В случае p = 1 данное уравнение является нестационарным,
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возникает оно при моделировании колебаний балки [18–20]. Условия по перемен-

ной t для этого уравнения будут обычными начальными условиями. В случае

p > 1 оператор L1 уже не будет нестационарным (обычная начально-краевая

задача для него некорректна), условия по переменной t должны задаваться и

при t = 0, и при t = T (точные условия (1), (2) для уравнения (11) можно найти

в работе [21]). Далее, условия нелокальной задачи I для уравнения (11) имеют

вид
u(0, t) = uxx(0, t) = 0, t ∈ (0, T ),

ux(0, t) = ux(1, t), uxxx(0, t) = uxxx(1, t), t ∈ (0, T ),
(12)

условия (9) и (10) суть условия

a(x, t) = a(1 − x, t), b(x, t) = b(1− x, t), (x, t) ∈ Q.

Помимо условия положительности функций a(x, t), b(x, t) и условия (11)

для выполнения условия (8) необходимо потребовать, чтобы функции a(x, t),

b(x, t) и f(x, t) обладали достаточной гладкостью. Имея необходимую глад-

кость, получим, что нелокальная задача I для уравнения (11) разрешима в про-

странстве V .

Второй пример связан с квазиэллиптическим уравнением

L2u = (−1)pD2p
t u+D2

x

(
a(x, t)D2

xu
)

+ b(x, t)u = f(x, t). (13)

Условия (1) и (2) для этого уравнения суть условия обычной краевой задачи

для квазиэллиптических уравнений (например, (1) и (2) могут быть условиями

Дирихле). Очевидно, что при выполнении равенств (12), условие

a(x, t) ≥ a0 > 0, b(x, t) ≥ b0 > 0 при (x, t) ∈ Q,

в котором b0 — достаточно большое число, а также условий гладкости нелокаль-

ная задача I для уравнения (13) будет иметь решение u(x, t), принадлежащее

пространству V .

Аналогичные рассуждения позволяют получить разрешимость в простран-

стве V и для квазипараболических уравнений

L3u = (−1)pD2p+1
t u+D2

x

(
a(x, t)D2

xu
)

+ b(x, t)u = f(x, t).

со строго положительной функцией a(x, t). Необходимые для выполнения (8)

условия на функции a(x, t), b(x, t) и f(x, t) легко устанавливаются с помощью

стандартных априорных оценок.

3. Замечания и дополнения

1. Доказательство разрешимости в пространстве V нелокальной задачи II,

а также модифицированных задач I и II — именно задач с условиями

D2l+1
x u(x, t)

∣∣
x=0

= −D2l+1
x u(x, t)

∣∣
x=1

, l = 0, . . . ,m− 1, t ∈ (0, T ),

и

D2l
x u(x, t)

∣∣
x=0

= −D2l
x u(x, t)

∣∣
x=1

, l = 0, . . . ,m− 1, t ∈ (0, T ),
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вместо условий (5) и (7) соответственно, также нетрудно провести, используя

технику работы [16].

2. Доказательство выполнения условия (7) для представленных выше при-

меров в других ситуациях также нетрудно провести, используя технику работы

[16].

3. Условия (1) и (2), вообще говоря, могут быть нелокальными.

4. Простейшим примером уравнений, для которых условия (1) и (2) вообще

не требуются, является уравнение

h(t)Dtu+D2
x

(
a(x, t)D2

xu
)

+ c(x, t)u = f(x, t)

со строго положительной функцией a(x, t) и функцией h(t) такой, что h(0) =

h(T ) = 0.

5. В работах [17, 22–24] для исследования разрешимости нелокальных задач

с обобщенным условием Ионкина использовался метод, основанный на априор-

ных оценках. Этот метод не требовал выполнения условий (9) и (10), но при-

менялся он лишь в случае m = 1.
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ента самого уравнения. Изучаемые задачи являются новыми, поскольку исходное
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Введение

Изучаемые в работе задачи относятся к классу нелинейных обратных ко-

эффициентных задач временного типа для параболических уравнений (термин

«временного типа» в данном случае означает, что неизвестный коэффициент за-

висит лишь от одной выделенной — временной — переменной). Степень новиз-

ны полученных ниже результатов определяется прежде всего тем, что основное

уравнение в данной работе вырождающееся. Обратные коэффициентные зада-

чи для параболических уравнений представляются достаточно хорошо изучен-

ными (см. монографии [1–4], статьи [5–8]); как наиболее близкую по постановке

и применяемым методом выделим статью [8]. Вместе с тем заметим, что обрат-

ные коэффициентные задачи для вырождающихся параболических уравнений

изучены мало.

В ряде работ (см. [2, 9–12]) изучалась разрешимость обратных коэффи-

циентных задач для вырождающихся параболических уравнений, но характер

вырождения в них был иной, нежели в настоящей работе. Близкие по характеру

Работа выполнена в рамках государственного задания Института математики им.
С. Л. Соболева СО РАН, проект FWNF-2022-0008.

c© 2024 Кожанов А. И., Ашурова Г. Р.
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вырождения уравнения и соответственно обратные задачи для них изучались в

[13, 14], но вид вырождения в них также был иной.

Таким образом, полученные ниже результаты новые.

Заметим следующее. Изучаемые в работе задачи имеют модельный вид.

Возможные усиления и обобщения полученных в работе результатов описаны в

конце статьи.

1. Постановка задач

Пусть � ⊂ Rn — ограниченная область с гладкой (для простоты бесконеч-

но дифференцируемой) границей � , Q — цилиндр � × (0, T ) конечной высоты

T , S = � × (0, T ) — боковая граница Q, ϕ(t), N(x), h(t) и f(x, t) — заданные

функции, определенные при x ∈ �, t ∈ [0, T ].

Обратная задача I. Найти функции u(x, t) и q(t), связанные в цилиндре

Q уравнением

ut − ϕ(t)�u + q(t)u = f(x, t) (1)

при выполнении для функции u(x, t) условий

u(x, 0) = u0(x), x ∈ �, (2)

∂u(x, t)

∂ν

∣∣∣∣
S

= 0 (3)

(ν — вектор внутренней нормали и � в текущей точке x),

∫

�

N(x)u(x, t) dx = h(t), t ∈ (0, T ). (4)

Обратная задача II. Найти функции u(x, t) и q(t), связанные в цилиндре

Q уравнением (1), при выполнении для функции u(x, t) условий и (2), (3), а

также условия ∫

�

N(x)u(x, t) dSx = h(t), t ∈ (0, T ). (5)

В обратных задачах I и II будет предполагаться, что функция ϕ(t) неотри-

цательна при t ∈ [0, T ]. Именно это предположение и означает, что уравнение

(1) может вырождаться. Далее условия (2) и (3) представляются условиями

обычной второй начально-краевой задачи для параболических уравнений второ-

го порядка (условие (3) есть хорошо известное условие непротекания), условия

(4) и (5) являются условиями интегрального переопределения, соответственно

внутреннего интегрального переопределения и граничного интегрального пере-

определения.
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2. Разрешимость обратной задачи I

Положим

g1(t) =

∫

�

N(x)f(x, t) dx − h′(t), m1 = vraimin
[0,T ]

g1(t), ϕ0 = max
[0,T ]

ϕ(t),

M1 =

n∑

i=1

∫

Q

ϕ−1(t)f2
xi

(x, t) dxdt + ‖�u0‖2L2(�),

M2 = T ‖�f‖L2(Q) +
(
T 2‖�f‖2L2(Q) + T ‖�u0‖2L2(�)

)1/2
,

M3 = ‖�u0‖2L2(�) + 2M2‖�f‖L2(Q).

Теорема 1. Пусть выполняются условия

ϕ(t) ∈ C([0, T ]), ϕ(t) ≥ 0 при t ∈ [0, T ];

N(x) ∈ L2(�);

h(t) ∈ C1([0, T ]), h(t) ≥ h0 > 0 при t ∈ [0, T ];

u0(x) ∈W 4
2 (�),

∂u0(x)

∂ν
=
∂�u0(x)

∂ν
= 0 при x ∈ � ,

∫

�

N(x)u0(x)dx = h(0),

а также одно из следующих условий

(а) f(x, t) ∈ L∞(0, T ;L2(�)), ϕ−
1
2 (t)fxi

(x, t) ∈ L2(Q), i = 1, . . . , n,

ϕ0M
1
2

1 ‖N‖L2(�) ≤ m1

или

(б) f(x, t) ∈ L2

(
0, T ;W 2

2 (�)
)
, ∂f(x,t)

∂ν

∣∣
S

= 0, ϕ0M
1
2

3 ‖N‖L2(�) ≤ m1.

Тогда обратная задача I имеет решение {u(x, t), q(t)} такое, что

u(x, t) ∈ L∞
(
0, T ;W 2

2 (�)
)
, ϕ

1
2 (t)�u(x, t) ∈ L2

(
0, T ;W 1

2 (�)
)
,

ut(x, t) ∈ L2(Q), q(t) ∈ L∞([0, T ]), q(t) ≥ 0 при t ∈ [0, T ].

Доказательство. Воспользуемся методом регуляризации и методом сре-

зок. Пусть

G(ξ) =





ξ, если |ξ| ≤ m1,

m1, если ξ > m1,

−m1, если ξ < −m1.

Для положительного числа ε рассмотрим задачу: найти функцию u(x, t),

являющуюся в прямоугольнике Q решением уравнения

Lεu ≡ ut + ε�2u− ϕ(t)�u +
1

h(t)

[
g1(t) + ϕ(t)G

(∫

�

N(x)�u(x, t) dx

)]
u = f(x, t)

(6)

и такую, что для нее выполняются условия (2) и (3), а также условие

∂�u(x, t)

∂ν

∣∣∣∣
S

= 0. (7)
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Данная задача представляет собой вторую начально-краевую задачу для нели-

нейного «нагруженного» [15, 16] параболического уравнения четвертого поряд-

ка. Поскольку в этом уравнении для функции G(ξ) выполняется условие Лип-

щица, краевая задача (6), (2), (3), (7) при фиксированном ε и принадлеж-

ности функции f(x, t) пространству L2(Q) имеет решение u(x, t) такое, что

u(x, t) ∈ L2

(
0, T ;W 4

2 (�)
)
, ut(x, t) ∈ L2(Q). Покажем, что при выполнении усло-

вий теоремы для решений имеют место равномерные по ε оценки, позволяющие

в семействе задач (6), (2), (3), (7) организовать процедуру предельного перехо-

да.

Рассмотрим равенство

t∫

0

∫

�

Lεu(x, τ)�2u(x, τ) dxdτ =

t∫

0

∫

�

f(x, τ)�2u(x, τ) dxdτ.

Интегрируя по частям, это равенство нетрудно преобразовать к виду

1

2

∫

�

[�u(x, t)]2 dx− 1

2

∫

�

[�u0(x)]
2 dx+

n∑

i=1

t∫

0

∫

�

ϕ(τ)[�uxi
(x, τ)]2 dxdτ

+

t∫

0

∫

�

1

h(τ)

[
g1(τ) + ϕ(t)G

(∫

�

N(x)�u(x, τ) dx

)]
[�u(x, τ)]2 dxdτ

+ ε

t∫

0

∫

�

[�2u(x, τ)]2 dxdτ =

t∫

0

∫

�

f(x, τ)�2u(x, τ) dxdτ. (8)

Заметим, что предпоследнее слагаемое в левой части (8) неотрицательно.

Если выполняется условие (а), то вследствие равенства

t∫

0

∫

�

f(x, τ)�2u(x, τ) dxdτ = −
n∑

i=1

t∫

0

∫

�

ϕ−1/2(τ)fxi
(x, τ)ϕ1/2(τ)�uxi

(x, τ) dxdτ

из (8) вытекает оценка

∫

�

[�u(x, t)]2 dx+

n∑

i=1

t∫

0

∫

�

ϕ(τ)[�uxi
(x, τ)]2 dxdτ + ε

t∫

0

∫

�

[�2u(x, τ)]2 dxdτ ≤M1.

(9)

Далее, если выполняется условие (б), то имеет место равенство

t∫

0

∫

�

f(x, τ)�2u(x, τ) dxdτ =

t∫

0

∫

�

�f(x, τ)�u(x, τ) dxdτ ;

с помощью этого равенства из (8) нетрудно вывести оценки

(∫

Q

[�u(x, t)]2 dxdt

)1/2

≤M2, (10)
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∫

�

[�u(x, t)]2 dx ≤M3, (11)

n∑

i=1

t∫

0

∫

�

ϕ(τ)[�uxi
(x, τ)]2 dxdτ + ε

t∫

0

∫

�

[�2u(x, τ)]2 dxdτ ≤ 1

2
M3. (12)

Из оценки (9) при выполнении условия (а) или из оценок (10)–(12) при

выполнении условия (б) вытекает последняя требуемая оценка

t∫

0

∫

�

u2
τ (x, τ) dxdτ ≤M4, (13)

постоянная M4 в которой определяется постоянной M1 или постоянными M2 и

M3.

Из оценок (9) или (11), а также из последнего неравенства условий (а) или

(б) следует, что выполняется равенство

G

(∫

�

N(x)�u(x, t) dx

)
=

∫

�

N(x)�u(x, t) dx. (14)

Далее, полученные априорные оценки (9)–(13), равенство (14) и свойства

рефлексивности гильбертова пространства позволяют найти последовательность

{εm}∞m=1 положительных чисел такую, что εm → 0 при m→∞, последователь-

ность {um(x, t)}∞m=1 решений краевой задачи (6), (2), (3), (7) с ε = εm, а также

функцию u(x, t) такие, что при m → ∞ имеет место слабая в пространстве

L2(Q) сходимость

Lεmum → ut − ϕ(t)�u +
1

h(t)

[
g1(t) + ϕ(t)

∫

�

N(x)�u(x, t) dx

]
u.

Очевидно, что функция u(x, t) будет принадлежать требуемому в теореме клас-

су и что функции u(x, t) и q(t), определенная равенством

q(t) =
1

h(t)

[
g1(t) + ϕ(t)

∫

�

N(x)�u(x, t) dx

]
,

будут связаны в цилиндре Q уравнением (1).

Принадлежность найденной функции q(t) классу L∞([0, T ]) и ее неотрица-

тельность очевидны.

Наконец, выполнение для функции u(x, t) условия переопределения (4) по-

казывается стандартным образом (см., например, [8]).

Все сказанное выше и означает, что пара {u(x, t), q(t)} представляет собой

искомое решение обратной задачи I.

Теорема доказана.

Обсудим вопрос о единственности решений обратной задачи I.

Обозначим через W1 множество функций {u(x, t), q(t)} таких, что u(x, t) ∈
L∞
(
0, T ;W 1

2 (�)
)
∩ L2

(
0, T ;W 2

2 (�)
)
, q(t) ∈ L∞([0, T ]), q(t) ≥ 0 при t ∈ [0, T ].
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Теорема 2. Пусть выполняются условия

ϕ(t) ∈ C([0, T ]), ϕ(t) ≥ 0 при t ∈ [0, T ]; N(x) ∈W 1
2 (�).

Тогда любые два решения {u1(x, t), q1(t)} и {u2(x, t), q2(t)} обратной задачи I,

принадлежащие множеству W1, совпадают.

Доказательство. Обозначим ω(x, t) = u1(x, t) − u2(x, t). Для функции

qi(t), i = 1, 2, имеют место равенства

qi(t) =
1

h(t)

[
g1(t)− ϕ(t)

n∑

j=1

∫

�

Nyj
(y)uiyj

(y) dy

]
.

Следовательно, для функции ω(x, t) выполняется уравнение

ωt − ϕ(t)�ω + q1(t)ω =
ϕ(t)

h(t)

(
n∑

j=1

∫

�

Nyj
(y)ωyj

(y, t) dy

)
u2(x, t).

Умножим это уравнение на функцию −�ω и проинтегрируем по простран-

ственным переменным по области � и по временной переменной от 0 до текущей

точки. Получим равенство

n∑

k=1

∫

�

ω2
xk

(x, t) dx+

t∫

0

∫

�

ϕ(τ)[�ω(x, τ)]2 dxdτ +

n∑

k=1

t∫

0

∫

�

q1(τ)ω
2
xk

(x, τ) dxdτ

=

n∑

k=1

t∫

0

∫

�

[
ϕ(τ)

h(τ)
u2xk

(x, τ)ωxk
(x, τ)

(
n∑

j=1

∫

�

Nyj
(y)ωyk

(y, τ)

)
dy

]
dxdτ.

Оценивая правую часть этого равенства с помощью неравенства Гёльдера,

придем к оценке

n∑

k=1

∫

�

ω2
xk

(x, t) dx ≤M0

n∑

k=1

t∫

0

∫

�

ω2
xk

(x, τ) dxdτ,

в которой число M0 определяется функциями ϕ(t), N(x), h(t) и u2(x, t). Из

этой оценки и леммы Гронуолла вытекает, что функция u1(x, t) совпадает с

функцией u2(x, t). Но тогда и функция q1(t) совпадает с функцией q2(t), а это

и означает, что для обратной задачи I имеет место свойство единственности

решений.

Теорема доказана.

3. Разрешимость обратной задачи II

Исследование разрешимости обратной задачи II в целом проводится вполне

аналогично тому, как проводилось исследование разрешимости обратной зада-

чи I, т. е. с помощью метода регуляризации, метода срезок и априорных оценок.
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Пусть ψ(x) — функция из пространства W 1
2 (�). Для этой функции выпол-

няется неравенство ∫

�

ψ2(x) dS ≤ d0‖ψ‖2W 1
2
(�), (15)

постоянная d0 в котором определяется лишь областью � (см. [17, 18]).

Положим

g2(t) =

∫

�

N(x)f(x, t)dS − h′0(t), m2 = vraimin
[0,T ]

g2(t),

M5 =

n∑

i=1

‖ϕ− 1
2�2f‖2L2(Q) +

n∑

i=1

‖�u0xi
‖2L2(�), M6 = max

i=1,...,n
(‖�fxi

‖L2(Q)),

M7 =
√
nTM6 +

(
nT 2M2

6 + T
n∑

i=1

‖�u0xi
‖2L2(�)

) 1
2

,

M8 =

n∑

i=1

‖�u0xi
‖2L2(�) + 2M6M7,

Mij = Mi +Mj, i = 1 или i = 3, j = 5 или j = 5.

Определим условия, которые понадобятся ниже:

(α) f(x, t) ∈ L∞(0, T ;L2(�)), ϕ−
1
2 (t)fxk

(x, t) ∈ L2(Q), k = 1, . . . , n;

(β) f(x, t) ∈ L2

(
0, T ;W 2

2 (�)
)
,

∂f(x, t)

∂ν

∣∣∣∣
S

= 0;

(γ) f(x, t) ∈ L∞(0, T ;L2(S)), ϕ−
1
2 (t)�f(x, t) ∈ L2(Q);

(δ) f(x, t) ∈ L2

(
0, T ;W 3

2 (�)
)
,

∂f(x, t)

∂ν

∣∣∣∣
S

= 0.

Теорема 3. Пусть выполняются условия

ϕ(t) ∈ C([0, T ]), ϕ(t) ≥ 0 при t ∈ [0, T ]; N(x) ∈ L2(� );

h(t) ∈ C1([0, T ]), h(t) ≥ h0 > 0 при t ∈ [0, T ]; u0(x) ∈ W 6
2 (�),

∂u0(x)

∂ν
=
∂�u0(x)

∂ν
=
∂�2u0(x)

∂ν
= 0 при x ∈ � ,

∫

�

N(x)u0(x) dS = h(0),

а также либо условия (α) и (γ) и условие d0ϕ0M
1/2
15 ≤ m2, либо условия (α) и

(δ) и условие d0ϕ0M
1/2
18 ≤ m2, либо условия (β) и (γ) и условие d0ϕ0M

1/2
35 ≤ m2,

либо условия (β) и (δ) и условие d0ϕ0M
1/2
38 ≤ m2.
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Тогда обратная задача II имеет решение {u(x, t), q(t)} такое, что

u(x, t) ∈ L∞
(
0, T ;W 2

2 (�)
)
, ϕ

1
2 (t)�2u(x, t) ∈ L2(0, T ;L2(�)),

ut(x, t) ∈ L2(Q), q(t) ∈ L∞([0, T ]), q(t) ≥ 0 при t ∈ [0, T ].

Доказательство. Вновь определим срезающую функцию G(ξ), но в этот

раз с помощью числа m2. Для положительного числа ε рассмотрим краевую

задачу: найти функцию u(x, t), являющуюся в цилиндре Q решением уравнения

ut − ε�3u− ϕ(t)�u +
1

h(t)

[
g2(t) + ϕ(t)G

(∫

�

N(x)�u(x, t) dS

)]
u = f(x, t) (16)

и такую, что для нее выполняются условия (2) и (3), а также условие

∂�u(x, t)

∂ν

∣∣∣∣
S

=
∂�2u(x, t)

∂ν

∣∣∣∣
S

= 0. (17)

Используя метод неподвижной точки, теоремы вложения [17, 18] и теорему Ша-

удера, нетрудно установить, что краевая задача (16), (2), (3), (17) при фикси-

рованном ε и при принадлежности функции f(x, t) пространству L2(Q) имеет

решение u(x, t) такое, что u(x, t) ∈ L2

(
0, T ;W 6

2 (�)
)
∩L∞

(
0, T ;W 3

2 (�)
)
, ut(x, t) ∈

L2(Q). Покажем, что для функций u(x, t) имеют место «хорошие» априорные

оценки.

Используя технику доказательства теоремы 1, нетрудно получить, что при

выполнении одного из условий (α) или (β) для функций u(x, t) выполняется

соответствующая оценка ∫

�

[�u(x, t)]2dx ≤M1 (18)

или ∫

�

[�u(x, t)]2dx ≤M3. (19)

Умножим уравнение (16) на функцию −�3u и проинтегрируем по простран-

ственным переменным по области � и по временной переменной от 0 до те-

кущей точки. Повторяя выкладки, которые привели к неравенствам (9)–(13),

получим, что для функции u(x, t) выполняется одна из оценок

n∑

i=1

∫

�

[�uxi
(x, t)]2 dx ≤M5, (20)

или
n∑

i=1

∫

�

[�uxi
(x, t)]2dx ≤M8 (21)

в зависимости от того, какое из условий (γ) или (δ) выполняется, а также оценка

t∫

0

∫

�

u2
τ (x, τ) dxdτ +

t∫

0

∫

�

ϕ(τ)[�2u(x, τ)]2 dxdτ + ε

t∫

0

∫

�

[�3u(x, τ)]2 dxdτ ≤M9,

(22)
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постоянная M9 в которой определяется функциями f(x, t), N(x) и h(t).

Из оценок (18) и (20) или (19) и (21), а также из неравенства (15) и условий

теоремы следует, что выполняется равенство

G

(∫

�

N(x)�u(x, t) dS

)
=

∫

�

N(x)�u(x, t) dS.

Используя это равенство, выполняя далее стандартные действия в организации

предельного перехода (см. [8]), нетрудно получить, что существует функция

u(x, t), принадлежащая требуемому в теореме классу и являющаяся решением

уравнения

ut − ϕ(t)�u +
1

h(t)

[
g2(t) + ϕ(t)

∫

�

N(x)�u(x, t) dS

]
u = f(x, t).

Это уравнение означает, что функция u(x, t) и функция q(t), определенная ра-

венством

q(t) =
1

h(t)

[
g2(t) + ϕ(t)

∫

�

N(x)�u(x, t) dS

]
,

связаны в цилиндре Q уравнением (1). Выполнение для функции u(x, t) условий

(2), (3) и (5) очевидны, принадлежность функции q(t) пространству L∞([0, T ])

также очевидна.

Все изложенное выше означает, что функции u(x, t) и q(t) дают искомое

решение обратной задачи II.

Теорема доказана.

Определим множество W2 как множество функций {u(x, t), q(t)} таких, что

u(x, t) ∈W1, �u(x, t) ∈ W1, q(t) ∈ L∞([0, T ]), q(t) ≥ 0 при t ∈ [0, T ].

Теорема 4. Пусть выполняются условия

ϕ(t) ∈ C([0, T ]), ϕ(t) ≥ 0 при t ∈ [0, T ]; N(x) ∈ L2(� ).

Тогда любые два решения {u1(x, t), q1(t)} и {u2(x, t), q2(t)} обратной задачи II,

принадлежащие множеству W2, совпадают.

Доказательство. Для разности ω(x, t) функций u1(x, t) и u2(x, t) выпол-

няется уравнение

ωt − ϕ(t)�ω + q1(t)ω =
ϕ(t)

h(t)

(∫

�

N(y)�ω(y, t) dS

)
�u2(x, t).

Поскольку решения {u1(x, t), q1(t)} и {u2(x, t), q2(t)} принадлежат множеству

W2, от этого уравнения можно перейти к уравнению для функции v(x, t) =

�ω(x, t):

vt − ϕ(t)�ω + q1(t)v =
ϕ(t)

h(t)

(∫

�

N(y)v(y, t) dS

)
�u2(x, t). (23)
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Умножим уравнение (23) на функцию v(x, t) и проинтегрируем по �(x, t) и

по временной переменной от 0 до текущей точки. Получим равенство

1

2

∫

�

v2(x, t) dx +

n∑

i=1

t∫

0

∫

�

ϕ(τ)v2
xi

(x, τ) dxdτ +

t∫

0

∫

�

q1(τ)v
2(x, τ) dxdτ

= −
n∑

i=1

t∫

0

ϕ(τ)

h(τ)

(∫

�

N(y)v(y, τ) dS

)(∫

�

u2xi
(x, τ)vxi

(x, τ) dx

)
dτ. (24)

От равенства (24) нетрудно перейти к следующей цепочке неравенств (с

помощью неравенств Гёльдера и Юнга и с учетом принадлежности функции

u2(x, t) множеству W2). Оценивая правую часть этого равенства с помощью

неравенства Гёльдера, придем к оценке

∫

�

v2(x, t) dx+

n∑

i=1

t∫

0

∫

�

ϕ(τ)v2
xi

(x, τ) dxdτ

≤
n∑

i=1

t∫

0

ϕ(τ)

h(τ)

(∫

�

N(y)v(y, τ) dS

)(∫

�

u2
2xi

(x, τ) dx

) 1
2
(∫

�

v2
xi

(x, τ) dx

) 1
2

dτ

≤ δ1
n∑

i=1

t∫

0

ϕ(τ)

(∫

�

v2
xi

(x, τ) dx

)
dτ +M(δ1)

t∫

0

ϕ(τ)

(∫

�

N(y)v(y, τ) dS

)2

dτ ;
(25)

число δ1 в последнем неравенстве есть произвольное положительное число, чис-

ло M(δ1) определяется помимо числа δ1 также числом n и функциями h(t),

u2(x, t).

Помимо неравенства (15) для функций ψ(t) из пространства W 1
2 (�) имеет

место неравенство

∫

�

ψ2(x) dS ≤ δ0
n∑

i=1

∫

�

ψ2
xi

(x) dx + C(δ0)

∫

�

ψ2(x) dx, (26)

в котором δ0 вновь есть произвольное положительное число, число C(δ0) опре-

деляется числом δ0, а также областью �.

Используя (26), продолжим неравенство (25):

∫

�

v2(x, t) dx+

t∫

0

∫

�

ϕ(τ)
n∑

i=1

v2
xi

(x, τ) dxdτ

≤ δ1
n∑

i=1

t∫

0

∫

�

ϕ(τ)v2
xi

(x, τ) dxdτ + δ0M(δ1)
n∑

i=1

t∫

0

∫

�

ϕ(τ)v2
xi

(x, τ) dxdτ

+ C(δ0)M(δ1)‖N‖2L2(�)

t∫

0

∫

�

v2(x, τ) dxdτ. (27)
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Подбирая число δ1 малым и фиксируя, затем подбирая число δ0 так, чтобы

δ0M(δ1) оказалось малым, и далее используя лемму Гронуолла, получим, что

v(x, t) есть тождественно нулевая в Q функция. Но тогда и функция ω(x, t)

будет тождественно нулевой в Q функцией. Как отмечено при доказательстве

теоремы 2, это и означает, что для обратной задачи II при выполнении условий

теоремы 4 имеет место свойство единственности.

Теорема доказана.

4. Комментарии и дополнения

4.1. Определенные в теоремах единственности множества W1 и W2, оче-

видно, являются множествами устойчивости для обратных задач I и II соответ-

ственно.

4.2. Теорему существования решений обратной задачи II нетрудно дока-

зать и при выполнении условия N(x) ∈ W 1
2 (�). В этом случае вспомогательной

задачей будет задача нахождения решения u(x, t) уравнения

ut− [ϕ(t) + ε]�u+

[
g1(t)−

ϕ(t)

h(t)
G

(
n∑

j=1

∫

�

Nxj
(x)uxj

(x, t) dy

)]
= f(x, t) (ε > 0),

(28)

для которого выполняются условия (2) и (3). Основная априорная оценка в

этой задаче выводится после умножения уравнения (28) на функцию −�u.

Заметим, что при выполнении условия N(x) ∈ W 1
2 (�) классы существова-

ния и устойчивости будут совпадать.

4.3. В обратных задачах I и II оператор Лапласа вполне можно заменить

общим эллиптическим оператором второго порядка. Идеи доказательства тео-

рем существования и единственности останутся прежними, но выкладки и усло-

вия станут более громоздкими. Уточним лишь, что в условии (3) нормальную

производную нужно будет заменить конормальной.

4.4. В обратных задачах I и II условие (3) вполне можно заменить условием

третьей начально-краевой задачи.
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Abstract: We introduce and study the structured pseudospectrum and the essential
pseudospectrum of closed linear operator pencils on ultrametric Banach spaces. We
establish a characterization of the structured pseudospectrum of closed linear opera-
tor pencils and relationship between the structured pseudospectrum and the structured
pseudospectrum of closed linear operator pencils on ultrametric Banach spaces. Many
characterizations of structured essential pseudospectra of operators, such as the struc-
tured essential pseudospectrum of closed linear operator pencils, is invariant under per-
turbation of completely continuous linear operators on ultrametric Banach spaces over
Qp. Finally, we give some illustrative examples.
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1. Introduction and Preliminaries

In the classical functional analysis, Trefethen [1] studied and developed the

pseudospectrum of matrices and bounded linear operators. Davies [2] introduced

and studied the structured pseudospectrum of a closed linear operator S on complex

Banach space E over C and he gave a characterization of the structured pseudo-

spectrum of S. For more details, see [2].

In ultrametric operator theory, the pseudospectra of linear operators were ex-

tended and studied by the authors in [3] and they characterized the pseudospectrum

of linear operators and the essential pseudospectrum of closed linear operators. In

[4], Ammar et al. introduced and studied the condition pseudospectrum of bounded

linear operators on ultrametric Banach spaces. They established a relationship be-

tween the condition pseudospectrum and the pseudospectrum and they proved some

properties of the essential condition pseudospectrum. Recently, El Amrani et al. [5]

studied the pseudospectrum of ultrametric matrices, the condition pseudospectrum

of ultrametric matrices and the pseudospectrum of ultrametric matrix pencils. They

showed some results about them and they gave some illustrative examples. Fur-

thermore, the trace pseudospectrum of ultrametric matrix pencils, the determinant

pseudospectrum of ultrametric matrix pencils and the condition pseudospectrum of

c© 2024 J. Ettayb
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ultrametric operator pencils were studied by several authors. For more details, we

refer to [5–8].

The eigenvalue problem is one of interesting problems in ultrametric operator

theory. It played an important role in many parts of ultrametric applied mathematics

and physics including matrix theory, ultrametric pseudo-differential equations, cont-

rol theory and ultrametric quantum mechanics. For more details, see [3, 4, 9, 10].

This work is motivated by many studies of ultrametric spectral theory and pertur-

bation theory of linear operators. For more details, we refer to [5–8, 11, 12].

Throughout this paper, K is a complete ultrametric field with a non-trivial

valuation | · |, E is an ultrametric Banach space over K, B(E ) denotes the collection

of all bounded linear operators on E , C (E ) is the set of all closed, densely defined

linear operators on E , E ∗ = B(E ,K) is the dual space of E and Qp is the field of

p-adic numbers. For more details, we refer to [13, 14]. For S ∈ C (E ), D(S), N(S),

R(S), ρ(S), σ(S) and σe(S) are the domain, the kernel, the range, the resolvent set,

the spectrum and the essential spectrum of S respectively. Recall that an unbounded

linear operator S : D(S) ⊂ E −→ E is said to be closed, densely defined if S is closed

and D(S) is dense in E . For more details on closed, densely defined linear operators,

see [11, 15]. We begin with the following preliminaries.

Definition 1 [13]. A field K is said to be ultrametric if it is endowed with an

absolute value | · | : K→ R+ such that

(i) |α| = 0 if, and only if, α = 0;

(ii) For all α, µ ∈ K, |αµ| = |α||µ|;
(iii) For each α, µ ∈ K, |α+ µ| ≤ max{|α|, |µ|}.

From now, we assume that K = (K, | · |) is a complete ultrametric valued field.

Definition 2 [13]. An ultrametric field K is said to be spherically complete if

each decreasing sequence of closed balls (Bn)n has nonempty intersection.

Definition 3 [13]. Let E be a vector space over K. A function ‖ · ‖ : E → R+

is called an ultrametric norm if:

(i) For all u ∈ E , ‖u‖ = 0 if and only if u = 0;

(ii) For all u ∈ E and λ ∈ K, ‖λu‖ = |λ|‖u‖;
(iii) For any u, v ∈ E , ‖u+ v‖ ≤ max(‖u‖, ‖v‖).

Definition 4 [13]. An ultrametric Banach space is a complete ultrametric

normed space.

Ingleton [14] proved the following theorem.

Theorem 1 [14]. Assume that K is spherically complete. Let E be an ultra-

metric Banach space over K. For all u ∈ E \{0}, there is u∗ ∈ E ∗ such that u∗(u) = 1

and ‖u∗‖ = ‖u‖−1.

Definition 5 [13]. Let ω = (ωi)i be a sequence of K\{0}. We define Eω by

Eω = {u = (ui)i : ∀i ∈ N, ui ∈ K and lim
i→∞

|ωi|
1
2 |ui| = 0}.
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On Eω, we define

∀u ∈ Eω : u = (ui)i, ‖u‖ = sup
i∈N

(|ωi|
1
2 |ui|).

Then (Eω, ‖ · ‖) is an ultrametric Banach space.

Remark 1 [13]. The orthogonal basis {ei, i ∈ N} is called the canonical basis

of Eω where ei = (δi,j)j∈N and δi,j is the Kronecker symbol. For each i ∈ N,

‖ei‖ = |ωi|
1
2 .

Definition 6 [13]. Let S ∈ C (E ), S is called an upper semi-Fredholm operator

if α(S) = dimN(S) is finite and R(S) is closed.

The collection of each upper semi-Fredholm operators on E is denoted by �+(E ).

Definition 7 [13]. Let S ∈ C (E ), S is said to be a lower semi-Fredholm

operator if β(S) = dim(E /R(S)) is finite.

The collection of each lower semi-Fredholm operators on E is denoted by �−(E ).

The collection of each closed Fredholm operators on E is

�(E ) = �+(E ) ∩ �−(E ).

For more details on closed Fredholm operators, see [13].

Definition 8 [14]. Let S ∈ B(E ), S is said to be an operator of finite rank if

dimR(S) is finite.

The set of all finite rank operators on E will be denoted by F0(E ).

Definition 9 [13]. Let E be an ultrametric Banach space and let S ∈ B(E ),

S is called completely continuous if, there is a sequence of finite rank linear operators

(Sn)n∈N such that ‖Sn − S‖ → 0 as n→∞.

Cc(E ) is the set of all completely continuous linear operators on E .

Remark 2 [13]. (i) We have B(E ) ⊂ C (E ).

(ii) Let A ∈ B(E ) and S : D(S) ⊂ E → E be an unbounded linear operator.

Then S +A is closed if and only if S is closed.

As the classical setting, we have the following lemma.

Lemma 1 [15]. Suppose that K = Qp. Let S ∈ �(E ) and C ∈ Cc(E ), then

S + C ∈ �(E ) and ind(S + C) = ind(S).

Similarly to the proof of Theorem 3.1 of [4], we conclude the following theorem.

Theorem 2. Suppose that K = Qp. Let S ∈ C (E ). Then

σe(S) =
⋂

K∈Cc(E )

σ(S +K).

As the classical setting, we have
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Proposition 1 [2]. Let E be an ultrametric Banach space over K. If S,B ∈
B(E ), then −1 6∈ σ(SB) if, and only if, −1 6∈ σ(BS).

From Definition 2.1 of [16], we get.

Definition 10. Let S ∈ C (E ) and B ∈ B(E ), the resolvent set ρ(S,B) of the

operator pencil (S,B) of the form S − λB is defined by

ρ(S,B) = {λ ∈ K : Rλ(S,B) = (S − λB)−1 ∈ B(E )}.

Rλ(S,B) is called the resolvent of the operator pencil (S,B). The spectrum σ(S,B)

of the operator pencil (S,B) of the form S −λB is defined by σ(S,B) = K\ρ(S,B).

From Definition 2.3 of [16], we have the following:

Definition 11. Let S ∈ C (E ), B ∈ B(E ) and ε > 0. The pseudospectrum

σε(S,B) of the operator pencil (S,B) is defined by

σε(S,B) = σ(S,B) ∪ {λ ∈ K : ‖(S − λB)−1‖ > ε−1}.

The pseudoresolvent ρε(S,B) of (S,B) is defined by

ρε(S,B) = ρ(S,B) ∩ {λ ∈ K : ‖(S − λB)−1‖ ≤ ε−1},

by convention ‖(S − λB)−1‖ =∞ if, and only if, λ ∈ σ(S,B).

As the proof of Theorem 2.14 of [8], the essential spectrum of closed linear

operator pencils on ultrametric Banach spaces over a spherically complete field K is

characterized by the following:

Theorem 3. Let E be an ultrametric Banach space over Qp, let S ∈ C (E ) and

B ∈ B(E ). Then

σe(S,B) =
⋂

K∈Cc(E )

σ(S +K,B).

2. Main results

We introduce the following definition.

Definition 12. Let E be an ultrametric Banach space over K. Let S ∈ C (E ),

B,C,M ∈ B(E ) and ε > 0. The structured pseudospectrum σε(S,M,B,C) of the

closed linear operator pencil (S,M) is defined by

σε(S,M,B,C) = σ(S,M) ∪ {λ ∈ K : ‖B(S − λM)−1C‖ > 1/ε}.

The structured pseudoresolvent ρε(S,M,B,C) of (S,M) is given by

ρ(S,M) ∩ {λ ∈ K : ‖B(S − λM)−1C‖ ≤ 1/ε}.

By convention ‖B(S − λM)−1C‖ =∞ if and only if λ ∈ σ(S,M).

By Definition 12, we deduce the following remark.

Remark 3. If C = B = I, hence σε(S,M, I, I) = σε(S,M) is the pseudo-

spectrum of the pencil (S,M).
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Theorem 4. Let E be an ultrametric Banach space over K, let S ∈ C (E ),

B,C,M ∈ B(E ) and ε > 0. Then

(i) For all ε1, ε2 such that ε1 ≤ ε2, σε1(S,M,B,C) ⊂ σε2 (S,M,B,C).

(ii) σ(S,M) =
⋂
ε>0

σε(S,M,B,C).

Proof. (i) If λ ∈ σε1(S,M,B,C), hence ‖B(S−λM)−1C‖ > ε−1
1 ≥ ε−1

2 . Then

λ ∈ σε2 (S,M,B,C).

(ii) Since for each ε > 0, σ(S,M) ⊆ σε(S,M,B,C), then

σ(S,M) ⊆
⋂

ε>0

σε(S,M,B,C).

Conversely, if λ ∈
⋂
ε>0

σε(S,M,B,C), hence for each ε > 0, λ ∈ σε(S,M,B,C). If

λ 6∈ σ(S,M), hence λ ∈ {λ ∈ K : ‖B(S − λM)−1C‖ > ε−1}. For ε→ 0+, we obtain

that ‖B(S − λM)−1C‖ =∞. Consequently, λ ∈ σ(S,M). �

Theorem 5. Let E be an ultrametric Banach space over a spherically complete

field K such that ‖E ‖ ⊆ |K|, let S ∈ C (E ) and B,C,M ∈ B(E ) with 0 ∈ ρ(B)∩ρ(C)

and ε > 0. Hence

σε(S,M,B,C) =
⋃

D∈B(E ):‖D‖<ε

σ(S + CDB,M).

Proof. Firstly, we prove that
⋃

D∈B(E ):‖D‖<ε

σ(S + CDB,M) ⊆ σε(S,M,B,C).

Let

λ ∈
⋃

D∈B(E ):‖D‖<ε

σ(S + CDB,M).

If D = 0, hence

σ(S,M) ⊆ σε(S,M,B,C).

If D 6= 0. We argue by contradiction, if λ ∈ ρ(S,M) and ‖B(S − λM)−1C‖ ≤
ε−1. Then for each D ∈ B(E ) : ‖D‖ < ε, hence ‖DB(S − λM)−1C‖ < 1. Thus,

DB(S−λM)−1C+I is invertible. From Proposition 1, for eachD ∈ B(E ) : ‖D‖ < ε,

−1 6∈ σ(DB(S − λM)−1C) if and only if −1 6∈ σ(CDB(S − λM)−1). Thus

S + CDB − λM = (I + CDB(S − λM)−1)(S − λM).

Hence (S + CDB − λM)−1 ∈ B(E ) which is a contradiction. Then

⋃

D∈B(E ):‖D‖<ε

σ(S + CDB,M) ⊆ σε(S,M,B,C).

For the converse inclusion, if λ 6∈ σ(S,M), then ‖B(S − λM)−1C‖ > ε−1. Hence

sup
x∈E\{0}

‖B(S − λM)−1Cx‖
‖x‖ >

1

ε
.
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Consequently, there is x ∈ E \{0} with

‖B(S − λM)−1Cx‖ > ‖x‖
ε
. (1)

Set y = B(S − λM)−1Cx, then C−1(S − λM)B−1y = x. From (1), we have

‖C−1(λM − S)B−1y‖ < ε‖y‖. (2)

Since ‖E ‖ ⊆ |K|, there is c ∈ K\{0} such that ‖y‖ = |c|, set z = c−1y, thus

‖z‖ = 1. By (2),

‖(C−1(λM − S)B−1)z‖ < ε. (3)

From Theorem 1, there is ϕ ∈ E ∗ such that ϕ(z) = 1 and ‖ϕ‖ = ‖z‖−1 = 1. Set for

each x ∈ E , Dx = ϕ(x)(C−1(λM − S)B−1)z. Then for all x ∈ E ,

‖Dx‖ = |ϕ(x)|‖(C−1(S − λM)B−1)z‖ ≤ ‖ϕ‖‖x‖‖(C−1(S − λM)B−1)z‖ < ε‖x‖.

Hence D ∈ B(E ) and ‖D‖ < ε. Moreover for z 6= 0, Dz+(C−1(S−λM)B−1)z = 0.

Set v = B−1z 6= 0. One can see that for v 6= 0, (CDB + S − λM)v = 0. Thus

λ ∈
⋃

D∈B(E ):‖D‖<ε

σ(S + CDB,M).

Consequently,

σε(S,M,B,C) =
⋃

D∈B(E ):‖D‖<ε

σ(S + CDB,M). �

Theorem 6. Suppose that K is spherically complete and ‖E ‖ ⊆ |K|. Let S ∈
C (E ) and B,C,M ∈ B(E ) such that 0 ∈ ρ(B) ∩ ρ(C) and ε > 0. Then

σε(S,M,B,C) = σ(S,M) ∪ {λ ∈ K : ∃x ∈ E , ‖x‖ = 1, ‖C−1(S − λM)B−1x‖ < ε}.

Proof. If λ ∈ σε(S,M,B,C)\σ(S,M), then ‖B(S − λM)−1C‖ > ε−1. Hence

sup
x∈E\{0}

‖B(S − λM)−1Cx‖
‖x‖ >

1

ε
.

Thus there exists x ∈ E \{0} with

‖B(S − λM)−1Cx‖ > ‖x‖
ε
. (4)

Set y = B(S − λM)−1Cx 6= 0, then C−1(S − λM)B−1y = x. By (4),

‖C−1(S − λM)B−1y‖ < ε‖y‖. (5)

Since ‖E ‖ ⊆ |K|, there is c ∈ K\{0} with ‖y‖ = |c|, put z = c−1y, hence

‖z‖ = 1. By (5), we have

‖C−1(S − λM)B−1z‖ < ε. (6)
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Let λ ∈ K such that there exists z ∈ E : ‖z‖ = 1 and

‖C−1(S − λM)B−1z‖ < ε. (7)

From Theorem 1, there exists ϕ ∈ E ∗ with ϕ(z) = 1 and ‖ϕ‖ = ‖z‖−1 = 1. Set for

any y ∈ E , Dy = ϕ(y)(C−1(λM − S)B−1)z. Hence for any y ∈ E ,

‖Dy‖ = |ϕ(y)|‖(C−1(S − λM)B−1)z‖ ≤ ‖ϕ‖‖y‖‖(C−1(S − λM)B−1)z‖ < ε‖y‖.
Thus D ∈ B(E ) and ‖D‖ < ε. Moreover for z 6= 0, Dz + (C−1(S − λM)B−1)z = 0.

Set v = B−1z 6= 0. One can see that for v 6= 0, (CDB + S − λM)v = 0. Thus

λ ∈
⋃

D∈B(E ):‖D‖<ε

σ(S + CDB,M).

By Theorem 5, λ ∈ σε(S,M,B,C). �

The structured essential pseudospectrum of closed linear operator pencils is

introduced as follows.

Definition 13. Let E be an ultrametric Banach space over K, let S ∈ C (E ),

B,C,M ∈ B(E ) and ε > 0. The structured essential pseudospectrum of the closed

linear operator pencil (S,M) of the form S − λB is defined as follows:

σe,ε(S,M,B,C) = K\{λ ∈ K : S+CDB−λM ∈ �0(E ) for allD ∈ B(E ), ‖D‖ < ε},
where �0(E ) is the collection of all unbounded Fredholm operators on E of index 0.

We obtain the following results.

Theorem 7. Let E be an ultrametric Banach space over K. Let S ∈ C (E ) and

B,C,M ∈ B(E ) and ε > 0, hence

σe,ε(S,M,B,C) =
⋃

D∈B(E ):‖D‖<ε

σe(S + CDB,M).

Proof. If λ 6∈ σe,ε(S,M,B,C), thus for each D ∈ B(E ) : ‖D‖ < ε,

S + CDB − λM ∈ �(E ) and ind(S + CDB − λM) = 0.

Hence λ 6∈ σe(S + CDB,M) for each D ∈ B(E ) : ‖D‖ < ε, then

λ 6∈
⋃

D∈B(E ):‖D‖<ε

σe(S + CDB,M).

Consequently,
⋃

D∈B(E ):‖D‖<ε

σe(S + CDB,M) ⊆ σe,ε(S,M,B,C).

Conversely, if

λ 6∈
⋃

D∈B(E ):‖D‖<ε

σe(S + CDB,M),

hence for each D ∈ B(E ) : ‖D‖ < ε, λ 6∈ σe(S + CDB,M). Thus S + CDB −
λM ∈ �(E ) and ind(S + CDB − λM) = 0 for all D ∈ B(E ) with ‖D‖ < ε, then

λ 6∈ σe,ε(S,M,B,C). �
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Theorem 8. Suppose that K = Qp. Let S ∈ C (E ) and B,C,M ∈ B(E ) and

ε > 0. Then,

σe,ε(S,M,B,C) = σe,ε(S +K,M,B,C) for each K ∈ Cc(E ). (8)

Proof. If λ 6∈ σe,ε(S,M,B,C), hence for each D ∈ B(E ) with ‖D‖ < ε,

S + CDB − λM ∈ �(E ) and ind(S + CDB − λM) = 0.

From Lemma 1, for all K ∈ Cc(E ) and D ∈ B(E ) such that ‖D‖ < ε, we obtain

S + CDB +K − λM ∈ �(E ) and ind(S + CDB +K − λM) = 0. (9)

By (9), we get

λ 6∈ σe,ε(S +K,M,B,C).

Then

σe,ε(S +K,M,B,C) ⊆ σe,ε(S,M,B,C).

The opposite inclusion follows from symmetry. �

Remark 4. From Theorem 8, it follows that the structured essential pseudo-

spectrum of closed linear operator pencils is invariant under perturbation of comple-

tely continuous linear operators on ultrametric Banach spaces over Qp.

Theorem 9. Suppose that K = Qp and ‖E ‖ ⊆ |Qp|. Let S ∈ C (E ) and

B,C,M ∈ B(E ) with 0 ∈ ρ(B) ∩ ρ(C) and ε > 0. Then

σe,ε(S,M,B,C) =
⋂

K∈Cc(E )

σε(S +K,M,B,C).

Proof. If

λ 6∈
⋂

K∈Cc(E )

σε(S +K,M,B,C),

then there exists K ∈ Cc(E ) with λ 6∈ σε(S+K,M,B,C). By Theorem 5, (S+K +

CDB − λM)−1 ∈ B(E ) for any D ∈ B(E ) such that ‖D‖ < ε. Hence

S +K + CDB − λM ∈ �(E ) and ind(S +K + CDB − λM) = 0. (10)

By Lemma 1, for each D ∈ B(E ) with ‖D‖ < ε, we get

S + CDB − λM ∈ �(E ) and ind(S + CDB − λM) = 0. (11)

Then

λ 6∈ σe,ε(S,M,B,C).

Thus

σe,ε(S,M,B,C) ⊆
⋂

K∈Cc(E )

σε(S +K,M,B,C). (12)

Conversely, if λ 6∈ σe,ε(S,M,B,C). From Theorem 7, for each D ∈ B(E ) such

that ‖D‖ < ε, λ 6∈ σe(S + CDB,M). By Theorem 3, there is K ∈ Cc(E ) with
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λ 6∈ σ(S + CDB + K,M), hence for each D ∈ B(E ) such that ‖D‖ < ε, λ ∈
ρ(S +K + CDB,M). Then

λ ∈
⋂

D∈B(E ):‖D‖<ε

ρ(S +K + CDB,M). (13)

By Theorem 5, λ 6∈ σε(S +K,M,B,C). Consequently,

λ 6∈
⋂

K∈Cc(E )

σε(S +K,M,B,C).

Thus

σe,ε(S,M,B,C) =
⋂

K∈Cc(E )

σε(S +K,M,B,C). �

Remark 5. Assume that K = Qp and ‖E ‖ ⊆ |Qp|. Let S ∈ C (E ) and

B,C,M ∈ B(E ) with 0 ∈ ρ(B) ∩ ρ(C) and ε > 0. From Example 3.31 of [13]

and Theorem 9, we obtain

σe,ε(S,M,B,C) =
⋂

F∈F0(E )

σε(S + F,M,B,C).

Proposition 2. Let E be an ultrametric Banach space over a spherically com-

plete field K such that ‖E ‖ ⊆ |K|. Let S ∈ C (E ) and B,C,M ∈ B(E ) such that

0 ∈ ρ(B) ∩ ρ(C) and ε > 0. Then

(i) σe,ε(S,M,B,C) ⊂ σε(S,M,B,C).

(ii) For each ε1 and ε2 such that 0 < ε1 < ε2, we get σe(S,M) ⊂ σe,ε1 (S,M,B,C) ⊂
σe,ε2(S,M,B,C).

Proof. (i) If λ ∈ σe,ε(S,M,B,C). From Theorem 5,

λ ∈
⋃

D∈B(E ):‖D‖<ε

σe(S + CDB,M).

By σe(S + CDB,M) ⊂ σ(S + CDB,M), hence

λ ∈
⋃

D∈B(E ):‖D‖<ε

σ(S + CDB,M).

From Theorem 5, λ ∈ σε(S,M,B,C).

(ii) Firstly, we prove that for each ε > 0,

σe(S,M) ⊂ σe,ε(S,M,B,C).

If λ 6∈ σe,ε(S,M,B,C), thus for each D ∈ B(E ) such that ‖D‖ < ε, we get λM −
(S+CDB) ∈ �(E ) and ind(λM − (S+CDB)) = 0. As ε→ 0, λM −S ∈ �(E ) and

ind(λM − S) = 0, then λ 6∈ σe(S,M). Thus

σe(S,M) ⊂ σe,ε(S,M,B,C).

Let λ 6∈ σe,ε2 (S,M,B,C), hence for each D ∈ B(E ) such that ‖D‖ < ε2, λM −
(S + CDB) ∈ �(E ) and ind(λM − (S + CDB)) = 0. Since ε1 < ε2, for all D ∈
B(E ) : ‖D‖ < ε1, λM − (S + CDB) ∈ �(E ) and ind(λM − (S + CDB)) = 0, thus

λ 6∈ σe,ε1(S,M,B,C). Consequently, σe,ε1(S,M,B,C) ⊂ σe,ε2(S,M,B,C). �
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Proposition 3. Assume that K = Qp and ‖E ‖ ⊆ |Qp|. Let S ∈ C (E ) and

B,C,M ∈ B(E ) with 0 ∈ ρ(B) ∩ ρ(C) and ε > 0, hence

σe(S,M) =
⋂

ε>0

σe,ε(S,M,B,C).

Proof. Suppose that λ ∈
⋂
ε>0

σe,ε(S,M,B,C) and ‖E ‖ ⊆ |Qp|. By Theorem 9,

⋂

ε>0

σe,ε(S,M,B,C) =
⋂

ε>0

⋂

K∈Cc(E )

σε(S +K,M,B,C)

=
⋂

K∈Cc(E )

⋂

ε>0

σε(S +K,M,B,C). (14)

From (ii) of Theorem 4,
⋂

ε>0

σε(S +K,M,B,C) = σ(S +K,M).

By (14), we get
⋂

ε>0

σe,ε(S,M,B,C) =
⋂

K∈Cc(E )

σ(S +K,M).

By Theorem 3, λ ∈ σe(S,M). Conversely, λ ∈ σe(S,M). From Theorem 4,

λ ∈
⋂

K∈Cc(E )

σ(S +K,M).

By (ii) of Theorem 4, we have

λ ∈
⋂

ε>0

⋂

K∈Cc(E )

σε(S +K,M,B,C).

Since ‖E ‖ ⊆ |Qp|, by Theorem 5,

λ ∈
⋂

ε>0

⋃

D∈B(E ):‖D‖<ε

⋂

K∈Cc(E )

σ(S + CDB +K,M).

By Theorem 3, λ ∈ ⋂
ε>0

⋃
D∈B(E ):‖D‖<ε

σe(S + CDB,M). From Theorem 7, λ ∈
⋂
ε>0

σe,ε(S,M,B,C). Consequently,

σe(S,M) =
⋂

ε>0

σe,ε(S,M,B,C). �

Example 1. Let B,C,M ∈ B(Eω) be diagonal operators such that 0 ∈ ρ(M)

and for any i ∈ N, Bei = biei, Cei = ciei and Mei = miei where sup
i∈N
|bi|, sup

i∈N
|ci| and

sup
i∈N
|mi| are finite. Let S be an unbounded diagonal operator defined on Eω by for

all i ∈ N, Sei = aiei where lim
i→∞

|ai| =∞ and

D(S) = {x = (xi)i∈N ∈ Eω : lim
i→∞

|xi||ai|‖ei‖ = 0}.
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One can see that

σ(S,M) =
{
aim

−1
i : i ∈ N

}
,

and for each

λ ∈ ρ(S,M), ‖B(S − λM)−1C‖ = sup
i∈N

∣∣∣∣
bici

ai − λmi

∣∣∣∣ .

Consequently,

σε(S,M,B,C) =
{
aim

−1
i : i ∈ N

}
∪
{
λ ∈ K : sup

i∈N

∣∣∣∣
bici

ai − λmi

∣∣∣∣ >
1

ε

}
.
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1. Introduction

Denote by H the family of all analytic functions in the unit disk D = {z ∈ C :

|z| < 1}. Let A be the subfamily of functions f normailized by f(0) = f ′(0)−1 = 0,
i.e, of the type

f(z) =

∞∑

n=1

anz
n, a1 := 1, (1.1)

and S be the subfamily of A possessing univalent (schlicht) mappings.

Let k be a positive integer. A domain U ∈ C is said to be k-fold symmetric if

a rotation of U about the origin through an angle 2π
k carries U to itself. A function

h is said to be k-fold symmetric in D if h(e
2πi
k z) = e

2πi
k h(z) for every z ∈ D. If h is

regular and k-fold symmetric in D, then

h(z) = b1z + bk+1z
k+1 + b2k+1z

2k+1 + · · · . (1.2)

Conversely, if h is given by (1.2), then h is k-fold symmetric inside the circle of

convergence of the series (see [1]). The kth-root transform for the mapping f in

(1.1) is

G(z) := [f(zk)]
1
k = z +

∞∑

n=1

bkn+1z
kn+1. (1.3)

c© 2024 K. S. Kumar, B. Rath, D. V. Krishna, G. K. S. Viswanadh
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Vamshee et al. [2] introduced and interpreted the concept of Hankel determinant

for G(z) for f in (1.1), with q, t, k ∈ N = {1, 2, 3, . . .}, as

Hq,t,k(f) =

∣∣∣∣∣∣∣∣∣

bk(t−1)+1 bkt+1 · · · bk(t+q−2)+1

bkt+1 bk(t+1)+1 · · · bk(t+q−1)+1

...
...

...
...

bk(t+q−2)+1 bk(t+q−1)+1 · · · bk[t+2(q−1)−1]+1

∣∣∣∣∣∣∣∣∣
(b1 = 1). (1.4)

In particular, if k = 1 in (1.4), then it reduces to Hq,t,1(f) = Hq,t(f), the Hankel

determinant defined by Pommerenke [3] for the function f given in (1.1).

The hypergeometric function 2F1(a, b; c; z) is defined for |z| ≤ 1 by the power

series

2F1(a, b; c; z) =

∞∑

n=0

(a)n(b)n
(c)n

zn

n!
= 1 +

ab

c

z

1!
+
a(a+ 1)b(b+ 1)

c(c+ 1)

z2

2!
+ · · · .

It is undefined (or infinite) if c equals a non-positive integer. Here (q)n is the (rising)

Pochhammer symbol, which is defined as follows:

(q)n =

{
1, n = 0,

q(q + 1) · · · (q + n− 1), n > 0.

Ali et al. [4] derived exact estimates for |b2k+1 − µb2k+1|, the generalized Fekete–

Szegö functional related to the function G(z), while Vamshee et al. [5] studied

certain second Hankel determinants when f is a member of specific subfamilies of S.

S. Owa [6, 7] studied the class Iβ with anaytic conditions

Re

{
(1− β)

f(z)

z
+ βf ′(z)

}
> 0, β ≥ 0,

which was also studied by H. Saitoh [8].

For our study in this paper we consider second Hankel determinants H2,1,k(f)

and H2,2,k(f) and generalized Zalcman for initial coefficient of kth-root transforma-

tion for Iβ .

Denote by P the collection of all functions g called Carathéodory functions [9],

of the form

g(z) = 1 +

∞∑

t=1

ctz
t, (1.5)

holomorphic in D and such that Re g(z) > 0 for z ∈ D. The classes Iβ and P

are invariant under the rotations by Carathéodory Theorem (see [10, Vol. I, p. 80,

Theorem 3]).

For the proof of our main result we need the following lemmas, which contain

the well-known formulas for c2 (e.g., [11, p. 166]) and for c3 due to Libera and

Zlotkiewicz [12–14].

Lemma 1.1 [11]. If g ∈P, then |ct| ≤ 2 for t ∈ N; the equality is attained for
the function g(z) = 1+z

1−z , z ∈ D.
Lemma 1.2 [15, 16]. If g ∈P, then |ci − µcjci−j | ≤ 2 for i, j ∈ N, i > j, and

µ ∈ [0, 1], which is same as |cn+k − µcnck| ≤ 2 for n, k ∈ N with µ ∈ [0, 1].
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Lemma 1.3 [17]. If g ∈P, then
∣∣Jc31 −Kc1c2 + Lc3

∣∣ ≤ 2(|J |+ |K − 2J |+ |J −K + L|).

Lemma 1.4 [18]. If g ∈P, then

2c2 = c21 + tζ, 4c3 = c31 + 2c1tζ − c1tζ2 + 2t(1− |ζ|2)η,
while

8c4 = c41 + 3c21tζ +
(
4− 3c21

)
tζ2 + c21tζ

3 + 4t(1− |ζ|2)(1− |η|2)ξ
+ 4t(1− |ζ|2)(c1η − c1ζη − ζη2),

where t := 4− c21, for some ζ, η and ξ such that |ζ| ≤ 1, |η| ≤ 1, and |ξ| ≤ 1.

Result 1.1. Suppose that � : [0, 2]→ R, k ∈ N, β ≥ 0, and �(c) is defined as

�(c) =
1

12
c2
(

k2 − 1

(β + 1)4k4
− 6β2

(3β2 + 4β + 1)(2βk + k)2

)

− (4β + 1)

(3β2 + 4β + 1)(2βk + k)2
.

Then
�(c) ≤ 0.

Proof. We can easily see that

12(β + 1)4(2β + 1)2(3β + 1)k4�(c) = −6β2(β + 1)3c2k2 − 12(4β + 1)(β + 1)3k2

+(2β+1)2(3β+1)(k2−1)c2 = −[c2(12β3 +16β2 +7β+6β5k2 +18β4k2 +6β3k2 +1)

+ (2β + 1)(5β + 1)(12− c2)k2 + 12β2(4β2 + 13β + 5)k2] ≤ 0;

therefore, �(c) ≤ 0. �

2. Main Results

Theorem 2.1. If f ∈ Iβ , β ≥ 0, then

|H2,1,k(f)| ≤ 2

(2β + 1)k
,

and the result is sharp for f0(z) := 2z2F1

(
1, 1

2β ; 1
2

(
2 + 1

β

)
; z2
)
− z.

Proof. For f ∈ Iβ , there exists a holomorphic function g ∈P such that

(1− β)
f(z)

z
+ βf ′(z) = g(z), z ∈ D. (2.1)

Substitute the values for f, f ′ and g in (2.1), then

an+1 =
cn

1 + βn
, n ∈ N. (2.2)

For the mapping f in (1.1), a simple calculation gives

[f(zk)]
1
k =

[
zk +

∞∑

n=2

anz
nk

] 1
k
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=

[
z +

1

k
a2z

k+1 +

{
1

k
a3 +

(1− k)
2k2

a2
2

}
z2k+1

+

{
1

k
a4 +

(1− k)
k2

a2a3 +
(1− k)(1 − 2k)

6k3
a3
2

}
z3k+1

+

{
1

k
a5 +

(1 − k)
2k2

(a2
3 + 2a2a4) +

(1− k)(1 − 2k)

2k3
a2
2a3

+
(1− k)(1− 2k)(1− 3k)

24k4
a4
2

}
z4k+1 + · · ·

]
. (2.3)

Comparing the coefficients of zk+1, z2k+1, z3k+1, and z4k+1 in (1.2) and (2.3), we

get

bk+1 =
1

k
a2,

b2k+1 =
1

k
a3 +

(1− k)
2k2

a2
2,

b3k+1 =

[
1

k
a4 +

(1− k)
k2

a2a3 +
(1− k)(1 − 2k)

6k3
a3
2

]
, (2.4)

b4k+1 =

[
1

k
a5 +

(1− k)
2k2

(
a2
3 + 2a2a4

)
+

(1− k)(1 − 2k)

2k3
a2
2a3

+
(1− k)(1 − 2k)(1− 3k)

24k4
a4
2

]
.

From (2.2) and (2.4), we obtain

bk+1 =
c1

(β + 1)k
, b2k+1 =

c21(1− k)
2(β + 1)2k2

+
c2

(2β + 1)k
,

b3k+1 =
c31(1− k)(1− 2k)

6(β + 1)3k3
+

c2c1(1− k)
(β + 1)(2β + 1)k2

+
c3

(3β + 1)k
, (2.5)

b4k+1 =
(1− k)(1− 2k)(1− 3k)c41

24(β + 1)4k4
+

(1− k)(1− 2k)c21c2
2(1 + β)2(1 + 2β)k3

+
(1− k)c22

2(2β + 1)2k2

+
(1− k)c1c3

2(β + 1)(3β + 1)k2
+

c4
(4β + 1)k

.

Now, for q = 2 and t = 1 in (1.4), we have

H2,1,k(f) =

∣∣∣∣
1 bk+1

bk+1 b2k+1

∣∣∣∣ . (2.6)

Using the values of bj (j = k + 1, 2k + 1) from (2.5) in (2.6), we get

H2,1,k(f) =
c2

(2β + 1)k
− (k + 1)c21

2(β + 1)2k2
. (2.7)

Taking modulus on both side and applying Lemma 1.2, we have

|H2,1,k(f)| = 1

(2β + 1)k

∣∣∣∣c2 −
(k + 1)(2β + 1)c21

2k(β + 1)2

∣∣∣∣ ≤
2

(2β + 1)k
. (2.8)

For f0(z) we obtain a1 = 1, a2 = 0, and a3 = 2/(1 + 2β); further, bk+1 = 0 and

bk+1 = 2/(1 + 2β)k, whence the result follows. �
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Theorem 2.2. If f ∈ Iβ and β ≥ 0, then

|H2,2,k(f)| ≤ 4

(2βk + k)2
,

and the result is sharp for f0(z) given in Theorem 2.1.

Proof. Now, for q = 2 and t = 2 in (1.4), we get

H2,2,k(f) =

∣∣∣∣
bk+1 b2k+1

b2k+1 b3k+1

∣∣∣∣ . (2.9)

Putting the calculated values of bjk+1, for j ∈ {1, 2, 3} from (2.5) into (2.9), we get

H2,2,k(f) =
c3c1

(3β2 + 4β + 1)k2
+

c41(k
2 − 1)

12(β + 1)4k4
− c22

(2βk + k)2
. (2.10)

Substituting the values of c2 and c3 from Lemma 1.4 on the right-hand side of (2.10),

it simplifies to

H2,2,k(f) =
c41(k

2 − 1)

12(β + 1)4k4
+

β2c41
4(3β2 + 4β + 1)(2βk + k)2

+ (4− c21)
(
− c21ζ

2

4(3β2 + 4β + 1)k2
+

c1(1− |ζ|2)η
2(3β2 + 4β + 1)k2

−
(
4− c21

)
ζ2

4(2βk + k)2
+

β2c21ζ

2(3β2 + 4β + 1)(2βk + k)2

)
. (2.11)

Taking modulus on both sides and then applying the triangle inequality in the above

expression, while using c1 := c ∈ [0, 2], |ζ| := x ∈ [0, 1], and |η| ≤ 1, we have

|H2,2,k(f)| ≤ c4(k2 − 1)

12(β + 1)4k4
+

β2c4

4(3β2 + 4β + 1)(2βk + k)2

+ (4− c2)
(

c2x2

4(3β2 + 4β + 1)k2
+

c(1− x2)

2(3β2 + 4β + 1)k2

+
(4− c2)x2

4(2βk + k)2
+

β2c2x

2(3β2 + 4β + 1)(2βk + k)2

)
,

which is equivalent to

|H2,2,k(f)| ≤ c4(k2 − 1)

12(β + 1)4k4
+

β2c4

4(3β2 + 4β + 1)(2βk + k)2

+ (4− c2)
(

c

2(3β2 + 4β + 1)k2
+

β2c2x

2(3β2 + 4β + 1)(2βk + k)2

+
(2− c)x2(6β2 + 8β + β2(−c) + 2)

4(3β2 + 4β + 1)(2βk + k)2

)
.

For c ∈ [0, 2] and β ≥ 0 all terms in RHS are positive, thus,

|H2,2,k(f)| ≤ c4(k2 − 1)

12(β + 1)4k4
+

β2c4

4(3β2 + 4β + 1)(2βk + k)2
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+ (4− c2)
(

c

2(3β2 + 4β + 1)k2
+

β2c2

2(3β2 + 4β + 1)(2βk + k)2

+
(2− c)(6β2 + 8β + β2(−c) + 2)

4(3β2 + 4β + 1)(2βk + k)2

)

=
1

12
c4
(

k2 − 1

(β + 1)4k4
− 6β2

(3β2 + 4β + 1)(2βk + k)2

)

(−4β − 1)c2

(3β2 + 4β + 1)(2βk + k)2
+

4

(2βk + k)2
= �(c)c2 +

4

(2βk + k)2
≤ 4

(2βk + k)2
,

since �(c) ≤ 0 by Result 1.1.

For f0(z) we obtain a1 = 1, a2 = a4 = 0, and a3 = 2/(1 + 2β), then, bk+1 =

b3k+1 = 0 and bk+1 = 2/(1 + 2β)k, whence follows the result. �

Theorem 2.3. If f ∈ Iβ and β ≥ 0, then

|b3k+1 − bk+1b2k+1| ≤
2

(3β + 1)k
,

and the result is sharp for f1(z) := 2z2F1

(
1, 1

3β ; 1
3

(
3 + 1

β

)
; z3
)
− z.

Proof. Using the values of bjk+1 for j ∈ {1, 2, 3} from (2.5) in the expression

b3k+1 − bk+1b2k+1, we get

b3k+1 − bk+1b2k+1 =
c31(k

2 − 1)

3(β + 1)3k3
− c2c1

(β + 1)(2β + 1)k
+

c3
(3β + 1)k

. (2.12)

Taking modulus on both sides and then applying Lemma 1.3, we have

|b3k+1 − bk+1b2k+1| ≤ 2

[∣∣∣∣
k2 − 1

3(β + 1)3k3

∣∣∣∣+
∣∣∣∣

1

(β + 1)(2β + 1)k
− 2(k2 − 1)

3(β + 1)3k3

∣∣∣∣

+

∣∣∣∣
k2 − 1

3(β + 1)3k3
− 1

(β + 1)(2β + 1)k
+

1

(3β + 1)k

∣∣∣∣
]

= 2

[
k2 − 1

3(β + 1)3k3
+

4β + 3β2k2 + 2βk2 + k2 + 2

3(β + 1)3(2β + 1)k3

+
−6β2 − 5β + 6β4k2 + 12β3k2 + 12β2k2 + 5βk2 + k2 − 1

3(β + 1)3(2β + 1)(3β + 1)k3

]
=

2

(3β + 1)k
.

For f1(z) we obtain a1 = 1, a2 = a3 = 0, and a4 = 2/(1+3β), while bk+1 = b2k+1 = 0

and b3k+1 = 2/(1 + 3β)k, whence follows the required. �
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ИССЛЕДОВАНИЕ НЕЛИНЕЙНОГО

ПАРАБОЛИЧЕСКОГО И ЛИНЕЙНОГО

ГИПЕРБОЛИЧЕСКОГО ОПЕРАТОРОВ

ТЕПЛОПРОВОДНОСТИ

В. В. Жуков, Ю. А. Крюков,

К. В. Трубицын, В. А. Кудинов, Е. В. Котова

Аннотация. Выполнено исследование численного решения нелинейной задачи
теплопроводности для пластины с нелинейным источником теплоты (коэффициент
теплопроводности и внутренний источник теплоты — экспоненциальные функции
температуры). В частности, в нелинейной задаче найдены явления автомодельно-
сти, инерции и локализации теплоты, проявляющихся также и в решениях линей-
ных гиперболических уравнений теплопроводности. При автомодельном изменении
температуры в некоторых диапазонах пространственной и временно́й переменных
наблюдается подобие (самоподобие) температурных кривых. При локализации теп-
лоты в определенном диапазоне пространственной переменной температура с тече-
нием времени не изменяется. Инерция теплоты обнаруживается в конечной скоро-
сти ее распространения, несмотря на решение параболического уравнения тепло-
проводности. Перечисленные явления наблюдаются также и в решениях линейных
гиперболических уравнений теплопроводности, при выводе которых учитывается
временна́я зависимость теплового потока в формуле закона Фурье, приводящая
к конечной скорости распространения теплоты. В нелинейных задачах подобный
эффект проявляется вследствие зависимости физических свойств и источника теп-
лоты от температуры, приводящей к аналогичной задержке теплового потока.
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Высокоинтенсивные процессы, протекающие в большом диапазоне темпе-

ратур, приводят к значительному изменению физических свойств конденсиро-

ванных сред. Неучет их зависимости от температуры может приводить к су-

щественному отклонению теоретических моделей от конкретных технических

процессов. В случае, когда в нелинейных задачах необходимо еще учитывать
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температурную зависимость источников теплоты, математические постановки

краевых задач существенно усложняются. Актуальность их исследования свя-

зана с тем, что они описывают многие технические процессы, исследованию

которых посвящены работы ряда авторов [1–21]. В этих работах отмечают-

ся такие свойства решений указанных задач, как автомодельность (самопо-

добие), инерция, локализация и конечная скорость распространения теплоты,

характерных для гиперболических операторов теплопроводности, учитываю-

щих пространственно-временную нелокальность реальных физических процес-

сов. Вывод гиперболических уравнений основан на использовании модифици-

рованной формулы закона Фурье, учитывающей запаздывание теплового по-

тока и градиента температуры на величину соответствующих коэффициентов

релаксации [9, 11, 14–16, 18, 20, 21]. Найденные таким путем дифференциаль-

ные уравнения включают операторы высокого порядка, в том числе и со сме-

шанными производными. Получение их точных аналитических и численных

решений представляет существенные математические трудности ввиду необхо-

димости выполнения исследований в области малых и сверхмалых значений

пространственно-временных переменных, сопоставимых с длиной и временем

свободного пробега микрочастиц (носителей энергии), характеризуемых соот-

ветствующими коэффициентами релаксации. Многочисленные исследования

краевых задач с учетом пространственно-временной нелокальности приводят к

заключению о невозможности мгновенного установления граничного условия

первого рода, которое устанавливается в некотором диапазоне начального вре-

менного участка, т. е. с запаздыванием [6, 9, 16, 20, 21]. Отмечается конечная

скорость распространения теплоты со скачком температуры на фронте ее пе-

ремещения. Для сред сверхмалой толщины, сопоставимой с длиной свободного

пробега микрочастиц, наблюдается баллистический перенос теплоты, при ко-

тором температура в пределах толщины тела неизменна и изменяется лишь во

времени. В данном случае имеет место автомодельность процесса, так как все

изотермы параллельны между собой, т. е. по всей толщине происходит переход

во времени от одной изотермы к другой, вплоть до установления стационарного

состояния. Граничное условие первого рода в этом случае не принимается в те-

чении всего времени нестационарного процесса. Таким образом, некоторые про-

цессы, имеющие место в локально-неравновесных системах, при определенных

условиях наблюдаются и в задачах с нелинейными физическими свойствами

среды (конечная скорость, запаздывание, локализация и автомодельность). Та-

кие совпадения можно объяснить тем, что в обоих случаях исследуются тепло-

вые процессы, максимально приближенные к реальным физическим процессам

теплопереноса.

Следует однако отметить, что большинство работ, связанных с исследова-

нием нелинейных задач теплопроводности, выполнены либо для полупростран-

ства, либо для задачи Коши, что исключает анализ влияния граничных условий

конечного тела на процесс теплообмена. Кроме того, недостаточно исследованы

задачи, связанные с одновременным учетом зависимости физических свойств и
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внутренних источников теплоты от температуры, и особенно в случаях, когда

эта зависимость нелинейная (например, экспоненциальная). В связи с чем в на-

стоящей работе рассматривается нелинейная задача теплопроводности с нели-

нейным источником теплоты в следующей математической постановке

cρ
∂t(x, τ)

∂τ
=

∂

∂x

[
λ(t)

∂t(x, τ)

∂x

]
+ ω(t) (τ > 0; 0 < x < δ); (1)

t(x, 0) = t0; (2)

t(0, τ) = t1; (3)

∂t(δ, τ)

∂x
= 0, (4)

где t — температура, К; x — координата, м; τ — время, с; λ(t) — коэффициент

теплопроводности, Вт/(м · K); c — теплоемкость, Дж/(кг · K); ρ — плотность,

кг/м3; t0 — начальная температура, К; t1 — температура при x = 0 (t1 >

t0), К; ω(t) — мощность источника теплоты, Вт/(м3); δ — половина толщины

пластины, м.

С целью упрощения процесса получения решения начальное условие в за-

даче (1)–(4) примем за условный нуль температуры, т. е. обозначим T = t− t0.
Относительно функции T (x, τ) задача (1)–(4) примет вид

cρ
∂T (x, τ)

∂τ
=

∂

∂x

[
λ(T )

∂T (x, τ)

∂x

]
+ ω(T ) (t > 0; 0 < x < δ); (5)

T (x, 0) = 0; (6)

T (0, τ) = �t; (7)

∂T (δ, t)

∂x
= 0, (8)

где �t = t1 − t0.
Найдем решение задачи (5)–(8) при следующих зависимостях теплопровод-

ности и теплового источника от температуры:

λ(T ) = λ0e
βT ; (9)

ω(T ) = ω0e
γT , (10)

где λ0; ω0 — коэффициент теплопроводности и мощность внутреннего источ-

ника при температуре t = t0, т. е. при T = 0; β, γ — коэффициенты, харак-

теризующие интенсивность изменения коэффициента теплопроводности λ(T ) и

мощности источника теплоты ω(T ) от температуры, 1/K.

Уравнение (5) с учетом (9), (10) будет иметь вид

∂T (x, τ)

∂τ
= a0

∂

∂x

[
eβT (x,τ)∂T (x, τ)

∂x

]
+
ω0

cρ
eγT (x,τ), (11)

где a0 = λ0/(cρ); cρ = const; a0 — коэффициент температуропроводности при

T = 0, м2/c.
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Введем следующие обозначения:

� = T/�t; Fo = a0τ/δ
2; ξ = x/δ, (12)

где �; ξ; Fo — безразмерные температура, координата, время.

С учетом обозначений (12) математическая постановка принимает вид

∂�(ξ,Fo)

∂Fo
=

∂

∂ξ

[
eβ�t� ∂�(ξ,Fo)

∂ξ

]
+ Po eγ�t� (Fo > 0, 0 < ξ < 1); (13)

�(ξ, 0) = 0; (14)

�(0,Fo) = 1; (15)

∂�(1,Fo)

∂ξ
= 0; (16)

где Po = ω0δ
2

λ0�t — число Померанцева (безразмерный комплекс).

Для решения задачи (13)–(16) численным методом введем конечно-разност-

ную сетку (рис. 1).

Рис. 1. Конечно-разностная сетка и шаблон (крестики) в расчетной области.

Для конечно-разностной аппроксимации задачи (13)–(16) используем ше-

ститочечный шаблон и схему с весами σ [22]. Уравнение (13) преобразуется к

виду

�n+1
j − �n

j

hFo
= eβ�t(σ�n

j +(1−σ)�n+1

j )

[
β�t

(
σ
�n

j+1 − �n
j−1

2hξ
+ (1− σ)

�n+1
j+1 − �n+1

j−1

2hξ

)

+σ
�n

j+1 − 2�n
j + �n

j−1

h2
ξ

+(1−σ)
�n+1

j+1 − 2�n+1
j + �n+1

j−1

h2
ξ

]
−Po eγ�t(σ�n

j +(1−σ)�n+1

j )

(17)

(n = 0, 1, 2, . . . ; j = 1, . . . ,M − 1).

Соотношение (17) аппроксимирует (13) с порядком O
(
h2
ξ + h2

Fo

)
, если при-

нимается схема Кранка — Никольсон (σ = 1/2), и с порядком O
(
h2
ξ + hFo

)
, если

σ 6= 1/2. Аппроксимации начального условия (14) и условия (15) записываются

точно. За счет специального выбора узлов сетки (граница области расположе-

на в середине между последним и предпоследними узлами) аппроксимация с

порядком O
(
h2
ξ

)
краевого условия (16) значительно упрощается.
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Отсюда условия (14)–(16) принимают вид

�j
0 = 0 (j = 0, . . . ,M); (18)

�n+1
0 = 1 (n = 0, 1, 2, . . . ); (19)

�n+1
M = �n+1

M−1 (n = 0, 1, 2, . . . ). (20)

Так как уравнение (17) нелинейное, для его решения будем использовать

метод итераций. Применяя метод простой итерации, уравнение (17) сведем

к следующей системе линейных алгебраических уравнений относительно неиз-

вестных �n+1
j−1 [k + 1], �n+1

j [k + 1], �n+1
j+1 [k + 1]:

aj�
n+1
j−1 [k + 1]− cj�n+1

j [k + 1] + bj�
n+1
j+1 [k + 1] = −fj (21)

(n = 0, 1, 2, . . . ; j = 1, . . . ,M − 1),

где

aj = eβ�t(σ�n
j +(1−σ)�n+1

j
[k])

×
(
−β�t

[
σ(1 − σ)

2h2
ξ

(
�n

j+1−�n
j−1

)
+

(
1− σ
2hξ

)2 (
�n+1

j+1 [k]−�n+1
j−1 [k]

)]
+

(
1− σ
h2
ξ

))
;

bj = eβ�t(σ�n
j +(1−σ)�n+1

j [k])

×
(
β�t

[
σ(1 − σ)

2h2
ξ

(
�n

j+1 − �n
j−1

)
+

(
1− σ
2hξ

)2 (
�n+1

j+1 [k]− �n+1
j−1 [k]

)]
+

(
1− σ
h2
ξ

))
;

cj =
1

ht
+

2(1− σ)

h2
ξ

eβ�t(σ�n
j +(1−σ)�n+1

j
[k]);

fj =
�n

j

ht
+ eβ�t(σ�n

j +(1−σ)�n+1

j [k])

×
(
β�t

(
σ

2hξ

)2 (
�n

j+1 − �n
j−1

)2
+

(
σ

h2
ξ

)
(
�n

j+1 − 2�n
j + �n

j−1

))

+ Po eγ�t(σ�n
j +(1−σ)�n+1

j
[k]).

Система уравнений (21) решается методом прогонки. Контроль решения

задачи (17)–(20) по методу простых итераций осуществляется решением соот-

ветствующей неявной задачи по методу Ньютона, отличающегося повышенны-

ми математическими трудностями, но имеющим преимущество в скорости схо-

димости и надежности [22].

Исходные данные для расчета приняты следующими: tст = 373 К; t0 =

293 К; λ0 = 40 Вт/(м ·K); δ = 0, 02 м; ω0 = 100 Вт/м3. Исследования выполня-

лись для двух значений β (β = 0,01/K и β = 0,1/K). Для каждого из принятых
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значений β находились величины коэффициента γ, приводящие к стационар-

ному режиму теплообмена или к неограниченному возрастанию температуры

(тепловому взрыву).

Численные расчеты даны на рис. 2–8, из которых видно, что при β = 0,01/K

коэффициент γ, не приводящий к тепловому взрыву, должен быть < 0,1216/K

(рис. 2). При γ = 0,1216/K стационарный теплообмен наступает при Fo ≈ 5.

Максимальная температура наблюдается в точке ξ = 1 и составляет � ≈ 1,12.

Расчеты для малых и сверхмалых времен 10−7 ≤ Fo ≤ 0,75 даны на рис. 2, из

которого следует, что при 10−7 ≤ Fo ≤ 0,02 действие граничного условия в точке

ξ = 0 с течением времени распространяется лишь на некоторое расстояние, за

пределами которого температура изменяется только от внутреннего источника.

Следовательно, теплота распространяется не мгновенно, а в виде движущего-

ся по пространственной переменной во времени фронта теплового возмущения.

Для γ ≥ 0,13/К (β = 0,01/K) наблюдается неограниченное возрастание темпе-

ратуры, т. е. тепловой взрыв. При γ = 0,13/К тепловой взрыв имеет место при

Fo > 1,00262 (рис. 3). На рис. 5, 8 в некотором диапазоне времени происходит

автомодельное изменение температуры, при котором она, не изменяясь, пере-

ходит сама в себя. Отметим тот факт, что все температурные кривые приходят

в точку ξ = 0 по касательной, перпендикулярной оси � (см. также рис. 5, 8).

Следовательно, в этой точке удовлетворяется условие адиабатной стенки (от-

сутствия теплообмена) несмотря на то, что здесь задано условие первого рода.

Этот факт объясняется тем, что при T1 > T0 коэффициент теплопроводно-

сти вблизи точки ξ = 0 будет максимальным, что и приводит к выпрямлению

температурных кривых при их приближении к точке ξ = 0 (рис. 4). Темпера-

турные кривые выпрямляются также и при приближении к точке ξ = 1, где

задано условие адиабатной стенки (16) (рис. 2, 3, 5, 8). При β = 0,1/K и

γ = 0,159/К наблюдается движение фронта возмущения температуры. За его

пределами температура изменяется лишь от внутреннего источника (рис. 5, 8),

причем до фронта возмущения она изменяется по одинаковой закономерности

(автомодельно).

Вариант теплового взрыва при β = 0,1/K и γ = 0,25/K дан на рис. 6–8.

Тепловой взрыв наблюдается при Fo > 3,6 · 10−4 (ξ ≈ 0,22). Здесь также имеет

место движение фронта теплового возмущения (0 ≤ Fo < 3,6·10−4), автомодель-

ное изменение температуры и локализация теплоты (рис. 8). Отличие лишь в

том, что тепловой взрыв происходит не при ξ = 1, а в точке ξ ≈ 0,22, прибли-

женной к точке ξ = 0 (рис. 6–8).

Анализ исследований показал, что для любого β существует предельное

значение коэффициента γ, отделяющее стационарные режимы теплообмена от

режимов теплового взрыва. В обоих режимах имеет место автомодельность,

инерция и локализация теплоты, а также движущийся во времени фронт тем-

пературного возмущения. Перечисленные режимы наблюдаются также в кра-

евых задачах с учетом пространственно-временно́й нелокальности, включаю-

щих гиперболические уравнения теплопроводности [6, 9, 11, 14–16, 18, 20, 21], в
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Рис. 2. Распределение температуры (β = 0,01; γ = 0,1216). Тепловой взрыв не
наблюдается.

Рис. 3. Распределение температуры (β = 0,01; γ = 0,13). Тепловой взрыв при
Fo > 1,00262 (ξ = 1, 0).

Рис. 4. Изменение изотерм при β = 0,01; γ = 0,13.
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Рис. 5. Распределение температуры (β = 0,1; γ = 0,159). Тепловой взрыв не
наблюдается.

Рис. 6. Распределение температуры (β = 0,1; γ = 0,25). Тепловой взрыв при
Fo > 3,6 · 10−4 (ξ ≈ 0, 22).

Рис. 7. Изменение температуры (β = 0,1; γ = 0,25). Тепловой взрыв при Fo >
3,6 · 10−4 (ξ ≈ 0, 22).
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Рис. 8. Распределение температуры (β = 0,1; γ = 0,25). Тепловой взрыв при
Fo > 3,6 · 10−4 (ξ ≈ 0,22).

которых за счет учета релаксационных явлений учитывается конечная скорость

распространения теплоты. Уравнение, выведенное с учетом пространственно-

временно́й нелокальности, имеет вид [9]

∂T

∂t
= a

∂2T

∂x2
+ aτ2

∂2T

∂x2∂t
− τ1

∂2T

∂t2
− τ2

2

∂3T

∂t3
, (22)

где τ1, τ2 — времена релаксации теплового потока и градиента температуры в

модифицированной формуле закона Фурье для теплового потока

q = −λ∂T
∂x
− λτ2

∂2T

∂x∂t
− τ1

∂q

∂t
− τ2

1

∂2q

∂t2
. (23)

Величина aτ2 в (22) с учетом того, что a = ϑ2τ2, может быть представлена

в виде aτ2 = ϑ2τ2
2 = l2 , где ϑ — скорость тепловой волны; l — характерный

масштаб пространственной нелокальности (длина свободного пробега микроча-

стиц — носителей энергии). Анализ полученного в [9] точного аналитического

решения уравнения (22) показывает, что оно описывает задержку принятия

граничного условия первого рода (инерцию теплоты), конечную скорость рас-

пространения теплоты, баллистический перенос теплоты (для тонких пленок),

представляющий, по сути, автомодельное изменение температуры, при котором

она, оставаясь постоянной по пространственной переменной, изменяется лишь

во времени. Анализируя уравнение (22), можно отметить, что последние три

слагаемые правой части представляют в классическом уравнении теплопровод-

ности источник теплоты, зависящий от координаты, времени и от характерных

масштабов временно́й (τ1, τ2) и пространственной (l) нелокальностей, характе-

ризующих время и длину свободного пробега микрочастиц. Отмеченная каче-

ственная аналогия нелинейного параболического и линейного гиперболического

операторов теплопроводности объясняется тем, что в обоих случаях математи-

ческие модели оказываются максимально приближенными к реальным физи-

ческим процессам. В первом случае — за счет учета переменности свойств и

источника теплоты от температуры, а во втором — за счет учета длины и вре-

мени свободного пробега микрочастиц.
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Abstract: We study the numerical solution to the nonlinear heat conduction problem
for a plate with a nonlinear heat source (thermal conductivity coefficient and internal
heat source are exponential functions of temperature). In particular, for the nonlinear
problem, the phenomena of self-similarity, inertia, and heat localization were found,
which also manifest themselves in solutions of linear hyperbolic heat equations. With
a self-similar change in temperature in some ranges of spatial and temporal variables,
similarity (self-similarity) of temperature curves is observed. When heat is localized in
a certain range of spatial variable, the temperature does not change over time. The
inertia of heat is revealed in the finite speed of its propagation, despite the solution of
the parabolic heat equation. The listed phenomena are also observed in solutions of
linear hyperbolic heat equations, the derivation of which takes into account the time
dependence of the heat flow in the formula of Fourier’s law, leading to a finite rate of
heat propagation. In nonlinear problems, a similar effect manifests itself due to the
dependence of the physical properties and heat source on temperature, leading to a

similar delay in heat flow.
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МАТЕМАТИЧЕСКАЯ МОДЕЛЬ

ДЛЯ РАСЧЕТА ДИНАМИКИ УГЛЕРОДА

В БОЛОТНЫХ ЭКОСИСТЕМАХ ХОЛОДНЫХ

РЕГИОНОВ ЗАПАДНОЙ СИБИРИ

С. П Семёнов, Е. А. Дюкарев, А. О. Ташкин

Аннотация. Изучение динамики запасов углерода болотных экосистем позволит
более точно оценивать вклад водно-болотистых угодий в глобальное изменение кли-
мата. В данной работе предлагается нульмерная математическая модель, описыва-
ющая динамику углерода локальной (в масштабе водораздела) болотной экосисте-
мы с учетом температуры окружающей среды. В предлагаемой модели выделены
два резервуара углерода: фитомасса растений и органический углерод в мортомас-
се. Основные процессы модели включают фотосинтез, дыхание, отмирание фито-
массы и вымывание углерода грунтовыми водами. Проведены численные экспери-
менты, показывающие, как изменение температуры окружающей среды влияет на
динамику запасов углерода в болотных экосистемах.
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Ключевые слова: математические модели, динамика углерода, болотные экоси-
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Общепринято считать, что глобальные изменения климата связаны с увели-

чением концентрации парниковых газов в атмосфере Земли. При этом одним из

главных компонентов парниковых газов является углерод. Биогеохимические

модели играют важную роль в исследованиях изменения климата и экосистем,

описывая процессы углеродного, азотного, и фосфорного циклов, трансформа-

цию органических веществ в почвах и накопление микро- и макроэлементов.

Водно-болотистые угодья (болотные экосистемы) занимают значительную

часть поверхности Земли, являются крупными хранилищами законсервирован-

ных органических веществ и служат активным источником выбросов метана

и углекислого газа в атмосферу. В болотных экосистемах регионов с низкой

температурой, в частности, Ханты-Мансийского автономного округа (ХМАО)

накоплено значительное количество углерода.

В работах [1, 2] утверждается, что в условиях низких температур погло-

щение углекислого газа поверхностной растительностью болотных экосистем

через фотосинтез происходит с более высокой скоростью, чем разложение и ды-

хание. Это связано с особенностями температурной зависимости ферментов,

Работа выполнена при поддержке РНФ, грант № 22-11-20031.
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участвующих в фотосинтезе болотных растений: при понижении температуры

их активность может возрастать. Кроме того, болотные растения адаптирова-

ны к низким температурам и способны поглощать углекислый газ ночью. Еще

один фактор — повышенная при холоде растворимость СО2, что облегчает его

усвоение растениями. В холодных условиях болот снижается интенсивность

дыхания, что позволяет растениям направлять больше ресурсов на фотосинтез.

Изменение климата, в том числе возрастающие условия потепления и вы-

сыхания, оказывают большое влияние на баланс между дыханием почвы и пер-

вичной продукцией и может превратить водно-болотные угодья из накопителя

в источник выбросов CO2 в атмосферу. Актуальной задачей является прове-

дение исследования динамики запасов углерода в холодных регионах в связи с

растущим значением этого фактора в контексте глобального потепления.

В настоящее время имеется значительное количество моделей, посвящен-

ных вопросам круговорота углерода в глобальном и региональном масштабах.

Из наиболее известных можно выделить модель, описывающую глобальный

круговорот углерода [3]. В работе [4] рассматривается глобальная минималь-

ная модель многолетней динамики углерода в биосфере при условии, что ан-

тропогенные выбросы углерода в атмосферу отсутствуют. Рассматриваемая

в работе минимальная модель, разработанная С. Т. Барцевым и др. [5], за-

писывается в виде системы из трех уравнений. Первое уравнение описывает

динамику углерода в биомассе живых растений, второе — динамику углерода

органических остатков и третье — закон сохранения массы углерода. В рабо-

те [6] рассмотрена современная локальная модель углеродного цикла, описаны

взаимодействия между многими критическими факторами почвы, гидрологии

и растительности. Описана авторская модель Wetland-DNDC динамики угле-

рода и выбросов метана (CH4) в болотных экосистемах. В работе [7] описано

16 различных по структуре моделей углеродного цикла DALEC (Data Assimi-

lation Linked Ecosystem Carbon). Модели откалиброваны на шести глобально

распределенных участках земной поверхности с длинными временными рядами

наблюдений и по 42 сценариям данных. Классическая модель Ферхюльста так-

же часто используется в литературе по математическому моделированию эко-

логических процессов. Существуют различные модели такие, как DNDC (Zang

et al., 2002), Papyrus Simulator (Hes et al., 2014), Phragmites и Typha (Asaeda et

al., 2011), PCLake-marsh (Sollie et al., 2008), Peatland-VU (van Huissteden et al.,

2006), PEATBOG (Wu and Blodau, 2013), Phragmites C (Soetaert et al., 2004),

и SWAT (Olchev 2009). Несмотря на то, что болотные экосистемы достаточ-

но хорошо представлены в биогеохимических моделях, изучение концентрации

углерода в водно-болотистых угодьях и связанных с этим глобальных измене-

ний климата продолжает оставаться важной задачей для научного сообщества

(Farmer et al., 2011).

В настоящей работе представлено дальнейшее развитие созданной авто-

рами локальной модели динамики углерода в болотных экосистемах Ханты-

Мансийского автономного округа (ХМАО) [8]. Представляемая авторами мо-
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дель основывается на результатах предыдущих исследований авторов и являет-

ся экспериментом по моделированию процессов болотных экосистем в регионе

ХМАО для исследования динамики углерода. Моделирование ключевых про-

цессов дает возможность оценить баланс углерода в заболоченных территориях

региона в зависимости от различных условий. Рассматриваемые в предложен-

ной модели процессы такие, как фотосинтез, дыхание, изменение температуры

и уровня грунтовых вод, являются общими для всех регионов с холодным кли-

матом, поэтому подход, реализованный в модели, может быть применен для

изучения динамики углерода аналогичных болотных экосистем.

Авторами работы разработана оригинальная нульмерная математическая

модель, отражающая взаимосвязь между выбранными факторами окружающей

среды и запасами углерода в водно-болотистых угодьях. Модель учитывает

взаимосвязь ключевых факторов окружающей среды и позволяет оценить зна-

чимость болотных экосистем в качестве углеродных резервуаров. Основными

преимуществами разработанной модели являются:

• учет специфики болотных экосистем северного региона Западной Сибири

по сравнению с другими локальными экосистемами;

• детализация основных компонентов углеродного цикла применительно к

условиям болотных экосистем с холодным климатом;

• исследование чувствительности пулов и потоков углерода к динамике тем-

пературы, гидрологии и других факторов.

На основе разработанной модели выполнено моделирование динамики пу-

лов углерода в зависимости от температуры и других важных параметров. Ре-

зультаты моделирования демонстрируют чувствительность баланса углерода к

изменениям рассматриваемых факторов и позволяют определить наиболее зна-

чимые из них, которые способны оказать существенное влияние на аккумуля-

цию углерода в подобных экосистемах.

Предложенная модель может быть использована для прогнозирования от-

клика болотных экосистем на изменения климата и окружающей среды, а по-

лученные результаты позволяют определить факторы, которые могут привести

к существенным изменениям концентрации углерода в болотных экосистемах и

оказать негативное воздействие на глобальный климат.

1. Математическая модель динамики

углерода с учетом температуры

Предполагается, что наблюдаемая болотная экосистема состоит из двух

взаимосвязанных резервуаров углерода: Live и Mort. Пул Live состоит из

углерода, содержащегося в живой растительности, такой как листья, стволы

и корни и т. п. соответственно, пул Mort представляет собой углерод, находя-

щийся в отмерших частях растений (ветошь, опад, почвенная подстилка, гумус,

торф и др. — мортомасса).

Основными процессами в круговороте углерода являются: ассимиляция

углекислого газа зелеными частями растений при фотосинтезе (валовая пер-
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вичная продукция, GPP ), дыхание растений (автотрофное дыхание, Ra), от-

мирание растительной биомассы (растительная смертность, PM), разложение

органического материала микроорганизмами и возвращение его в виде угле-

кислого газа или метана обратно в атмосферу (гетеротрофное дыхание, Rh),

а также вынос углерода из почвы грунтовыми водами (Wtl) в реки и далее в

океан. Предполагается, что содержание углерода в атмосфере и океане велико

и практически не изменяется в результате круговорота углерода в рассматри-

ваемой локальной болотной экосистеме.

Объемы пулов Live и Mort зависят от многих факторов (солнечная ради-

ация, площадь листвы, температура, уровень грунтовых вод и т. п.). Одним из

самых значимых факторов является температура. В данной работе исследуется

динамика пулов в зависимости от температуры окружающей среды.

Введем следующие обозначения: x(t) и y(t) — количество углерода в фито-

массе и соответственно мортомассе в момент времени t.

Скорость изменения количества углерода в пуле живой биомассы (фото-

синтетическом углероде) может быть выражена следующим образом:

dx

dt
= (GPP −Ra) · x− PM · y, (1)

где величины GPP , Ra, PM введены выше.

В свою очередь, скорость изменения количества углерода в мортомассе мо-

жет быть описана так:

dy

dt
= (Grow −Rh) · y −Wtl, (2)

где величина Grow — темп прироста углерода в мортомассе в результате отми-

рания живой биомассы; величины Rh, Wtl описаны выше.

Ключевым фактором баланса углекислого газа между экосистемой и атмо-

сферой является валовая первичная продукция (GPP ), которая представляет

собой темп поглощения углерода посредством фотосинтеза в единицу времени

и на единицу площади. Фотосинтетический углерод нужен для синтеза орга-

нических соединений, которые служат растениям источником энергии и строи-

тельным материалом для клеток и тканей, при этом часть его возвращается в

атмосферу в результате автотрофного дыхания.

Принято считать, что валовая первичная продукция является функцией

фотосинтетически активной радиации, с учетом модифицирующих факторов

[9–12]:

GPP = f(PAR) · f(LAI) · f(T ) · f(V PD), (3)

где PAR — фотосинтетически активная радиация; остальные факторы отража-

ют соответственно: f(LAI) — влияние площади листовой поверхности на фо-

тосинтез, f(T ) — колебание температуры и f(V PD) — воздействие влажности

воздуха.

Следует отметить, что в модели круговорота углерода, рассматриваемой в

работе [13], предполагалось, что величина GPP является положительной кон-
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стантой. В данной работе считается, что валовая первичная продукция явля-

ется функцией температуры окружающей среды, т. е.

GPP = a · f(T ). (4)

Относительно остальных факторов (радиация, листовая поверхность, влаж-

ность) предполагается, что они постоянны и входят в неотрицательную кон-

станту a.

Во многих исследованиях [7, 14, 15] установлено, что фотосинтез увеличи-

вается с температурой, пока не достигнет оптимума в точке Topt (например,

20–25◦C), выше которой, в точке Tmax, фотосинтез ингибируется, при этом

существует также и минимальная температура Tmin, ниже которой процессы

фотосинтеза отсутствуют. Конкретный выбор функции f(T ) будет проведен

ниже, в описании численных экспериментов.

Для описания автотрофного дыхания Ra в научных публикация чаще всего

используется модель, основанная на кинетике ферментов, которая заимствована

из модели двойной кинетики Аррениуса и Михаэлиса — Ментен (Arrhenius and

Michaelis–Menten) [16]. Эта модель предполагает, что Ra является функцией

количества углерода в фитомассе x(t), температуры T и влажности. В данной

работе Ra моделируется соотношением

Ra = b · g(T ) · x. (5)

Согласно кинетике ферментов дыхание экспоненциально увеличивается с

температурой, однако конкретный вид функции h(T ) будет уточнен ниже.

Процесс отмирания живых частей (PM — plant mortality) таких, как ли-

стья, стебли или корни, является естественной частью жизненного цикла мно-

гих организмов и сопровождается химическими и биохимическими изменениями

в тканях. Для моделирования отмирания растительности возможны различные

подходы. Среди множества математических формулировок для процесса отми-

рания [17–19] в данной работе используется выражение

PM =
c · x

x+Mp
, (6)

где Mp — так называемая константа половинного насыщения, определяемая

экспериментально, при которой изменение углерода в процессе отмирания до-

стигает половины максимально возможного. Для получения выражения для

темпа прироста углерода в пуле Mort вследствие живой биомассы (Grow) вве-

дем величину j, которая представляет собой количество растительной биомас-

сы, необходимое для формирования одной единицы мортомассы. Таким обра-

зом, в момент времени t количество углерода x(t) может образовать не более

чем x/j единиц углерода в пуле Mort:

Grow = s · x
j
. (7)
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Гетеротрофное дыхание Rh преимущественно контролируется температу-

рой и влажностью почвы. Как правило, используют экспоненциальную зависи-

мость, однако в литературе встречаются и другие функции. Достаточно полный

обзор моделей приведен в [20].

В данной работе для гетеротрофного дыхания используется выражение,

аналогичное (5):

Rh = d · h(T ) · y. (8)

Углерод, содержащийся в мортомассе, подвержен выносу грунтовыми водами

и перемещается из мортомассы в водные системы такие, как реки, озера или

подземные воды. Одной из наиболее известных моделей [21] является модель

диффузии с утечкой. Эта модель учитывает концентрацию органического уг-

лерода в мортомассе, степень кислотности почвы, проницаемость почвенного

слоя и потоки воды. В данной же работе вымывание органического углерода

(Wtl) в локальной болотистой экосистеме «растения — почва» описывается в

упрощенном виде:

Wtl = wtl · y, (9)

где wtl — константа.

Таким образом, с учетом упрощений и предположений, выраженных соот-

ношениями (5)–(9), из (1), (2) вытекает следующая нелинейная система обык-

новенных дифференциальных уравнений относительно искомых функций x(t)

и y(t):

dx

dt
= a · f(T ) · x− b · h(T ) · x2 − c · x

x+Mp
· y, dy

dt
= s · x

j
· y− d · g(T ) · y2 −wtl · y.

Проведем еще одно преобразование уравнений в целях обезразмеривания

искомых функций.

Обозначим через xmax и ymax максимально возможные запасы углерода в

фитомассе и соответственно мортомассе рассматриваемой локальной экосисте-

мы. Поделим первое уравнение системы на xmax и положим x
xmax

= x̃, y
ymax

= ỹ.

Дополнительно второе слагаемое в правой части первого уравнения поделим и

умножим на xmax, а третье слагаемое поделим и умножим на xmax · ymax. Ана-

логичные преобразования проведем со вторым уравнением. Результат запишем

в следующем виде:

dx̃

dt
= a · f(T ) · x̃− b′ ·h(T ) · x̃2− c′ · x̃

x̃+Mp′
· ỹ, dy

dt
= s · x̃

j′
· ỹ− d · g(T ) · ỹ2−wtl · ỹ.

Здесь обозначено:

Mp′ =
Mp

xmax
; b′ = b · xmax; c′ = c · ymax

xmax
; j′ =

j

xmax
.

Для удобства записи опустим штрихи и знак тильды у переменных. Таким

образом, искомыми величинами являются обезразмеренные относительные за-

пасы углерода x(t), y(t). Считается, что согласование остальных размерностей

обеспечивается неотрицательными параметрами модели a, b, c, d, s, j,Mp.
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Для дальнейшего исследования предлагается система (10), (11) c началь-

ными условиями (12), которую далее будем называть базовой математической

моделью динамики углерода с учетом температуры для локальных болотных

экосистем:
dx

dt
= a · f(T ) · x− b · h(T ) · x2 − c · x

x+Mp
· y, (10)

dy

dt
= s · x

j
· y − d · g(T ) · y2 − wtl · y, (11)

x(0) = x0, y(0) = y0. (12)

2. Температурные зависимости

и входные данные модели

При моделировании температурных функций f(T ), g(T ) и h(T ), определя-

ющих процессы фотосинтеза, автотрофного и гетеротрофного дыханий пред-

полагалось, что каждая из них имеет три основные температурные точки: ми-

нимальную Tmin, ниже которой процесса нет, оптимальную Topt, при которой

производится максимум первичной продукции, и максимальную Tmax, выше

которой также процесса нет. Например, нижняя температурная граница фото-

синтеза у растений северных широт находится в пределах −15◦С (сосна, ель)

−0, 5◦С, у некоторых лишайников был зарегистрирован фотосинтез при тем-

пературе до −25◦С. У растений умеренного пояса в интервале 20–25◦С дости-

гается максимальная интенсивность фотосинтеза. При температуре выше оп-

тимальной интенсивность фотосинтеза резко падает, а дальнейшее повышение

температуры до 40◦С приводит к быстрому ингибированию процесса (при 45◦С

растения погибают). Кроме того, повышение температуры увеличивает интен-

сивность дыхания, и в этой связи разность между фотосинтезом и дыханием

уменьшается [22].

Разумным компромиссом между отражением реальности и возможностью

математического анализа является модель О′Нейла и др. [23]

В модели О′Нейла и др. введены три параметра, каждый из которых име-

ет вполне прозрачный физиологический смысл, благодаря этому она обладает

определенным преимуществом перед другими моделями, в которых нет такой

интерпретации параметров. Два параметра уже упоминались выше, это темпе-

ратурные точки: Topt и Tmax. Третьим параметром является величина Q10,

которая выражает относительное изменение в скорости протекании процессов

при повышении температуры на 10o С. Если обозначить через p(T ) количество

произвольной первичной продукции, то модель О′Нейла представима в виде

p

p(Topt)
=

(
Tmax − T
Tmax − Topt

)XT

· exp

[
XT ·

(
T − Topt

Tmax − Topt

)]
, (13)

где

XT = WT 2 ·
(
1 +

√
1 + 40

WT

)2

400
, WT = (Tmax − Topt) · ln(Q10).
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Рис. 1. Модели температурных зависимостей процессов фотосинтеза и дыхания.

Рис. 2. Модельная температура.

На рис. 1 приведены графики функций f(T ), g(T ) и h(T ), используемые в

системе (10)–(12), причем значения функций g(t) и h(t) масштабированы с ко-

эффициентами 0.3 и 0.45 соответственно.

Компьютерная реализация математической модели (10)–(12) и дальнейшие

исследования проводились в вычислительной среде MatLab. В качестве едини-

цы модельного времени выбран день, а базовым наблюдаемым период — год.

На основе измерений температуры на метеостанции научного полигона Мухри-

но был сформирован годовой ход модельной температуры. На рис. 2 приведе-

ны фактические дневные температуры полигона, узлы интерполяции и график

модельной температуры. Первый день на горизонтальной шкале соответствует

1 января 2021 г. и т. д. Максимальная модельная температура искусственно

увеличена для того, чтобы резче выделить поведение фотосинтетической ак-

тивности вблизи точек. Таким образом, для модельной температуры основные
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показатели составили: Tmax= 30,8◦С, Тmin = −31,3◦С, среднегодовая темпе-

ратура 3◦С.

Компьютерная модель и результаты численных экспериментов.

Для численных расчетов использовалась библиотека функций системы Matlab.

Приближенное решение системы (10)–(12) находилось с помощью универсаль-

ного решателя ODE45, реализующего метод Рунге — Кутта 4-го и 5-го порядков

точности. Особенность функции ODE45 заключается в том, что она использу-

ет переменный шаг для приближенного решения дифференциальных уравне-

ний. В силу этого возникает необходимость интерполирования коэффициентов

уравнения, зависящих от температуры, в узлах расчетной сетки. Указанная

интерполяция выполнялась с помощью библиотеки вычислительных функций

системы Matlab методом сплайнов.

На рис. 3 представлена динамика относительных запасов углерода в те-

чение календарного года. В окрестности дней, для которых температура пре-

вышала оптимальное значение для фотосинтеза (25◦С), количество углерода в

пуле Live резко сокращалось.

Рис. 3. Динамика относительных запасов углерода в течение календарного года.

З. Заключение и выводы

Основным результатом работы является разработка математической моде-

ли динамики углерода в локальной болотной экосистеме, которая отражает за-

висимости основных процессов круговорота углерода от температуры. Числен-

ные эксперименты показывают, что предлагаемая в работе математическая мо-

дель хорошо отражает годовые колебания температуры и соответственно опре-

деляет относительные изменения запасов углерода в обоих пулах болотной эко-

системы.
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Abstract: Studying the dynamics of carbon stocks in wetland ecosystems will allow
us to more accurately assess the contribution of wetlands to global climate change.
This work proposes a zero-dimensional mathematical model that describes the carbon
dynamics of a local (at the watershed scale) wetland ecosystem, taking the ambient

temperature into account. The proposed model identifies two carbon reservoirs: plant
phytomass and organic carbon in mortmass. The main processes of the model include
photosynthesis, respiration, phytomass die-off, and carbon leaching by groundwater.
Numerical experiments were carried out to show how changes in ambient temperature
affect the dynamics of carbon stocks in wetland ecosystems.
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Межгородской научно-исследовательский семинар

«Неклассические задачи математической физики»

3 февраля 2024 г.

«Эволюционные уравнения с производной Джрбашяна — Нерсесяна».

Докладчик: Е. М. Ижбердеева (Челябинский государственный универси-

тет, Челябинск, Россия).

Доклад посвящен вопросам разрешимости начальных задач для уравне-

ний с производными Джрбашяна — Нерсесяна в банаховых пространствах и

приложениям к уравнениям и системам уравнений в частных производных.

Сначала рассмотрена начальная задача Джрбашяна — Нерсесяна для разре-

шенных относительно дробной производной линейных уравнений с ограничен-

ным оператором при искомой функции. Решение представлено через функции

Миттаг-Леффлера. Существование единственного решения начальной задачи

для разрешенного относительно старшей производной квазилинейного уравне-

ния доказано методом сжимающих отображений в специальном функциональ-

ном пространстве. Далее рассматриваются линейные и квазилинейные уравне-

ния с вырожденным оператором при старшей производной Джрбашяна — Нер-

сесяна при условии относительной ограниченности пары операторов в линейной

части уравнения. Задача типа Шоуолтера — Сидорова для уравнения исследу-

ется путем редукции к системе, состоящей из задачи Джрбашяна — Нерсесяна

для разрешенного относительно производной уравнения и уравнения с ниль-

потентным оператором при производной без начальных условий. Кроме того,

исследованы вопросы однозначной разрешимости начальных задач для уравне-

ний в банаховых пространствах с неограниченными линейными операторами и

производной Джрбашяна — Нерсесяна. Сформулированы условия секториаль-

ности замкнутого оператора, показано, что они необходимы и достаточны для

существования аналитического в секторе разрешающего семейства операторов

исследуемого линейного однородного уравнения. Решение линейного неодно-

родного уравнения представлено в терминах разрешающих операторов. Для

вырожденных линейных уравнений с парой операторов из определенного здесь

класса секториальных пар доказана однозначная разрешимость задачи типа

Шоуолтера — Сидорова. Полученные абстрактные результаты использованы

при исследовании начально-краевых задач для уравнений с многочленами от

эллиптического оператора высокого порядка, дифференциального по простран-

ственным переменным, для системы уравнений Скотт — Блэра с производной

Джрбашяна — Нерсесяна по времени и др.
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17 февраля 2024 г.

«Аналог теоремы Келлога для конформных отображений кусочно-гладких

областей».

Докладчик: А. П. Солдатов (Федеральный исследовательский центр «Ин-

форматика и управление» РАН, Москва, Россия).

Классическая теорема Келлога утверждает, что конформное отображение

односвязной области D, ограниченной ляпуновским контуром класса C1,µ, на

единичный круг принадлежит C1,µ(D). В докладе обсуждаются аналоги этой

теоремы для областей, ограниченных кусочно-гладким контуром. Соответству-

ющие результаты формулируются в терминах весовых пространств C
µ
(0) и C

µ
(+0),

инвариантных при конформных отображениях.

2 марта 2024 г.

«Обратная задача определения коэффициента в псевдопараболическом урав-

нении с переопределением во внутренней точке».

Докладчик: Б. С. Аблабеков (Кыргызский национальный университет

им. Ж. Баласагына, Бишкек, Киргизия).

В докладе рассматривается обратная задача определения коэффициента,

зависящего от времени в псевдопараболическом уравнении. Суть обратной за-

дачи состоит в том, что требуется вместе с решением определить неизвестный

коэффициент по некоторой дополнительной информации о решении прямой за-

дачи. В качестве дополнительной информации рассматривается условие пере-

определения во внутренней точке. Попутно исследуется разрешимость прямой

задачи и доказывается разрешимость этой задачи. Сначала обратная задача

сводится к эквивалентной нелинейной системе интегральных уравнений типа

Вольтерра второго рода, далее с использованием принципа сжатых отображе-

ний доказывается существование и единственность классического решения об-

ратной задачи.

16 марта 2024 г.

«О понижении порядка суммирования методом Абеля — Лидского спек-

тральных разложений».

Докладчик: М. В. Кукушкин (НИУ ВШЭ, Москва, Россия).

Изучается случай когда индекс класса Шатена — фон-Неймана секториаль-

ного оператора меньше порядка суммирования соответствующего спектрально-

го разложения, получены достаточные условия для суммируемости спектраль-

ных разложений методом Абеля — Лидского. На основе концепции сумми-

рования методом Абеля — Лидского вводится определение оператор-функции

неограниченного секториального оператора. В качестве приложений рассмат-

риваются абстрактные эволюционные операторные уравнения дробного поряд-

ка. Задействованы такие операторы, как оператор дробного интегродиффе-

ренцирования Римана — Лиувилля, оператор Киприянова, потенциал Рисса,

разностный оператор. С учетом полугрупповой природы перечисленных вы-

ше операторов результаты могут быть сформулированы в терминах генератора

соответствующей сильно непрерывной полугруппы сокращений.
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