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O CNPATAHHOM ATTPAKTOPE OZHOI
HECUMMETPUYHON MOAEN TEHHOWN CETWU

B. II. Tonyostaukos, E. A. CutTHIKOBCKas

Awnnoranusi. Paccmorpena Mozmesib mpocTeiineil KOJIBIEBOM I'€HHOM CeTH, PEryiupy-
eMOil OJHOI OTPHULIATEJILHON M ABYMs IIOJIOKHUTEJIbHBIMHU CBA3AMU MEXKIY TPEMs KOM-
IIOHEHTaMu 3TOi ceTu. Mopesp IpeicTaB/IieHa TPEXMEPHON IMHAMHYECKOU CHCTEMOM C
KYCOYHO-JINHEMHBIMU IIOPOTOBBIMU IIPABBIMU YacTsiMu. B ee (pa30BoM mopTpere onucax
CIIPSITAHHBII aTTPAKTOP, YCTAHOBJIEHBI YCJIOBUs CYIIeCTBOBAHUsA IMKJIA, JeXKalllero BHe
006JIaCTH IPUTS2KEHUST 9TOTO aTTPAKTOPA.

DOI: 10.25587/2411-9326-2024-2-3-13

KuroueBbie cioBa: (asoBble MOPTPETHI JUHAMUYECKUX CHCTEM, cTpaTuduranus da-
30BBIX IIOPTPETOB, CTAIMOHAPHAsl TOYKa, MHBApHAHTHAs O0JIACTH, MHOIOCTYIIEHYaTAas
BYHKIUSA, [UKIIBI, CIPATAHHBIE ATTPAKTOPDI, HEJIOKAJIbHBIE OCIUJIISIN.

Bsenenne

B pa6orax [1, 2] uzygaiach TpexMepHas AUHAMUYECKAS CUCTEMA KHHETHIECKOTO
TUIIA, MOJIETUPYIONIAs (pyHKITHOHMPOBAHHUE ITPOCTEHIIelt TeHHOM ceTn, peryInpyeMoi
JIBYMsI [TOJIOXKUATEJIbHBIMUI U OJTHOM OTPUIATEIHHON CBA3BIO MEXK LY €€ KOMIIOHEHTAM:

dx d dz

T oLE) —a ST -y =T -~ (1)
B 1iepBoM U3 9THX 9TUX yPaBHEHHI U B MHOIOMEPHBIX aHaJorax cucremsl (1), pac-
CMOTpeHHBIX B [3-5|, dyHKIms L MOHOTOHHO yGBIBaeT. DTO O3HATAET, UTO PETYIIsi-
TOPHAsI CBsI3b MEXK/[y KOMIIOHEHTAMU C KOHIeHTparusamMu z(t) u x(t) orpunarenbHa.
Oyukiusa ' MOHOTOHHO BO3pACTAET, TAKUMU (DYHKIUSIMEU B YPABHEHUSX OUOXUMU-
9eCKO# KUHETUKU OIMCBHIBAIOT TI0JIOXKUTEIbHBIE CBsi3n [6—8)|.

Caenys [9,10], rae npu mocrpoenun u axajmse 0GOOIIEHHBIX OPOTOBBIX MO-
Jiesiet TEHHBIX ceTell n3yvaJIich HOJ00HbIE JUHAMUYIECKUE CHCTEMbl OHOXMMUYIECKO
KHHETUKHM C MHOTOCTYIEHYATHIMU MPABBIMU YACTSIMU, PACCMOTPUM JIMHAMUYECKYIO
cucremy (1), y xkoropoii

Lw)=2c ma0<w<c—¢g Lw)=c mmc—e<w<c+e;
Lw)=0 muacte<w<oo; TN(w)=0 mpuld<w<c—eg; (2)
IM'Nw)=c mpuc—e<w<c+e DNw)=2c mpuc+e<w< 0.
Pabora nongepxkana PH®, npoekt 23-21-00019, https://rscf.ru/project/23-21-00019/.

(© 2024 Tomy6saruukos B. II., CutHsikoBckas E. A.
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3/1eCh MOJIOKUTEJBHBIN MapaMeTp € JOCTATOYHO MAJI, CM. HUKE.

Hus muaammyeckux cucreM Buga (1), y xoropbix dyskipn L u T sBiasttorest
onsocrynendarsiMu: L(w) = b > 0upu w < 1 u Lj(w) = 0 upu w > 1; I'(w) = 0
npu w < 1uT'(w) = by > 0 upu w > 1; u 141 HOJMOOHBIX CUCTEM, UMEIOIIHUX OOJIbIIIIE
pasMepHOCTH, B paborax [2, 11] mosyueHs! yeaoBust CymecTBOBAHNUS, € IMHCTBEHHOCTH
¥ yCTONYMBOCTH [UKJIOB U OIUCAHBI TOMEOMOP(MHBIE TOPAM MHBAPUAHTHBIE OKPECT-
HOCTH TAKUX ITUKJIOB.

OrMeruM, 9TO TIPU MOJICTUPOBAHUU NEHHBIX CETel CpejiCTBAMU KadeCTBEHHON
Teopun JudGEpeHINATBHBIX YPABHEHUN U B JAPYTUX pasjesiax IuCTOW U IMPUKJIAJI-
HOM MaTeMaTUKU TOJ0OHbIE PAa3PBIBHBIE CTYyHEHYATHIE (DYHKIUU B MPABBIX YaCTIX
YPaBHEHH UCIOJIb3yIoTes cucreMarndecku (cm. [12-14]).

JIemma 1. Iapasrerenunen Q = [0,2¢] x [0,2¢] x [0, 2¢] sBasercs monoxun-
TEeJIbHO HHBAPHAHTHOIH OBJACTBIO: TPAGKTOPHH BCEX €r0 TOYEK C POCTOM t U3 HErO

H€ BBIXOIAT.

JIOKABATEJ/IBCTBO COCTOWT B BBIYUCJICHUN 3HAKOB IMPABBIX YaCTed ypaBHEHUIt
CHCTeMBI B TPAHMYHBIX Toukax obmactu @ (cm. [11,15]. dus xparkocTu Gymem
HA3LIBATD TAKHE OOJACTH UHEAPUGHTTHBLMAU.

Crnenys [16,17], ¢ mesbio JoKaIM3aluu TPAEKTOPUH JTUHAMUYIECKON CHCTEMBI
(1), (2) B ee dazoBomM moprpere pazobbeM MHBAPUAHTHYIO 00JIACTD () IIOCKOCTIAMUA
r=c—¢g,x=cte,y=c—¢€,y=c+e z=c—¢, z=c+¢c Ha 27 6JIOKOB
U epeHyMepyeM 3Tu OJI0KU MyJIbTUUHIEKCAMA {717273 } TpexOyKBeHHOro andasura

0,1,2:
ry =0, ectuB Ooke 0 <z <c—¢; 11 =1, ecsiu BOsioke ¢ — e < = < ¢ + &

r1 =2, eciu BOnoke c+e<x; r9=0, ecsuBOioke 0 <y <c—e; (3)
ro =1, ecmu B Ooke ¢ —e <y < c+e¢; 19 =2, ecau B 6jioke ¢ + £ < y.
AnajorugasiM 00pa30M IO KOOPAMHATE Z OLUPEIE/seTCsd U UHIEKC T'3.

Tak 2Ke, Kak U B IpeAbLLyIuX nybaukamusx [5, 18] u ap., B ganbHeiinem 6yiem
paccMaTpuBaTh TOJILKO Takue Tpaekropun cucrembl (1), (2), koropsie ¢ pocTom ¢ He
nepecekarTes ¢ pebpamu 6,10k0B pasbuenus (3). [locTpoeHHbIH HIXKe UK 9TOH 1u-
HAMHUYIECKOH CHCTEMBI epexouT u3 6J10Ka B GJIOK TOJMBKO 9€pe3 BHYTPEHHUE TOUKH
uX O0IMUX T'paHeif.

Cuieiyromue yTBEPKIEHUS JTOKA3BIBAIOTCA B TOYHOCTU TaK K€, Kak Jiemma 1 u
ee MHOTrOMepHble aHasoru (cM. [11,16]), m OCHOBaHBI HA BBIYHCIEHUH 3HAKOB IIPOH3-

de dy dz

BOJIHBIX o, 4 7 Ha BHYTPEHHUX rpaHax OJI0KOB pazbueHus (3).

Jlemma 2. IlenTpaJsbablii KyO
Q1=[c—gcte]x[c—¢gcte] x[c—ec+e]={111}

pasbuenus (3) sBJISIETCS MHBAPUAHTHOH 06JACTBIO B (Pa30BOM HOPTPETE CHCTEMbI

(1), (2).
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B 6Guioke {111} cucrema (1), (2) npunumMaer By

de Ay dz
ar ’ STV '

Herpynao nposeputb, uto Touka Sy = (¢, ¢, ¢) CTAIMOHAPHA U yCTOXIMBA.

JIemma 3. /lunammueckas cucrema (1), (2) umeerT eqMHCTBEHHYIO CTAIIHOHAD-
HyI0 TOUKY S, conepxantytocs B 6ioke {111}. Tpaekropuun Bcex To49eK 31010 6J10Ka

¢ pocToM t — 00 3KCHOHEHITHAJBHO CTPEMSITCS K TOYKe Sy.

JIemma 4. s sobbix aByx cocennux 6Ji0koB By u Bo pas6uenus (3) tpa-
€KTOpUU BCEeX BHYTPEHHHX TOYEK WX obreit gBymepHoii rpanun B N By mepexoasr
Jmbo u3 6Ji0ka By B Bs, sinbo u3 6s10xka By B Bi.

Kak u jyist cucrem Buzma (1) ¢ OZHOCTYIEHYATHIMU IIPABBLIME YACTAME (CM.
[11,18]), Gymem oGo3HavYaTH Takue Mepexojbl depe3 By — By U COOTBETCTBEHHO
By — By. Husa rmagkux u gy onaoctynerdarsix dyakmmit L, I y anajgoros nuna-
MuvecKoii cucrembl (1) yKkasaHHBIE IEpexobl n3ydaauch B [1, 4, 19] npu nmocrpoennn
crpaTuduKauiit 1 UHBAPUAHTHBIX 0bJsacTeil B (PA30BBIX MOPTPETAX ITUX CUCTEM U
MIOUCKE UX IUKJIOB. TaK¥e MOCTPOEHUS MbI UCIIOIb3yeM U [IPU M3YIE€HUU JTMHAMUIE-

CKUX CHUCTEM C MHOT'OCTYII€EHYAaTBbIMU IIPaBbIMU 9aCTAMMU.

Jlemma 5. Bo BHyrpenHoctu Kaxioro 6jioka paszbuenus (3) HHBAPHAHTHOIO
Ky6a Q) cucrema (1), (2) smHeiina, ee TPAEKTOPUH IPIMOJIHHENHHBT H HX TIPOJIOJIXKEHHUST
mepeceKaroTCs B OJHOI TOYKe.

B gacrHOCTH, IPOOIKEeHNS TpackTopHii Beex Touek bsioka {000} mepecekarorest
B TouKe ¢ KoopiuHatamu (2¢;0;0).

JIOKA3ATEJLCTBO. B 6soke {000} auramuueckast cucrema (1), (2) npuanmaer
BHJ

d—$*2c—x' B, %—z
i Coa

dt
Ee pertenns onuceiBaioTcs ypaBHEHUSIMI
a(t) = 2c+ (2(0) —2c)e™",  y(t) =y(0)e™", =z(t) =2(0)e™"; (4)

IPOJIOJIZKEHNUsT STUX pelteHnii 3a npesessl 6iaoka {000} npu ¢ — oo crpemsarcs K
rouke (2¢;0;0). O
Jloc/I0BHO TeMu 2Ke paccyzKIeHusaME ¢ aHajgoramu ¢dopmys Buja (4) ycranas-

JINBaETCA

CuencrBue 1. Ilpogosmkenust rpaekTopuii Beex Touek 6ioka {100} crpemsites
K rouke (2¢;¢;0);
posioJKennst Tpaekropuii Bcex todek bsoka {200} crpemsires k Touke (2¢;2¢;0);

MIPOJIOJIZKEHUST TPAEKTOPHI Beex Todek 6iioka {210} — k rouke (2¢; 2¢; ¢)
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[IPOIOJIKEHHsT TpaeKTopuii Bcex Todek bioka {220} — k rouke (2¢;2¢;2¢) u 1. JI.

PaccmoTrpum onpegnieistemyto cootnomenusasMu x = c—¢, 0 <y <c—e,0< 2 <
¢— e rpaab Fy = {000} N {100}, pasnemnstomntyto mepsble 1Ba GJOKA BEPXHE CTPOKI
CJIeIYIOIe KOJIbIEeBOM auarpaMmMbl:

{000} —— {100} —— {200} — {210} —— {220}

I !

{001} {221} (5)

I !

{002} +—— {012} +—— {022} +—— {122} «—— {222} .

O6o3Ha4NM OCTAIbHBIE TPAHU, PA3JE/IAIONIIe COCeAHIe GIOKU FTOM AuarpaMMel,
MOI00HBIM K€ 00pa30M:

Fy = {100} N {200}, rie © = ¢+ &; Fp» = {200} N {210}, rme y = ¢ — &3

F3 = {210} n {220}, tne y = c+¢e; Fy = {220} N{221}, tne 2 =c—¢c; u 1. 1.

Crpeskn muarpammbl (5) 0603HAIAIOT YKA3aHHBIE B JIeMMe 4 CJIBUTU BJIOJIb TPa-
ekTopuii uHAMIIECKOi cucrembl (1), (2) Touek, exKANMX B IEPEUUCIEHHBIX 3/ECh
6JIOKaX.

B orimmuane or pacemorpenubsix B [20, 21] suHaMuIecKuX CHCTEM ¢ MHOIOCTYIIEH-
YaTLIMU IPABBIMK dacTaMy, cucreMma (1), (2) He uMeeT cuMMeTPU OTHOCHTEILHO
IUKJIMTIECKON MEPECTAHOBKH KOODJMHAT O © & — Y — 2 — &, OJJHAKO DEIIEeHHs ITOl
cucremsl B 6iokax {000}, {220}, {002}, orcrosimux apyr or apyra B guarpamme (5)
HA 9I€TBIPE IIAra, IMEIOT OJIMHAKOBOE FEOMETPUIECKOE ONMCAHIE — MPOJIOJIZKEHUS Ta~
KHX DEICHHI 38 NPEJe/Ibl IIEPEIUCIEHHBIX TPEX OJIOKOB MEPECEKAIOTCS B BEPITUHAX
Q xyba (2¢,0,0), (2¢,2¢,2¢), (0,0,2¢) coorBercTBerHo (cM. ciencTaue 1).

Ananornunsiv 06pasoM npojoskenust pernenuit cucrems! (1), (2) B 6okax
{100}, {221}, {012} 3a ux mpenensl mepecekarorcss B Toukax (2¢,c,0), (¢, 2¢,2c),
(0,0, ¢) coorBercTBeHHO. DTH TPH OJI0KA, KAK U IPEABLAYIIHAE TPH, OTCTOAT APYL OT
apyra B quarpamme (5) ma gernpipe mara. Takme cCHMMETPUM B OIHCAHWHU DEINEHUI
9TOM cucTeMbl MMelOTCs U B Tpex Ouokax {200}, {222}, {002}, u B Tpex 6i0Kax
{210}, {122}, {001}.

Ob6oznaunm uepes I obbennHeHne Bcex ABEHAIATH OJIOKOB, IMEPEUNCICHHBIX

B (5).

2. CymecrBoBaHue rukJia cucremsl (1), (2)

OCHOBHBIM pPE3yJILTATOM ITOU PABOTHI SIBJISIETCS

Teopema. Eciu 4e < ¢, To obaactp 11 comepkut 1o kpaiineii Mepe OJHH ITUKJT
¢ auuamudeckoii cucremsr (1), (2). Dror nqur./ nepexoaut u3 6J0Ka B 60K COVIACHO

crpeskam quarpaMmbl (5).
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[To06HBIE KOTBIEBbIE AUATPAMMBI UCIIOIB3YIOTCsl IPH [OUCKAX MEPUOITIECKIX
TPAEKTOPHil IUPOKOro Kpyra JAMHAMUYIECKNX cucTeM Buaa (1) M MX MHOTOMEpHBIX
anasioros (cm. [2,18,22]).

3AMEYAHUE. O6nacts I He siBJIsieTCst MHBAPUAHTHONW OTHOCUTEJBHO [TOJIOKY-
TeJIbHBIX CABUIOB BJOJb Tpaekropuil cucremsl (1), (2): Tpaekropuu TOYeK, Jiexka-
mux B 6mokax {220} m {200}, BeXOmAT U3 HuX ToaBKO B Osokum {221} u {210}
COOTBETCTBEHHO, OJJHAKO TpaeKTopun ToueK 6s10Ka {210} MOTYT BBIXOJUTH M3 HErO
He TOJBKO B 670K {220}, B KOTOpBIi yKa3blBaeT crpesika guarpammbl (5), HO U B
6ok {211}, ecam 3TH TOYKH JIEKAT JOCTATOIHO OJIM3KO K BEPXHE TpaHu z = ¢ — €

110 CpaBHEHUIO C UX PACCTOAHUAMMU 0 I'PaHN Y — C — €.

1. [dna goxasaTejbCTBa TeopeMbl onuineM nepexonb! F; — Fjy 1 TpaekTopuit
TOUEK, IPUHAJJIEXKAIIIX OIIMCAHHBIM BBIIIIE IPAHSM, Pa3JIEIAONNM OJI0KU Tuarpam-
Mol (5):

yo(c —€) + 2ce zo(c—g)
Ty =cte Yr1=———"T—; A= ———.
c+e c+e

AnajioruaabiMu  IpOOHO-IMHEHHBIMI (DYHKIMAME, Kak 1 B [23], ¢ momMomipio
dbopmyn Buza (4) ONpenensoTCs KOOPIMHATEI TOUKH X2 = (T2, Y2, 22) € int Fo, B KO-
TOPO#i 3aKAHINBAETCSI IPSIMOJIMHEHHBIH yIaCTOK TpaeKTOpuu Touku X1 = (21, Y1, 21),
JIeXKaImeil BO BHYTPEHHOCTH rpanm Fj. PaccMmaTpuBas KOMIOZHIUU TAKHX IEepe-
XOJIOB TPAEeKTOpHUil ¢ I'PaHM HA TPaHb, Mbl BUIMM, YTO TPAeKTOpust TOUKU Xo =
(20, Y0, 20) € int Fy mocie nepexoos yepes 6soku {100} u {200} monanaer B TOUKY
Xs = (z2,y2, 22) € F» ¢ KoOpAMHATAME

(2 —e?)(c+e) 20(c? — €2)

— 9 e e —c)
T2 2¢2 —yo(c—¢)’ ppoeme s =2 2¢2 — yo(c —€)

B cBoio ouepep, TpaekTopus ToUKu X 110c¢s1e nepexo/a depes 6uoku {210} u {220}

nonajaer B ToUKy X4 = (%4, Y4, 24) € Fy ¢ KoOpauHATAMEI

(2 —e?)(c+e)

2¢%2 — z3(c—¢)

(c? — €2)(2¢ — 12)

2¢2 — z3(c—¢)

Ty = 2¢ — , Y4 =2c— , 24 =C—E.
st Toro 9To6hl TpaeKTOpUs TOUKN X( 3aMKHY/IACH TOC/Ie KOMITO3UIINN JTBEHA~
JIIATH 1I€PEXO/I0B C TPAHU Ha I'PaHb, HIOTPEOYeTCs BBIIOJIHEHUE CIIEIYIOIMINX COOTHO-

MIECHUH: (c+ 5)(02 — 52)[202 —yo(c—¢)]

4e? —2c2(c —e)yo — (c —€)(c* —e?)zo’
(c+e)(c? —e?)?

4e? —2c2(c —e)yo — (c —€)(c* — )20

Omyckas Hy/IeBbI€ WHIEKCHI, ITOJIy9IaeM YPABHEHUS JIBYX TUIepOOJI

2c—yy4 =29 =

2c—z4 =Yo =

2¢%(c—e)yz + (c —e)(c? —e?)2? —4ctz — (2 =€)y + 2c%(c +¢)(c® —€2) = 0, (6)

2¢%(c — &)y + (c —e)(c? —®)yz —4cty + (c +e)(? —eH)? = 0. (7)
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0.5

y
0 I 05 1 15

Puc. 1. Ilepecevenune runep6ou (6) u (7).

Bynem uckarb Takyio TOUKY (Ys, 2+) IEPECEUEHHs] STUX IUIEPOOJI, Y4TO TOUYKA

T =C— €, Yo = Yx, 20 = Zx COIEPXKUTCSI BO BHYTPEHHOCTHU rpanu Fy, T. e.
O<y«s<c—e; O0<zoy<c—e.

Ha puc. 1 uzo6pazxeno nepecedenue runep6ost (6) u (7) npu ¢ =1 u e = 0.1.

L (ete)(e—e)

V runep6ouist (6) 0fHA U3 ACKMITOT FOPU30HTAJbHA! 5o

, YpaBHEHHUE
ee HAKJIOHHOW aCUMIITOTHI IMEET BUJT
(c? +&2)(Tct — 4c%e? + &%)
2c2(c—¢) '
I'unepbouia (7) uMeer BepTHKAIBHYIO acuMIToTy Yy = (0 ¥ HAKJIOHHYIO:
4ct
c—¢
Ob6o3naunm gepe3 K KBajpar, 3ajaBaeMblil cooTHomenusMu 0 < y < c—e u

2%y + (¢ — ez =

2%y + (¢ — ez =

0 < z < ¢ — ¢. IIpocrele BRIYHUCICHNS IOKA3BIBAIOT, 4TO IIpU € < § B KBajpare K
BepXHsisl BeTBb runepbosisl (6) BBITYKIIa BHU3 M [IEPECEKAET BEPTUKAIbHBIE CTOPOHBI
9TOro KBajapara — ocb OZ U UpsaMyIo y = ¢ — £, a IpaBas BeTBb ruiep6ost (7)
BBIILYKJI& BBEPX U II€PECEKaeT ero ropu30HTajbHbIE CTOPOHBI — 0ch OY U mpsmMyio
z = ¢ — . CIle10BaTeNIbHO, 9TU JIB€ BETBH MMEIOT B KBajpare K B TOYHOCTH OJIHY
To4Ky nepecedenusi. OcranbHble TOUKY Iepecedenns runepbos (6) u (7) sexar BHE
K. Bosee To4yHas OlleHKa IapaMeTpa € CBSI3aHA C PEIIEHHEM yDaBHEHUS BOCHMOM
CTeIleHH; B YaCTHOCTH, P € = ¢/3 B 3TOM KBajpate runepbossl (6) u (7) Touek

nepecedenus He nMeroT.

2. Urak, npu ¢ < ¢ Ha rpanu Fp cymecTsyeT B TOYHOCTH OjiHa Touka Mo
C KOODIWHATAMU T() = C — €, Yo = Yx, 20 = Zx TaKasi, ITO IOCJIE€ YEThIPEX IIaroB
no guarpamme (5), T. €. IIPU COOTBETCTBYIOIIEM C/IBHUIE BJIOJb €€ TPAEKTOPHUHU, OHA
nepeitgeT B TOUKy My € F) ¢ KOODAUHATAMUT Tq4 = 2C — Yy, Y4 = 2C — Z4, 24 = C — E.
IMocne cremyromux YeTbipex maros 1o quarpamme (5) ona nepeitger B Touky Mg €
F3 ¢ xoopnuHaTaMmu £y = 2c— Yy, Ys = C—E, 2§ = 2C— T4, & €IIle YePe3 YeThIPe mara
BepHeTCs Ha rpanb F B ncxomgHoe cBoe mojioxkenne My. CiremoBaTebHO, TPAEKTOPHUS

takoit Toukn My okaseiBaeTcs koM cucremsl (1), (2). O
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Puc. 2. Iukn ¢ punamuueckont cucremsl (1), (2); ¢ = 1, ¢ = 0.1 (cnesa); ¢ = 1,
e = 0.15 (cupasa).

3. BprunciaurejbHbIe JKCIIEpMMEHTbI

Ha puc. 2 moKa3aHbl HEKOTODBIE PE3YIILTATHI U3 CEPHU THCJICHHBIX SKCIIEPUMEH-
TOB ¢ TpaeKkTopusamu cucremsl (1), (2). B 06oux mpeIcTaBIEHHBIX CIIyvasiX HAYATb-
Hasl TOUKa BbIOpaHA B IeHTpe rpann F{y 1 IOCTPOEHHBI JBEHAIATHY IOJIbHBI KL

¢ npoxoauT yepe3 GJIOKM, epevIncieHHbie B auarpamme (5).

3akJroueHue

ITocTpoennsrit kycouno-nuneitasit nuki € C II npeacrasiser coboit npumep
HEJIOKAJIbHOTO KOJIeOaHUs; MOI0OHbIE HEJOKAJIbHbIE OCIUJIISINKA APYTUX JTUHAMUI-
geckux cucreM mudydasuch B [20,21,24]. Buyrpennocts okpecrrocru 11 nukia €
He TIePeCceKaeTcsl ¢ BHYTPEHHOCTHIO MHBAPMAHTHON OKpecTHOCTH {111} ycroitansoii
CTaIMOHAPHON TOUKH Sp.

IIpoBenenHbIe TOCTPOEHNUS MIEPEHOCATCS U HA MOJEN I'eHHBIX ceTeil 6ObIux
Pa3MepHOCTEl, U Ha JUHAMWYECKHAE CUCTEMBI C IPABBIMU JacTaMu O0jiee 0bIIero Bu-
Jla, KOTOPBIE MOJIEIUPYIOT ONUCAHHBIE B [5, 16, 17| reHHBIE ceTn ¢ GoJiee CIIOKHBIMU
KOMOWHAIUSIME [TOJIOYKUTEIbHBIX U OTPUIATEIbHBIX CBA3EH MEXK/y MX KOMIIOHEHTa-

mu (cM. Takxke [25-27]).
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Abstract: We consider a model of simplest circular gene network regulated by one
negative and two positive feedbacks. The model is represented in the form of 3-dimen-
sional dynamical system with piecewise linear threshold righthand sides. In the phase
portrait of this system, we describe a hidden attractor. Conditions of existence and
uniqueness of a cycle of this system are established.
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3AO0AHA O PABHOBECUN
MJTACTUHBI KUPXTODA — JISIBA,
KOHTAKTUPYIOLLEA C MPENATCTBUEM,
NMEKOLWLM YTJTIOBYHO ®OPMY

H. II. JIazapes, I. M. CemeHnoBa,
A. C. Hukynun

AnnHoTtanus. VccienoBana HeJMHeHHasi MaTeMaTUIeCKasl MO/IEJIb PABHOBECHS ILJIACTU-
HBI, KOHTAKTUPYIOIIEN C IPENATCTBAEM CIIENUaIbHON dpopMbl. [lnacTuna MoyKeT KOHTaK-
TUPOBATH C IPENSATCTBUEM, COCTOAIIUM U3 ABYX UacTeil, oqHa U3 HUX 3aJaeTCs HAKJIOH-
HBIMH OOpPa3yIOMKMI, & APYras OTPAHMYMBAET IIACTHHY CO CTOPOHBI GOKOBOI I'paHU.
IIpu sTOM IIACTHHA MOYXKET KOHTAKTUPOBATH KaK IO OOKOBOI IpaHM, TaK M B TOYKAX
KPHBOIi, COOTBETCTBYIOIIEH [IePECeIeH IO JINIEBOl (BHEIIHEl) TIOBEPXHOCTH IIACTHHBI U
OOKOBOM IUJIMHAPUYECKON TOBEPXHOCTH ILIACTUHBI. JlaHHOE 06CTOSITEILCTBO IIPUBOIUT
K TOMY, YTO CTaBATCS I'PAHUYHBIE yCJIOBUS B BUJIE TPEX HEPABEHCTB, BBIITOJHEHHBIX Ha
OnHOI U TOM Ke KpuBoil. Hapsigy ¢ Momesbio ynpyroil mjiacTUHBI PACCMOTPEH TaKXKe
cydail HEOJHOPOMHOM IIACTHHBI, B KOTOPOI »KECTKOe BKJIIOYEHIE HAXOMHUTCH BOIN3U
KOHTaKTHOI rpanunbl. JlokaszaHa OJlHO3HA4YHAsI Pa3pelInMOCTb 3a/a4d JJisi 00erX Mojie-
neit. Ilpum ycjioBuM HONOJHUTEIBHOU IVIAJKOCTH DPEIIEHNN YKa3aHHBIX 3aJa4 HailJleHbl
YCJIOBUS OITUMAJIBHOCTH B BH/IE I'PAHUYHBIX YCJIOBUU, a TaK»K€ COOTBETCTBYIOIIHAE SKBHU-
BaJieHTHbIE i depeHnnaIbHble TOCTAHOBKH.

DOI: 10.25587/2411-9326-2024-2-14-30

KuroueBble cjioBa: BapualOHHAas 3a/lada, HAKJIOHHOE IIPENsTCTBUE, IJIACTUHA, yCJIO-
BHUE HEIIPOHUKAHUS, KOHTAKTHAas 3aJada.

Bsenenune

KonrakTHbIE 3371241 MEXAHUKHU YIPYTUX TeJ C YCJIOBUSIMU THUIIA HEPABEHCTB B
paMKax M3BeCTHOro 10jx0/ia CHUHBOPUHU MPEJIIOJATAIOT, 9TO B HCXOJHOM COCTOSI-
HUW TEJIO COIPUKACAETCS C MPEMSATCTBUEM JIMOO C JIPYTUM J1e(OPMUPYEMBIM TEJIOM
Ha 3aJIaHHON JacTu BHemHedl rpanunsl [1-5]. B caydae mractun momeneit Tumo-
menko i Kupxroda — JIsgpa maTeMaTudeckast MO/Eb CTPOUTCS IO OTHOIIIEHUIO K
CpeInHHOM mIockocTH [5, 6]. TIpu aToM 1yIst onMcaHnsT KOHTAKTHOTO B3aUMOIeHCTBHUST
Ha, OOKOBOH MMJIMHIPUIECKON MOBEPXHOCTU, OrPAHUYINBAIONICH IJIACTUHY, CTABATCS
YCJIOBUS He HA IIOBEPXHOCTHU, a Ha KPHUBOM, JiexKalell B cpeJIuHHOI 11ockocTu [7-9].
IIpencraBasior mHTEpeC TakKe HEJIWHEUHBIE 332491, B KOTOPBIX PACCMATPUBAETCS

Pabora Bbinosinena npu noazgepkke Poccuiickoro naydsoro ¢gonga npoexkt No. 24-21-00081.

(© 2024 JIazapes H. II., Cemenosa I. M., Hukynuu A. C.
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KOHTAKT II0 JIUIIEBON MOBEPXHOCTHU IIACTUHBI, B YACTHOCTH, JJIsT MOJEJIel MeXaHU-
YEeCKOTO B3aUMOJIEHCTBUS ¢ TOHKUME yrpyrumu 6ankamu [10-13], mist momeseli KoH-
TakTa ABYX yupyrux miactud [14-16]. B memaBHUX paboTax GBUIN IPEIJIOXKEHBI
MaTeMaTUIeCKUe MOJEJN JJjis IJIACTUH, TJ€ OMUCHIBACTCH KOHTAKT C HAKJIOHHBIMU
npengrcrBuaMu [17], KoHTaKT 110 6OKOBOIl I'DAHU U JIMIIEBOIN MOBEPXHOCTHU ILIACTH-
HEI [8].

B nacrosimeit pabore mpejjaraercsd HOBas MaTeMaTHYeCKas MOJEJNb, B KOTO-
pOil eCTh KOHTAKTHOE B3aUMOJEHCTBUE C NPENATCTBUEM, UMEIOIIM YIJIOBYIO (op-
Mmy. Ilpm sTom st onmcanmst KOHTAKTa C MPEISTCTBHEM IO OOKOBOI OBEPXHOCTH
IJIACTUHBI 38 OCHOBY GepyTcs 6oJjiee obIIue IpeInosIozKeHus 1o cpaBuenuio ¢ [18], a
WMEHHO, CIUTAEM, UTO IMUPUHA KOHTAKTHOM 30HBI He 00s13aHA COBIIAIATE C TOJIIUHON
IJIACTUHBI. YCTAHOBJIEHBI CJIEYIOIINE BOIIPOCHI MATEMATUIECKO KOPPEKTHOCTH JIJIst
HCCJIeyeMOl MOJIENIN: CYIIECTBOBAHUE U €IMHCTBEHHOCTD PEIlleHUs 3a/[a9n. TaKiKe
[P yCJIOBUM JIOTIOJHUTE/IFHONU TJIAJKOCTH PEIIeHNs HANICHBI YCJIOBUS OINTAMATIb-
HOCTU B BHJI€ TDAHUYHBIX YCJIOBHil, a TaKKe IKBUBAJECHTHAs TuddepeHInaIbHast
IIOCTAHOBKA.

1. BapI/IaI_II/IOHHaﬂ IIOCTaHOBKa

IIycrs Q C R? — orpanmdennas o6/1acThb € JI0CTATOYHO IMIaJIKoil rpanumeii I, Ko-
TOpast COCTONT U3 ABYX KpuBbix: I = [gU7¥, Ty Ny = &, meas([y) > 0, meas(y) > 0.
O6oznaunM vyepe3 v = (v1,V2) BHENIHIO HOpMaJib K rpanuie ' obmactu Q. g
IPOCTOTHI MIPEJIIOIOKIM, 9TO ILIACTHHA UMEET PABHOMEpHYIO Tosmuny 2h. 3ama-
JIIM TPEXMEPHOE JIEKAPTOBO IIPOCTPAHCTBO {Z1,X2,2} TaK, ITOOBI IUIACTHHA COOT-
BercTBoBasa MHOXKecTBY {0} X [—h, h] C R3. IIpu 5TOM JIMIIEBBIE TOBEPXHOCTH LA~
CTHHBI B HCXOJIHOM cOoCTOstHUM 331atorcst MHOxKecTBaMu {Q} x {—h}, {Q} x {h}, mis
OTIPEJIETIEHHOCTH Oy/IeM U3y9aTh 3aJady O BO3MOXKHOM KOHTAKTE C HUKHEH JTUIEBOM
[OBEPXHOCTBIO, T. €. 3aMaHHoil MHOXKecTBOM {Q} X {—h}.

O6osznaunm uepes x = x(z) = (W(x), w(z)) BEKTOp HEpeMeIeHn TOUEK Cpe-
nunHON moBepxuoctu (x € ), wepes W = (wq,ws) — mepemenienus B IJIOCKOCTU
{x1,z2}, a uepe3 w — nepemertenust BuoJb ocu z (nporudet). Tenzopsl medopmariuii
1 HaIpsKeHuit 06o3HadaIorcs depes €;5 = €,;(W), 045 = 0;;(W) coorsercrsemmo [5],
1 8’[1}]‘ 6’[1}1'

5iW) =35, "3, )

oij(W) = aijrien(W), 4,5 =1,2,

rae {aijr ) — 3aJaHHBI TEH30D yIPYrocTH, KOTOPBIA IPEIOIaraeTcs CUMMEeTPU-
HBIM U IIOJIO?KUTEJILHO OIIpeJIe/IeHHbIM:

.. oo
Qijrl = Grlij = Qjirls 0 0,70 = 1,2, aijm € L7(Q),

2 ..
aijrlé.ijgrl 2 CO|§| Vé.v §ZJ - é.ju ,] = 17 27 Co = const > O
31ech n Jajiee UCIOAb3YEeTCs COTJIAINECHNE O CyMMIPOBAHUH IO TOBTOPSIONTAMCST UH-
JlekcaM. BeejieM n3rubaromye MOMeHTHI cieayomumu dopMymtamu [5]:
0w

mij(w) = ~dijrwor, 1§ = 1,2, (W= 5
r l
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rae ren3op {d;jr } UMeeT Te XKe XapaKTePUCTUKH CHUMMETPUU, OrPAHUICHHOCTH H 110~
JIOYKUTEBHOI OLIPEJIe/IeHHOCTH, YTO U TeH30D {a;jr }. Ilycrs B(-, ) — Guinneiinas
dbopma, ompe/ieeHHAsT PABEHCTBOM

B(x,X) = /{O’ij(W)Ez‘j (W) — mij(w)w,i; } da,

rae x = (W,w), X = (W, ).
Beenem cnenyrormue npocrpancrsa CobosieBa:

H{ () ={ve H'(Q) |v=0na I},

ov

EOHaro},

HE (Q) = {v € H*(Q) |v

1/2
H(Q) = Hp, ()% x HE (Q), Xl = [IXllz0) = (W @2 + lwlliem)
OyHKITMOHAJ TOTEHINAIBHOM Heprun mwiacTubl Kupxroda — JIsgBa nmeer ciresy-

IOMuii BUI:

Q

rie sektop F = (f1, f2, f3) € La(2)3 ormcesaer suermame cusbt [5]. 3amermm, a0
CJIeIyIoIee HEPABEHCTBO, 00ECIIeUnBAOIIEe KOIPIUTUBHOCTE (hyHKImoHama I1()):

Blx,x) = cxl® Vxe H(Q), (1)

¢ KOHCTaHToi ¢ > (, He 3aBHCHINEil OT X, UMEET MEeCTO Ui OuinHelHO# GOpMBI
B(,) [l

Ilepeiinem x ommcanuio HeJeOPMUPYEMOI'O HIPENATCTBUS U OUPAHUYEHUN Ha
nepeMelnieHns JJId TOYeK IJIACTHHBI, KOTOPBIE COIPHUKACAIOTCA C KOHTAKTHOM IIO-
BEPXHOCTBIO MPEMSITCTBUS B UCXOTHOM cOCTOsTHIH. [Ipeanonokum, 94To Aj1d KazKI0To
CeveHus IUIOCKOCTHIO, HapaJjuiesbHoil ocu Oz, npoxojsiieil uepes Touky (1, 2,0) €
v x {0} Bmoas HOpMasn (v1(x), v2(x),0) K GOKOBOI IUIUHIPUIECKON TOBEPXHOCTH,
rnMeeM KOHMUIYPAIUIO B3aUMHOI'O PACIIOJIOXKEHNS Kpas IIJIACTUHBI U IIPEISITCTBUS B
HMCXOIHOM COCTOSIHUH, M300paKeHHy0 Ha puc. 1.

Puc. 1. Ceuenne miacTuHBI NJIOCKOCTBIO, MEPHEHIUKYISPHON CPEIUHHON ILJIOCKOCTH
MJTACTAHBI.
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Onumrem cHavYaIa OTPAHMYCHNS HA TIEPEMEIIEeHNs B TOYKaX OOKOBOMI IIUINHIPHU-
qeckoit moBepxHocTu. CUuTaeM, UTO IUIACTUHA B MCXOJHOM COCTOSIHUU COIPHKACA-
eTcst OOKOBOM IMUIHHIPUIECKOH TOBEPXHOCTDHIO C MPEMATCTBUEM 10 TI0JIOCE TITUPUHOMN
I =1(x), tne 0 < l(x) < 2h, x € v. BagaaumM rpanHuily 3TOH 4ACTU YIJIOBOI'O IPEIIsIT-
CTBHUS CJAEIYIOIMUM MHOXKECTBOM:

{(z1,22,2) | (x1,22) €7, 2 €[—h,—h+1]}.

OueBngHO, 9TOo Tpu | = 2h TpPENSTCTBHE COMPHUKACAETCS HO BCeil mupuHe OOKO-
BOIl TIOBEPXHOCTH IJIACTUHBL. PaccyKias mo anajgoruu ¢ [5,27], uMeem ciemyroriee
FPAHUYHOE yCJIOBUE HA 7y, OINCHIBAIOINIEE HEIIPOHUKAHNE TOYEK IJIACTUHBI B IIPEIIAT-
crue. [lorpebyem, 4TOOBI OBLIO BBIITOJHEHO CJIEIYIOIIEEe COOTHOIIECHNUE:

ow
Wv—z—<O0wmna~, zE€][-h—h+], (2)
ov
rne Wv = w;v;, ‘g—fj” = g—zui. Hepagsencrso (2) B cuity jmHeiHOCTH MOXKeT OBITH

9KBUBAJICHTHO IIPEACTAaBJICHO B BUAE CUCTEMbI JIBYX HEPaBCHCTB

ow ow
— < W —[)—
gy =0 Wr(h=Dgy

IIpenmonozkuM, 4TO rpaHuIla BTOPOU YaCTU IPEIATCTBUS 3a/laHa 110 OTHOIIIe-

Wv+h <0 ma . (3)

HUIO K KayKJ0# TOYKE T € v NPsSMOJUHEHHBIMU 00Pa3yIONMMU. 37eCh Mbl IIPUMe-
HsIeM TIOJIXOJI, TIPeJJIOYKeHHbIH B [17], rie paccMaTrpuBasach BapHalMOHHAS 3314494
0 KOHTAKTE IJIACTUHDBI ¢ HAKJIOHHBIM IPENATCTBAEM. UTOOBI onmcaTh o0pasyonue
[PENATCTBULA, PACCMOTPUM (DUKCUPOBAHHYIO TOYKY (z1,x2,0) € v X {0} u upoxo-
JISIIIee 4epe3 Ty TOUYKY CedeHMe ILIOCKOCTHIO, TapaJuiesibHoit ocu Oz U BEKTOPY
(v1(2),v2(x),0), toe © = (z1,22). Bygem cuauraTh, 9TO NEpecevdeHne BTOPOi 4acTh
HPENSITCTBUS € YKA3aHHBIM CEUEHNEM MPOXOJUT TI0 IPAMOJIMHEHHOMY OTPe3Ky (nim
psIMOii), JexkameMy Ha IpaMoit ¢ kKoaddunuenrom Hakiona k > 0 (B mwiockocry,
nocrpoennoii oceio Oz’ u 0ckbio, ocTpoennoil BekropoMm (v (z), v2(x), 0), puc. 2.).

A
A

2h v, ;/2,0)

"""""""""""""""""""" —
t

Puc. 2. Cedenue B TOUKe T € 7.

Cuwmras, 910 JUIsi KaXKJI0ro & € <y MMeeTcst CBOsi o0pasyromas (npsMasl Uin
IPSIMOJIMHEHHBIN 0Tpe30K), umeeM dynkimmio k(z), © € 7. B uacrHoCTH, KOrma
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~ upejcTaBiger coboi NpAMOJMHERHBI 0TPe30K, a k(x) = kg — HocTosiHHAS, B
Ka4eCTBe IIPEISTCTBHS BBICTYIAET YacTh HAKJIOHHOI II0CKOCTH. B obmem cirydae ¢
TOYKHN 3PEHUS] PA3PENIIMOCTH COOTBETCTBYIOINIEH 3a/1a4n JJOCTATOYHO IOTPeOOBATD,
a6l k() € L*(7y). IIpu 310M COOTBETCTBYIOIIEE YCIOBUE HEIIPOHUKAHUS MOYKHO
BBIPA3UTH B CJIEJYIOIEM BUJIE:

ow

E(Wv+h— | <w Ha 7. (4)
v

Takum 06pa3oM, ¢ yIeTOM OrPAHHICHNUIT HA TIEPEMEIIEHHsT MHOYKECTBO JIOMYCTHMBIX

ILlepeMelIeHUH 3alliIeM B BUJIE

K ={x= W,w) € H) | x yrosrersopser (3), (4)}.

CdopmymupyeM BapHallMOHHYO IIOCTAHOBKY 3aJia49l paBHOBecusi. T pebyercst HaiiTu
dyukuuio £ = (U,u) € K Takyio, 4ro

11(§) = inf TI(x). ()

Teopema 1. 3azaqa (5) uMmeer eUHCTBEHHOE DEIEHHE.

JIOKA3BATEJIbCTBO. Ilpumenum ussecthyio Teopemy Beitepimrpacca [4], arobbr
[I0KA3aTh CyIIECTBOBAHUE PEINEHUs 331891 MuHUMu3anuu [5]. OyHKIMoHa  SHEPruu
SIBJISIETCs] KOSPIUTUBHBIM U €J1ab0 mosyHenpepbiBHbIM cHU3y Ha H(Q) [5]. Jlerko
BHJIETH, ITO MHOXKecTBO K BBIMYyKJI0. MOXKHO MOKa3aTh 3aMKHYTOCTH MHOXKECTBA
K rtak xe, kak B [27]. YkasaHHBIE CBOHCTBA MHOYKECTBA JOMYCTUMBIX HE€pEMeIIe-
Huil o0ecreunBaloT cj1adyio 3aMKHyTOCTh MHOXKecTBa K. CrienoBaTesbHO, s 3a-
Jaun mMuHuMusanuu (5) Bce ycaoBU# TeopeMbl Belieprirpacca BBIIOJHSAIOTCH KaK
st dyrknuonasna I1(y), Tak m Jyist MHOXKecTBa jonycTuMbix dyHKnmii K. 1o
o3HavaeT, 4To 3aia4a (5) nmeer xors Obl oHO pertenre. DyHKIMOHAI BBIITYKJIBIA 1
nuddepeHIpyeMblil, a MHOYKEeCTBO K sIBJISIETCs BBIILYKJIBIM, KAK CJIEJICTBHE, 331244
(5) 9KBUBaJIEHTHA CJIEYIONIEMY BAPUAIIMOHHOMY HEDABEHCTBY:

éeK,zﬂax—én;/Fu—fwm Vx € K. (6)
Q

[Ipeamonarasi, 9To0 CymeCTBYIOT ABa PA3HBIX perneHus & u &y, BHIIUIIEM U3 Bapua-
[IMOHHOTO HepaBeHCTBa (6) JBa CJIeIyIOMUX HEPABEHCTBA:

B@ﬁrfﬂZ/F@—&ﬁm B@frfﬁz/F@—@Mm

Q Q

CkiasipiBast UX, MOJIyIUM, 9TO

B(&a —&1,82 —&1) <0.

Dro ozragaer ¢ yuerom (1), ato & = &2, a TakKe BJeUeT 3a coboii eMHCTBEHHOCTh
pemmenust 3agaqn (5).
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2. IuddepeHnnaibHasi ITOCTAHOBKA

ITycrs I(x) — HenpepbiBHAsT DYHKIWsI, 3a/IaHHASI HA 7Y, YIOBJIETBOPSIIOMASI CBOM-
crBy 0 < I(z) < 2h nost Beex x € «y. IlpeamosoxkuM, uro pemenne & = (U, u) € K
SABJISIETCH JOCTATOYHO TUIaaKoil dpynkueit. enb mamHOro pasmesra — HaiiTu u3 Ba-
PHAIIMOHHOTO HEPABEHCTBA ypPaBHEHWsI PaBHOBecusi B obsactu ) u yC/IOBHUs ONTH-
MaJIbHOCTH, BBIIOJIHEHHBIE Ha 7. DBynem npumenarts ciemytoniue dpopmyssl ['puna
g dyukuuit x = (W, w) € K [5]:

/ 033 (U)ess (W) dar — — / o335 (U s d + / (oo (YW + oo (UYW,)dD, (7

Q Q r
ow
mi;(Ww,i; de = | myjq;(w) wde + / t¥ (w)w — my(u)% dr, (8)
Q Q r
rie
o, (U) = oi;(U)vvy, my(u) = —myviv;,

07 (U) = (0:(U),07(V)) = (01;(U)vj,02;(U)v;) — 00, (U)v,
t(u) = =My kTETjVi — Myj Vi, T = (—Va,11),
Wy =ww;, Wr=WLW2), w=Wvy+ W, i=1,2
Hapsiny ¢ BapmanuonHo# dhopMyanpoBkoit 3aga4du (5) MOXKHO MMeETh JEJI0 C
COOTBETCTBYIOIIEH (D DepPeHITUAIBHON IIOCTAHOBKON. A MMEHHO, CIIpaBeIInBa

Teopema 2. IIpegnosoxkunm, aro pemenne & = (U, u) sagaun (5) mocrarou-
Ho rmagkoe. Torna Bapmanmonnas 3amada (5) SKBHBAJEHTHA CJICAYIONICH KPaeBOIt

3aja4e:
—myji;(u) = f3 B Q, 9)
—UijJ‘(U) = fi B Q, = 1,2, (10)
o, (U)—t"(wk <0, —(h—=0(c,(U)—=t"(u)k)+ (m,(u)—t"(u)kh) <0 ma-~, (11)
ou ou

<O0ma~y, (12)

v < _ haliP _
t(w) <0, 0 (U)=(0,0), Uv+thzo <0, Uvt(h=l)7 <

o, (U) — %m,j(u) <0, o, (U)Uv—t"(u)u+ my(u)% =0 na 7, (13)
0
U = (0,0), uza—Z:OHaFQ. (14)

JIOKABATENBCTBO. Ilogcrasnsas ¥ = € £ Y, rae X € C°(Q)3, B xauectse
TecToBoit byHkIUY B (6), IIOJIyIaeM CJIeyolee COOTHOIIEHNE:

/(O’ij(U)Ez‘j(W) = mj(u)W,i; ) dv = /chd%

KOTOpOE€ 03Ha4daeT, 4YTO CJleAyIolIie YPaBHEHUsI PABHOBECUA:

_mij,ij(u) - f3 B Q7 (15)



20 H. II. Jlazapes, I. M. CemenoBa, A. C. Hukymuu

_Uij,j(U) = fl B Q, 1= 1,2, (16)

BBIIIOJIHEHBI B CMBbICJIe pacupesenernit. Mcnonnssyst dopmyast I'puna (7), (8) npu-
MmeruTesbHO K (6) ¢ yaerom (15), (16), MOXKHO TOKa3aTh, 9TO

/(UU(U)(W—U)I/+UT(U)(WT—UT)—t”(u)(w—u)+mu(u) <E - 5)) dl' >0
Vx =W w)e K.

IMockoubky K gBiisiercs BbILyKJIbIM KoHycoMm B H (€2), MoxkHO nogcTaButh X = A €
HeorpuIaTeabHbIM A > 0 B (17) 1 nosryuurs

/(UU(U)UI/ + o (U)U; —t"(u)u + m,,(u)%) dl' =0, (18)
r
ow
£
s Beex X = (W, w) € K. Ipemnosnoxum, aro x = (W,w) € K u x = (0,0,0) na
Iy. B arom ciryuae MoxHO nepenmcats (19) caemyronmm o6pasom:

/<0’V(U)WV + o (W, —t"(u)w + my(u)g—f> dl' >0 Vx = (W,w) € K. (20)

<0V(U)W1/ + o (U)W, — t¥ (w)w + my (u) > dl' >0 (19)

Y

ITockonbky 3nadenne W, He BXoauT B HepaBeHCTBa (3), (4) BCIeACTBHE IPON3BOJIb-
Hoctu W, Ha v, n3 (20) 3akiodaeM, 4To

o-(U)=(0,0) na 7.

CuesroBarenbio, (20) MOXKHO BBIPA3UTh B CJIELYIOIEM BHJIE:

o
/<UU(U)WI/ -t (uw)w + my(u)a—w> dl' >0 Vx=W,w) € K. (21)
v
v
Bri6pas B (21) npobusie dynkuun x = (W, w) takue, auro W = (0,0), w > 0, ?9—15 =0

H& 7y, TIOJIY IUM
t“(u) <0 ma 7.

Tenepb pacemorpum (21) ¢ TecToBBIME DYHKIUAMHE, YIOBIETBOPSIIONIAMA CBORCTBAM

w=0, Wv + h‘g—fj” =0mu ‘?)—15 > 0 =Ha <. B pesysnbrare HAXOIUM

/(UV(U)WV - %mu(u)Wu> dr > 0,

Y

Orciona, nockosbKy 3uadenue Wy < 0 MoxkeT GbITh IPOU3BOJILHBIM (HEOTPHUIIATE b
HBIM), [IOJIy4aeM

o, (U) — %m,j(u) <0 mna 7.
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Hasnee, nogcrasisgs B (21) Tecroble DYHKIMH, yIOBIETBOPSIONINE

(89—15:0, w:k(WV+ha—w), 8—w§OHa'y,

Wv+ (h—1) £y ey

YCTaHOBUM, 9TO

/ (WV(JV(U) — (k) + (my (1) — t”(u)kh)g—w> dr

14

_ /(—(h - Z)a—f(au(m — 7 (u)k) + (i (u) — t"(u)kh)g—f> dr > 0,

Orkyna ciemyer, 9TO

~(h = D) (U) — (k) + (my ) — 1 (@)kh) <0 1a .

ow

Honcrapnas qamee B (21) x = (W, w) Takue, ato w = kWv <0, g% = 0, nerpyzno

YCTAHOBHUTH, YTO CIPABEIIMBO HEPABEHCTBO
/ (00 (U)W — t* ()W) dT > 0,

~

KOTODPOe 03HAYAET, ITO
o, (U) —t"(u)k <0 ma .

Bamernm, aro B cuity £ = (U,u) € K u ciefyonux BbIIEYCTAHOBJIEHHBIX HEPa-

BEHCTB:
1
t"(u) <0, o,(U)—-t"(u)k<0, o,(U)— Eml,(u) <0 ma 7,
—(h = D0, (U) = t"(w)k) + (my(u) — t"(u)kh) < 0 na v,
Boipaxkenue o, (U)Wv —t¥ (u)w + my (u) 3_111/1 HeoTpuraTeasHo Ha y. JeifcrBuTensho,

JJI CIIydast 2—7“5 > (0 Ha HEKOTOPOM IOJIMHOKECTBE ¥ C 7y ¢ HOJOXKUTEJLHON Mepoit

meas(y") > 0 umeem

o, (U)Wry — ¥ (u)w + my(u)g—f = (o, (U) = t"(u)k) (WV + h%—f)

—t¥(u) <w —k (Wu+hg—w>) + (my (u) — ho—l,(U))g—w >0 ma v

v v

TaK2Ke U JJid JIPYTroro cjydasd, Korja Z—ZJ < 0 H& HEKOTOPOM IIOJIMHOXKecTBe ¥~ C 7y
C TOJIOKUTEJILHON Mepoil meas(y~) > 0, ciejyioliee BbIPAKEHNE HEOTPULIATEIHHO:

o (U)Wv —t¥ (u)w + mu(u)g—f
— (0, (U) — t* (w)k) <WV +(h - l>‘3—‘j) —t"(u) (w —k (W” N h%))

(b= Do)~ k) + (mu(8) — 1 (k) 22 >0 a4
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Ocraercs 3amMeruTh, uto v~ U v~ = . O6parumcs Tenepb K Toxaecrsy (18). Ilo-
CKOJIbKY TIOZIbIHTErpaJibHOE BhIpaykeHne B uHTerpasie (18) sipjsiercst HeOTpHUIATE b
HBIM II.B. HA 7y, MOXKHO JIETKO CJIeJIATH BBIBOJL O TOM, 9TO MMEET MECTO PABEHCTBO

UV(U)UV—t”(u)qumU(u)?:O HA 7.
v

O6parHo, 91066l 1IOIyYnTh U3 coorHomenuii (9)—(14) BapuanuoHHoe HepaBeH-
crBo (6), ymuokuM (9) Ha (u— w) 1 Kaxkoe u3 paseHcTs (10) HA COOTBETCTBYIONLYIO
pasHocTh (u;—w;), i = 1,2, tne W = (wy, ws), w Takue, aro x = (W, w) € K. ocme
UHTErPUPOBAHUS 110 OOJACTH §) U CyMMHMPOBAHUSA HAXOIUM, YTO

- / (0135 (U (U = W) + iy i3 () (w — 1)) d = / F(x - €) dz.
Q Q

Barem ¢ momombio dhopmyst ['puHa BeIsiB/IsIEM, ITO

/(%‘(U) eij(W = U)dx —myj(u)(w — u),i; ) dx
Q

- / (0, (U)(Wr — UV + 0 (U)W, — U,))dT

(=0 - m (e - 52) )ar = [ Foc-9an 22)
r Q

IMpunumas Bo Buumanue pasercrsa o,(U) = (0,0) na v, £ = x = (0,0,0) na I,
MOXKEM TIPeJICTABUTh MHTErpas 1o I B seBoit gactu (22) coemyrommmM o6pasoM:

I= /(t”(u)(w — ) — my (1) (g—f - %) — o, (U)(Wy — Uy)> ar.  (23)

Beuny pasencrsa B (13) u o (U) = (0,0), BbInOJIHEHHBIX Ha 7, nepenumeM (23) B
BUJIE CJIEJLYIONIErO UHTErpaJia;

I= /(t”(u)w - m,,(u)%—tf - UU(U)WI/> dr. (24)

Mo2KHO MOKA3aTh, ITO MOABIHTErPATBLHOE BBIPAZKEHNE B (24) HEOTPUIATEIBHO B CHILY
Britouerns y € K u coorromenuii (11)—(14). Ocraercs 3amerurs, uro euxy I < 0,
HepaBeHCTBO (22) Bieder 3a co00ii BBINOJIHEHNE BADUAIIMOHHOTO HepaBeHCTBa (6).

3AMEYAHUE 1. IlosiyueHHble COOTHOIIEHUsI HA TPAHUIE MOXKHO TPAKTOBAaTh
KaK YCJIOBUA ONTHUMAaJIbHOCTH, IIOCKOJIbKY pellleHue 3aJa49d MUHUMU3AIUU JOJIKHO
V/IOBJIETBOPATH HANJIEHHBIM I'DAHIUYHBIM ycsaoBusAM. [losydyeHHble KpaeBble yCIOBUS
OTPAXKAIOT COOTHOIIEHUS MEXK 1y (DU3MIECKUMU BEJIUINHAMEU B PAMKAX HACTOSAIIEH
MO/IeJIM, B 9TOM CMBICJIE OHU IIPEJICTABJIAIOT HHTEPEC C TOUYKU 3PEHUs IIPUJIOKEHUI,
TaK>Ke JaHHbIE COOTHOIIEHHUS MOI'YT ObITh HCIIOJIb30BAaHBI B CIIy4dae IOMCKA JOCTa-
TOYHO VI3 IKOI'O PEIIeHNs] UJIN IIPUMEHEHUs ero CBOUCTB.
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3. Ba,uaqa O 2KeCTKOM BKJIIOY€eHUuu,
IIPUMBIKAIOIIIeM K I'PaHUIle

[Ipeanosokum Teneppb, 9TO IJIACTUHA UMEET XKECTKOe 00beMHOe BKJIIOYEHUE,
BBIXO/IsIITee Ha BHEITHIOK TPAHUILY. 3aJ1a9u JJIsl IVIACTUH C >KECTKAMU BKJIFOUEHUSIMA
HCCJIEIOBAHBI BO MHOTHX paboTax, HAIpuMep, ciaydail wiacruabl Kupxroda — Jlsasa
C OTCJIOMBINMMCsI BKJIFOUEHAEM HCCIIeN0BaH B [19], MOelb KOHTAKTa [BYX IJIACTHH
C YKECTKUMM BKJIIOUeHUsiMH u3ydeHa B [20]. Anamus 3asucuMocTy byHKIMOHATA
SHEPIUU OT BO3MYIIEHNsI T€OMETPUN OTCIOUBIIETOCS YKECTKOTO BKJIIOYEHUsI IIPOBEICH
B [21,22]. Bo3MOKHOCTD IIPEEILHOIO MEPEXOa O MapaMeTpPy HIMPUHBL JKECTKOI'O
BKJIIOUEHHS C OTCJIOCHNEM 000CHOBaHa B craThe [23]. Moess runepynpyroro reja ¢
JKECTKHMM BKJIFOUEHUEM HCCIIeI0BaHa B [24]. YnceHHas peaqusanus 33719 B paMKax
MOJIeJIell yIIPYTUX TeJI ¢ KECTKUMH BKJIFOYEHUsIMA JIaHa, HAIpUMED, B [25, 26].

B paMkax HACTOSAIIEro pa3jesa IPEJIHOJOKUM, UTO JJIs TDAHUIIBI Y BO3MOXK-
HOrO KOHTaKTa BblnojHsercd, aro v # '\ Iy, kpome Toro, GyaeMm cuurarh, 4TO
rpanuia cocroutT u3 mectu Kpusbix: ' = Ty UTy UTy UT3 UTy U Is, meas(I;) > 0,
1 = 0,1,2,3,4,5. Ilycrs omHoCBsi3HAs 1101001acTh w C §) TakoBa, YTO I'PAHMIIBI
Ow, O(Q\w) coorBercTByOmMUX ObaacTell w, Q\W ABIAIOTCS JOCTATOTHO TJIAKA-
mu. IlycTh BBejieHHBIE BBINE KPUBBIE COOTBETCTBYIOT CJIEYIONTUM MHOYKECTBAM:
I = (QwNT)\ v, I3 = dwN~y, Ty = y\Ow (puc. 3). B arom ciryuae HOMOJHUTETHHO K
yeaoBusiM (3), (4), OMECHIBAIOIMM KOHTAKTHOE B3AMMOJIEHCTBIE Ha 7Y, YIUTHIBAIOTCS
COOTHOITIEHNsI, XaPAKTEPUIYIOIIUe epPeMeIeHnst B Toukax monobiaactu w. Vcmob-
3yeM CJIeJlyIolee IMPOCTPAHCTBO, ¢ IOMOIIBI0 KOTOPOTO OyIeM 3a/IaBaTh CBOHCTBA
00'BEMHOT0 YKECTKOTO BKJIIOUEHUS:

R(w) = {¢(z) = (p(z),U(z)) | plz) =
= b(IEQ, —{E1) -+ (Cl, 02); l(:l?) —ap +a1r1 + a2, T — (xl,xg) S CU},

rze b, ¢y, c2,a0,a1,a2 € R [19,27].

Puc. 3. CpeaunHast IJIOCKOCTb INIACTUHBI (KpHUBasi y 0003HaYeHa Iy HKTUPHOM JIMHUEH ).

Samaua MUHIMU3AIAN B JAHHOM CJIydae IPUMET CJIeIYIONTnii BUI:

IH(E) = inf (). (29)
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TIe MHOXKECTBO JOIMYCTUMBIX (DYHKIMI UMEEeT BU
K, ={x= W,w) € H() | x ynosrersopster (2), (3), x|l = ¢, ¢ € R(w)}.

Brimykitocts MHOXKecTBa K, 0UeBHIHA, 3aMKHYTOCTD YCTAHABJINBAETCS TaK 2Ke, KaK
u B pabore [23]. AHAJOrHYHO JOKA3ATEJHCTBY TEOpEMbl 1 MOXKHO HOKA3aTh, UTO
3aj[aua MMEEeT eIMHCTBEHHOE DeIleHne £, KOTOPOE Y/IOBJIETBOPSIET BAPUAIMOHHOMY
HEepaBEeHCTBY

¢ e K., B(S,x—é)Z/F(x—S)dw Vy € Ko (26)
Q

[pe/iosiozKuM, 9TO perieHne 1ocTaToIHo riajakoe. Ilogcrasias B (26) x = € + ¢,
¢ € C°(\ )3, maxomum

—myjij(u) = fz3 B Q\G, (27)

—0i;(U) = fi 3 Q\w, =12, (28)

IMoxcrapass B (26) Tecroseie dbyakmun x = 2&, x = 0, HAXOAMM, UTO

/(%‘(U) €ij(U) —mij(u)uy; ) dz = /F€ dz, (29)

Q\w Q

/ (053 (U)ess (W) = ma (w)wsey ) dae > / Fxde Vy € Ko (30)

)\ Q
Anamsupyst (30) ¢ recroBbiMu DYHKIMSME, OOPAINAIIIAMACI B Hy/JIb B 00JACTH
W, MOXKHO IOJIyYIUTDb, 9TO HA YACTU I'PAHUIGI 1y BBITOJHSIIOTCS COOTHOIICHUS BUJIA

(11)—(13):
o, (U) = t"(wk <0, —(h—=10(0,(U)—t"(u)k) + (my,(u) — t"(u)kh) < 0 na Iy,

t(u) <0, o.(U)=(0,0), Uu+h%§0, UV+(h—l)%§OHaF4, (31)

o, (U) — %my(u) <0, o, (0)Uv—t"(u)u+ my(u)% =0 ua Iy. (32)

Ha wactax rpanunpt [T u I'5, KoTopble ¢cBOGOIHBI OT HATPY30K U HE COMPUKACAIOTCS
C IPENSITCTBUEM, cJiejys [28], MOXKHO MOJIyYUTh COOTHOIIEHUS

o-(U) =(0,0), o, (U)=1t"(u) =my(u) =0mnalyUT;. (33)

Hasee pacemorpum (20) ¢ Tecrosoii dyukimeit Buga X = &+ X, X = (W, w) € K,

takoit, uro w(z) = l(z), W(z) = p(z), z € w. Ioxyunm
/ (Uij (U)E”(W) — mij(u)fﬁ,ij )dl‘ > /F)?dx V)z € K,. (34)
o\w Q

ITpumennm (34) u dopmyner Ipuna (7), (8) B IpeanosoKeHNn MIAIKOCTA 00JACTH
Q\w, 115t KOTOPBIX 0603HAUEHNS] HOPMAJIH M KACATEJIbHONH OCTABIM TAKUMH XKe, KaK
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i kpusoit I'. 3amerum Takxke, 4To 3HaYeHUs cJaenoB Ha rpaxuie J(Q\wW) Gymyr
GpaTbes 1o orHomeHuo K obsactu Q\w. Ilpm 3TOM, HCHONB3yst paBeHCTBa X =
(0,0,0) ma T}, (33), ¢ yuerom (27), (28) ycranaBampaeM, 9TO UMeeT MECTO GOPMyYIIa

/ <UU(U)WV ()i - m,,(u)g—f> dr
Ty

~ ow

+ / <U,,(U)ﬁu + o (U)pr —t"(u)l + my(u)5> dr > /Fde (35)
Ow\ (T2UIs) w

st Beex X = (W, @) € Ky, X(2) = ((2), z € w, tae ¢ = (5,1) € R(w). Hoxcrapuss
B (35) x = (0,0,0), x = 2¢, BBUAY cooTHOmeHuit (31), (32) HaxoaUM

ou

(UV(U)pou + o-(U)po, — " (u)lo + ml,(u)a) dl = /FCo dr, (36)

aw\(FQUF3) w
rae £(z) = Co(z) = (po(x),lo(x)), € w. Ilo aHaIOrMK C IPEABIAYIIMU PACCY K Ie-

HUAMM, MO2KHO J0OKa3aTb, YTO UMEEeT MECTO

Teopema 3. B pamkax npeimosioxkenust o ToM, uro pemenne & = (U, u) g0-
CTATOYHO IJIaJIKOe, BapHALMOHHA 3aja4a (25) 9KBHBaJCHTHA CJIEyIONIeil KPaeBoi
3azade:

—miji(u) = fs B Q\B,
_Uij,j(U):fi B Q\w, 1= 1,2,
o, (U) =t (wk <0, —(h=10(0,(U)—t"(u)k) + (my,(u) — t"(u)kh) < 0 na Ty,

t"(u) <0, o,(U)=1(0,0), Uv+ h% <0, Uv+(h— l)% <0 na Ty,
1 ou
o, (U) — Em,,(u) <0, o, (0)Uv—1t"(u)u+ ml,(u)% =0 na Ty,
ou
U = (0,0), U/:%:OHal—‘o,
o-(U)=(0,0), o,(U)=1t"(u)=my(u)=0mnaly UTs,

/(UU(U)WU —tV(uw)w + m,,(u)%) dr
IV
+ / <UV(U)5V + 0. (U)pr — " (u)l + m,,(u)?—f) dr > / FCda,
B\ (ToUTy) w
JIsL BCeX Y = (W,ﬁ) € K, X(2)|w = ((x), © € w, tae ¢ = (p,1) € R(w),

ou

(UV(U)pou + o (U)po, — t* (u)lo + my (u) 8;) dl = /FCO dz,

Bw\(l‘gul‘g) w

e £(z)|w = (o(2), z € w.
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3akJroueHue

B pabore mpemioxkena mMareMaTHdecKasi MOJETh PABHOBECHUs! ILIACTUHBI, KOH-

TAKTUPYIOIIEH ¢ IPensATcTBUeM crennajbaoil (popmel. [IpensTcrBue obycaaBanBaer

OrpaHUYeHMs Ha IepeMelneHus B Buje nepasencrs (3), (4) ma kpusoii v. oxa-

3aHO, UTO BAPUAIMOHHBIE 33JQUU Jlsl YIPYTOi miacTubl (5) M JJIsl IACTUHBL C

JKECTKUM BKJIFOUeHHEM (25) UMEIOT eJMHCTBEeHHbIe perteHus. 1Ipy 10noHnTe IbHOM

PEryJIIPHOCTH PEIIEHU B paMKaX TeOPEMBI 2 U TeOPEMBI 3 HAUJIEHBI SKBUBAJICHTHBIE

;anbcbepeHuHanLHme IIOCTaHOBKH JJIgd MCXOOHBIX BapHAIMOHHBIX 3aJda4.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.
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EQUILIBRIUM PROBLEM FOR
A KIRCHHOFF—LOVE PLATE CONTACTING
WITH AN INCLINED AND LATERAL OBSTACLES

N. P. Lazarev, G. M. Semenova,
and A. S. Nikulin

Abstract: A nonlinear mathematical model of the equilibrium of a plate contacting
with two obstacles is investigated. The first non-deformable obstacle is defined by in-
clined generatrices, and the second one restricts the plate displacements on the side face.
In this case, the plate can contact both along the side edge and at the points of the curve
corresponding to the intersection of the front surface of the plate and the side cylindrical
surface of the plate. These circumstances lead to the fact that boundary conditions are
imposed in the form of three inequalities fulfilled on the same curve. Along with the
model of a homogeneous plate, the case of a nonhomogeneous plate in which a rigid
inclusion is located near the contact boundary is also considered. The unique solvability
of the problems for both models is proven. Under the condition of additional smooth-
ness of the solutions to these problems, optimality conditions are found in the form of
boundary conditions, as well as the corresponding equivalent differential formulations.

DOI: 10.25587/2411-9326-2024-2-14-30

Keywords: variational problem, inclined obstacle, plate, non-penetration condition,
contact problem.
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O HEKOTOPBLIX KJTACCAX
KOS®PNUNEHTHBIX OBPATHbLIX 3AAA4H
ONPEAENEHNA TEMNJTOPU3NHECKINX
MAPAMETPOB B C/JIONCTbIX CPEOAX

C. I IlarkoB, A. A. IlorankoB

Annoranusi. PaccmaTpuBaeTcss BOIIPOC O PEry/isipHOl pa3peliuMOCTH B IIPOCTPAHCTBAX
CobosieBa TapaboOIMYEcKUX OOpaTHBIX KOIMMUIMEHTHBIX 3a/a4d B CJIOUCTBIX CPeaax C
YCJIOBUSIMU COTIPSIZKEHMsI THUIIa HEeUJeaJbHOrO KOHTaKkTa. PeleHue umeer Bce 060BIIEH-
Hble IPOU3BOHbIE, BXO/ISIINE B YPABHEHNE, CyMMUPYeMbIe C HEKOTOPOii cTernenbio. B Ka-
YecTBe YCJIOBUIl MEpeorpe/iesieHusl PACCMATPUBAIOTCH 3HAYEHUs PEIeHUs] B OTJEJIbHBIX
TOYKaX, JIEXKAIUX BHYTpU obsiacTu onpejesenusi. Jloka3aTesbCTBO OCHOBAHO Ha IOJIY-
YaEeMBbIX AllPUOPHBIX OIEHKAX U TEOPEeMe O HEMOJBUXKHON TOYKe.

DOI: 10.25587/2411-9326-2024-2-31-45
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BBenenune

PaccmarpuBaercst BOpoc 06 orpejie/IeHI BMECTE C PEIIEHUEM KPaeBOoil 3a1a49u
MIPaBOil YaCTHU CIENUAJbHOIO BUIA U KOI(PDUINEHTOB B TapabOINIEcKoil cucreme.
ITycrs G — o6nacts B R™ ¢ rpanuneit I' u Q = (0,7T) X G. Cunraem, uro obaactsb
G paszesiena Ha 1Ba OTKPBITHIX MHOXectBa G~ u G—, G- € G, GT UG~ = G,
GTNG™ = @, monoxum [y = dGT NIG~, Sy = (0,T) x Iy, S = (0,T) x T.

Cucrema ypaBHEHUII UMEET BU/T
Mu =, + Au= f(t,z), (t,7)€ Q=G x (0,T), (1)

rae u — BeKTop JyuHbl h, G € R™ — orpanndennas obsacTs ¢ rpanunneii . Oyukims
f ¥ SJUTHIITHYECKHi omepaTop BToporo mopsaka A B GF mpeacraBuMbl B Bre

—A(t,z,D) = Ao(t,x, D) + Z qi(t)A;(t, z, D,),
i-1

f:fo(t,a?)Jr Z fl(tvz)(h(t)v
i=r+1

Pabora Beinosinena npu purancoBoil noguepxkke Poccuiickoro Hay4dHOro (hoH1a 1 IpaBUTEIb-
crBa XanTbl-Mancuiickoro aBronomuoro okpyra-FOI'PBI (rpant Ne 22-11-20031).

(© 2024 IIarkos C. I., ITorankos A. A.
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n
Zalt:p kal+zaktzaﬂ+a0

k=1 k=1

J J
Ajjy @5y

JaJIbHBIMHA U I'PaHUYIHBIMUA YCJIOBUAMU

aé — h x h-marpunpl-dyukuuu, h € N. Ypasuenue (1) monosusercs Ha-

u|t:0 = Uop, Bu|5 - g(t,$), (2)

rjae Bu=u wm Bu = Y v;(t, 2)uz, + ou, 1 YCIOBUSIMA COMPSIZKEHUST
=1

+
%LN(LL?:E) —ay(t,z)ut(t,m) —as(t,x)u” (t,z) = g (t,z), (t,z) €Sy, (3)
u-
S (t2) = Bit.a)u’ (b2) = Balt.)u” (o) =g~ (La), (t2) €S, (4)
e
Aut . n
W(xo’ B = zeGilggxgeFo _;1 @igta. Vi,

vV — BHEINHAS eIUHUIHAs HOpMaJh K OG~ u

ut = lim u(t, ).
rEGE, x =o€l

YcsoBus 1iepeonpesiesienns UMEIOT BU,

<u(t7bj)7ej> - Tﬁj(t), Jj= 1,2,...,s, (5)

rae b; € G 1 e; — HEKOTOpBIE BEKTOPHL €IUHUYHON IIMHBI U CKOOKH (.,.) 0603Ha-
4aloT ckasgpHoe npoussenenue B R™. Hewssecrupivu B 3amade (1)—(5) asisiorcs
pemenne u u dyuxmyua ¢;(t) (i =1,2,...,s). Mbr He canraem, uro I' uim [y cocro-
AT U3 OFHON KOMIIOHEHTDI CBA3HOCTH. BoobIme roBopst, Bx MOXKeT ObITh MHOTO U Ha
KaXKJ0if U3 HUX €CTb CBOU I'DAHUYHBIE YCIOBHUS HJIM COOTBETCTBEHHO CBOU YCJIOBHUSI
conpsiKeHHsI. B mpomecce 10Ka3aTesbCTB MBI He OTOBAPUBAEM ITO JOIOJIHUTEIBHO,
9TOOBI HE YCIIOKHSTh U3JI0XKeHne. YCJIoBus conpsikerus (3), (4) o6o6maooT u3sect-
Hble B TEODUH TEIJIOMACCOIIEPEHOCA YCJIOBUsI HEU/IEATbHOIO0 KOHTAKTa HA T'DAHUILE

ABYX Cpel
ou™t

ON

ou™t
S " ON

Ecin a@ — 00, TO MOJIyuInM CTaHJAPTHYIO IOCTAHOBKY 3asaqn audpakuun (em. |1,

_ou” =alu” —u"). (6)

813, 1. 3]), Korja ycaoBus UMEIOT BUJ

+
n _ Ou

. - Ou”
—u, —8NS —

ITpo6Gaemer Bua (1)—(5) BO3HUKAIOT IPU ONUCAHUE [IPOIECCOB TEILIIOMACCOTIEPE-
HOCA, TudY3UOHHBIX IPOIIECCOB, MPOIECCOB (QIIBTPAIIUN, B 9KOJOTUH B BO MHOTHX
apyrux obaactax. B 9acTHOCTH, TaKne 3a/1a91 BO3HUKAIOT IIPH OIMCAHUN TEMIIEpa-
TYDPHBIX PEXKUMOB IOYB CeBEepHBIX Teppuropuii (cM. [2]). Teopermueckux pesyib-
TATOB, TOCBAMEHHBIX 3a1a9aM (1)—(5), TOBOJBHO MAJIO WM HET COBCEM, B OTJIMIHE
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oT ciydasi omHOI cpenpl. OnuIeM OJIyIeHHBIE PE3Y/IbTATHI B ITOCIETHEM CJIydae.
Ormerum MoHOTpaduio (3], MOCBAMEHHYI0 06PATHBIM NAPABGOJIMIECKAM 3a1a9aM, U
monorpadun [4-6], rie omrcaHbl OCHOBHBIE IIOCTAHOBKHU, B TOM YHCJIE U B apabosm-
geckoM ciyuae. Crour ormerurs paborsl [7, 8], rue B ciaydae n = 1 onpexessierca
TEIJIOIIPOBOTHOCTD KaK (DYHKIMS BPEMEHHU U MOy IeHBI TEOPEMbI CYIIECTBOBAHUS 1
€JINHCTBEHHOCTH, & B KAYECTBE JAHHBIX OEpyTCs 3HAYECHUS PEIIEHWS B OTIAETbHBIX
TOYKAX, BO3MOXKHO SIBJIAIONIUXCS IPAHUIHBIMU. TeIIONPOBOIHOCTD, HE 3aBUCSINAS
OT OJTHOI M3 TPOCTPAHCTBEHHBIX [TI€PEMEHHBIX, H 9aCTh KOIMMUIMEHTOB 1O TAHHBIM
Kot #a 60K0BOII MOBEPXHOCTH IIUJINHIPA W HHTETPAJIBHBIM JTAHHBIM OMPEIEISTIOTCS
B [9,10]. Iosuyuensl TeOpEMBI CYIIECTBOBAHUS U €IMHCTBEHHOCTU PENIEHUIl U OlEeH-
ku ycroituusoctu. B monorpadun [4] (cMm. Takxke, HanpumMep, pe3yJbTaTbl PabOThI
[11] u ap.) mOJTyUeHBI TEOPEMBI CYIECTBOBAHUS U €IMHCTBEHHOCTH DEIeHNi, B TOM
YUCIIe U CTAPIIHIX KOI(DDUIMEHTOB, He 3aBUCSIINX OT HEKOTOPBIX TPOCTPAHCTBEHHDIX
IIEPEMEHHBIX C JAHHBIMHU [I€PEOIIPEIEICHIS Ha, CEI€HUSIX IPOCTPAHCTBEHHON 00J1acTu
wiockoctamu. B cuny crermudukn MeTona Bece KOIMDMUIMEHTHI TAKXKE HE 3aBUCAT
OT 9aCTHU MPOCTPAHCTBEHHBIX [IEPEMEHHBIX. BoJtee MoTHbIe PE3yJIbTATHI Oy Y€HbI B
ke pador [12-15], riae nokaszaHna KOPPEKTHOCTH OGPATHBIX 3819 00 OIpeIeIeHIN
K03 DUIMEHTOB B C/IyUae 3a/[aHns PEIIEeHUsT Ha TPOCTPAHCTBEHHBIX MHOT000PA3UIX
WIN B OTJIEJIBHBIX TOYKAX, KAK U B HaieM ciydae. OOpaTHble 33190 C TOUCIHBIMUI
JIAHHBIMEI HuccaenoBauch B paborax A. U. Tlpuienko u ero y4eHUKOB, U psiji HHTE-
PECHBIX 3aJa4 onucad B [3]. AHaJOrM4IHbIE PE3YJIBTATHI, HO IPU HECKOJIBKO JPYTHX
YCJIOBUSIX HA JIAHHBIE U B JAPYIUX IIPOCTPAHCTBaX, MouaydeHsl B [16,17]. Ompenene-
Hre koaddumenta TermnonpoBogHocTr A(T) 110 3HAYMEHUSIM PEIeHns] Ha HEKOTOPOH
KDUBOI, Jiexkalneil Ha IpaHune, uccienyerca B padore [18], u mosydensl reopema
eIMHCTBEHHOCTH U OIEHKHN ycroiumBocTr. ucienHomy perennio 3amaqau (1)—(5)
MIOCBSAIIIEHO OI'POMHOE KOJTIMIECTBO PabOT, U MOJIABJIAIONIEe OOIBITIHCTBO YUCITEHHBIX
METOJIOB OCHOBAHBI HA CBEJICHUU 33/Ia9H K 3a/[a1e ONTUMAJBHOIO YIIPABJICHUS U MU-
HUMU3AIUN COOTBETCTBYIOIIETO IeseBoro dyukmmonana [19-21] (em. pesynbraTs
Takxke B [22,23]).

Hamra paGora 6im3ka Kk padoram [24, 25] mo nocranoske u pesyJibraram. B mep-
BOIl M3 HUX paccMaTpUBAJIACh oOpaTHas 3ajada 00 OMpEeIe/IeHUHN CTAPIIuX KO-
buImeHToB B mapabOJMIECKOM YpaBHEHUU B CIyUae OOBIYHON HaYaJIHLHO-KPAEBO
3a7a9m (He 3a/1a9M CONPSI?KEHMsl ), a BO BTOPO — 3a/1a9a CONPSIZKEHUST ¢ YCIOBUSMU
CONpSIZKEHUsT THIa Judpakiuu. B KadecTBe rPAHUYIHBIX JIAHHBIX B 00erx paborax
HCITOTb30BAJIOCH yejioBue upuxie u ycioBue

%+ |f
oN YS9

(T. e. TpaHWYHOE yCJIOBHE C TPOM3BOJHOMN MO KOHOpMasm). B Hameil pabore pac-
CMOTPEHA CHCTEeMa IapadOJInIeCKUX YPaBHEHUN C KPaeBBIMU YCJIOBHSMH C KOCO
POU3BOIHON M JIUpuxie u yCaIoBUSAME CONMPSKEHUs THMA HEUJIEATHHOTO KOHTAKTA.
B xadecrBe ycsioBuii mepeorpeiesieHus, B OTJIMINE OT APYTUX paboT, MBI 3a/1aeM 3Ha~
YeHUs] HEKOTOPBIX JIMHEHHBIX KOMOUHAIMI KOOP/IMHAT BEKTOP-PEIIEHNs B 33/ IaHHBIX
TOYKaX.
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Ommrmem cozeprkanme paboTel. B pasm. 1 omucaHbl ycioBus Ha JAHHBIE 3a-
JIaYH U [IPUBEJIEHBI BCIIOMOTATeNIbHbIE Pe3y/IbTaThl. B pas3j. 2 IpHBejeHa TeopeMa
CYIIECTBOBAHUS U eIMHCTBEHHOCTH pernenuii 3agaqau (1)—(5).

1. Or[pe,ue.neHnﬂ " BCIIOMOrartreJibHbI€ YTBEpP2K/JI€HUA

IIyctes E — GanaxoBo mpocrpamctBo. depes L,(G; E) (G — obnacts B R”)
0003HAaYAETCS MMPOCTPAHCTBO M3MEPUMbBIX (DYHKIW, OmpenesieHHbIX Ha G €O 3Ha-
genuaMu B F, ¢ xoneunoit nopmoit ||||lu(z)||ellz, @) [26]. Ob6osnadenus mis upo-
crpancts Cobonesa W (G5 E), W;(Q; E) u . 1. crangaprubie (cum. [27,28]). Ecim
E =R wm E = R", T0 nocnespee npocTpancTBo 0603HaMaeM npocro depes Wi Q).
Omnpenenenns npoctpancts I'énbaepa C4P(Q), C*P(S) MoryT 6bITh HaiiIeHBI, Ha-
npumep, B [1]. Ilox HopMoOil BeKTOpa MOHUMaeM CyMMy HOPM KoopauHAT. Jljia man-
noro marepsana J = (0,T) monoxum Wi (Q) = Wi(J; Ly(G)) N Ly (J; W (G)).
Coorsercrenno W3 (S) = Wi(J; Ly(I')) N Ly (J; W (I)). Bee pacemarpusaembre
mpocTpancTBa u ko3 dunuentsr ypasnenus (1) camraem BermecTenubME. lasee
cumTaeM, 4To mapamerp p > n + 2 saduxcuposan u I', Iy € C%. Onpegenenne rpa-
Hurpl Kiaacca CF) s > 1, moxuo Haditu B [1, . 1]. Ilycrs Bs(b) — map paguyca 6 ¢
nenTpoM B Touke b. Sadukcupyem napamerp § > 0 rakoii, aro Bs(b;)N(ToUT) = &
nnst Beex 4, Bs(bi) N Bs(b;) =@ maa i # j, 4,5 =1,2,...,s. Eciu neobxonumo, ero
BCerjia MOYKHO yMEHbIINTh. Beenem obosnavenus: Q7 = (0,7) X G, Gs = U; Bs(b;),

T =(0,7) x Iy, QF = (0,T) x G*, QF = (0,7) x GF, S™ = (0,7) x I.

Vei0Bus COTIACOBAHUA U IVIAJKOCTH JAHHBIX MOIYT OBITH 3AIICAHBI B BUJIE

uolg+ € W102_2/17(Gi)7 B(0,z, D)ug|r = ¢(0, ),
g e Wyoko(s), g € Wio2o(Sy),

ON

?—ﬁ(o,@ — B1(0, 2)ug (x) — B2(0,2)uy (z) = g~ (0,2), =z € I,

e kg = s1 =1 —1/2p B ciyqae Bu = u u kg = so = 1/2 — 1/2p B nuporussHOM

(0,2) — a1(0,2)ug (z) — a2(0, 2)uy (z) = g7 (0,2), =€ Ty, (™)

cay4Jae,

|{isanidd(e Ly (0,T; WG 8

UO({E)E p ( 5)7 f()e p\Ys L p( 5) . ()

Huxe 6ymyT BeTpeuarbest BKodeHust Buna f € L, (O,T;Wpl(G(;)) WM aHAJIOTWY-

HBIE, TJI€ COOTBETCTBYIOMNIEE MHOKECTBO (3§ COCTOUT M3 HECKOJILKNX KOMIIOHEHT CBS3-

noctu (B mamoM ciydae Bs(b;)). Ilo onpenenenmio sto osmauaer, uto f|p;@m,) €

L, (O, T, Wp1 (Bs (bJ))) JUTsI BcexX j. B KauecTBe HOPMBI B 3TOM IIPOCTPAHCTBE PACCMAT-

pUBAeM CyMMy HOPM II0 COOTBETCTBYIOITUM KOMIIOHEHTAM CBS3HOCTH. AHAJOTHYHO
JUIST IPYTUX MHOXKECTB. PacCMOTPHUM BCIIOMOTATEBLHOE YDABHEHME

n n
Mu = u + Lu = fo(t,x), Lu=— Z QijUg,z; + Zaiumi + agu, (9)
ij=1 i=1
1 BCIIOMOI'aTeJIbHbIe 3a/la'9Y1
+ + + Ou” + +
Mu :f07 (t,IE)GQ ) Bu |S:507 anr =9 , U |t:0:0; (10)
ON 15,
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_ _ Ou” _ _
Mu :f07 (t7I)€Q ) anr =9, u |t70:07 (11)
ON |g
0
Cunraem, 9To BYHKIMH a;j|G+ HEPEPBIBHBI B QT 1 J0MyCKAIOT TIPOJIOJIZKeHIe JI10
HenpepbiBHbIX Gynkumit kiaacca C(QF). O6oznaunm uepes ai [peJieIbHbIE 3HaYe-

oust QYHKINNT aij|Gi Ha [j. 3amnuireM cooTBETCTBYIONIUE YCJIOBUS:

ar € Lp(Q), (Iij|Qi S C(@), OJZ:-tj S W;D’%O(So), i,j = 1,2, Lo, N, (12)

rme k=0,1,... ,n. [lasee npeamoaokuM, 410
fo € Lp(Q),  au, Br € W;o2(Sp), yi,0 € Wo(S), k=1,2, (13)
aij € Lo (0,T; W, (G5)), a1 € Lp(0,T; W, (Gs)), 1=0,1,...,n, (14)
rae 4,5 = 1,...,n. Mel cunraem, 9To s BeromoraTeabHbix 3aga4 (10), (11) Bbl-

MTOJIHEHDBI YCJIOBUS TAPAOOTUIHOCTA U JlomaTuHCKOro. YcjioBHe MapaboTUIHOCTH
3alUCHIBAETCS B BUJIE: Halijiercst mocrosiaaas 01 > (0 Takas, 9T0 BCe KOPHU P TOJIHU-

HOMa
n

det(Ao(f7,’E7§) +pE> - 07 Ao(taxag) - Z aijfz‘fj7
i,j=1

FE — euandHas MaTPUIA, YIOBIETBOPSIOT YCJIOBHUIO
Rep < —6,1[€)> VE € R™ V(t,z) € QF. (15)

IIycts Rou = u B ciydae ycioBuil Jupuxite na S u

Rou = Z'yjamju

j=1

B [IPOTUBHOM cjydae. Ycsosue JlomaTuHCKOro (OHO JI0JIZKHO OBITH BBILIOJIHEHO HA
S u Sy qs 3anaan (10) u Ha Sp juist 3aaqau (11)) vHa S MoXKeT OBITH 3AIMCAHO B
Buzie (em. (LS) yenosue [27, c. 198]): musa mobeix (tg,zg) € S, & € R™ Takux, 4ro
(&, v(z0)) = 0 (v(z) — BHemmss eauumanas HopMas B I' B Touke z), Beex b € Ct,
A rakux, 910 Re A > 0 u || + |\| # 0, cucrema o06bIKHOBEHHBIX b dePEHITNATLHBIX
YPpaBHEHUNI

(AE + Ao (to, o, € + iv(20)dy))v(y) =0,  Ro(to,0,& + iw(x0)dy)v(0) = b (16)

UMeeT eJMHCTBEHHOe yObIBatolee Ha Geckonewunoctu pemenne kiacca C([0,00)).
Amnajiornuno dpopmysupyercs yeiaosue Jlonarurnckoro Ha Sy. IIpu 3T0M HaJI0 yUuecTsb,

aro Jyis 3aga4an (10)
n

Ao(t,m,6)|s, = Y aji&ig;

i,j=1

u mus 3anaqan (11)

Ao(ts,)lse = Y aj;&;.

i,j=1
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Teopema 1. Ilycre Bbimossensl yeaosus (7), (12), (13) u jqist Bcnomorareb-
aeix 3a71a4 (10), (11) BemosHers! yegoBus napabosmanocta u Jlonaruuckoro. Torma
cymecrsyer exuncTsennoe pemrenne ulor € WA(QF) sagaun (9), (2)-(4). Cupa-
BEJIJINBA OIIEHKA

||u||W;,2(Q+) + ||u||W;,2(Q,) < C[||U0||W5—2/p(G+) + ||u0||W§—2/p(G7)
Pl za@) + Nllytosocsy + 107 oo sy + 197 gogsy)l- (17)
Ecmr g = 0,9 = 0, 1o cpasemuBa onenka

=gy HHlulwaaon) < elluollya-2m ey Hlwollyz-2/oy +1fz,@n) ] (18)
1€ OCTOSTHHASI ¢ He 3aBUCHUT OT ug, f, 7 € (0,T].

JOKABATEJIBLCTBO. OCHOBHOE yTBEDKIEHUE TEOPEMBI €CTh CJIEJICTBUE TEOPEe-
Mbl 3 B [29]. OTmernm, 9TO MBI U3MEHUJIU YCJIOBUS [VIAIKOCTU Ha KOI(DdUIueHTo!
al?tj,’yk,ao, Q;, B, IO CPABHEHUIO C TEMHU, 9TO HPUCYTCTBYIOT B (DOPMYIUPOBKE TEO-
pembl 3 B [29], 3aMeHUB yCJIOBHE X NPUHAJJIEXKHOCTH KiaccaM [éibiepa yciroBueM
ux npuHaIeykHoCTH Kiaaccam CobosieBa. 3aMeHa BIIOJTHE BO3MOXKHA, B JIOKA3ATE/ b
cTBe TeopeMbl 3 B [29] B 9TOM ciryuae HEOOXOJAUMO UCIIOJIB30BATH PE3YJIbTaThl u3 [27,
TeopeMa 2.1], rje ycaoBusl HA IPAHUYHBIE OEPATOPHI TAKXKE 33JAI0TC B TEPMUHAX
npocrpancts CoboJieBa, BMECTO COOTBETCTBYIOIIUX Pe3yIbTaToB u3 |1, Teopema 10.4].
Bropoe yreepxKaerne u oneHKa (18) BBITEKAIOT U3 CTAHJAPTHBIX PACCYKIEHU, COB-
HAJIAFONINX, HAIIPUMED, ¢ TeMH, KOTOpble OB UCIOIb30BaHbI B padore [17, Teope-
Mma 2; 16, Teopema 1].

Teopema 2. Ilycrs BemosHenst yeiosust (7), (8), (12)—(14) u mist Bemomo-
rareaprabix 3a7a4 (10), (11) BbmosaHews! yciaoBus napabomarocTn u JlonaTuHcko-
ro. Torma pemenne ulg: € WE(Q*F) sazaun (9), (2)-(4) obnazaer cpoiicrBom
up € LP(O,T;W;(G&)), u € L,,(O,T;W;’(Gtgl)) 1st Beex 8 < 6. Ecam g, gF = 0,

TO cIIpaBeJIJINBAa OIleHKa

||u||Wp1’2(Q,T) + ||u||Wp1’2(Q:f) + ||u||Lp(O,T;WP3(G51)) + ||Ut||Lp(o,T;W;(G51))

<dluoll ooz A luoll ooz ol .oz A luoll -z
w, 7@ W, T(G) W, T(GY) » 7(Gs)

1 lzp@ry + 1 lzpomwisnl,  (19)

e nocrosianasi ¢ He 3aucut or T € (0,T] u 61 < § ¢purcuposBaHo.

JIOKABATEJ/IBCTBO. YTBEpXKIEHHE O JONOJHATEILHON IIAJKOCTH PENIeHui 1
OIIEHKE ITOJIyYAETCsI C UCTIOIB30BAHUEM TEOPEMBI 1 U IIOBTOPSIET JOKA3aTEILCTBO TEO-
pembl 1 B [16] (cm. Takxke Teopemy 4, m. 3, §2, rui. 4 B [30]). VTBepxKieHue Takxe
BBITEKAET U3 |24, Teopema 1].

O6ozHaunM JIeByI0 4YacTh HepabeHCTBa B (19) depes ||U||Hg1, a | fllc, @ +
£z, (0,7w1(Gs)) — 1epes || fllwz. CoorsercTBytomue 6anaxoBbr mpocTpancTBa 060-

W

snavatorcs qepes Hi n W{ coorsercrsenno. IIpocrpancrso Hf cocront s gynk-
it u € Ly(QT) makux, uro u|g: € W}EHQE), u € L,(0,T;W3(Gs,)), ur €
L, (O, T; Wp1 (G(;l)), U YJIOBJIETBOPSIET OJTHOPOIHBIM HAYAJBHBIM M IPAHUIHBIM YCJIO-
BUSAM U YCJOBUSAM COIPSKCHUS.
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2. OcHOBHBIE PE3YJILTATHI

Bynem cuauraTh, UTO
1/)a € Cl([O,T]), 7v[}a(o) - <u0(b¢l)7ea>7
fm € Lp(Q) N Ly(0,T; W, (Gs)), af; € Lo (0, T3 W, (Gs))
dlos € C@F), af €L(Q), (ah)* € W20 (Sy);
af € Ly(0,T; W) (Gs)),  afy(t,ba), af (t,ba), fm(t,ba) € C([0,T]),
mist 4,7 = 1,2,...,n, 1 =0,1,... ,n, k =0,1,... ,r,a =1,...;s, m = 0,7 +
1,...,s. Beuuy (8) ciemst fr(t,bp),af(t,b;) onpenenenst u fn,(t,by), af(t,b;) €
L,(0,T); 60mee toro, fm(t,z),af(t,z) € C(Gs;L,(0,T)) (mocie, Moxer GBITh, u3-

MeHeHHst Ha MHOXKecTBe Mepbl 0) (em. [31, §2,3,4, coorromenus (3.1)—(3.9), caen-
creue 4.3]).

(20)

Paccmorpum matpuity By pa3mepa s X S cO CTpOKaMu
(A1(0,b5, D)uo(by), €5), - - » (Ar(0,bs, D)uo(by), e5),
<fT+1(07bj)7 ej>7 R <f5(07 bj)? ej>7 Jj<s.

IToTpebyem, ITOOBI
det By # 0. (21)

IMycrs u, § — pemenue 3agaun (1)—(5), rae « DPUHANJIEKUT KJIACCY, OINUCAHHOMY B
TeopeMe 2, a § = (q1,G2, .- ,¢s) € C([0,T]). Ionaras t = 0, x = b; B (1), pugem
K CUCTEeMe ypaBHEHUNI

BoGo = Go, o = (qo1,---,90s)", qoi = ¢(0), (22)
Go = (1 — (Aouo + fo,€1))(0,01),..., (Vs — (Aouo + fo,es))(0,05))7.

B cuiy (21) cucrema (22) nmeer eJMHCTBEHHOE pelierue Go. 1lycrs

T T
ap = Za;lqm, ap = Za}cqm pl=1,...,n, k=0,1,... ,n.
i=1 i=1
Ompenenum orepaTop

n n
AY = Ag + Z apds ,, + Z apdy, + ap.

p,l=1 p=1

[lyctsb Takske [; = ¢; — qoi, S(fi) = —A° — AL(ji). 3anaua (1)—(4) nepenmmercs B
BHJIE

up + S(iu = f, ule—o = o, Bulp =g, A'(u) =Y A, (23)
i=1
Ou” + - +
—(t,z) — a1 (t,zx)u" (t,x) — as(t,z)u” (x) = g (t,z), =« € Iy,
BaN_ (24)
U

—(tvx) - ﬁl(x)u+(tvx) - 62(:17)’“_ (tvx) - g_ (tvx)v LS 1—‘O-



38 C. I' I[Iarkos, A. A. Ilorankos

Teopema 3. Ilycrs Bemosanenst yeaosus (7), (8), (13), (20), (21) u jqust Bemo-
morarebbix 3a71a4 (10), (11), rae L = — A, BbimosHeHb! ye10BHS MapaboTTIHOCTH
u Jlonaruackoro. Torma Haiinercst aucio 1y € (0,T] rakoe, aro Ha (0, 7)) cymecTBy-
er eauHcTBeHHoe penierne (U, q1,qsa, - - . ,qs) 3aga4u (1)—(5) rakoe, 4ro

ulg € W;’2(Qi), u € Ly(0,7o; ng(Ggl)), ug € Ly (0, 70; W;(G(;l))
s Beex 01 € (0,9), g € C([0,710]), 5 =1,2,...,s.

JIOKABATE/IBLCTBO. Ilyets ¢ = (q1,...,qs)7. Haitnem pemenne ® zamaum
(23), (24), tae i = 0, BmMecro byHkIUKM [ BO3bMeM DYHKIHIO

f="To+ > filt,z)q0,
1=r+1

+

a B KayecTse byHkuuit g, ug, g- — Hamu jganabie u3 (2)—(4). B cuiy reopem 1, 2

cylecTByer perenne 3agaqau (23), (24) rakoe, 9ro
Dlgr € W(QF), @€ Ly(0,T;W3Gs,)), @i € Lyp(0,T5W)(Gs,))

s Beex 01 € (0,6). Ilocue 3amenst u = v + @ npugem K 3aua4e

Lo =wv + S(@jv=A(D® + Y filt.o)u(t) = f1(d), (te)eQ,  (25)

i=r+1
o t,x)ot(t ta)u(ta) =0, (t S 26
W(,IE)—OQ(,{E)U (,IE)—OQ(,:E)U (7x)* ’ (7:17)6 0 ( )
ov~ _
W(t,x) — Bt z)v T (t,x) — Bo(t,z)v™ (t,x) =0, (t,x) € So, (27)
V=0 =0, Bov|g =0, (28)
o(t,b;) = i (t) — (B(t,b;),e5) =bj, i=1,...,s. (29)

Nveem ®,V® € W2((0,T) x Bs, (bj)) anst Bcex j. B cuiy meopem Biiozemus
®(t,x), VO € C1=(n+2)/22=(n+2)/p((0,T) x By, (bj)) (cm. §6.3 u reopemy 1 (pas.
«3aMedanus», c¢. 424) B [32]). B wacrmocru, D*®(t,b;) € C(|0,T]) upu |of < 2.
Torga u npoussenenus af(t, b;)®y, a0, (t,b5), af(t,b;)Pq, (t,b5), af(t, bj)®(t, b;) npu-
naygiexxar C([0,T]). Caemosaremsno, A°®(¢,b;) € C(|0,T]) (nocie, MmoxKeT GbITH,
U3MEHEeHHsI Ha MHOXKeCTBe Mepbl Hyib). Unmeem fi(t,b;) € C([0,T]). U3 ypasuenus
st @ Berrexaer, aro ®4(t,b;) € C([0,T]), © e. ®(t,b;) € C*(|0,T]) mst Beex j.
Takum o6pasoM, 3a1a4a (1)—(5) cBeneHa K SKBUBAJIEHTHON U GoJiee IPOCTOl 3a1a9e
(25)—(29), xoropyto u Gymem uccaenosarb. B cuiny Teopemsr 1 juist mro6oit dyHKIIM
f! € L,(Q7) cymecrsyer enuncrsennoe pemenne v = (9 — A%)~1 f! ypasnenus
vy — A% = f1 ynosnersopstiomee yciosusm (26)—(28) u onenke

lollwregs + lolwregm < el ey, (30)

IJie HOCTOSTHHASA ¢ He 3aBUcHT oT 7. Torma ypasuenue vy — A% — Al (ji)v = f! moxno
HepenucaTh B BUJIE

v = (9, — A A (i) + (8, — A°) L fL. (31)
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HUcnonb3ys yenoBus Ha OMEepaTopbl A;, HETPYIHO MOJYIUTH ONEHKY
18 — A) LAY (@)ollyr2 iy + 10 — AT AN (D)v]l w2 g
< c|AY@)vllL,@n < cllilloqon(Illwiz g + Ivllwizg:y). (32)

®uxcupyem ¢ € (0,1) u mosoxxum Ry = ¢/c;. Torzma B crity TeopemMbl 0 HEMOIBIZKHOMN
rouxe upu ||fil|c(jo,-) < Ro ypasnenue

v + S(f)v = v — A% — Al (v = f! (33)

HMeCT ¢MHCTBEHHOE PEIICHHE Takoe, 4To vlg: € W2(QF), Bemommenst ycnosus
(26)—(28) u mMeeT MeCTO OIEHKA

”’UHWPLQ(Qi) + ”’UHWPLQ(Q;) < 02||f1||Lp(QT)- (34)
Honoxum Br, » = {ji € C(|0,7]) : [|fillco,-)) < Ro}. Hocrosmmas cz B (33) He 3a-
Bucur or f1 € Br, » u 7 € (0,T]. Hycrs f! € WT. Ucnoassys Teopemy 2, IOy duM,
aro pemenue sajgadn (33), (26)—(28) obmazacr ceoiicreom vy € Ly (0,73 Wi (Gs,)),
v € Ly(0,7;W3(Gs,)) anst Beex 61 < § 1 CIpaseIBa OLCHKA ||U||Hg1 <esllfHllwy,
Ijie MOCTOsiHHAsSL ¢3 He 3aBucuT [ € Bp,r u 7 € (0,7]. OwueBunno, uro, B3sB
02 < 01 < §, 9Ty OLIEHKY MOXKEM IIEPENNCcaTh B BUJIE

[vllzg, < eall fHllwy (35)
rae ¢4 He 3asucur i € Br,r u 7 € (0,T], Ho 3aBUCHT OT BBIGOPA MOCTOSHHBIX
0;. Taxum obpasom, pemenne v 3agaqn (25)—(28) va unrepsase (0,7) Takoe, 4TO
v e Ly(0,T;W2(Gs,)), ve € Lyp(0,T; W) (Gs,)) mns Beex 01 € (0,6), cymecrsyer
npu Beex pt € Bpr, . Ioctponin orobpakenune fi — v = v(fL) (= (p1,... ,ts))-
N3zy4uum ero csoiticrBa. meem

v= (0 SENTV f =D At a) Y filt, ) p(t). (36)

i=1 i=r41
@uxcupyem 3 < §; < 0. Vmeem onenky (35), T. e.

lollarg, = 1@+ S Fllag, < call Fllwy - (37)
W3 ycioBuit Ha K03(DDUIMMEHTH TMeEM

Ifllwz, < esllidllcqo.r, (38)
e IOCTOSHHAS Co HE 3ABUCUT OT T U 3aBUCHT OT HOPM KO3 PUIMEHTOB B () U Be-
JIMYIH ||f1-||ng, ||(1>||Hgl (MX MOXHO 3aMEHHTbH HA ||f1||W(;T, ||(b||Hg“) Cuanrast, 4To
f; € Bryr (i = 1,2), paccMOTpUM JBa pelIeHus V1, vz 3ata4du (25)—(28), orseua-
oMmue IBYM pasiamaHbiM Habopam it (it = (p1i, p2i,- - 5 pisi) (i = 1,2). Borauras
BTOpOE ypaBHeHue (25) u3 IepBoro, MoJTyIuM, 9TO PA3HOCTb W = vy — v1, v; = v(ji'),
VIOBJIETBOPSIET yPABHEHUIO

T

a5 (P51 ) = Ya(0) - w04, e, D)o+ )2

j=1

Y () — ppn (D) A (62, D)Y® + > it 2) (g2 (t) — pia (). (39)
j=1

j=r+1
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Durcupyem 0z < 01 < §. Nmeem (py + p2)/2 € Br,,r 1 T€M caMbIM CIpaBe/InBa
onenka (em. (37))

leollzg, < el Fllwg (40)
Fo Sttt )4

j=1

U1 + V2

q>> 3 F @) a() — an(0)).

j=r+1
W3 onenok (40), (38) BBITEKAET HEPABEHCTBO

lwllag, < cllfllwg, < calliiz — il o, (41)
rje, KaK M paHee, IIOCTOSHHAS C4 3ABHCHT OT HOPM (Kak JuHefiHasd QyHKIm:)
[|(v1 + ’U2)/2||H§ , ||fi||Hr . Iycrs v, fi — pemenne 3amaun (25)—(29) u, rakum 06pa—
som, v = v(ji). Tlonaras = b; B ypasnenuu (25) ¢ yaerom Toro, uto ve(t, b;) = ¥%,
U yMHOXKAs €r0 Ha CKAJISIPHO HA €, OJLyIUM

S

72; +{(S(A)v(t, b)), €5) = Z,Ui<Aiq)vej> + Z pi(fi(t,b5), €;). (42)

i=r+1

IIpaBy1o 9acTh 9TOrO PABEHCTBA MOKHO 3allMcaTh B Buie B(t)[i, rae cTpoku Marpu-
bl B(t) 3amuceiBaioTes B Bujie

<A1(I),€j>, ey <AT(I),€J‘>, <fr+1(t, bj), 6j>, ey <fs(t, bj),€j>.

Marpura B(0) copnagator ¢ marpureit By u3 (21) u, saaqnt, det B(0) # 0. @yHKImun
fi(t,b;), ai;(t,bj), ai(t,b;) menpeppBab! 10 t B cuity ycaosmii (20). Kak ormedeno
soime, DS®(t,b;) € C([0,T]) upu |a| < 2. Taxkum 06pa3oM, Bee JIeMEHTLI MATPHUILBL
B HelpepbIBHEL 110 § 1 T€M CaMbIM cyInecTByoT 7o < T’ n nocrosguuas d3 > 0 takue,
910

|det B(t)| > 63 >0 Vt € [0,70]. (43)
Toraa cucremy (42) MOXKHO 3alKCaTh B BHJE
ji(t) = BT H(i)() = R(@),  H() = W@ + (S(io(t, by)se;),
Wy + (S(D(t ba)se5), - WL+ (S()o(t,bs), e5))T

ITo mokasaHHOMY OIEPATOp, COMOCTABJANMI BeKTOp-byHKINK [ BekTop H (i),

(44)

rje v — pertenue 3aga4un (25)—(28), oupenesien g BCeX BEKTOPOB [i TAKUX, YTO
i € Bryr (1 < 79). CsoiicrBa orobpazkenust i — v(ji) y»xke nccienobansl. Ilo-
KaykeM, 9TO MOXKHO HaiiTh Takoe 71 < 7p, 4To omepartop R(ii) = B~ 1H(ji)(t),
R : C([0,1]) — C([0,71]), onpenesen, nepesoxur map Br, -, B €6 U ABJIACTCA
B HEM CKUMAIOIUM. PacCMOTPUM BEJIUIUHY J;(O) ITo mocrpoenuto (em. (22))

S

w;(O) - ’@[J;(O) - <A(O7bj7D)u0(bj)7€j> + Z QOi<fi(07bj)7€j> =0,

1=r+1

rae j = 1,...,s. Tyems ¢ = (¥},4%,...,9)T. Torma ¢ € C([0,T]), 4(0) =
0u B~Y(t)y € C(|0,T]). B srom ciydae maiimercs umcio 71 < Tp Takoe, YTO
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||B_1(t)1/7||c([0771) < Ry/2 upu 7 < 711. Ormerum, uro R(0) = B_l(t)i/;(t). Monyaum
OLEHKH, CunTasd, 4o fi; € Br,  u T < 71. Onennm ||R(fi1) — R(fi2)||c(jo,-)) ¢ T < 71
Nmeem

R(f1) — R(E2)llcqo,m) < co (Z [[Aovi(, bi) — Aova(t, bi)llc(jo,7)
=1

Y0k Arvr (¢, bi) — parAgva(t, bz‘)||C([o,T])> . (45)
i=1 k=1
Jlanee ucnosib3yeM ycaoBust Ha KO3(DMDUIUEHTHI U BJIOYKEHUE Wg (G) ¢ C(G) npn
6 > n/p |26, reopemsr 4.6.1, 4.6.2]. Bosbmem 0 € (n/p,1—2/p) (y macn/p < 1-2/p).
Paccmorpum ogHO U3 nocseHux ciaraeMbix. Vimeem
|1k Arvi (t, bi) — por Arva(t, bi)ll e o,
< (ke — paw) (Aevi (t, b:) + Agvz(t,bi))llepo,7) /2

n “W(Ak(ul(t,bi) — Awa(t, b))

c([o,7])
< gk = paxllcqomes Y, ID*(0a(t,by) + va(t, b))l o,
la|<2
+llpak + paklloqoes >, 1D 01 (t,by) — Dva(t, bj)llepo,r))
<2

< lpaw = pzrlloqonerllont, @) +va(t, 2)ll oo, w2 (s, )

llpan + pakllegomeslon(t x) = vat, @)oo, w2 o(ay, ) (46)

rae ¢; me sapucar or 7. Ormeriy, aro v; € HY . Torga v; € C([0, 7]; Wp3_2/p(G52))
U CIPABEJIUBA OIEHKA

lor = vallggo rwe—2/7(c, ) = Collvr — vallag, . (47)

Do ecrb caencrsue TeopeMbl [33, reopema IIT 4.10.2] u Teopem 06 uHTEpPIOIAIUNA
npoctparctB CobosieBa. OTMETHM, UTO MOCTOSIHHAS € 3/I€CH MOXKET OBITh B3dATa
ne 3apucamieit or 7 € (0,7]. Tlociennee BbITeKaeT U3 TOrO IPOCTOro (haxTa, UTo
byukiun w3 Hj, MOoXKHO 1Ipoo/oKuTh Hyslem npu ¢ < 0 ¢ coxpaHeHuem Kiacca.
Hcrnonb3yst HHTEPIIOAIMOHHBIE HepaBeHCTBa [26] u (47), MoxkeM 3ammcaTthb

[v1(t, z) — va(t, x))|‘c([o77];wp2+9(052))

_ 01 _ 1—01

< ClOHUl(tvz) Uz(t’z))HC([O,T];WS’WP(G%))”Ul(t’z) UQ(t’x))||C([O,7—];LP(G§2))7

rae 61 = (2+6)/(3 —2/p). s dopmyner Hetorona — Jlelibunua uveem
1-6 ] —

[lvi(t, z) — Ug(t,.I))”C([Olﬂ_];LP(Géz)) < 7A=00@E=1/P| |y, (¢, 7)) — vae (t,2)) | 1, (@r)-

Oxonuarensro (Bg = (1 —61)(p — 1)/p)

Hvl(tvx) - U2(tvx))”c([oﬂ—];WIf”(G%)) < CllTﬁOHUI - U2HH52- (48)
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AHaJoruvHO MOJIYYNM, ITO
H'Ul (t, x) + U2(tv ‘r)||C([O,T];Wﬁ+9(G52)) < 0117#30 H'Ul + 'U2HHg2- (49)
N3 (46), (41), (48), (49) upuxomuM K OIEHKE

|1k Arvr (£, bi) — porArva(t,6:) || e o, < ci2m™ I = 22l o, (50)

rJle MOCTOSIHHAS C12 HE 3aBUCUT OT T < 71. AHAJOMMYHO IOJIYYUM

[ Agvi (t,bi) — Aova(t, b:) (o, < c1s™™ |1k — pakllc(o,7))- (51)

OxonvaTesbHO NMeeM oneHKy (cMm. (29))

|R(fi1) — R(ii2) ||l cpo,) < e1s™™ || ik — poklloo,)- (52)

Boi6pas 7o < 71 Takoe, uTo c147°° < 1/2, mpmaeM K TOMy, 9TO omepaTop R cxKu-
Malommit u mepesogut map Bp, r B cebs muast Bcex 7 < To. Ilpumensis Teopemy
0 HEIOJIBUKHON TOUKe, MOKaXKeM CyIecTBoBaHue pemiernst cucrembl (44). Tloso-
xkuM v = v(f). IlokazkeM, 4T0 mocrpoeHHas (DYHKLIUSA YIOBIETBOPSAET YCJIOBHSIM
nepeonpezenenus (29). BosbMeM B (25) & = b; U yMHOXKHEM IIOIyI€HHOE PABEHCTBO
CKaJIApHO Ha e;. Ilomyunm cucreMmy paBeHCTB

ks S
(Wi, b5), €5 + (SRU(E, b)) e5) = D i (A 0(8b5) 650 + Y (fi(t,b5), €5) 15 (b).
j=1 j=r+1
(53)
Berauras stu pasencrsa u3 (42), momyunm (v (t,b;), e;) — {[;; = 0 JyIst BCex j, 3Ha-
YUT, BBIIOJHEHB! ycjaoBus (29). EIMHCTBEHHOCTH pelleHuit BBITEKAET U3 OIEHOK,
NPHUBEICHHBIX TP JIOKA3aTEIbCTBE CyNIeCTBOBAHUS pernennii. [

3AMEYAHUE. OneHka yCTONYUBOCTHU JIJIs PEIIEHUI TAKXKE UMEET MECTO.
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Abstract: We examine the solvability questions in Sobolev spaces of parabolic inverse
coefficient problems in stratified media with transmission conditions of the imperfect
contact type. A solution has all generalized derivatives involved in the equation sum-
mable to some power. The overdetermination conditions are the values of a solution at
some points lying in the domain. The proof relies a priori estimates and the fixed-point
theorem.

DOI: 10.25587/2411-9326-2024-2-31-45

Keywords: parabolic equation, inverse problem, initial-boundary value problem, well-
posedness, existence, uniqueness.

REFERENCES

. Ladyzhenskaya O. A., Solonnikov V. A., Uraltseva N. N., Linear and Quasilinear Equations

of Parabolic Type, Nauka, Moscow (1967).

. Permyakov P. P. Identification of Parameters in the Mathematical Model of Heat and Moisture

Transfer in Frozen Soils, Nauka, Novosibirsk (1989).

. Prilepko A. I., Orlovsky D. G., and Vasin I. A.; Methods for Solving Inverse Problems in

Mathematical Physics, Marcel Dekker, New York (1999).

. Belov Ya. Ya., Inverse Problems for Parabolic Equations, VSP, Utrecht (2002).
. Isakov V., Inverse Problems for Partial Differential Equations, Springer, Berlin (2006).
. Kabanikhin S. I., Inverse and Ill-Posed Problems, Theory and Applications, Walter de Gruy-

ter, Boston; Berlin (2012).

. Hussein M. S. and Huntul M. J., “Simultaneous identification of thermal conductivity and

heat source in the heat equation,” Iraqi J. Sci., 62, No. 6, 1968-1978 (2021).

. Ivanchov M., Inverse Problems for Equations of Parabolic Type, WNTL Publ., Lviv (2003).
. Iskenderov A. D., “Multidimensional inverse problems for linear and quasilinear parabolic

equations [in Russian|,” Dokl. Akad. Nauk, 225, No. 5, 1005-1008 (1975).

Iskenderov A. D. and Akhundov A. Ya., “Inverse problem for a linear system of parabolic
equations,” Dokl. Math., 79, No. 1, 73-75 (2009).

Frolenkov I. V. and Romanenko G. V., “On the solution of an inverse problem for a multidimen-
sional parabolic equation [in Russian],” Sib. Zhurn. Ind. Mat., 15, No. 2, 139-146 (2012).
Pyatkov S. G. and Samkov M. L., “On some classes of coefficient inverse problems for parabolic
systems of equations,” Sib. Adv. Math., 22, No. 4, 287-302 (2012).

Pyatkov S. G. and Tsybikov B. N., “On some classes of inverse problems for parabolic and
elliptic equations,” J. Evol. Equ., 11, No. 1, 155-186 (2011).

Pyatkov S. G., “On some classes of inverse problems for parabolic equations,” J. Inverse Ill-
Posed Probl., 18, No. 8, 917-934 (2011).

Pyatkov S. G., “On some classes of inverse problems with overdetermination data on spatial
manifolds,” Sib. Math. J., 57, No. 5, 870-880 (2016).

(© 2024 A. A. Potapkov, S. G. Pyatkov



On some classes of coefficirnt inverse problems 45

16.

17.

18.

19.

20.

21.
22.

23.

24.

25.

26.

27.

28.

29.

30.
31.

32.

33.

Pyatkov S. G. and Rotko V. V., “On some parabolic inverse problems with the pointwise
overdetermination,” Sib. Adv. Math., 30, No. 2, 124-142 (2020).

Pyatkov S. G. and Rotko V. V., “Inverse problems with pointwise overdetermination for some
quasilinear parabolic systems,” AIP Conf. Proc., 1907, paper ID 020008 (2017).

Egger H., Pietschmann J.-F.; and Schlottbom M., “Identification of nonlinear heat conduction
laws,” J. Inverse Ill-Posed Probl., 23, No. 5, 429-437 (2015).

Samarskii A. A. and Vabishchevich P. N., Numerical Methods for Solving Inverse Problems
of Mathematical Physics, Walter de Gruyter, Berlin; Boston (2007).

Alifanov O. M., Artyukhin E. A., and Nenarokomov A. V., Inverse Problems in the Study of
Complex Heat Transfer [in Russian|, Yanus-K, Moscow (2009).

Ozisik M. N. and Orlande H. R. B., Inverse Heat Transfer, Taylor & Francis, New York (2000).
Huntul M. J. and Lesnic D., “An inverse problem of finding the time-dependent thermal
conductivity from boundary data,” Int. Commun. Heat Mass Transfer, 85, 147-154 (2017).
Kabanikhin S. I., Khasanov A. Kh., and Penenko A. V., “Gradient descent method for solving
inverse coefficient problem of heat conduction [in Russian],” Sib. J. Comput. Math., 11, No. 1,
41-51 (2008).

Pyatkov S. G., “Identification of thermophysical parameters in mathematical models of heat
and mass transfer,” J. Comput. Eng. Math., 9, No. 2, 52-66 (2022).

Pyatkov S. G. and Sokolkov O. I., “On some classes of coefficient inverse problems for deter-
mining thermophysical parameters in stratified media [in Russian|,” Mat. Zamet. SVFU, 30,
No. 2, 56-74 (2023).

Triebel H., Interpolation Theory, Function Spaces, Differential Operators, VEB Deutsch. Verl.
Wissensch., Berlin (1978).

Denk R., Hieber M., and Priiss J., “Optimal LP-L9%-estimates for parabolic boundary value
problems with inhomogeneous data,” Math. Z., 257, No. 1, 93-224 (2007).

Denk R., Hieber M., and Priiss J., “ R-boundedness, Fourier multipliers, and problems of
elliptic and parabolic type,” Mem. AMS, 166, No. 788 (2003).

Belonogov V. A. and Pyatkov S. G., “On the solvability of conjugation problems with condi-
tions of the non-ideal contact type [in Russian|,” Izv. Vuzov, Mat., No. 7, 18-32 (2020).
Mikhaylov V. P., Partial Differential Equations, Imp. Publ, Chicago (1978).

Amann H., “Compact embeddings of vector-valued Sobolev and Besov spaces,” Glasnik Mat.,
35, 161-177 (2000).

Nikolsky S. M., Approximation of Functions of Several Variables and Imbedding Theorems,
Springer, Berlin; Heidelberg; New York (1975).

Amann H., Linear and Quasilinear Parabolic Problems, Birkhduser, Basel (1995).

Submitted March 13, 202/
Revised March 22, 202/
Accepted May 30, 2024

Sergey G. Pyatkov, Alexey A. Potapkov

Yugra State University,

16 Chekhov Street, 628012 Khanty-Mansiisk, Russia
s_pyatkov@ugrasu.ru, a_potapkov@ugrasu.ru



Maremarnyeckue 3amerku CBOY
Anpenb—urtonn, 2024. Tom 31, Ne 2

VK 517.957

OB NHBAPUAHTAX JNTANJACA OBYMEPHbIX
HENMMHEMHBIX YPABHEHUI B YACTHbIX
MPON3BOAHBLIX NMOJINMHOMUWAJIBHOIO TUMNA

. B. Paxmesaesuu

Awnnoranusi. lccienyrorcss 1ByMepHbIE HeJIMHEHHBIE yPABHEHHUSI B YACTHBIX IIPOM3-
BOJHBIX BTOPOrO MOPSKA C TMEPEMEHHBIMU KO3 duimenramu, JeBas 49acTb KOTOPBIX
pecTaBIseT cob0i OHOPOAHBIN MOJIMHOM BTOPOM CTENEeHH IO MCKOMOH (DbYHKINU U ee
MIPOU3BOJAHBIM. PaccMaTpUBAETC MHOXKECTBO JIMHEHHBIX MyJIbTUILIMKATUBHBIX TPEO6-
pa30BaHMil HEU3BECTHONW (DYHKINU, COXPAHSIONIMX BHJ UCXOJHOIO ypaBHeHHs. AHaio-
TUYHO JIMHEHHBIM yPaBHEHHSM WHBapHUaHTHI Jlamaca OIpenessiioTcsi KaK WHBAPUAHTHI
3TOro npeobpaszosanus. [lomyueHsl BolparkeHus JJjIsl HHBapraHToB Jlansaca depes Koad-
dburmenTsl ypaBHEHUS U UX TEpBble MPOU3BOAHbIE. J[JIsi paccMaTpuBaeMbIX ypaBHEHUN
HaIeHBl 9KBUBAJIEHTHBIE CUCTEMbI yPABHEHUI [IEPBOIO IOPsAKA, COAEpIKAIe NHBAPU-
anTel Jlamtaca. Iloka3zaHo, 4TO ecyiu OfuH M3 MHBApUaHTOB Jlamiaca paBeH HYJIIO, TO
COOTBETCTBYIONIAs CHCTEMa CBOIUTCS K OJHOMY yYPaBHEHHUIO IIEPBOTO MOPSIKA. TakiKe B
3TOM CJIydae MPU BBITIOJHEHUU HEKOTOPBIX JOMOJHUTEIbHBIX YCIOBUH Ha KO3MDDUIIHEHTHI
MOXKeT OBITH ITOJIyYEHO PeIeHIe NCXOIHOTO ypaBHEHUsI B KBaJparypax. VcciaemoBaHust
MIPOBEJIEHBI JJ1sl TUMIEPOOIUIECKOTO YPABHEHHS CO CMEITAHHON IPOU3BOIHON U JJisl HEJIH-
HEH{HOIO ypaBHEHHSI BTOPOrO MOPSIKA OOIIEr0 BHUIA C OJHOPOIHBIM IIOJIUHOMOM BTOPOM
CTEIEHU 10 UCKOMOM (DYHKIMU U €€ MPOU3BOAHBIM. JIJIst 9THX CJIyYaeB IMOJIyYEHBI Bbl-
paXkKeHusl JUIsl MHBApUaHTOB Jlamraca U NpuUBEAEHBI COOTBETCTBYIOIINE SKBHUBAJIEHTHBIE
CHUCTEMBI.

DOI: 10.25587/2411-9326-2024-2-46-58

KuaroueBblie ciioBa: puddepeHnpaibHOe ypaBHEHNE B YACTHBIX IIPOU3BOJHBIX, TUIIED-
GoJsinueckoe ypaBHeHUe, WHBapuaHT Jlamiaca, JuHeiHOe MyJIBTUIINKATHBHOE Ipeobpa-
30BaHUE.

Bsegenue

IIpu mccnenoBanuy CBOWCTB CUMMETPHUHU U KJACCU(MUKAIUN JIMTHEWHBIX THIIED-
OOJIMIeCKUX YpaBHEHUN C mepeMeHHbIME Kodddurmentamu BecbMa 3hHEKTUBHBIM
SIBJISIETCSI TI0JIX0/], OCHOBAHHbIN Ha UCIIOIb30BaHnu nunBapuanTos Jlamaca [1, 2]. Kak
W3BECTHO, MHBApUAHTHI Jlarmmaca — 310 GyHKIun K03hMUINEHTOB YPABHEHUS U UX
[IPOM3BO/IHBIX, MHBAPHAHTHbIE OTHOCUTEJIHHO JINHEHHOIO MYJIbTUIINKATHBHOT'O IIpe-
obpazoBaHusi, KOTOPOE IIEPEBOJIUT UCXOIHOE nud depeHnnaabHoe YpaBHEHUE B YPaB-
HEHUe TOrO e Buja. IlepBoHAYAIBLHO 3TN NMHBAPUAHTHI ObLIN HAWIEHBI JJIs TBYMED-
HOT'O JIMHEIHOT'O TUIepOOJIMIeCKOr0 YPABHEHNS C IEPEMEHHBIMU KO3 duIimenTaMm

ull, + alw, g, + b, g, + ol y)u = 0. (0.1)

Yy

(© 2024 PaxmesieBna U. B.
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3zeck M HUZKe HPUHATEH 0603HadYenus u), = Ou/dr, u), = du/dy, ull, = 9*u/dxdy
u T. 1. s nanHOro ypaBHeHnsi nHpapuanTbl Jlamiaca umeor sug (1, 2

h=a,+ab—c, k=>b,+ab—c (0.2)

B nmanpreiimem maBapuanTh! Jlamiaca OblIn HaWIEHbI I8 PA3JIMYHBIX TUIOB JIH-
HeWHBIX ypaBHEHUIl KaK BTOPOro, Tak U Gojiee BbICOKUX NOpaiakoB [3—6]. Takxke
B psijie paboT MHBapHAHTHI Jlamjgaca m ux 0OOOIIEHNS TPUMEHSIINCh K UCCJIeI0Ba~
HUIO HEKOTOPBIX KJIACCOB HEJMHENHBIX ypaBHEHHI B YaCTHBIX MPOU3BOJHBIX [7-9).
Ilenbro mamHoOil pabOTHI ABJISIETCS HAXOXKICHIE NHBAPUAHTOB Jlariaca Jjist 1ByMep-
HBIX HEJIMHEWHBIX YPaBHEHUI BTOPOTO MOPSIKA ¢ IepeMeHHbIMI KO3 duimenTamu,
COJTEPIKAIIIX OTHOPOIHBIH ITOJTMHOM BTOPOIl CTEIEHN OT UCKOMOU (DYHKIINA U €€ IIPO-
WM3BOJHBIX.

1. T'unepbosmyieckoe ypaBHEeHUE
CO CMeEIIIaHHOl ITPOU3BOIHOMN

Paccmorpum HetmHetHOE rumepbosImIecKoe ypaBHEHNE BTOPOTO MOPSIKA OTHO-
CHUTENILHO Hem3BeCTHOH dyHKImn u = u(z, y):

uuly, + bia(x, y)uyu, + bor (x, y)uul, + boa(z, y)uu,, + c(z, y)u® = 0. (1.1)

JleBag wacth ypasuenus (1.1) npejicrasisier coboii OXHOPOIHBIA IOJIMHOM CIIEIIU-
aJIbHOTO BUJIA 110 HEM3BECTHOW (DYHKIIUU U €€ MPOU3BOIHBIM.

IMpumenum K ypasuenuio (1.1) MyJbTUILIMKATUBHOE IIPEOOPA30BAHUE UCKOMOI
dyHKIUYU, KOTOPOe UMeET BUJL

u($7y) - )\(x,y)v(:zc,y). (12)

IMoacrasus (1.2) B ypasuenue (1.1), nocse muddepenimpoBanus u 3JeMeHTAPHBIX
mpeoOpa30BaHuUil MO/IydaeM ypaBHEHNE OTHOCATEILHO HOBOI HEM3BECTHON (DYyHKITIHN

v(z,y):
vv;’y +512(x, y)v;v; + oy (z,y)vvl, +502(x, y)vv; + ¢z, y)v? = 0. (1.3)

31ech U BCIOY JaJiee 3HAKOM «THJIb/Ia» OTMEYEHbI BEJIMIMHBI, OTHOCSIITUECS K TIPe-
obpa3zoBaHHOMY ypaBHeHH. Haifimem, KaKuM YCJIOBHUSM JOJKHBI YIOBJIETBOPSITH
ko3ddunmenter ypasrernnii (1.1), (1.3), 4To6bI OJHO W3 TUX yPABHEHWH MOYKHO
6BLIO IPUBECTH K JPYTOMY C TIOMOIIBIO Tpeobpasosanust (1.2).

Kosddunuenrsr npeobpasosannoro ypasaenus (1.3) ompeesnsiroTcst BbIpazke-

HUAMN
~ - 2\ - N
b1z = b12, bor = bo1 + 7”(1 +b12), bo2 = boa + 71(1 + bi2), (1.4)
Y ’ IRV A\
C= Zp —Zp T Y _— 1.5
c C+/\01+>\02+ \2 12 + h\ ( )

U3 dopmya (1.4) noaygaem

o2 — boa bor — boy
A = A [ L 1.6
¥ 1+bip 7 7Y 1+ b2 (16)
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Huddepennupyst nepsoe u3 coornomenuit (1.6) 1o y, a Bropoe 1mo x, HAXOIUM CMe-
IIIAHHBIE IPOU3BOJIHBIE:
Ny = ((As = Ag)y + (A1 — Ar)(Ay — Ag))A, (1.7a)
Ny, = ((Ay = Ay)), + (A1 — Ap)(Ag — Az))A. (1.76)
311ech BBeJIeHBI 0003HATEHUSI:
Ay = box , 2 = bz , A= bOi? Ay = boz-
14 by 1+ b12 1+ byo 1+ b2
Ha ocHoBanuu TeopeMbl 0 PABEHCTBE CMENIAaHHBIX NPOU3BoAHbIX U3 (1.7a,6) ciaenyer:
(A1 — A1), = (Ao — Ao),,. (1.9)
Hauee, mopcrasiss (1.6), (1.76) B (1.5) u yunreiBas (1.8), nomygaem
c—c = (/Tl —Al);+ (1+b12)(gl —Al)(gg —A2)+b01 (Zg —A2)+b02(21 —Al). (110)
ITocste HEKOTOPBIX JIeMEeHTAPHBIX peobpazosanuii (1.10) mpusoauTes K By
c—c= (/Tl —Al);+(1+b12)(glz’4vg —A1A2). (111)

ITpeo6pasyem (1.11) Tak, 4ToOBI B JI€BOI YacTU OBIIM TOJBKO CJIATAEMBIE, OTHOCS-

(1.8)

muecs K NpeoOpa3soBaHHOMY YPABHEHHUIO, & B IPABOIl 9aCTU — OTHOCIIUECT TOJIBKO
K UCXOJ[HOMY ypaBHeHUio, Toraa ¢ yaeroM (1.8) u nepsoit opmyist (1.4) maxomum

& ( b botboa - O [ b bo1b
o () e o 0 () e
Oor 1+ b2 1+ bio Ox \ 1+ b12 1+ bi2
U3 (1.12) cnenyer, uro dbyHKIMA
0 bo1 bo1bo2
L =— — 1.13
! 5$<1+b12>+1+512 ¢ (1.13)

He U3MEHSeTCS IpH peobpazoBanuu (1.2) u MOITOMY ABJSETCH HHBAPHAHTOM yDAB-
Herust (1.1) OTHOCHTENILHO JAHHOTO MPEOOPA3OBAHUSI.

Jlu1st HaXOXK IeHUsT BTOPOro nHBapuanTa, nogacrasisis (1.6), (1.7a) B (1.5) u yun-
teiBast (1.8), mosydaem

c—c= (Ag —Ag)ly + (1 +512)(21 —Al)(gz —As) +b01(22 —Ag) +b()2(111 —Al). (1.14)
B pesysibraTe paccyKeHunil, aHAJOTUYHBIX NPUBEIeHHBIM Bbimte, (1.14) npeobpasy-
eTcsl K BUJLY

o ( b borboy - O [ b bo1b
_< 02 >+ o1boz _c_( 02 ) Cdaber g5
8y 1+ b12 1+ b12 33/ 1+ b12 1+ b12
U3 (1.15) cienyer, uro dbyHKImA
5} bo2 > bo1bo2
Iy = — + — 1.16
2 oy <1+bl2 14 b1 ¢ (1.16)

TaKIKe SIBJISIETCS NHBApUAaHTOM ypasHeHus (1.1) oTHOCHTEIbHO ipeobpasosanust (1.2).
HUcnonbays coorrormenus (1.6), HeTpyHO BbIpasuTh GYyHKIUO (X, ), onpeme-
JISTIONIY 10 BUJ ipeobpasosanus (1.2), uepes koadbdunnents: ypasaennii (1.1), (1.3):
bo2 — boa bo1 — bos > }
Az, y) = Apex / dx + d , 1.17
() = expd [ (B2 00 B g (1.17)
rjue Ao — IPOU3BOJILHASA MTOCTOSHHAS.

Wrak, B pe3ysibTaTe IPOBEIEHHBIX PACCYXKIEHAN JOKA3aHa CJIe/LY IO
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Teopema 1.1. Vpapuenwme (1.1) Moxker GbITb IPHBELEHO ¢ HOMOIIBIO IPEOG-
pasosanus (1.2) k apyromy ypasaermto (1.3) Toro ke Buma B TOM H TOJIBKO B TOM
ciydae, econ uHBapuaHThl 11, I, onpenensiempre popmymamu (1.13), (1.16), oxn-
HAKOBDI /15l 06OHX yPABHEHHIl I €C/H BBIIOIHEHO yciaosHe bis — bia. Ilpm sTom
koappumment A(z,y) npeobpasopanus (1.2) onpenesnsiercss popmyiioit (1.17).

CanencrBue 1. Ecsu gz ypasuenns (1.1) I = Iy = 0, 1o 310 ypaBHeHHe ¢
momonibio rpeobpaszoBanus (1.2) Moxker ObITh IPUBEAECHO K BUILY

vy, + biz(z, y)v,v, = 0. (1.18)

JlanHOE yTBEp:KIIEHHE CJIeyeT u3 TOro gakrta, 4ro s ypasuerns (1.18) oba un-
BapuaHTa paBHbI 0, a ko3puiuent bis Takoil ke, KaK y HCXOJHOIO yDaBHEHHS

(1.1).

Teopema 1.2. Vpasuenne (1.1) 95KBHBAJIEHTHO CJELYIONIUM CHCTEMAM yDABHE-
HHIf OTHOCHTEJILHO Heu3BecTHbIX pyHknumit u(x,y), w(r,y):

bo1
uu), + u? =
Yo 1+ bio ’
o (1.19)
w; + (bog + (512 — 1);1) w = Iu.
b
uu; + 1 +OZ u? = w,
12
y (1.20)
w; + (b01 + (512 — 1)%) w = Iru.

JLOKABATEJIBCTBO. 1. Paccmorpum HemHeltHbit 1uddepeHImaabHbIil orepa-
TOp

0 ul, 0
Plu] = <% +p2 +p37> <u6—y +p1U> u, (1.21)

rze p1,2,3(x, y) — MOKa Heonpe ieseHHbIe KO3 MUIMEHTHI, KOTOPBIe OyIyT Olpeiese-
Hbl HUKe. PackpbiBas ckoOku, npeobpasyem oneparop (1.21):

Plu] = wuly, + (1+ p3)ujuy, + p1(2 + p3)uuy, + pauuy, + (p1p2 + (p1)2)u?.  (1.22)
Onpenenum Ko3(pPUIMEHTHI P1, P2, P3 TAK, ITOOBI BBIIIOJIHSIIUCH COOTHOIIEHUSI
L+ps=0bi2, pi1(2+p3)="bo1, p2=boa (1.23)
U3 (1.23) maxomum, 910 91U KOI(DMUIUEHTHI OIPEIENISIOTCS BbIPAKEHUIMI

__bo
1+ by’

D1 p2 = bo2, p3 =bi2 — 1. (1.24)

Ucnonbays (1.22), (1.23), (1.24) u yunrssag (1.13), Plu] MOXXHO IpeacTaBUTh B
BUJIE

Plu] = (uugy+b12(:1c,y)u;u;+b01(:ﬂ,y)uu;erog(:E,y)uu;+c(;v,y)u2)+11u2. (1.25)
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Beipazkenue B ckobkax B (1.25) coBnajaer ¢ jieBoii yacTbio ypasaerus (1.1). Tlosto-
My ecan u(2, y) yaosaersopsier ypasHenuo (1.1), To (1.25) cBoaures K caemyonemy:

Plu] = Iiu?. (1.26)
BBosst HOBy10 HEM3BECTHYIO (DYHKITIIO
w(z,y) = uu, + p1u?,

nosyuaem u3 (1.21), (1.23) u (1.26), uro dyukmmu u(x,y), w(z,y) yIOBIETBOPSIOT
cucreme ypasHeHuit (1.19).
2. PaccmorpuM Heuuelnblit auddepeHmaabHbil omepaTop

o) uy, o)
U =|=—+q@t+tpe—||u—+qu|u 1.27
Al (g + e+ ar2) (gt (127)
[IpoBoxs paccy)aeHusi, aHAJOTUYIHBIE TI. 1 TOKA3aTe/IbCTBA, HAXOIAM

__boe
1+ b2’

‘il a2 =bo1, g3 =biz—1, (1.28)

torga Q[u| MOXKHO TIpeICTAaBUTH B BUJIE
Qlul = (uuly, +bia(x, y)uluy, +bor (2, y)uwl, +boz (2, y)uuy, +c(z, y)u?) + Lu®. (1.29)

Ananornuso 1. 1 ecim u(z,y) yaosnersopsier ypasaernuto (1.1), To (1.29) cBomurcs
K CJIE/LYIOIIEMY:
Q[u] = Lu?. (1.30)

BBogist HOByIO Hem3BeCcTHYIO (DYHKITHIO
— 2
U](IE,y) — UUy, + qiu”,

nosyuaem u3 (1.27), (1.28) u (1.30), uro dyukuun u(z,y), w(z,y) yIOBIETBOPSIIOT
cucreme ypasaernii (1.20) . Teopema mokaszana.

Ucnonbays cucremsr (1.19), (1.20) , MOXKHO HOJNYIUTH 06IIEe PEIIEHNE yPaBHE-
uust (1.1) B KBagpaTypax B HEKOTOPBIX YACTHBIX CJIyUasixX, KOTOPBIE IPUBEJIEM HUZKE.

Cayuair 1. I = 0, big = 1. Pemasa Bropoe ypasuenue cucrembl (1.19),
HAXOAM

w(z,y) — woly) exp <—/b02 d:zc) , (1.31)

rie wo(y) — npoussosbHas dyakuus. [oxcrasiass (1.31) B mepsoe ypaBHeHHe cu-
cremsl (1.19), Haxoaum obinee pemenne ypasserust (1.1):

st { [t 2 [wtiroes ([ [maie) an] s (- )}

(1.32)
rae ug(z), wo(y) — Npon3BOIBbHBIE DYHKIUH.
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Cny4uan 2. Is = 0, by = 1. Anajornyno ciydaio 1, pemiasi BTopoe ypaBHeHUe
cucremst (1.20), HaxomUM

w(z,y) = wo(z) exp <—/b01 dy) : (1.33)

ryie wo(x) — npousBoabHas dyukuus. [oxcrasnsgs (1.33) B epBoe ypaBHeHue cu-
cremsl (1.20), Haxoaum obiee pemenne ypasaerust (1.1):

e~ { [t 2 fatoross (-~ [ i) ] o ([ te) )

(1.34)
e ug(y), wo(z) — NponsBosIbHBIE DYHKIUH.

2. NuBapuauThl ypaBHeHUsI OOIIlero BUA.
Ananus runep60IMYecKOro ypaBHEeHUsd

PaccmoTpuM Ternepb JiByMepHOE ypaBHEHHE BTOPOIrO MOPsiIKa OBIIero BUia, co-

JIepsKalee OJHOPOIHBIN MOJUHOM OT UCKOMOMN (hYHKIIUU U €€ TPOU3BOJIHBIX:
" " " 1\2
u(auum + 12U gy, + agg’uyy) + bu(ux)
/i 1\2 / / 2 _

+ brauguy, + baa(uy )™ + boruuy, + boguuy, + cu® = 0. (2.1)

[pemonaraercs, uro koadduiments! ypasuenus (2.1) saBigorcs QyHKIUIMA He3a-

BHCHMBIX IIEPEMEHHBIX: G;; = Gi;(x,y), bij = bij(z,y), ¢ = c(z,y). IIpumennm x

ypasHeHuo (2.1) JuHeiiHOe MyJIbTUIIMKATHBHOE Tpeobpasosanue (1.2), B pesysbra-
Te wero (2.1) mpuBoguTCs K BUIY

~ o~ M~ N T N2 T T AVEES ' T r =2
V(A11Vy, + 120y, +A22v,,,) +b11 (V)" +b12v, vy + baa(vy,) + bo1vvy, +bogvvy, +cv” = 0.

(2.2)
Koadbduimenrsr ypasuenuit (2.1) u (2.2) ¢Bsa3aHbl COOTHONIEHUSIMA
a1 = G11, Q12 = G12, G22 = G22, by =Db11, b1z =Dbi2, bao = bao, (2.3)
- N by
bor = bo1 + 2(a11 + b11)71 + (a12 + b12)7y, (2.4a)
~ 2\ I
boz = boz + 2(a22 + b22)7y + (a12 + b12)f7 (2.46)

_ )\// )\/ 2 )‘Ix/ )\/z)\l )\// )\/ 2 )\/ )\/
¢ =ctan—=+bi <—z> tajg—L+bia—=L +a—L +byy <—y> +bo1 =E +boa—L.

A A A A2 A A A A
(2.5)
" DY
Pemas cucremy ypasaenuii (2.4a,6) OTHOCUTEIHHO 5B, ¢ ¥ yUUTBIBAs COOTHOIICHUS
(2.3), naxoaum
Az = (B1 = Bi)\, X, = (B2 — B2), (2.6)
rze
 2bo1 (a2 + baz) — boz (a2 + bi2)  2bo2(a11 + bi1) — boi (a2 + bi2)
Bl - A ) B2 - A s

(2.7)
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A = 4(ar1 + bi1)(azs + baz) — (a12 + b12)?, (2.7a)
El _ 2501(522 +322) —302(512 +312) §2 _ 2502(511 +311) —301(512 +312)
A ’ A ’
(2.8)
A= 4(611 —+ bll)(aQQ —+ b22) — (612 —+ b12)2. (28&)

Huddepenupyst nepsoe u3 coorromenuii (2.6) 10 y, a BTOpoe 10 I, NOJIydaeM

)‘;/y = ((El - Bl); + (El - Bl)(éz — Ba))A, (2.9a)
X! = ((B2 = Ba)l, + (By — B1)(B2 — Ba))A. (2.96)
Ha ocHoBanuu TeopeMbl 0 paBEHCTBE CMEITAHHBIX ITPOU3BOIHBIX U3 (2.9&,6) HaXO M
(Bi — B1); = (B2 — By),, (2.10)

nJjim
B, — Bb, = B, — Bj,. (2.10a)

B cBoio ouepenp, u3 (2.10a) ciemyer, 9ro upu npeobpazosanuu (1.2) mig ypaBHeHUs
(2.1) BenmunHa
L =B, - B, (2.11)
SABJIAETCS. MHBAPUAHTOM.
IMoxcraBum B (2.5) BBIpakenust (2.6) mis %7 /\—Aly ¢ yuerom (2.7), (2.7a), (2.8),

(2.8a). Tocne muddepeHIpoBaHUsT 1 HEKOTOPBIX NPEOOPA3OBAHUI TIOJIyIaeM BbI-
paskeHue Jiisi BTOPOr'0 WHBAPUAHTA!

(a2a + b2)b3; + (a11 + b11)b3s — (a12 + b12)bo1bo2
X )

I, = allBiz + algBiy + angéy +
(2.12)

3 mpoBeieHHBIX BBIMIE PACCYKIEHUN CJIETyeT

Teopema 2.1. Vpapuenwme (2.1) Moxker GbITb IPHBELEHO ¢ HOMOIIBIO IPEOG-
pasosanus (1.2) k apyromy ypasHeHmio (2.2) TOro ke BHAA B TOM H TOJBKO B TOM
caydae, ecan naBapuaHThl 11, Iz, onpenesnsiemsre popmymamu (2.11), (2.12), oauna-
KOBBI JIJIsT 060X YPABHEHHI} H €CJIH BBIIOJIHEHBI yca0BHs (2.3) st Koo pUIueHToR
060uxX ypaBHEHHUH.

3AMEYAHUE. s cpaBHeHusi ¢ pe3yiabraTramu pasi. 1 Bmecro [, Iy Gymem
WCIIOJIb30BaTh UHBApUaHThl J1 = [ — ai21y, Jo = Is, Tak 4To mjs Jo cpaBeainBo
Boipazkenue (2.12), a Ji onpejeiisiercs BbIpazkKeHueM

(a2a + baa)b3; + (a11 + b11)b3s — (a12 + b12)bo1boz
X )

Jl = auBiz + algBéz + angéy +

(2.13)
Herpynmo mpoBepuTh, ITO B 9aCTHOM CJaydae ai; = b1 = agg = bog = 0, a1a = 1
nuBapuanTel (2.13), (2.12) cBopgarcs k maBapuanTaMm (1.13), (1.16) coorBeTcTBEHHO,
[IOJIyYE€HHBIM B pa3il. 1 jyis runepboInIecKoro ypaBHEHNsI CO CMEIIaHHON IIPOU3BOJI-
HOIA.
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Teopema 2.2. Ilycrs koapdunuentnor ypapuenus (2.1)
a1 — 17 ag9 — —1, a2 — O, (214)

9TO COOTBETCTBYET FHH€p6OJH/I‘I€CKOJVIy YpaBHECHHIO KAHOHHYE€CKOI'O BH/IA.
1. EcJjin BBIIOJIHEHO AOIIOJIHUTeJ/IbHOE YCJIOBHUE

b12 = —b11 — b22, (215)

To ypaBHerne (2.1) 9KBHBAJIEHTHO CJIEAYIOMEH cucTeMe ypaBHEHHIH:

boi +bo2 o
uc =

! !
x + — s
ul uy) 2+ b1y — ba
bo1(1 — baz) — bo2(1 + b11) u! u!
/ ! b —1)=% — (b 1 _Y — Hiu.
ww+wy+( 2+ b11 — ba (b )u (b2 + )u w 1
(2.16)
2. EcJin BBINOJIHEHO JOIOJHHTEIBHOE YCJIOBHE
bi2 = b11 + bao, (2.17)
To ypaBHenne (2.1) 9KBHBAJIEHTHO CJIEAYIOMEH cHucTeMe ypaBHEHHIH:
bo1 — bo2
wlu!, +ul) + —————=u? = w,
( ¢ y) 2+ b11 — bog
bo1(1 — baa) + boa(1 + b11) u! u!
A b —1)= b 1 _Y — Hou.
Yo wy+( 2+ b11 — ba (b )u+(22+)u w 2u
(2.18)

Bnecy Hy, Hy — unBapuanrsl ypasuenus (2.1), KoTOpbIE IJIsSI pACCMATDPHBAEMOIO
cJIydast ONMpPenesIoTCs BhIPDAasKEeHUSIMH

o - (g . ﬁ) bor + o2 bFy(1 — bag) = bFo (1 + bu1) + borbozbrz e, (2.19)
dr  dy) 2+ b1 — b (24 b11 — b22)? T

Hy — (g _ ﬁ) bo1 — bo2 +[)(2)1(1 - bgg) - b(2)2(1 + bll) + bo1bo2012 —c (2 20)
dr  dy) 2+ b1 — b (2 4+ b11 — b22)? T

JTOKA3ATEJBLCTBO. Ilycrs Hemmueitnsiit quddepennnanbabiii oneparop Plu]
OIIPEJEISCTCH BhIPAYKCHIEM

3} 0 uly uy, 0 d
Plu] = <p1£ +p28—y RS i ) <q1ua—x + qzua—y + (J3u> u, (2.21)

rje p1.2,3.4,5(%, y), q1,2,3(x, y) — NOKa HeolperesieHHBIE KO3MDMUIMEHTHI, KOTOPBIE OY-
JIyT OLpEJEIeHbl HUKE. B pesyJibTare 3JIeMEHTAPHBIX IIPEOOPa30BaHUI BLIPAKEHUE

(2.21) MOXKHO TIPEJICTABUTD B BH/IE

Plu] = prqrun),+ (p1g2-+paqr ) unly, +pagauny, +(p1+pa)qr (ul) +(p2-+ps ) g2 (1))
+ (P12 + p2q1 + Paga + Psqr)upuy + (P1g1, + P2dhy, + 2P1G3 + P3q1 + pags)uu,
+ (P1Ghs + P2hy + 2P2a3 + P32 + Psgs)uny, + (P1ab, + P2dh, + Pags)u®,  (2.22)



54 H. B. PaxmeneBud

Oupenenum p;, g; Tax, 91066l K03(hdUnuenTsl Bo Beex ciaraeMbix B (2.22), Kpome
HOCJIEIHETO, COBIAJAIN C COOTBETCTBYONMME Koddbddunuentamu ypasrenust (2.1).
YuanreiBast yeaosust (2.14), mosydaem cucreMy ypaBHEHHUH OTHOCUTENLHO Pj, (i

p1g1 =1, pi1ga +p2qa =0, paga = —1, (2.23a)
(p1+pa)gs = b1, (p1+pa)g2+ (P2 +ps)@a = biz, (P2 + p5)g2 = baa, (2.2306)
P1dhs + P2dhy + 2p193 + P3qi + pags = box, (2.238)
P1dby + Pads, + 2P2q3 + P3ga + Ps5qs = boz. (2.23r)

U3 ypasrenuii (2.23a) HETPYJHO MOJIYIUTh, ITO
p2/p1 = £1. (2.24)

Hasee, u3z ypasuenwuii (2.23a,6) caemyer:

pa/p1 =bi1 =1, ps/pz = —bx — 1. (2.25)

IMoxcraBum (2.25) Bo BTOpoe u3 ypasHeHuii (2.236). YunrsiBas (2.24), nomydaem

i—j(bn + bag) = —b1a. (2.26)

Ha ocuoBanuu (2.24) paccMoTpuM JiBa BO3MOXKHBIX CJLyJasl.

Cay4ail 1. pa/p; = 1. Bes orpanudenns o6IIHOCTY TIOJIOKUAM p1 = 1, TOrIA €
yuerom (2.23a), (2.25) nmeem
p=a=1 q¢@=-1, pi=bn—1, ps=—bp—1 (2.27)

Kpowme toro, uz (2.26) B aToM ciaydae ciaenyer ycaosue (2.15). Tloncrasasis (2.27) B
(2.23B,r), OJTyUaeM CHCTEMY JMHEHHBIX yPABHEHUI OTHOCUTEIBHO D3, §3:

{ p3 + (1 +bi1)gs = bo1,

2.28
—p3 + (1 — b22)g3 = boa. (2.28)
W3 (2.28) naxomum

_ bo1(1 — baz) — bo2(1 + b11) _ bo1 + bo2
D ) q3 D y

b3 D =24 by — bas. (2.29)

Yunreisast (2.27) u (2.29), seipazkenne (2.22) npeobpasyeM K BUILY

Plu] = (uul, —uuy, + b1 (ul)? + b (u;)2 +bigul,uy, -+ boruuy, + boauuy, + cu?)+ Hyu?,
(2.30)
riae Hy onpenensiercst Beipaxkenuem (2.19). HerpymHo mpoBepuTh, 9TO IPU BHITIOJ-
HeHUn ycuosuii (2.14)
Hy =1, + I,

rie Iy, I onpenensitores Beipazkerusivu (2.11), (2.12); mosromy H; Takxke sBIseTCS
nHBapuanToM Jlammaca.
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Eciu B ycioBusix JaHHOI TeopeMbl QyHKIWS U = u(,y) yAOBIETBOPSET ypaB-
Herwuio (2.1), To BbIpakeHue B CKoOKax B mpapoii uactu (2.30) ToxK1ecTBeHHO pasHO 0
u (2.30) CBOAUTCSI K CIIEYIOMEMY:

Plu] = Hyu?. (2.31)
BBogst HOBYIO HEM3BECTHYIO (DYHKIIHIO
w(z,y) = quul, + guu, + gzu’, (2.32)

nosyaaeMm u3 (2.21), (2.27), (2.29), (2.31), aro byukunu u(x,y), w(z,y) ya0BIETBO-
psIfoT cucTeMe ypapHeHuii (2.16).

CIIy4All 2. pa/p1 = —1. Be3 orpanudenus obIHOCTH MOJ0KUM p; = 1, TOra
¢ yaerom (2.23a), (2.25) nmeem

p2=-1, qa=1, qg=-1, ps=bn1—1, p5s=>ba+1 (2.33)

Ananornuso ciayudaro 1 u3 (2.26) caeayer yciosue (2.17). Iloxcrasnsia (2.33) B
(2.23B,r), HOJLy4aeM CUCTEMY JMHEHHBIX YPABHEHUI OTHOCATENBHO D3, ¢3:

p3 + (bi1 + 1)g3 = bo1,
( ) (2.34)
p3 + (b2 — 1)g3 = boa.

N3 (2.34) naxonum

_ bo1 (1 — baz) + bo2(1 + bi1) _ bo1r — bo2
P3 D ’ q3 D ’

IIpoBoms paccyzKjieHnsi, aHAJIOTUIHBIE CJIydaio 1, MOJydaeM, YTO €C/Id B YCIOBUIX

D =2+byy —bys.  (2.35)

JaHHOH Teopembl byHKIWs u = u(z,y) yAoBIeTBOpseT ypaBHeHuo (2.1), To
Plu] = Hyu?, (2.36)

rye Ho oupegensiercs BoipazkenueM (2.20). Herpyuso nposepuThb, 94T0 1IPU BBIIOJI-
HeHUn ycsoBuii (2.14)
Hy =1, — Iy, (2.37)

ryie 11, I onpenensiorcs Boipazkenuamu (2.11), (2.12); nosromy Hy TakKe sABJISETCS
nHBapuanToM Jlammaca.

BBosist HOBYIO Hen3BeCcTHYIO (DYHKIUIO € TIOMOIIBIO BhIpaykeHust (2.32), mosyda-
em m3 (2.21), (2.33), (2.35), (2.36), uro dynkuun u(x,y), w(x,y) yIOBIETBOPSIIOT
cucreme ypasaennii (2.18). Teopema nokasaHa.

3akJroueHue

B nammoit pabore Haiienbl nHBapuaHThI Jlamiaca /st IByMEPHBIX yPABHEHUI
B YaCTHBIX IIPOU3BOIHBIX, JeBad YacTh KOTOPBIX UMeeT BUJ, OJHOPOJHOI'O IIOJIMHOMA
BTOPOI CTENIEHN 10 MCKOMOW (DYHKITUH U €€ IPOU3BOIHBIM U ITOJIyY€Hbl SKBUBAJIEHT-
Hble HUCXOJHOMY YPaBHEHHIO CHUCTEMbl ypaBHEHMH I1€pBOrO MOPAIKA, CojiepzKalliue
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naBapuaHTh! Jlamraca. MuBapuanTsl Jlammaca onpeaesiiorcs KaK HHBAPUAHTDI JIU-
HEHOrO MYJIBTHILIMKATUBHOIO IIPeobpa30BaHusi, IIpeodpa3yIoIlero NCXOIHOe YPaB-
HEHUE K YPaBHEHUIO TOrO ke Buja. lVccienoBaHUs [IPOBEIEHBI JJIsl TUIepOboinde-
CKOI'0 yPABHEHUS BTOPOTO MOPSIKA CO CMEIIAHHON MTPOU3BOIHON U [IJisi yPABHEHUS
BTOPOrO mopsifKa o0Iero Buja. lIpuBeneHbl HEKOTOPBIE PEIIEHUs], TOJIyIECHHbIE B
KBaJIpaTypax, JJjisl Caydasi, KOrJa OfWH n3 nHBapuaHToB Jlamnaca pasen 0. Jlammbrii
ITO/TX0J, MOYKET OBITh OOOOINEH /I HEJWHEHHBIX MHOTOMEPHBIX ypaBHEHHUI OoJiee
CJIO?KHOTO BU/IA.
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Abstract: We study two-dimensional nonlinear partial differential equations of the
second order with variable coefficients. The left-hand side of these equations is a homo-
geneous polynomial of the second degree on unknown function and its derivatives. We
consider a set of linear multiplicative transformations of the unknown function which
keep a form of initial equation. By analogy with linear equations, the Laplace invariants
are determined as the invariants of this transformation. Expressions for the Laplace in-
variants are obtained through the coefficients of the equation and their first derivatives.
For the equations under consideration, equivalent systems of first-order equations are
found, containing the Laplace invariants. It is shown that if one of the Laplace invariants
is equal to zero, then the corresponding system is reduced to a single first-order equation.
Also in this case, if certain additional conditions on the coefficients are met, a solution to
the original equation in quadratures can be obtained. The studies were carried out for a
hyperbolic equation with a mixed derivative and for a nonlinear second-order equation
of general form with a homogeneous polynomial of the second degree in the unknown
function and its derivatives. In these cases, expressions for the Laplace invariants are
obtained and the corresponding equivalent systems are given.
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Abstract: We obtain a result by combining three prevalent trends of the fixed point
theory, namely (i) replacement of the Lipschitz constants in contraction inequality by
functions, (ii) considerations of functions without continuity assumption and (iii) use
of binary relations in the space. Specifically, we define a Mizoguchi-Takahashi-Kannan
type contraction, which is shown to have fixed points in a metric space with an appro-
priate binary relation. The issue of the uniqueness of fixed point is separately considered.
There are two illustrative examples, in one of which the discontinuity of the function
occurs at a fixed point. We discuss Hyers—Ulam—Rassias stability of the fixed point
problem and also establish a data dependence result.
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1. Introduction and mathematical preliminaries

It is a widely recognized fact that Banach’s contraction mapping principle is
the origin of what is known today as metric fixed point theory. It is a vast and ex-
panding domain having important implications in various branches of mathematics.
Several generalizations of this celebrated principle were established over the years.
These efforts are also being continued in contemporary academics. Some prominent
instances from these works are [1-5], etc. Particularly in [2] Nalder proved a mul-
tivalued generalization of Banach’s result. Later a generalization was advanced by
Mizoguchi and Takahashi [1], where they have extended the result of Nalder [2] with
the replacement of the contractive constant k£ (0 < k < 1) by a suitable function.
In [6] Suzuki provided an example of the function used in [1], which is known as
MT-function, and showed that [1] is a real generalization of [2]. This function has
been used in a number of works in recent times, as, for instances [6-11]. In the
following we consider MT-functions for replacement of contraction constants.

On the other hand a separate type of contraction mapping was defined by
Kannan [12] which is now known by his name as Kannan type contraction. These
mappings are important since they are not necessarily continuous and hence are
different in category from the Banach’s contraction. The work of Kannan initiated
the line of research for investigation of fixed points of functions with discontinuities.
Kannan type contractions have appeared in a large number of papers like those
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in references [4,13-15]. In this paper we consider such mappings to establish our
results.

The use of binary relations in establishing fixed point results has become a new
trend. In this line of research the contractive conditions are not assumed to hold on
the whole space, but only on some pairs of points which are related by a suitable
binary relation %. The notion of Z-completeness enables us to take the domain
of the function to be non-complete. The relation theoretic notions are effective to
encompass a larger class of sets to be considered as the domain sets and allows a less
restrictive class of functions to be taken into account for fixed point studies on these
domain sets. This is a new and emerging area in the field of fixed point theory. A
few works in this line are [16-19].

In this paper the above three ideas are incorporated to fabricate new fixed point
results. Illustrative examples are provided to support them. It is noted that in one
of the examples one of the fixed points is a point of discontinuity of the function.

The concept of Hyers—Ulam—Rassias stability has its root in the question which
Ulam [20] had raised in 1940 that whether an approximately linear transformation
has a linear approximation? This question was partially addressed affirmatively by
Hyers in the context of Banach spaces [21]. The notion of Hyers—Ulam-Rassias
stability of the fixed point equation x = fz has appeared in the literature in several
works like [21-27]. Here we discuss the Hyers—Ulam—Rassias stability of our fixed
point problem and show that approximate fixed points can be approximated by the
actual fixed point.

Given two operators on X, if the distances between the images of each point
under those maps are bounded by a finite number, then determining a bound for the
distance between the fixed points sets (if non-empty) of the two operators is known
as the problem of data dependence. Few works in this topic are [26,28-30]. Here in
our paper we have a data dependence result for our problem.

In this paper we denote N as the set of natural numbers; R as the set of real
numbers and R as the set of non- negative real numbers.

DEFINITION 1.1 [16]. Let X be a nonempty set. A subset #Z of X x X is a
binary relation on X. We say that x and y are Z-comparative if either (x,y) € #
or (y,z) € Z. We denote it by [z,y] € Z.

DEFINITION 1.2 [16]. Let X be a nonempty set and % be a binary relation on
X. A sequence {z,} C X is called Z-preserving if (x,,x,+1) € %, for all n € N.

DEFINITION 1.3 [31]. Let (X,d) be a metric space and # be a binary relation
on X. We say that (X,d) is Z-complete if every Z-preserving Cauchy sequence in
X is convergent.

DEFINITION 1.4 [16]. Let X be a nonempty set and T be a self-mapping on X.
A binary relation # defined on X is called T-closed if for any z,y € X, (z,y) € Z
implies (Tz, Ty) € Z.

DEFINITION 1.5 [31]. Let (X, d) be a metric space and # be a binary relation
on X and x € X. A mapping T : X — X is called Z-continuous at x if for any Z%-
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preserving sequence {z,}, Tz, — Tz, whenever z,, — x. T is called Z-continuous
if it is Z-continuous at each point of X.

DEFINITION 1.6 [16]. Let (X, d) be a metric space. A binary relation % defined
on X is called d-self closed if every %-preserving convergent sequence {z,} (with

T, — x, as n —> 00), has a subsequence {z,,} such that [z,,,z] € %, for all
ke N.

DEFINITION 1.7 [32]. Let X be a nonempty set and % be a binary relation on
X. For z,y € X, a path of length k (where k is a natural number) in £ from x to
y is a finite sequence {zg, 21, 22, . . ., 2k} C X satisfying the following conditions:

(i) 20 = x and 2z = y,

(i) (2, zi+1) € Z for each i where 0 <4 <k — 1.

DEFINITION 1.8 [17]. A relation # is called transitive if (z,z) € %, whenever
(z,9), (y,2) € Z.

DEFINITION 1.9 [17]. Given a mapping T : X — X, a relation Z is called
T-transitive if (Tz,Tz) € # whenever (Tz, Ty), (Ty,Tz) € %, for all z,y,z € X.

DEFINITION 1.10. Let (X, d) be a metric space and # be a relation on it. X
is called Z-connected if for all z,y € X there is a path in #Z from z to y.

DEFINITION 1.11 [1,7,8]. A function ¢ : [0, co) — [0, 1) is said to be an MT-

function if it satisfies Mizoguchi-Takahashi’s condition, that is, lim sup ¢(s) < 1 for
s—t+

all t € [0, 00).

Clearly, if ¢ : [0, c0) — [0,1) is a nondecreasing function or a nonincreasing
function, then ¢ is an MT-function.

In particular, if ¢ : [0,00) — [0,1) is defined by f(¢) = ¢, where ¢ € [0,1), then
@ is an M T-function.

We now state a result, given by W. S. Du [9], which will be useful to prove our
theorem.

Theorem 1.1 [9]. Let ¢ : [0,00) — [0,1) be a function. Then the following
statements are equivalent:

(a) ¢ is an MT-function.

(b) For each t € [0,0), 3 rt(l) €10,1) and Eil) > 0 such that ¢(s) < rt(l) for all
se (t,t+ sgl)).

(c) For eacht € [0,00), 3 r§2) €[0,1) and 5&2) > 0 such that ¢(s) < rt(z) for all
set,t+ 5%2)].

(d) For each t € [0,00), 3 71*) €[0,1) and &{¥ > 0 such that ¢(s) < r{¥) for all
se (t,t+ 5&3)].

(e) For each t € [0,00), 3 r§4) €[0,1) and 5§4) > 0 such that ¢(s) < rt(4) for all
s € [t,t+ 5§4)).

In the following we use the following notations:

o X(T5;%) :={z: (x,Tx) € Z}.

e F(T):={z:2z="Ta}.
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e G(T,e) :={x:d(z,Tx) < e}.

DEFINITION 1.12 [27]. Let X be a nonempty set and T a self-mapping on X.
The fixed point problem x = T'x is said to be generalized Hyers—Ulam—Rassias stable
if there exists a function f : [0,00) — [0, 00), which is non-decreasing, continuous
at 0 with f(0) = 0, such that for each ¢ > 0 and each w € G(T,¢) there exists
xg € F(T), with d(zo,w) < f(e).

If f(t) = ct for some ¢ > 0, then the problem is called Hyers—Ulam-Rassias
stable.

2. Existence of fixed points

Theorem 2.1. Let (X,d) be a metric space equipped with a binary relation
Z and a self map T'. Assume that the following conditions hold:
() (X, d) is Z-complete;
(ii) X(T; %) is non empty;
(iil) Z is T-closed;
(iv) either T is Z-continuous or % is d-self closed;
(v) there exists an MT-function ¢ : [0,00) — [0,1) such that for all z,y € X,

with [x,y] € Z the following condition holds:

AT, Ty) < 5 p(d(e,)) (A, T2) + d(y, Ty)) (21)

Then T has a fixed point.

PRrROOF. Since X(T;R) # ¢, let us choose xy € X (T; R) and construct a se-
quence {z,} by x, = Txn_1, n € N. Since (zg,Txo) € # and #Z is T-closed,
(@, Tnt1) € Z for all n € N. So the sequence {z,,} is #Z-preserving.

d(x1,22) = d(Txzo, Tx1) < —(d(z0,x1))(d(x0, Txo) + d(z1,Tx1))

N =

= ldao,z)dlwo, m1) + (a1, 22)),

(p(d(wo,wl))
= d(x1,x2) < m

Put ¢(t) = 28 So, lim §1+1p ¥ (s) < 1. Therefore 1 (t) is an MT-function. Note
5—

d(lﬂo,lﬂl).

2—p(t)"
that ¥(¢t) < 1 for any ¢ > 0. Thus, d(z1,22) < ¥(d(z0,x1))d(zo, z1) < d(zg, 21).
Continuing the above process n-times, we have

d(anrla xn+2) < w(d(xna xn+1))d(xn7 :EnJrl) < d($n7 :EnJrl)' (22)
Thus, the sequence {d(z,, s +1)} is monotone decreasing in [0, 00). Then

nh—>ngo d(znyszrl) - }Lrelfl;]d(wnaxrwrl) > 0.

Let infR’I (@, Tny1) = to. Since ¢ is an MT-function, there exists r, € [0,1) and
ne

g1, > 0 such that ¥(d(xn, zn11)) < 1, Whenever tg < d(zp,Zni1) < to + €, As
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lim d(zp,znt1) = to, for the above g;, > 0,3l € N such that tg < d(zp,zni1) <

n—oo

to + €1, for all n € N with n > [. Let
A = max{y(d(z1,z2), Y (d(z2,73)), .. ., Y(d(@1-1,21), T4, }-

Therefore we have

0 <Y(d(zn,zni1) < A<1)forall neN. (2.3)
Using this in (2.2) we get

AT, Tni1) < Ad(Tp-1, Tn) < Ad(zg, 21). (2.4)

Now, for m,n € N with m > n, we have

m—1 m—1
AT, @) <D d(zi,mi1) < Nd(xo, 21)

1/\” d(xo,:pl). (25)

m—1 [e%s}
<d(wo,x1) Y N < d(wo,1) YN = T

Now, lim A™ = 0 as A € (0,1). Thus from (2.3) we have, d(x,,z,) — 0, as
n—oo

m,n — oo. Therefore {x,} is a Cauchy sequence. Since (X, d) is #Z-complete and

{zn} is Z-preserving Cauchy sequence, there exists z € X such that {x, } converges

to z.

Now we consider two cases to incorporate condition-(iv) of this theorem.

Case-1: T is Z-continuous.
Since 11 = Tzy, taking limn — oo and using Z-continuity of T, we have
z =Tz. Hence z is a fixed point of T'.

Case-11: Z is d-self closed.
If Z is d-self closed, since {z,} is Z-preserving and z,, — z as n — oo , there
exists a subsequence {x,, } of {x,} such that [z,,,z] € Z for all k € N. Therefore,

A, 01, T2) = d(Tan,, T2) < 5 @(d(n,, 2))(d(wn,, Ton,) + d(zT2))

1
- 5‘/7((1(:17711@ ’ Z))(d(xnkJrlv xnk) + d(Z, TZ))
Taking limit superior £ — oo in the above inequality, we get
1
d(z,Tz) < §(lim sup o(d(xn, , 2)))d(z, Tz).

k—oo
This implies that d(z,Tz) = 0 that is z = T'z.

Hence in any cases, T has a fixed point. [

EXAMPLE 2.1. Let X = (—2,00), endowed with the usual metric d. Z is a
relation on X, defined by (z,y) e Zif1 >z >y >0. T: X — X be a mapping
defined by
if x € [0, 00),
ifxe(-2,00nQ,

—V/2 ifx € (-2,0]NnQ°.

5
Tx=< 0
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Let {x,} be any Z-preserving Cauchy sequence in X. Then z, > x,.1 and
xn > 0,Vn € N. Clearly {z,} is convergent. Hence (X, d) is Z-complete.

Again we have (1,T(1)) € Z, as 0 < T(1) = £ < 1. So X(T, %) is non empty.

If (z,y) € #, then 1 > x > y > 0 which implies 1 > £ > £ > 0. Thus
(Tx,Ty) € #. Hence Z is T-closed.

To show that T' is Z-continuous, let x € X be any element. If t <O or z > 1
then there is no %Z-preserving sequence converging to x. Then the condition of %Z-
continuity is vacuously satisfied for such z. Now assume 0 < z < 1 and {z,,} be
any Z-preserving sequence converging to . Then, z,, > x,+1 and z, > 0,Vn € N.
Thus T'x, = = — £ = Tx, as n — oo. Thus T is Z-continuous.

Now, let ¢ : [0,00) — [0,1) be defined by ¢(t) = 1, for all ¢ > 0. Clearly ¢ is
an MT-function.

For any [z,y] € £,

Since [z,y] € #, either (x,y) € Z or (y,z) € #Z. In any case,

T —y r+y 1
So the relation (2.1) is satisfied.

Hence all the conditions of Theorem 2.1 are satisfied. Here it is seen that 0 is
a fixed point of T.

REMARK 1. In this example it is seen that other than 0, the point —v/2 is also
a fixed point of T'. Thus fixed points are not unique.

REMARK 2. If we take z = —+/3, y = —1 then relation (2.1) is not satisfied.
Hence the relation (2.1) is not necessarily satisfied for every pair z,y € X. This
shows that our theorem do not require the function 7" to be contractive on the whole
space X, but only to satisfy the contractive condition on those elements which are
related by Z for assuring the existence of a fixed point.

REMARK 3. In this example it is seen that the function 7' is not continuous
when z < 0, but it is Z-continuous on the whole space. So our result do not require
continuity of 7" but only Z-continuity.

REMARK 4. The function T has discontinuities at both of its fixed points.

REMARK 5. The domain of the function T is non-complete. So our result do
not require the domain of T' to be complete but only to be Z-complete.
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3. Uniqueness of the fixed point

Lemma 3.1. Let (X,d) be a metric space equipped with a binary relation %
on X. Let T be a self map on X and there exists an MT-function ¢ : [0,00) — [0,1)
such that for all x,y € X, with [z,y| € Z the following condition holds:

AT, Ty) < Sld(w, ) A, T2) + d(y, Ty). (31)

If T has two distinct fixed points xo and yo, then [xo,yo| ¢ Z%.

PRrROOF. If possible let T has two distinet fixed points xg, yo, and [xo, yo] € Z.
By equation (2.2) we have

d(Txo, Tyo) < %@(d(;vo,yo))(d(;vo,Txo) +d(yo, Tyo)) = %@(d(fcmyo)) x0=0

since xg = T'xg, yo = Tyo. Thus we have Txg = Ty, that is xg = yo, which is a
contradiction to our assumption. Hence the result is proved. [J

NoTE. If T has fixed points zg, yo with [zg, yo|] € Z, then z¢ = yo.

Theorem 3.1. In addition to the conditions stated in Theorem 2.1, if the
following conditions hold:

(vi) T(X) is #Z-connected;

(vil) Z is T-transitive;
then, the fixed point is unique.

PROOF. Suppose that, along with the conditions stated in Theorem 2.1, the
above conditions (vi) and (vii) also hold. Let z,y be two fixed points of T.

By (vi), there is a path {zo, 21, . .., 2k} of finite length such that x = zg, y = 2,
z; € T(X) and (24, 2i41) E Z for 0 <i <k —1.

As Z is T-transitive, we have (z,y) € #. Then, by the previous lemma, we
conclude that x = y.

Thus the fixed point is unique. [

REMARK 3.1. The following example 3.1 shows that conditions of Theorem 2.1,
although sufficient for ensuring the existence of a fixed point, is not enough to assure

its uniqueness. We have Theorem 3.1 for that purpose. We now present one example
to illustrate the role of Theorem 3.1 for the uniqueness part.

ExAMPLE 3.1. Let X = R endowed with the usual metric d, Z be the relation
defined on X by (z,y) € Z if x > y > 0, ¢ be the MT-function as in example 2.1
and T : X — X be a mapping defined by

ifz >0,
ifx <0, zeQ,
ifx <0, z&Q.

Tr =

N O gy

By the similar argument as in the example 2.1 it can easily be verified that all
the conditions of Theorem 3.1 are satisfied.
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Moreover for any z,y € T(X), we have x > 0 and y > 0. As, either x > y or
y >z, [x,y] € Z. Thus there is a path of length 1 from z to y.

Again, if z,y,z € T(X) with (z,y) € Z and (y,z) € # then > y > 0 and
y > z > 0. Therefore x > z > 0 which implies (x, z) € #Z. Hence Z is T-transitive.

Thus we see that all the conditions of Theorem 3.1 are satisfied. Here it is seen
that 0 is the unique fixed point of T

4. Hyers—Ulam—Rassias stability and data dependence

In this section we first investigate the Hyers—Ulam—Rassias stability of our fixed
point problem.

Theorem 4.1. Let X, T and % be as in Theorem 2.1. Consider the fixed point
problem
z="Tz. (4.1)

In addition to the conditions in Theorem 2.1 if the following condition hold:
(viil) if z* € F(T), then [u,z*| € Z Vu € X,
then the problem (4.1) is Hyers—Ulam—Rassias stable.
PROOF. By condition (viii) and Lemma 3.1, it is clear that F'(T) = {z}. Let
e > 0 and consider w € G(T,¢). Then d(w,Tw) < e. By condition (viii) we have
[w, z] € Z, so from relation (2.1) we have
1
d(Tz, Tw) < §<p(d(z,

) (d(z,Tz) + d(w, Tw))

IN
o~ 8

o(d(z,w))(d(z, 2) + d(w, Tw)) < —p(d(z,w))d(w, Tw)).

N | =

Then finally we have
d(w, z) < d(w, Tw) + d(Tw, z) = d(w, Tw) + d(Tw, Tz)

1 1 1 3
<d(w,Tw) + §<p(d(z7w)) d(w, Tw)) <e+ §<p(d(z7w))£ <e+ 56 = ¢
since ¢(d(z,w)) < 1. Thus taking f(s) = 3¢, we have for each ¢ > 0 and each
w € G(T,¢) there exists g € F(T), with d(zo,w) < f(e). Hence the problem is
Hyers—Ulam—Rassias stable. [

We now establish a data dependence result.

Theorem 4.2. Let (X, d) be a metric space and Ty, Ty : X — X two self maps.
Let the following conditions be satisfied:

(ix) Ty satisfies all the conditions of Theorem 3.1 and F (1) # @.

(x) d(Thz, Tox) < n,Vz € X for some n > 0.

(xi) for any u € F(T3), (u,Thu) € Z.
Then d(s,t) < 175, for some 0 < Ay < 1, where s € F/(T') and t € F(T3).

PrOOF. Clearly by Theorem 3.1, F(Ty) = {z}. Thus we put s = z. Let
t € F(Tz). By the condition (xi) we have (¢,T1t) € #. Thus taking xo = ¢t and
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Ty = T1xn—1,n € N, we can provide the argument as in Theorem 2.1 to get x,, — 2
as n — oo.
By relation (2.4), we have

d(l‘n,l‘nJrl) < )\td(IEn_l,{En) < )\tnd(xo,xl), Vn € N.
Again, by condition (x), we have
d(lﬂo,lﬂl) = d(TQ.I(),Tl.I()) S ’I]

Therefore,

d(s,t) = d(s,xo) Z Ty Tiv1) +d(Tpi1, )
=0

n

S Z Atid(lﬂo, $1) -+ d($n+1, S) S d(xo, .Il) Z )\ti + d($n+1, S) (42)

=0 i=0

Taking limit as n — oo in (4.2), we get

d(s,t) < d(zg,x1) Z M’ +d(s,8) = ——d(z0,21) <
i~0

Hence our theorem is proved. [J
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TIME-OPTIMAL CONTROL PROBLEM ASSOCIATED
WITH A FOURTH-ORDER PARABOLIC EQUATION
F. N. Dekhkonov

Abstract: We consider a boundary control problem for a fourth-order parabolic equa-
tion in a bounded one-dimensional domain. At a part of the boundary, a value of the
solution is given and it is required to find control to get the average value of solution. By
the method of separation of variables, the problem is reduced to the Volterra integral
equation of the first kind. The existence of the control function was proven by the
Laplace transform method and an estimate on the minimum time to reach the given
average temperature in the rod was found.
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Keywords: boundary value problem, fourth-order parabolic equation, admissible con-
trol, minimal time, integral equation, Laplace transform method.

1. Introduction. Problem statement

In this paper, we consider the following fourth-order parabolic equation

Ou(z,t) n 0*u(z,t)

En Ere 0, (z,t)€ Qpr:=(0,1) % (0,00), (1)
with boundary conditions
u(0,t) = h(t), wu(l,t)=0, t>0, (2)
and
Uz (0,8) = 0, uga(l,t) =0, 3)
and initial condition
u(z,0) =0, 0<z<lI. 4)

Let M > 0 be some given constant. We say that the function h(t) € W} (R, )
is an admissible control, if this function satisfies the conditions

R(0) =0, |h(t) <M, t>0.
Assume that the weight function p(z) € W3 (|0,1]) satisfies the conditions

)
l

p(z) >0, plr)de =1, 0<z<lI. (5)
w0 [

Let
> k
=Y asin—=, w0,
k=1

(© 2024 F. N. Dekhkonov
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where py is the Fourier coefficient of the function p(z) and it follows
l

k
/p(m)sin%xdx, k=1,2,.... (6)
0

~I o

Pk =

It is well known that some fourth-order parabolic equations were introduced to
describe the epitaxial growth of nanoscale thin films, and thus have been of increasing
interest in materials science in recent years [1].

Time-Optimal Problem. Let 6§ > 0 be a given constant. Problem consists
of looking for the minimal value of T > 0 so that for t > 0 the solution u(x,t) of the
problem (1)—(4) with control function h(t) exists and for some Ty > T satisfies the
equation

l
/p(m)u(x,t) de =0, T <t<T. (7)
0

The optimal control problem for the second order parabolic type equations was
studied by Fattorini and Friedman [2,3]. Time-optimal problems with control on
the boundary for the second order parabolic equation have been treated by Egorov
[4].

The boundary control problem for a second order parabolic type equation with
a piecewise smooth boundary in an n-dimensional domain was studied by Albeverio
and Alimov [5] and an estimate for the minimum time required to reach a given
average temperature was found. In [6, 7], mathematical models of thermocontrol
processes for the second order parabolic equation are considered. In the model under
consideration, the temperature inside a domain is controlled by m convectors acting
on the boundary. In this work, the necessary and sufficient conditions for achieving
the given projection of the temperature into some m-—dimensional subspace are
studied. Control problems for the second-order parabolic equation in the three-
dimensional domain are studied in [8].

Control problems for second-order parabolic equations in bounded two-dimen-
sional domains are studied in works [9, 10]. In these articles, an estimate was found
for the minimum time required to heat a bounded domain to an estimate aver-
age temperature. The existence of control function is proved by Laplace transform
method. Similar control problems in the one-dimensional domain were studied in
[11-14]. In [15], the existence of control functions was proved using the Laplace
transform method when there are two control functions on the boundary.

Basic information on optimal control problems is given in detail in monographs
by Lions and Fursikov [16,17]. General numerical optimization and optimal control
for second-order parabolic equations have been studied in many publications such
as [18]. Practical applications of optimal control problems for equations of parabolic
type are presented in [19].

Some boundary control problems for the pseudo-parabolic equation in one- and
two-dimensional bounded domains were studied in works [20-22]. In these works, the
existence of the control function is proved using the method of Laplace transform.
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In recent years, due to the increasing interest in physics and mathematics, much
effort has been devoted to the study of boundary control problems for fourth-order
parabolic equations. In [23], Guo considered the null- boundary control problem
for a fourth-order parabolic equation in a one- dimensional bounded domain. This
problem uses the method of reducing the control problem to well-posed problems
proposed by Guo and Littman [24].

In [25], the null interior controllability for a fourth-order parabolic equation was
studied. The method they used is based on Lebeau-Rabbiano inequality. The initial
boundary value problem of a class of fourth-order semilinear parabolic equations was
studied by Xu, et al. [26], and the global existence and nonexistence of solutions with
initial data in the potential well are derived. Further research results on the global
dynamic behavior of solutions associated with fourth-order parabolic equations for
the epitaxial thin film model were studied by Chen [27].

In this work, the boundary control problem for the fourth-order parabolic equa-
tion is considered. The boundary control problem studied in this work is reduced to
the Volterra integral equation of the first kind by the Fourier method (Section 2).
In Section 3, the existence of a solution to the integral equation is proved using
the Laplace transform method. Section 4 gives an estimate of the minimum time
required to reach a given average temperature of the rod.

We consider

XW(z) = A\X(z), O0<z<l,
{ X0)=X(1)=0, X"0)=X"(1)=0, 0<z<lL.
Then we have

A — kjf Xp(z) = ska”x, k=1,2,....
Set -
Bkzwl—fpk, k=1,2,.... (8)
Theorem 1. Let 5 M
0<O< N
Set

1 O
To=——1In(1- .
0 A1 n( B M >
Then a solution T,,;, of the time-optimal problem exists and the estimate Ty,;, < Ty
is valid.

2. Integral equation

By the solution of the problem (1)—(4) we mean function u(z,t), expressed the

form
l—x

l
where the function w(z,t) € C;ljtl(QT) N C(Q7), wee € C(Q7) is the solution to the
problem

u(zx,t) = h(t) —w(zx,t), (9)

[ —
Wi (,6) + Wi (@,8) = =R (1),
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with boundary conditions
w(0,t) =w(l,t) =0, wg(0,t) = we(I,£) =0, ¢t>0,
and initial condition
w(z,0) =0, 0<z<I.
Consequently, we have (see [28])
- t

2 1 k
w(x,t) = — Z % /e_A’“(t_s)h/(s) ds | sin % (10)

™
k=1 \p

It follows from (9) and (10), we get the solution of the problem (1)—(4):

0o t

w(wt) — =y = 2 3 % /e—mt—S)h'(s) ds | sin k% (11)

l s
k=1 F

Let there exists My > 0 constant. Then we denote by W (Mj) the set of function
f € W3(—o00,+00), f(t) = 0 for t < 0 which satisfies the condition

I fllwzr,y < Mo.
From (11) and the condition (7), we can write

l
16~ [ playut, ) do
0
l

¢
l— 2 o 1 k
/p T dr — ;Zg/p sm%d /e_)‘k(t_s)h'(s) ds,
0

Wheref():eforTgthl.
Then from (6), we have

l t
l —T, ) s
£O = (o) [ o) do = 238 [0l s)ds (12)
5 k=1
According to Parseval equation, we have
N |
—x 1 Pk

/p(x) : d:cfﬁgk. (13)

A —

From (12) and (13) we may write

t t

l 0 by _ s T — —s
+;Zpk]€k /e Aet=9)p(5) ds = Z—BZPkkg/e M=) (s) ds.

e
I
—

=)
i
—

o

We set
K(t) = e, t>0, (14)
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where Oy, is defined by (8).
Then we get the integral equation

/K(t — $)h(s)ds — f(t), t>0, (15)

where f(t) =0 = const > 0 for T <t < Tj.

Theorem 2. There exists My > 0 such that for any function f € W(My) the
solution h(t) of the equation (15) exists and satisfies condition |h(t)| < M.

Lemma 1 [11]. Let g(z) > 0 and ¢’(z) < 0 on x € [0,00). Then the following

inequality is valid:
nm

/g(w)sinxd;vzo, n=12....
0

Corollary 1. Let the function p(x) satisfies conditions (5). Then the following
inequality is valid:
1
k
/p(x)sin%xdxz 0, k=1,2,....
0

Proposition 1. For the coefficients {px}ren defined by (6), the following es-
timate is valid:

C

ngkgza k:1727"'7

where C' = const > 0.
PROOF. According to Lemma 1, we have
>0, k=1,2,....

From (6), we write

l
w2 @0 T ar - Zp(0) - (~1o) + 2.
0

It is clear that p(0) — (—=1)*p(l) > 0, k = 1,2,..., where function p(z) is satisfies
conditions (5). Then we obtain

Proposition 1 is proved.

Proposition 2. Let a € (2,1). Then for the function K(t) defined by (14)
the following estimate:

0< K(t) <Cut™, 0<t<1,
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is valid, where C\, is a constant only depending on «.
PRrROOF. It is clear that from (8) and Proposition 1, we have
0 < B < CK”.
Let 3/4 < a < 1 and 7 > 0. Then the maximum value of the function x(¢,7) =

(63

t%e~" is reached at the point t = o @

and this value is equal to W—Ze_o‘. As a result,
for any 3/4 < o < 1, we get the estimate

1 & o i Cate ™ XKk C,
:t_aZBkte kST Egt—aa
k=1
where A\, = 7— and
N A RN |
— = — — < +o00.

A& Tha k4a—2
17k k=1

Proposition 2 is proved.

3. Proof of Theorem 2

We write integral equation (15)

/K(t — $)h(s)ds — f(t), t>0.

We use the Laplace transform method to solve equation (15). We introduce the

notation
o0
= / e PPh(t) dt
0
Then we obtain the following equation using Laplace transform

f(p) :/ —Ptdt/K (t — s)h(s) ds = K(p)h(p).
0 0

Consequently, we obtain

h(p)z&, where p =0 +i7, 0 >0, T € R,
K(p)
and
o+100 ~
/ o), f L) (orint gy, (16)
(p 27T K(o+ir)

Proposition 3. The following estimate is valid:

- c,
K(o+i7)| > —2—, 0>0, T€R,
V172

where C, is a constant only depending on o.



76 F. N. Dekhkonov

PRrROOF. It is clear that

/K e Pt = Zﬂk/ —(pHAp)t Zp+/\k

where K (t) is defined by (14) and

oo oo o0

~ ) +/\k . Bk
K _ S v R
(o +im) = Zo+)\k+w ]; o+)\k )2+ 72 ZT;(U+)\]€)2+T2
~ReK(o+ir) +ilm K (o +ir),
where
S Blo+ ) N . - B
Re K (o +iT) = Z P Vo ImK(UHT):—TZW-

k= 1
We know that

k=1

(0 +2)? + 7% < (o + )%+ 1](1 + 7%,

and we have the following inequality:
1 1 1

> 17
(c+X)?2+72 " 1+72(c+ )2 +1 (17)
Consequently, according to (17) we can obtain the following' estimates
~ . N Brlo + M) 1 +>\k Ci6
Re K = = : 18
| € (0'+Z7')| ;(U+)\k) +T2_1+T22 U+Ak 1+7_27 ( )
and
~ . - Bk |7| = Bk Ca,0l7]
Im K = > — )
|m (U+ZT)| |T|]§(O’+>\k)2+72_1+T2;(U+>\k)2+1 1+T27
(19)
where C ,, Cs , as follows
— Brlo+ M) - Br
Ci o= " (4 = —_—
b kz::l(a+/\k)2+1 > kz::l(a+/\k)2+1
From (18) and (19), we have the estimate
~ ~ . 4 CQ ,02
Rio + mf = [Re Ko + ) + [ Im Ko+ im)f? > " e Chc),
T
and
~ C
|K(0 +i7)| > ——, where C, = min(C,,Cs,). (20)
N =2

Proposition 3 is proved.

Then, when 0 — 0 from (16), we obtain

+oo ~
— i Meiﬂt T
h(t) — %_4 e (21)
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Proposition 4 [21]. Let f(t) € W(My). Then for the imaginary part of the
Laplace transform of function f(t), the inequality

+oo
[ 1FnVIT 2 dr < Gl e

is valid, where C1 > 0 is a constant.

PROOF OF THEOREM 2. We prove that h € W} (R,). Indeed, according to
(20) and (21), we obtain

+oo~ “+o00 ~(_ ) 2
/|h(7)|2(1+|7|2)d7: / }fi (14 |7[2) dr

K (i)

+oo
<o / FGRQ + 722 dr = Collf 122,

where Cy = min(Ch g, C2,0) which is defined by (20). Further,

t

(0 = b = | [ B de] < W1t — 517

S

From (20), (21) and Propositions 3 and 4, we have

+oo  ~
1 | f(iT)]
|h(t)] < 5= ——
2m J K (ir)|
7 c Cy M,
< - (i 1+72dr < —1 ) < 270 _
<omge | IV Par < Sl flwsce < gt = M,
where on
wCo
My — M.
0 o

Theorem 2 is proved.

4. Proof of Theorem 1

We consider the following integral equation:
t
/K(L‘—s)h(s)ds:a7 T<t<T,
0

where K (t) is defined by (14).

Proposition 5. The following estimate is valid:
K(t) Z Ble_Alta
where the function K (t) is defined by (14).

The proof of its proposition is based on the fact that the functional series defined
by (14) is non-negative.
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We introduce a specific heating as

t)/tK(t—s)ds/tK(s)ds
0 0

The physical meaning of this function is the average temperature in the rod (see
[5]). It is known L(0) = 0 and L'(¢) = K(¢) > 0.
We set

t—o0

L* = lim L(¢ /K
0

Certainly, the average temperature of the rod in the case where the heater is acting
with unit load cannot exceed L*. It is clear that from (14) we write

where §y, is defined by (8) and A\, = kj—f

Proposition 6 [10]. Let 0 < § < ML*. Then there exist T > 0 and a real-
valued measurable function h(t) and the following equality

T
/K s)ds =0,
0

It is clear that the value T', which was found in Proposition 6, gives a solution
to the problem. Namely, T is the root of the equation

is valid.

0
L(T) = e (22)
Lemma 2. Let 5
0<6< =
<0< N

Then there exists T > 0 so that
O )
T < ——1 ,
Al ( B1M
and the Eq. (22) is fulfilled.

Proor. For obtaining the required estimate we use Proposition 5. We may
write

t t
= /K(s) ds > 1 /e_Als ds = %(1 — e_Alt). (23)
1
0
Consider the following equation for the defining of Tp:
A “MT 4
—(1- 10y = — | 24
1) - (24)

Then

1 O\
To=——1In(1- .
LW n( ﬁlM)
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In accordance with (23) and (24) we have
0< % < L(Typ).
Then obviously there exists T, 0 < T < Ty, which is a solution to the equation
(22).
Lemma 2 is proved.
The proof of Theorem 1 follows from lemma 2.

5. Conclusion

Note that in case where the temperature 6 is small enough, the value of Tj) can
be replaced by the following one:
0
LM’
Hence, in this case the estimate of optimal time given by Theorem 1 is proportional
to required temperature 6 and inversely proportional to size of the rod [ and to the
maximum output of heat source M.

To
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APPLICATION OF AN INDICATOR
RANDOM PROCESS FOR MODELING
OPEN STOCHASTIC SYSTEMS
V. Doobko and E. Karachanskaya

Abstract: The authors present a method of indicator random processes, applicable to
constructing models of jump processes associated with the diffusion process. Indicator
random processes are processes that take only two values: 1 and 0, in accordance with
some probabilistic laws. It is shown that the indicator random process is invariant when
reduced to an arbitrary positive degree. Equations with random coefficients used in
modeling dynamic systems, when applying the method of indicator random processes,
can take into account the possibility of adaptation to external changes, including random
ones, in order to preserve indicators important for the existence of the system, which can
be continuous or discrete. In the case of indicator random processes, defined as func-
tions of the Poisson process, equations for dynamic processes in a media with abruptly
changing properties are constructed and studied. To study the capabilities of the pro-
posed method, dynamic models of the diffusion process in media were studied with delay
centers and diffusion processes during transitions by switching from one subspace to an-
other. For these models, equations for characteristic functions are constructed. Using
the method of indicator random processes, a characteristic function for the Kac model
was constructed. It is shown that in the case of dependence of the indicator random
process on the Poisson process, the equation for the characteristic function corresponds
to the telegraph equation. This result coincides with the result of Kac.

DOI: 10.25587/2411-9326-2024-2-81-98

Keywords: indicator random processes, stochastic dynamical models.

1. Introduction

An open system is a system that has external interactions. These systems have
applications in engineering and economics [1], and they are used to describe the
dynamics of quantum systems [2], as well as in financial mathematics [3,4]. Open
stochastic quantum systems can be described by quantum stochastic differential
equations [5]. Modeling processes in an open system is difficult due to external
random disturbances that greatly affect the process.

Modeling of diffusion processes with jumps is still a pressing problem, since
many applied problems are described by similar models. Sharp fluctuations in op-
tion prices have led to the need to study jump diffusion models, for example, the
Merton model [6,7], and Kou model [8]. Stochastic processes that can instantly
change their parameters due to a jump, described by systems of stochastic differen-
tial equations with regime switching, are used in problems of financial mathematics

(© 2024 V. Doobko, E. Karachanskaya
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[9,10]. Switching jump-diffusion models are applied in control theory, problems of
diffusion in random media [11-15], and others.

In contrast to the models mentioned above, we will consider the It6 stochastic
differential equations with regime switching based on the method, which we propose
below. These equations can be used in the simulation of dynamic systems that can
adapt to external changes, including random ones. These changes in the structure
of the system can be continuous, discrete or mixed. If changes in the coeflicients
of the equations are jump-like, then one of the ways to model transitions from one
state of the system to another is to use methods from the theory of queuing systems.
Nevertheless, to describe the dynamics of the implementation of these states, one
needs to use a stochastic equation.

The purpose of the article is to show the possibility of studying random processes
described by the stochastic differential It6 equations, the properties of which can
change jump-like at random times, using the method of indicator random processes.

In our opinion, it is also important to obtain the same mathematical results us-
ing different methods, based on different initial assumptions. This allows you to look
at a mathematical problem from different angles and make a choice of initial axioms
and interpretations within a particular area of mathematics. When solving applied
problems, many proof schemes are considered as multiple approaches to solving a
problem, expanding the possibilities for choosing the most adequate interpretation.

When modeling systems with regime switching, a Markov chain is used, which
is specified by an intensity matrix. In the simplest case, the intensities are constant,
and the random times ¢, at which switching occurs, usually have an exponential
distribution. The use of a random indicator process to model systems such as systems
with regime switching allows the state of the system to change at a random time ¢,
which can be determined by an arbitrary distribution, for example, uniform. Thus,
the proposed method allows solving a wider class of problems.

In the [16], a method and an idea for its use in modeling diffusion with delay
centers are proposed. In this work, we present new application examples of our
method [17].

The main original contributions of this work are: 1) demonstration of the ap-
plication of our method of indicator random processes to construct several models
of random processes associated with diffusion processes, 2) differential equations
for characteristic functions are constructed for these models of random processes,
3) equations for characteristic functions are solved analytically, which allows us to
determine the probabilistic characteristics of these processes.

The structure of the article is as follows. Section 2 introduces the concept of an
indicator random process and its properties. It also presents the procedure for con-
structing a complete group of random events for any time using a set of incompatible
indicator random processes. In Section 3, a characteristic function of a mixture of
independent processes is constructed using a set of incompatible indicator random
processes. This mixture has the property that at any time only one of the many
specified random processes will be realized. In Section 4, several interesting exam-
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ples of the use of indicator random processes for constructing mathematical models
of physical processes are considered. The application of the method proposed in
the article is shown for constructing a model of the diffusion process with time de-
lay centers, a diffusion model with a random change in the direction of movement,
and a diffusion model with random transitions between subspaces. The examples
presented have independent theoretical significance, as they result in new mathe-
matical models for random processes of practical value. The example presented in
the Appendix is of methodological significance.

2. Indicator random process

Indicator functions are often used to identify subsets, points, and properties
from a certain set. An indicator function in the form of a "delta function" is used,
for example, to make the transition from the original, generally nonlinear dynamic
system to an equivalent description in terms of linear partial differential equations
[18].

Let us introduce the concept of an indicator random process. Here and below,
all random processes under consideration are defined on a common probability space.

DEFINITION 1. A random process x(¢) is called an indicator random process if
it takes only two values: 1 or 0.

To study the properties of the process x(t), we use the following notations:
Prob(A) is the probability of an event A, E[x(¢)] is the mathematical expectation
of a random process x(t), t > 0 is a time.

Property 1. For any time t the following conditions are satisfied:
(x(®)* = x(®), (1=x()* =1=x(t) Va>0. (1)
Property 2. The following equalities are satisfied:
Ex(8)] = Prob(x(t) = 1),  Prob(x(t) = 0) = 1 = E[x(?)]. (2)

DEFINITION 2. Two and more random processes &;(t),&2(t),... are called in-
compatible processes if for every t > 0 only one process from this collection is nonzero:

i (t1) #£0, &i(t1) =0 Vi # ka;
ia(t2) #£0, &i(ta) =0 Vi # ko; (3)

Lemma 1. Let x;(t), j = 1,2,...,n — 1, be independent indicator random
processes. Then the random processes

Zl(t):XI(t)a Zk(t):Xk(t) J (I_XJ(t))7 k:2737 7n_1;
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form a complete group of incompatible processes for every t > 0.

PROOF. 1. Each of the processes (4) can take only two values: 1 and 0. Let us
consider the product of random processes z;(t)zx (t) at any time ¢ for any 1 < k,1 < n.
Taking into account Definition 1 of an indicator random process and Property 1, we

obtain
k—1 -1
zi(t)zn(t) = xw(t) | (1—x;(t H (1= x;(t
k—1 -1
=1 = xe®)) [TA = ;@)@ [ 0 —xi®) =0. ()
j—=1 i=k+1

Similarly, for any 1 < k < n the following holds: zx(t)zy(t) = 0. Therefore, random
processes (4) are incompatible (see Definition 2).

2. Consider the process Z,(t) =

J

7 +Z><k Hl—xg Hl—xg
= s

= xa(t) + (1 = x1(t)[x2(t) + x3(t)(1 = xa(t) + ...
+ xXn-1(8) (1 = xa(t) -+ (1 = Xn—2(t)) + (1 = x2(t)) - (1 = xn—1(2))].  (6)

At any time ¢, the process (6) will take the value 1 (due to Definition 1 of
processes x;(t)). Thus, at any given time ¢, only one of the processes (4) will take
the value 1.

The results (5), (6) lead to the statement of the Lemma.

n
zn(t), 7=1,2,...n
=1

REMARK 1. Using a given set of incompatible processes that form the complete
group, and knowing their probabilities, one can proceed to constructively specify the
realizations of random processes with variable structure (see Appendix A).

3. Characteristic function
for a sum of incompatible processes

Let g1(t), ..., gn(t) be random processes. Consider the random process

j=1
where
k—1
vi(t) = x1(0)g1(t);  k(?) Xk(t)_ (I—=x;j)ge(t), k=2,3,...,n—1;



85

Application of an indicator random process
n, are independent of each other

and indicator random processes x;(t), j =1,2,...,
and with the random processes g;(¢), | = 1, n. Then the random process Y (t)
has the form:
n—1 n—1
gr(t) + ] (1 =x;@)gn (@) (7)

1

t)+ZXk 1:[1_XJ ‘

Y(t) = xa(t)gi(
In accordance with Lemma 1, at any time ¢ only one of the processes g (t)
k=1,...,n, will be realized.
Let us construct the characteristic function of the random process (7)
1, be independent indicator random

Theorem 1. Let x;(t), j =1,2,...,n
; Then the characteristic function of the

processes, and Prob(x;(t) = 1) = p;(t)

process (7) has the form:
) n—1 ) k—1 n—1
J(t) = pr(O)Ee O]+ Y Ble Ol (6) [T 1 —p; (0) + Bl O] TT (1 -p; (1)
k=2 j=1 j=1

PRrROOF. Construct the characteristic function for the process (7)
i wono)

n—1
)} eXp{Zﬁ TT—x;®))gn(t )}

Jj=1

J(t) = E|ePY V)]

ool

k—1
+ZX19 Hl_XJ
=1

=F

n—1 _
= E|ePnO I eXp{iﬁxl H (1=x;(t
Further, we apply the exponential series expansion, taking into account Lemma 1

Property 2, and the mutual independence of g (t) and x;(t) for any indices k, l. Next
we calculate the mathematical expectation, and taking into account (2), we obtain

the statement of the theorem.
4. Application of indicator random processes

Let us examine several interesting examples of using indicator random processes
to construct mathematical models of physical processes which are associated with

diffusion processes.

4.1. Processes in an environment with jump-like changes in proper-
ties. Using the properties of indicator random processes x1(t) and x2(t), we can
construct an equation for dynamic processes with jump-like changes in properties.
Let us consider the system of the It6 stochastic differential equations:

dz(t) = x1(t)ay (x(t),t) dt + x2(t)Bi(x(t),t) dw(t)
+ (1 =x1(t)az(z(t),t) dt + (1 — x2(t))Ba(z(t),t) dw(?),

where z(t), a;(z(t),t) € R", B;(x(t),t) is the matrix of size n x m, j = 1,2, w(t) is

the m-dimensional Wiener process with independent components
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Using the indicator random process x(t), one can also construct a model of the
diffusion process with transitions from one subspace to another:

da(t) = x(t)|a1 (z(t), y(t), 1) di + By (x(t), y(t), t)dw(t)],
dy(t) = (1 = x(t))|az(x(t),y(¢), 1) dt + Ba(x(t), y(t), t) dw(t)],

etc. Such problems arise in the course of simulating a diffusion process with a non-

(®)

random modulus of speed, when the magnitude of the velocity modulus can change
abruptly under the influence of external random disturbances, and remain constant
between these jumps [19].

If the coefficients of (8) satisfy conditions

Bj(z(t),y(t),t) =0, ai(z(t),y(t),t) = —az(z(t),y(t),t) =¢, c¢=const>0,

then the process x(t) + y(t) corresponds to the Kac model of particle motion with
random changes in the direction of velocity [20].

4.2. Diffusion process with random time delay centers. We propose
a new version of the model of dynamic process with delay centers using indicator
random processes.

The process under consideration proceeds for some time, then at a random
moment in time it stops for a random period of time and then proceeds again for a
random time. The points in space at which the process stops are called the center
of time delay.

A delay center, or a time absorption center, arises, for example, for queuing
processes: a device becomes a delay center when serving a customer. For the diffusion
process, such centers can be considered points in space where a particle temporarily
stopping and leaves them at a random moment in time.

We will correlate the randomness of the moment of stopping the particle’s move-
ment and the moment of resumption of its movement with a random function of a
random function N (¢) that have non-random integer values and independent incre-
ments (indicator random process) [16]:

X(t) = X(N(t))-

DEFINITION 3. An indicator random function x () is called conditionally peri-
odic if it satisfies the condition

X(N(t) +2k) = x(t), k€N, 9)
The conditions (1), (9) are satisfied by the function
x(t) =X(N(t)) = 0.5(1 + cos[T N (t)]). (10)
This function has the following properties:

- [ 05(1 +cos[rN(t)]) =1, for N(t)=2s, seNU{0},
x(t) = { 0.5(1 + cos|aN(t)]) =0, for N(t)=2s+1, seNU/{0}.



Application of an indicator random process 87

For example, as N (t) we can take a homogeneous Poisson process: E[N(t)] = ut.
Then E[X(N(t))] = 0.5(1 + exp{—2ut}).

To model the diffusion process with random time delay centers (diffusion inter-
ruption) and subsequent restoration of the movement process, let us use the following
It6 stochastic differential equation:

dz(t) = x(®)|a(z(t),t) dt + B(x(t),t) dw(t)], (11)

where, in the general case, z(t), a(z(t),t) € R™, B(z(t),t) is the matrix of size n x m
and w(t) is the m-dimensional Wiener process with independent components.

As is known, diffusion occurs by several mechanisms. Surface diffusion is a gen-
eral process involving the motion of molecules, and atomic clusters at solid material
surfaces, and the corresponding model is the system of equations (11) in R2. Bulk
diffusion, i.e. diffusion in the bulk of the material, can be modelled by the system
of equations (11) in R3.

Let us consider the equation

dz(t) = a(t) dt + 0.5(1 + cos|tN()])b(t) dw(t), 2(0) = 0. (12)

This model corresponds to the case when the state of the system changes ac-
cording to a deterministic law, and then, over a random period of time, it is affected
by random disturbances. Let us make a change of variables:

Then the equation (12) takes the form
dy(t) = 0.5(1 + cos[r N (¢)])b(t) dw(t), (13)

where y(t), a(t),b(t), € R, N(t) is the Poisson process, w(t) is the one-dimensional
Wiener process, and N(¢) and w(t) are mutually independent ones. Suppose, that

y(0) = 0.
The characteristic function for the random process (13) is

t
Ji(t) — E[e®0] - E | expd 0.5i8 / (14 cos|mN (F)])b(r) dw(r)
0
Applying It6 formula, Property 1, and the Poisson distribution [21], we obtain

_ dE[(1)]
dt

1

D(t) = 0.56%(1 + cos[m N (t)]) = 4b2(1 e, (14)

where b? is the diffusion coefficient without time delay centers. It follows from the
equality (14) that
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Note that the difference between probabilities for even and odd N(t) is due
to the fact that N(¢) € NU {0} and N(0) = 0, ie., N(t) does not start with
an odd number. This leads to a discrepancy among the analytical expressions for
probabilities:

e © t 2s
Y Prob(N(t) =2s) =e™ ) D™ ot coshput = 0.5(1 1 =2,
s=0 .

}OO: - tfo: (Mt)25+1 —pt —2ut

PTOb(N(t):2S+1):€ H mie ‘U‘Slnh/,Lt:O.f)(l—e 'u)
S .

s=0 s=0

=1- i Prob(N(t) = 2s).
s=0

The equality of probabilities is only asymptotic:

o0 o0

tlirﬁlo > Prob(N(t) = 2s) = tlirﬁlo > Prob(N(t) = 2s +1) = 0.5.

We can conclude that if in a homogeneous media there is a nonlinear time
dependence of the average square displacement of a particle and an asymptotic
decrease in the diffusion coefficient, then there exist time delay centers.

4.3. Diffusion with random change in direction of movement. The
Kac model. Let us consider one-dimensional particle movement with speed v, when
the direction of movement changes at random times [20]:

dz™(t) = x()vdt, dz~(t) = —(1— x(t))vdt.

Since we are interested in the total displacement z(t) = =™ (t) + =~ (t), we obtain
the equation
dx(t) = (2x(t) — v dt. (15)

For x(t) we take the representation (10):
x(#) =X(N(t)) = 0.5(1 + cos|T N (t)]).

Let v = const = ¢ > 0. Then the characteristic function for the process z(t) takes
the form:

I(t) = E |exp iﬁ/cos[ﬂ'N(T)]ch . (16)
0

Theorem 2. If N(¢) is the stationary Poisson process with parameter \, then
the characteristic function for the process x(t) subordinate to the system (15) is a
solution to the Cauchy problem:

d*1(t) dI(t)
P a

+2B%I(t) =0, 1(0) =0, %(to) = icf. (17)
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PROOF. Let us differentiate (16):

MO g |igeosten@)leexp] is / cos|rN(r)]edr b | (18)
0

Let f(x) € €. Then
df (N(2)) = [f(N(t) + 1) = F(N(£)]dN (2), (19)

where dN(t) is an advanced increment, i.e., it is independent of the previous values
of N(¢). Since E[dN(t)] = Adt, A > 0, then taking into account (18), we obtain

t
a0 P o N O] expd i [ coslaN(Dear (|
0

+iBcE | (cos[m(N(t) + 1)] — cos[rN(t)]) exp iﬁ/cos[ﬂ'N(T)]c dr » | Adt
0
= —c?B*F |exp{ if | cos|rN(7)|cdr 3 | dt
/

¢
+ 2iBe\E | cos[r N (t)] exp iﬁ/cos[wN(T)]ch dt
0

= —c2B%I(t)dt — 2A%(tt) dt.

From the last equality we obtain the statement of the theorem.

REMARK 2. As is known, the characteristic function allows one to find the
distribution density function. Applying the inverse Fourier transform to the equation
(17) from Theorem 2, we obtain the telegraph equation for the distribution density
function p(x,t):

32p(x, t) + 2)\(9p($, t) _ C2 32p(x, t) _ 0,
ot? ot Ox?
which coincides with the results obtained [20].

Note that the Kac model is finding new applications. In particular, it is used to
study the model of random colliding particles interacting with the infinite reservoir
at a fixed temperature and chemical potential [22]. This is the so-called thermostat
problem, in which particles can leave the system towards the reservoir or enter
the system from the reservoir at random times. Accordingly, the proposed random
indicator process method can also be used to solve the thermostat problem.

4.4. Diffusion model with random transitions from one subspace to
another. Two-dimensional case. Let us consider the following diffusion model:

dx(t) = X(0)bdw(t), dy(t) = (1 —X(t)bdw(?), (20)
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where b is the diffusion coefficient, i.e., at random moments of time the process
occurs either in the space z(¢) or y(t). Such models can describe the diffusion process
in random porous media. As a random process X(t) we choose the representation
X(t) = 0.5(1+cos N (t)). Then the characteristic function for the process {z(t), y(t)},
in accordance with (20), takes the form:

J(t) = E |exp ia/0.5(1 + cos N(1))bdw(r) + iﬁ/0.5(1 —cos N(7))bdw(7)
0 0

Theorem 3. If (N(t)/w) is the stationary Poisson process with parameter A,
then J(t) is a solution to the equation:

d>J(t)
dt?

+0.5(4\ + [a? + 5%%%@ +0.5(Aa? + 0.502326 + A\B%b)J (t) = 0. (21)

PROOF. Since the processes N(¢) and w(t) are independent, we obtain

t

J(t) = E |exp z'/0-5[(a +B) + (a— B) cos N(7)|bdw(T)
0

~ Flexpd - / 2 3(ar + B) + (a — B) cos N ()b dr

0
t

~ Elexp _/2-3[(a L B2+ 2(a? — B2 cos N(7) + (o — BB dr

0
t t

= F |exp —a2/2_2(1 +cos N(1))b* dr — 52/2_2(1 —cos N(7))b*dr
0 0
(22)
For compactness, let us denote by f(t) the last expression under the mathematical
expectation sign in (22):

t t

f(t) =exp{ —a? [ 272(1 + cos N(7))b*dr — B> | 272(1 — cos N(7))b*dr p. (23)
/ /
Next we get
%&t) = —E[f(t){a*272(1 + cos N(t))b* + B*272(1 — cos N (t))b*}]. (24)

Taking into account that dN(¢) is an advanced increment, i.e., it does not depend
on the previous values of N(t), for which, due to the properties of the Poisson
distribution,

E[d(N(t)/x)] = Adt, A > 0.
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Let us calculate the differential (compare with (19)):
dcos N(t) = [cos(N(t) + m) — cos N(t)] d(N(t)/m) = —2cos N(t) d(N(t)/m).
The process cos N () have the following properties:
cosN(t)cosN(t) =1, (1—cosN(t))(1+cosN(t)) =1—cos® N(t) =0,
(1 —cosN(t))* =2(1 —cos N(t)), (1+cosN(t))*=2(1+ cosN(t)).
Then

d?J(t)
dt>

= E[f(t){0.5%b? cos N (t) — B*2722b% cos N () }] A
+ E[f){a®272(1 + cos N(t))b? + 8*272(1 — cos N ())?b*}?]
— E[f(t){0.50°b cos N (t) — 0.53%b* cos N (t) }]\
+ E[f(t){a*27*(1 + cos N(£))%b* + p*27*(1 — cos N (t))?b*}]
= AE[f(1){0.50*(1 + cos N (t))b? + 0.53%(1 — (cos N (t)))b*}]
—0.5X(a? + B2 J(t)
+ E[f(t){a*273(1 + cos N(t)b* + 31273(1 — cos N (t))b*}].

Therefore, we get the equation

PJ(t) dJ(t) 2 a2y72
S = —2AT — 05M(a” + BB (1)

+ E[f(t)a*273(1 + cos N(t))b*] + E[f(t)5*273(1 — cos N(t))bY].  (25)

Let us continue the transformation for the last terms in (25). For simplicity, let
us examine each of them separately.
Considering the first term:
E[f(t)a*272(1 + cos N (1))b%]
= 0.5020*E[f(1){a?*272(1 + cos N(t))b* + B2272(1 — cos N (t))b*}]
— 2B ELf(H)27*(1 - cos N(1))],

and taking into account (24), we have

dJ(t)

E[f(t)a*273(1 + cos N (t))b*] = —0.50121727 — 2BV E[f(1)273(1 — cos N())].
(26)
Let us transform the second term:
E[f(£)3*27%(1 — cos N (£))b"]
= 0.56%V°E[f (1){a*272(1 + cos N (¢))b* + B*272(1 — cos N(t))b?*}]
— 2BV E[f(t)273(1 + cos N(t))]
= —0.5521)2@ —a?BPE[f(#)273(1 + cos N(t))]. (27)

dt
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Substituting the resulting representations (26) and (27) into (25), we obtain:
2B E[f(1)273(1 — cos N(t)] + B2 E[f(£)273(1 + cos N (t))] = o?B*b*272J (¢).

As a result, taking into account the notation E[f(t)] = J(t), we obtain

& d‘i ) _ g d‘;(f) —0.5M(a® + BBRI(1)
- o.m?g?zﬂ%ﬁ” Q22 E[f(1)]
s 0.5a252b2)%§t) 2825422 4 0.5 (a2 + BB (8).

The statement of Theorem 3 is obtained.

The equation (21) can be solved. However, its construction will be cumbersome.
Using the result obtained in Theorem 3, we find an explicit view of the characteristic
function for a simpler process. We will solve the equation for a simpler model, and
then we will show how to move to the explicit form of solving the equation (21).

As such a simple model, consider the characteristic function J(t) for the diffusion
model (20):

d?J(t)
dt?

+0.5(4) + [o? + 5%1#)%?) +0.5(Aa? + 0.5026%b% + ABHDb2J(t) = 0.

The equation for the characteristic function Jp(¢) should coincide with (21) if
we set a = 0. Formally, this corresponds to the following substitutions of coefficients
in (21):

0.5(4)\ + [a? + B%p?) = 0.5(4)\ + 5%b?),

28
0.5(\a? +0.5028% + A\3%b?) = 0.5\3%b%. (28)

Accordingly, the characteristic function Ji(t) for the diffusion model with delay
centers is a solution to the equation:

d?Jy(t)
dt>

dJy(t)
dt

+0.5(8%b2 + 4)) +0.508%0%J1(t) = 0. (29)

Since the conditions are satisfied

272(B%0% + 4N)? — 208202 = 27234 + 23262\ + 4\? — 25%b° A\
=272 L 4N2 >0 VYA >0,

then the solution to the equation (29) [23, p. 375, formula 235(a)] will be as follows:

/1
Ji(t) = Ch exp{—0.5t(ﬁ2b2 +4X) +t 1541)4 + 4)@’}
+ Oy exp{—O.St(ﬁ2b2 +4AN) —ty/ 354174 + 4)\2}.
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Since (820 + 4X)? > 134" + 4X%, then the first and second terms decrease with
increasing t, and therefore tlim J1(t) = 0. Taking into account the initial conditions
—00

dJy(t)
dt

= —0.58%0%,  Ji(t)|t—0 = 1,
t=0

we obtain an equation for determining the constants:

Ci+Cy =1,

/1
0.56%% = exp{—o.5t(52b2 4N+t 1541)4 + 4)\2}
+ Oy exp{—O.St(ﬁ2b2 +4AN) —ty/ 354174 + 4/\2},

1
0.5620% = (1 — Cy) exp{—o.5t(52b2 +AN) +ty/ TR 4/\2}
+ Oy exp{—O.St(ﬁ2b2 +4N) —ty/ 354174 + 4/\2},
1
2\ = 02,/154174 +4)2.

Having solved these equations, we establish that

1 -1 1 —0.5
Cy = 2A(,/Zﬁ4b4 + 4/\2) = (E/\‘%"*b“ + 1) ,

1 —0.5
=1—(=X"28%*+1 .
Cy <16/\ Bt + >

Thus, the solution to the equation (29) takes the form

Ji(t) = exp{—o.5t(52b2 +4N) +ty/ 354174 + 4)\2}
1 —0.5 1
+ <E/\‘264b4 + 1> [exp{—0.5t(62b2 F4AN) — ] 154174 + 4)\2}
— exp{—O.St(ﬁ2b2 +4N) + 1/ 354174 + 4A2H :

Since the condition is satisfied

1 -0.5
—\728%* +1 <1,
(16 B+
then Ji(t) > 0 for all ¢ > 0.

Using inverse substitutions of coefficients based on relations (28), we obtain
the solution to the equation (21). Taking into account the relationship between
characteristic functions and moments, we can find random moments for the processes
under consideration.
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Conclusion

The proposed method of indicator random processes, together with the use of
the method of characteristic functions, allows us to consider both previously known
models and new ones that have a physical interpretation, such as a model of a
diffusion process with random centers of time delay and a diffusion model with
random transitions from one subspace to another. Theorems have been proven
in which equations for the characteristic functions of the random processes under
consideration are obtained. These equations are solved analytically, which makes it
possible to determine the probabilistic characteristics of these random processes.

Also we note that if a complete group of incompatible random processes is given,
then it is established that there is a set of independent indicator random processes.
Based on the latter, it is possible to construct a complete group of events whose
distribution will coincide with the distribution of a given group of incompatible
events (see Appendix A).

Of course, this brief description cannot capture all aspects of the method of the
indicator random processes.

Appendix. Application of a random
indicator process to specify realizations of
random processes with variable structure

Lemma 2. Let the following be given: a collection of independent set-events

A;, 5 =1,2,...,n — 1, and a complete group of incompatible events B;, j =
1,2,...,n:
j—1 n—1
By = Aq; BjAjﬂ<ﬂKk>, j=23,...,n-1; B,=[)A.
k=1 k=1

Let us assume that a set of probabilities is given:
n—1
Prob(B;), j=1,2,...,n—1; Prob(B,)=1- Z Prob(B;).
j=1

Then it is possible to establish a one-to-one correspondence between the sets Prob(A;)
and Prob(B,), r,j =1,2,...,n— L.
PROOF. Due to the independence of Aj, j =1,2,... ,n—1, we get the equali-
ties:
Prob(By) = Prob(Ay),
Prob(Bs) = Prob(Ay)Prob(Ay),
Prob(B3) = Prob(Az)Prob(Ay)Prob(Ay),

n—2

Prob(By,—1) = Prob(A,—1) H Prob(Ay)
k=1
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or

Prob(B;) = Prob(Al ),

Prob(Bz) = Prob(Az)(1 — Prob(A1)),
Prob(Bs) = Prob(Asz)(1 — Prob(As))(1 — Prob(Ay)),
N n—2
Prob(B,_1) = Prob(A,_1) [ (1 — Prob(Ay)).
k=1

Switching from one equality to another, we obtain

Prob(By) = Prob(Ay),
Prob(Bs) = Prob(As)(1 — Prob(Ay)) = Prob(A2)(1 — Prob(By))

~ Prob(B,)
= Prob(Az) = T Prob(By)’
Prob(Bs) = Prob(Asz)(1 — Prob(As))(1 — Prob(Ay))
Prob(Bs)
= Problds) = =50 E) BProb(Bg)’

N n—2

Prob(B,,_1) = Prob(A,_1) [ (1 — Prob(Ax))
k=1

= Prob(A,_1) Prob(Bn-.)

n—2 :
1— > Prob(Bg)
k=1
Thus, a one-to-one correspondence is established.

Consider an example. Let x;(¢) be independent indicator random processes.
For example, x;(t) can be as follows:

x;(t) = 0.5(1 — cos(wN,(t)), (30)

where N;(t) are independent Poisson processes with variable intensity A;(t), and

t

m=0,1,2,..., &j(t)://\j(T)dT.

0

m(t
Prob(N; (1) — m) — L —as

Let the events B;, j —1,... ,n, be incompatible events that form a complete group.
Let us assume that events A; are associated with process x;(¢), and events B, are
associated with the process N;(t).

Let the events B;, j — 1,... ,n, be incompatible events that form a complete
group. Let us assume that the event process A; is associated with the process x;(t),
and the event process B; is associated with probabilities Prob,(B;) = p;(t).
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Taking into account (30), events A; will correspond only to odd values of the
process N;(t). Therefore,

Probi(A;) = Prob(N;(t)|N;(t) = 2k, k € NU{0})

) i @GO 0 cosha (£) = 0.5(1 4 =20 (1))
- e @m)l =5 '

Let us proceed to comparing the distributions Prob:(A;) and Prob:(B;):
0< P’I‘Obt(Aj) = 05(1 — €—2aj(t))

- Deb®) om0 ) <1,
1— 3 Prob(B) 1— 3 pi(?t)
k=1 k=1
C S ) - (0
1—2p;(x(t) = e 250 — 1 - ?@ = = > 0.
1— > pe(t) 1L— > pl(t)
k=1 k=1

From this equality it follows:

15 i)
k=1

a;(t) =0.51n ; (31)
1= 3 pe(®)] = p;(t)
k=1
As the numerator in the equality (31) is positive,
j—1 n
1= "pi(t) =Y pi(t) >0,
k=1 k=j
it is necessary to establish the conditions when the denominator is positive:
j n
1= pe(t) =pi(t) = > pe®)=pit) Vi=1,....n—1 (32)
k=1 k=j+1

The requirement follows from (32):

pj+1(t) = p;(t).

Such ranking is always possible, and therefore we consider it as the initial one.
Since a;(t) > 0, the following inequality must hold:

LS 21— Y ) — 1)
k=1 k=1
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MHOFOCTAOUNHASA
NMPON3BOACTBEHHO-PACNPEAENTENBLHAS
3AJAYA

B. B. Aaucumosn, E. B. CazaunoBa

AnnoTranus. [Ipeacrasiiena HOBas IOCTAHOBKA IIPOU3BOJICTBEHHO-PACIIPEIEIUTEIbHON
3aJla4¥ B CETSAX CO CJIOXKHOM CTPYKTYPOI IPOU3BOJACTBA T'OTOBOI IPOAYKIMU. BblIesieHbl
0COOEHHOCTH 33a/1a4H, BKJIIOYasl [IOCIEJ0BATEIbHOCTD IIPOLEAYD IIPOU3BOIACTBA U TIOCTaB-
KJ TPOAYKIUH, y4eT PasHOOOPa3HBIX BHOB IPOAYKIMH Ha OMHON CTaIud, pasjindue
MeXK/Ly 9TaIloM U cTajueil. BBenensl nmonsaTus «DUKTUBHAS» U «peasbHas» 9acTb (00b-
€MBI) TIOCTABKH NPOAYKIMU OT PeasIbHbIX IOCTABIIMKOB, KOTOPbIE MO3BOIMIN N30eKaTh
MIPUMEHEHUs] SBPUCTUYECKUX IIPUEMOB IIPU PelleHuun 3aaa4du. [IpeicraBieHa MeTOIUKa,
OCHOBaHHasl Ha CUMILIEKC-MeTO/Ie, JJI ONTUMHU3AINN IIPOU3BOJCTBA U ITOCTABOK Pa3JIMd-
HBIX BHJIOB IIPOAYKIIMU Ha KarKJIOHM CTaJUH IIPOU3BOJACTBEHHOMN IIETIOYKH, ITO3BOJISIONIAS
PelnTh 33/4a4y 3a OJHY ONTHMUIAIMOHHYIO IPOIeaypy. Pe3ysbTaTsl UCCIeqOBaHUS MO-
ryT OBbITH MOJIE3HBI NPU [JIAHUPOBAHUM B KOMILIEKCHBIX M MHOTONPOMHUIBHBIX («ceTe-
BBIX») KOMIIQHUSIX JJIsl IPUHSATHSI SKOHOMHYECKH OOOCHOBAHHBIX PEINEHUH B 00JIACTH
YIIPaBJIE€HUSI IPOU3BOACTBEHHBIMU I[EIIOYKAMU.

DOI: 10.25587/2411-9326-2024-2-99-115

Kuro4yeBble cji0Ba: IPOU3BO/ICTBEHHO-PACIIPEIe/INTE/IbHAS 3a/a49a, [IeITI0YKU [TOCTABOK,
TPaHCHOPTHAas 3aJa4a, CUMILIEKC-METO/I, II0C/IeIoBATeIbHOEe IIPOU3BOACTBO NPOIYKIUA,
ONTHMU3ALUs MOCTABOK, (PUKTHBHBIE IIOCTABKH, MHOTIONPOMUIbHBIE (<«CETEBBIE») KOM-
aHAM.

Bsegenue

Kpymusbie MEHOTOITPOMUIbHBIE KOMIIAHUH ( «CETEBBIE KOMIIAHUN» ) MOTYT BJIAJIETh
OU3HECOM 10 MPOM3BOJACTBY M IIOCTABKE CJIOKHOW M BBICOKOTEXHOJIOTUIECKOH IIpO-
JyKIIUW, JJIsi KOTOPO# HEOOXOMMBI MHOTOUNCJIEHHBIE TIPOMEXKYTOTHbBIE CTaIul 06-
pabOTKH, N3TOTOBJICHAS U COOPKH TPOLYyKINU TPEIPUITUAMA 3TOH KOMIAHUY WA
KOMIIQHUH-IAPTHEPOB. B YaCTHOCTH, OJHU IIPEIIPUATHS MOIYT U3 ChIPbs H3MOTAB-
JBaTh (OTJIMBATD, IITAMIIOBATE ) JleTaju (KOMILIEKTYIOIHE ), IPYIHe — COOUPaTh U3
Hux arperarsl (y3/bl, GJOKH), a TPeTbl — 3aHUMATLC COOPKOIl U3 arperaToB roTo-
BOI IPOAYKIMN (KOHEUHOTO U3/IeJIHsl UM TIPOJYKTA) B BAJE CIOKHBIX KOMILIEKCOB
(mammH, o6opyoBanus). IIpu IUIAHUPOBAHUE TPOU3BOJICTBA U IOCTABKH TAKOTO M3~
Jequst (M3zesnit) BCTaeT 3a/Java MUHUMU3AIMA 3aTPAT WM YBEJUUEHUs NPUOHLIN
HA BCEX CTJUAX IPOU3BOJICTBEHHO-PACIIPEIEIUTEILHOM IEIIOUKY.

Jlanaast paboTa IMeeT HellOCPEICTBEHHOE OTHOIIEHNE K TPOBIeMaM TPOEKTHPO-
BaHus (MOJIEJIMPOBAHNs) U YIIPABJIEHUS [ENOYKAMUA IIOCTABOK M IIPOU3BOJICTBEHHO-

(© 2024 Anucumos B. B., Cazanosa E. B.
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Puc. 1. BsauMocBsa3b BUIAOB IPOLYKIHH IIPU IIPOU3BOJCTBE IOTOBOM IMPOIYKIIHH.

pacrpeeanTesbabix cereit [1,2]. B cBere ruobasmsanuy npou3BoJICTBa U PACIIUPE-
HUsI HAIPABJICHUN BeJeHUs OM3Heca KPYIHBIX KOMIIAHWI 9TOH mpobJieMaTuke yiie-
JISIETCsI TIOBBIMNIEHHOE BHUMAHWME — BBIMIYCKAETCH CIIEIUAIM3NPOBAHHAS JIMTEPATYPA
U myGJIMKYIOTCS MHOTOYUC/IeHHbIe cTarb. B paborax [1, 3-5] npuseensr xoporuuit
0030p ¥ aHAJU3 UCCJIEIOBAHMI B 9TO# 00IaCcTH.

B [2, 6] Hanbosiee 4eTKO BBIPAXKEHBI JBe KIIIOUEBbIe 0COOEHHOCTH TaKUX CETEl:

— HaJIM4ue B CEeTH MYHKTOB (y3JI0B) PA3HOrO THUIIA:

— BHEIIHNME [IOCTABIINUKY UJIH IIPOU3BOJAUTEN OTJEIbHBIX BUJIOB IIPOJYKIIHH,
HE BBIIIYCKAEMbIX HA, IIPENPUATUSIX KOMITAHUY;

— cobcrBenHble peAnpusTus (3aBo/bl, dhabpuku) nepepaboTKM, IIPOU3BOI-
CTBa UJIU COOPKHU BUJIOB IIPOJLYKITHH;

— pacupejenTelbHbIe IEHTPB! (CKJIAJIbI) POy KIIUH;

— KOHe4HbIe ToTpebuTen (KAMEHTHI, JUjIePhl) TOTOBON POy KIIUY;

— CJIOKHAs CTPYKTYpPa IIPOU3BOJICTBA I'OTOBOI nponyknnu. Ha oTaenpHBIX cTa-
Jwsix (rarax) Jisl H3TOTOBJIEHUsT 6OJIee CJIOXKHOTO BHUJIA IIPOJLYKIA MOYKET O~
TPeOOBATHCS MPEIBAPUTE/IbHBIE 3aKYIKA, M3TOTOBJIEHHE U IOCTABKA B IIYHKT
MIPOU3BOJMICTBA HECKOJIBKUX, 00JIee MPOCTHIX BUIAOB HPOIyKImu. CXeMaTUuIHO
JTaHHAsT OCOOEHHOCTH IMOKa3aHa Ha puc. 1.

Bropasi 0cobeHHOCTD BJISIETCS KJIIOUEBOW IIPU IIPOU3BOJCTBE I0JIABJISAIONIETO
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YUCIa BUAJIOB MPOMYKIIMU, HO OHA WTHOPUPYETCsl OOJIBIMMHCTBOM WCCJIEIOBATENEH.
B macrosmieit pabore npejiaraeTcs KOHCTPYKTUBHBIN TOJIXO/T K €€ yIeTy, KOTOPbIH
MOZKET OBITh UCIIOIB30BAH IIPH ONIEPATUBHOM M TAKTHIECKOM (HA CPOK OT HECKOJIBKAX
HeJIeIb JI0 TOJIa) MJIAHUPOBAHUU PAboT MeHCTBYONMX (yCTOSBIINXCS) TIPOU3BOJICT-
BEHHO-pacIpeJe/InTe/IbHbIX ceTeil.

O630p ucciaenoBaHmii

J1s1s1 periieHust IPOU3BOJICTBEHHO-PACIIPE/IEIUTEIHHBIX 33124 [IPE/JIAraJIiuCh Pa3-
JIMYHBIE METOIbI JIMHEHHOTO, IEJOYNCIEHHOTO U JUHAMWYECKOTO ITPOrPAMMUPOBa-
HUsI, HEYETKUE MHOXKECTBA, TeHETUYECKIE AJITOPUTMbI U PA3JIMIHBIE IBPUCTUIECKUE
mpuemsl [1,3-5].

B 10 ke BpeMst JiIsl OLIPe/IeJIeHUsT OIITUMAJILHOIO IUIAHA IIOCTABKY (B TOM JHCJIe
BKJIIOYasl IPOM3BOJICTBO) IPOAYKIUK U3 IYHKTOB OTIPABJIEHUS B IYHKTHI HOTPE6-
JIeHUsI Ha NIPaKTHKE JaBHO U YCIENIHO IIPUMEHSIOT TPAHCIIOPTHYIO 3aja4y. Kiac-
CHUYecKasl ee IMOCTAHOBKA M3BECTHA KaK «TpaHCIOpTHas 3ajada Momxka — Kanro-
posuua». lacnap Momxk Buepsble (opmam3oBas fganuyio 3anady [7], a Jleonusn
Kanroposuu u Mapk TaBypun npemioxuiu JelicTBeHHBIA MeToJ| ee pernenus [8].
DopMyIMPOBKa TPAHCIIOPTHON 3a/1a9M KaK 3aJadd JIMHEHHOTO ITPOrPAMMUPOBAHUS
6eua npempokena Pparkom Xuuxokom [9]. C cepenunbr XX Beka U 10 HACTOSIIEE
BpeMsI IOSBUJINCH MHOT'OYUCJIEHHbIE BADUAHTHI €€ IIOCTAHOBKHU U PEIIeHUs, CBI3aH-
HBbIE CO CHEIU@UIEeCKUMU YCJIOBUSAMU M HIOAHCAMM, BO3HUKAIOIIUMH HA IIPAKTHUKE.
B uacrrocTH, TpaHCOpTHBIE 330a4n (10, 11]:

— OTKPBITasd U 3aKPbITast (3aMKHYyTasl);

— C 3alpeTaMy;

— C OrPAHUYEHHBIMH TPOILYCKHBIMU BO3MOXKHOCTSIMU;

— C IPOMEXKYTOYHBIMU [IyHKTAMH (MHOIOITAIIHASA);

— C MIPOMEXKYTOIHON 00PabOTKOIf;

— MHOTOIIPOIYKTOBAs CO B3aNMO3aMEHSIEMbIMU BUIAMU [IPO/LYKITUH;
— U Jp.

JlJist pertieHnsi KJIACCUIECKONH U HEKOTOPBIX CIEIU(PUIECKUX BUJIOB TPAHCIOPT-
HBIX 33J[a9 MOT'YT OBITh IPUMEHEHBI PA3JINIHbIE METOIbI OITUMUI3AIIIN.

— Benrepckuit meroa. Paspaboran Tapoasgom Kynowm [12] must pernenns 3a-
Jla9i O Ha3HAYEHUSX U ObLI B 3HAYUTEJILHOI CTEIleHH OCHOBaH Ha 6oJiee
paHHEX paboTax IBYX BEHIepCKHX MaTeMarnkos: Jeneca Kennra u Hene
OrepBapu. B masbreiiem MeTom ObLT yCOBEPIIEHCTBOBAH [IJIsi PEIEHUsT
KJIACCUYECKON TPAHCIOPTHOM 3a1auu [13, 14].

— Merton norenrmuaos. [lepBblit TOUHBIN MeTO, penenns TPAHCIOPTHON 3a-
gaqn, npenoxennsiit Jleornmom Kantoposuuem nu Mapkom [aBypunbiM
8]

— Cumiutekc-merog. Paspaboran zkopizkem JIaHIMroMm st peleHust 3,14
JINHEHOTO IIPOI'PAMMUPOBAHUS U IIPUMEHEH UM I PEIeHUs TPAHCIOPT-
HOIt 3amaqn [15].
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— Meroz pa3pemarImx CIaraeMbix (MeTOJ| IPHONKEHHS yCIOBHO-ONITHMAI b
HbIMK TTaHamu) Asexcanzapa Jlypee [16,17].

— Meron muddepeHnnaIbHBIX PEHT (AJArOPUTM BBIYEPKUBAIOIEH HyMepa-
) Astekcannpa Bpyso [18].

— Meron duxrusnoit auaronamm (meron Opaena — Mama) [19];
— U T A

Hecmorpst Ha oOuiine METONOB PEIeHnsT TPAHCIOPTHON 3a/1a91, OJABJISIONIEe
6OJIBIIMHCTBO METOJOB HE IIOIXOJIAT JIJIs PACCMATPUBAEMON 33/1a41 B CUJLy OTMEUEH-
HO BBIIIIE OCOOEHHOCTU — CJIOYKHON CTPYKTYPBI IPOU3BOJICTBA TOTOBOH MPOILYKITUH.
B yacrHOCTH, BEHrepCcKuil METO/T U METO/] IOTEHINAJIOB HE ITO3BOJISIOT €€ PEIIUTh 3a
OJIHY ONTHMU3AIMOHHYIO Iporeaypy. s Toro 4Tobsl penuTh 3aa4y Ha CTAIUH S
HEOOXO/IMMO PaCIPEeIeuTh 00 beMbI IIOCTaBOK Ha crajuu s — 1 mwim Haobopor. Co-
OTBETCTBEHHO BO3MOXKHBI J/IBA BapHUaHTa IIOCJIE/I0BATEIBHOIO PEIIeHNd C IIOMOIIbIO
9TUX METOJOB, I'/le Ha KaXKJ0il CTaJ UM pelraeTcs HECKOJIbKO TPAHCIIOPTHBIX 3a/a4:

— IIPAMON MeTOJ — BHa4aJle C IIOMOIIbIO CepUU TPAHCIIOPTHDBIX 33124 paclipe-
JessieTcsd NIPOJyKIns Ha 1-it crajgun (I/ICXO,ZLHaH HpO,LLyKILI/IH), 3aTeM, 3Hasd
pacipejiesleHHble 00beMbl Ha, HAYAJIBHON CTa NN, PACIPEIEIsIeTCs TPOIYyK-
ys Ha 2-f cCTaJiu U T. JI., BIUIOTH JIO0 PACIPEJIeJIEHUS T'OTOBOI ITPOYKINT
Ha HOCJaeJHeill craauu;

— 0OpaTHBIl METOJ, — TOT K€ HADOP TPAHCIOPTHBIX 33/, HO PEIIaeMbIX B
0OpaTHOM TTOPSIJIKE.

Tax, ecyiu rOTOBasl MPOAYKIUs (HAIPUMED, 000PYAOBAHNE WU YCTPOHCTBO) CO-
CTOUT U3 TPEX arperaToB, a T€, B CBOIO OYEPEb, COCTOSAT KAXKJIBbI U3 TPEX PA3HBIX
KOMILIEKTYIOIAX, TO B OOIIE#l CJI0KHOCTU HAJO PEIUTh 13 TPAHCIOPTHBIX 33189
(1+3+9). IIpu s1oM u 1upsMOil, u O6PATHDBI METOJ HE TAPAHTUPYIOT HAXOXKIe-
HIU€ UTOTOBOI'0 OIITHMAJILHOIO IIJIAHA IIPOU3BOICTBA U IOCTABKY I'OTOBOM IIPOJYKITUH.
OmnncaHHbIe BADUAHTHI PEIIEHNUs sIBJISIFOTCsT aHaJoroM aaropurma A* [20], rue kax-
JIblIl YPOBEHb aJITOPUTMa COOTBETCTBYET OIIPEJIEJIEHHON CTA UM PEIIEHUS 33 1a9H.

B nomasisironieM 60IBITMHCTBE TPOAHAIU3NPOBAHHBIX PAOOT 9Ta KJIIOUEBast 0CO-
OEHHOCTDH ITPOM3BOJICTBEHHO-PACIIPEIECIUTEIBHBIX CeTeil JInO0 UTHOPUPYeTCsi, OO0 B
HUX PAcCMaTPUBAIOTCH JIBYX- WJIM TPEXCTaIUHHbBIE IIPOLEIYPhI II0 ITPOU3BOJICTBY I'O-
TOBOH MPOAYKIMA U3 OJHOTO BUJA ChIPbsl WK HosydhabpukaTa (HAIPUMED, C HEKO-
TOPBIMU YIIPOIEHUSIMU CXEMBI: caXapHas CBEKJIa — caxap, JIOCKH — CTYJIbs, OOKCHU-
THI — [VIMHO3eM — AJIOMUHUEBbIE IyIIKN). TakuM o6pa3om, Ha OTIEIBbHON cTamn
IIepEMEIAETCs TOJIHKO OJUH BUJT IPOILYKIIUN, YTO MOXKET OBITH JIEFKO YYTEHO 38 CUET
BBO/Ia B MOJIEJIb COOTBETCTBYIOIIETO KOI(DDUIMEHTA IPUBEIEHIS.

B psge pabor [6,21] 9ra 0cO6EHHOCTD IBHO 0603HAYEHA U BBEJIECHA B MOJIEIIb, HO
npuBesia K HeoOXOAMMOCTH HMCIOJIb30BaHUs B MeToje (METO/MKe) PelleHus 3a/1adu
9BPUCTUIECKUX IIPUEMOB, ITO HEe TapAHTUPYET MOJIyUeHHs] OITUMAJILHOTO Pe3yJibTa-
Ta.
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OcHOBHBIE IT0JIO>KEHUSI

[Tepesr boOpMyIMPOBKOI TOCTAHOBKY 331291 U U3JIOKEHUS METOJIUKU €€ Perlre-
HUS IIPUMEM CJIeIyIONNe II0JI0XKEHUA.

I1. 1. Tlox npodykyueti (6udom npodyxyuu) p Gymem HOHUMATD JIIOGOH MaTepu-
AJBHBIN WM HEMATEPUAJBHBIN aKTHUB, IIEPEMENIAeMbIil MeXK Iy IMyHKTaMu (y3Jamun)
CeTH, 33 UCKJIIOYEHHEM CaMHUX TPAHCIIOPTHBIX CPEJCTB JocTaBKu. Kak mpaBuso, 3To
MaTepHaJIbHbIe O0bEKTHI (HAIPUMED, CHIPbE UJIU TOTOBAsI IIPOJLYKIHsI ), HO OHU MOTYT
U He uMeTh (BPU3MIECKOro BOILIONIEHUs (HaupuMep, nHGOpMalys, 3HAHWU, YCIyTU 1
T. 1.) [2].

IHepepabamuvisaemas npodykyus — MTPOJYKIINs BHEITHUAX ITIOCTABITUKOB WJIN IIPO-
JIyKIHsi COOCTBEHHBIX IIPENPUATHI, HEOOXOMMMAst JIJIsl ITPOU3BOICTBA TOTOBOI IPO-
Jykiyu (HaIpUMeD, ChIpbe, MoJyhaOpUKATHI, JeTaji, KOMIJIEKTYIOIUE, ArPEeraThl
T IL).

Tomosas npodyxkyus — TPOMYKITHsL, TIOCTYIAIONIAsS KOHEIHBIM TOTPEONTEIIsIM.

Mmnozoxomnonermnas (cocmasnan, caoscnas) npodykyus pT  — IPOJIYKIUS,
JIJIs M3TOTOBJIEHUsT KOTOPOil TpebyeTcss HECKOJBbKO BUJOB IepepabaThbIBAEMON IIPO-
naykiuu. Kak mpaBmiio, TOTOBasi MPOAYKIINS ABJISETCS MHOTOKOMITIOHEHTHOM, HO U
HEKOTOPBIE BUJIBI [I€pEPabaTHIBAEMOIT IPOLYKIINY MOTYT OBITh, B CBOIO OY€Pe b, MHO-
FOKOMIIOHEHTHBIMH. B 9acTHOCTH, /IS IPOU3BOICTBA Ha IIOCJIEIHENH CTA NN €IUHU-
1Bl TOTOBO# npoyKiuu pT (cM. puc. 1) MoxkKeT NoTpeGoBaTHCS TOCTABKA HECKOJILKUX
PAa3HBIX BUJOB arPeraToB P C IIPEIbIIYIIIX CTAIHii, COCTABIIAIONINX MHOXKeCTBO M P
Tora HeobxoanMoO MIpUBe/IeHNEe 0O0HEMOB ITOCTABKM arperatoB VP K obbemam mpous-
BOJICTBA TOTOBOM ITPOIYKIIAA % gepe3 COOTBETCTBYIONMMIA Koadhuyuenm npusede-
A Kyt kpp vr =y Hamnpuwmep, s cbopku omHOro aBromodbmist Tpedyercst
OJIVH JIBUTATEJIb, YeThIPE KOJIeCa, IBa CTEKJOOYUCTUTENS U T. . 'lorma npu cOopke
aBTOMOGUIel B KO/IUecTBe VP IITYK TOTPe0yeTcst 1ve' JBUTaTeJIeH, 4.vr' KoJ1ec,

+ .
2. VP crekymoouucTuTes el U T. . AHAJOTMYHBIM 00pa30M depe3 KOIDDUIMEHTHI

k

P
IIEPBUYHOI TTepepabaTbiBaeMOit TpoayKIuu. B 1iessax 060011eHust ITpuMeM, 9TO MHO-

p+ BBIIIOJIHACTCS TIPUBe/IeHne 00beMOB Jis BCeX NMPeJbIAYIUX CTa uil BIJIOTDH JI0

i
KecTBo MP  MOXKeT TakKe BKIIFOIATH TOJBKO OJMH BUJ IPOAYKIMA (HATIPUMED, JJIs
CKJIAJIOB WJIM KOHEYHBIX [10TpeOuTesieii).

II. 2. IIyHKTBHI IPON3BOACTBEHHO-PACIIPEIEJIATEIHHON CETH, KAK OTMEYEHO BbI-
e, MOI'YyT OBITH YeTHIPDEX THUIIOB: BHEIIHHE IIOCTABIIUKHU, COOCTBEHHBIE IIPEIIPU-
SITHsI, PACIIPE/IEIUTENbHBIE IIEHTPhI (CKJIa/bl), KOHeIHbIe noTpeburenu. Kaxiayro
napy IyHKTOB, COEIUHEHHBIX Jyroii (lepeMeIneHueM OJHOIO BUJIA POy KUK ), KAK
¥ B KJIACCHYECKOIl TPAHCIOPTHOM 3a/a4e, MOKHO OTHECTH K IIYHKTY OJIHOI'O U3 JIBYX
THUIIOB: NOCMABWUK T T NOMPEOUMEND j.

IT. 3. O6bembr IOCTaBKH, ITPOU3BOJICTBA, IepepabOTKN, COOPKU, XPAHEHUS UJIH
noTpebJieHns OJHOIO BUJA MPOAYKIUKA P B IYHKTE 4 () OrpaHUYeHbl MAKCUMAJILHO
Bosmozkuoit Besmamnoii [V ([VF]).
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II. 4. TIpomyckuast crtocCOOHOCTD KAHAJIOB IOCTABKY IIPOJLYKITMHA MEZK/LY IIyHKTa-

MU HE€ OI'paHUYI€CHA.

IT. 5. ljst mpou3BOACTBa W MOCTABKUA TOTOBOTO M3/eus TPEOyeTCs HECKOJIb-
KO CTaJuil 1epepabOTKH, e Ha KaXKJOW CTaJ UM OT IIOCTABIIMKA K IOTPEOUTENIO
HEPEMEIIAITCS pashvle 6udve npodykuuy (puc. 2).

Ciemyer OTMETHUTD, UTO B JJAHHON pabOTe IepeMeIeHne OHOTO U TOTO YKe BUIA
IPOJYKIMK Yepe3 cKjaj (MPYIIly CKJIaJO0B) siBJgeTcs 00nol cmadued. DTo mosozxKe-
HIE He OTMEHsieT TOro hakTa, YTO B KaXKJI0M KOHKPETHOH mape MOCTaBIUK-CKIIA]T,
CKJI&JI-CKJIAJT WM CKJIAJI-IOTPEOUTEh B COOTBETCTBUH C II. 2 MEPBBIil SBJISETCS 0~

CTaBIIUKOM, & BTOPOIi rorpeburesem (puc. 3).

ITocTapmmk

Cramm 1 Crama 2
(cwipbe / momyhadpukat) (roToBoe mM3neTHE)

Puc. 2. MmuorocraauiiHoe TPOU3BOACTBO U ITOCTABKA POy KIIUHU.

TMoctaBomik

;i Tlotpeburens

\ J

Cramns
Puc. 3. Cragusi npousBoacTBa.

IT. 6. CrouMOCTB NOCTABKH C;; €IUHUIIBI IPOJYKIIUU P MEXKJLY JIBYMs Iy HKTaMU
1 M J CKJIQ IBIBAETCS U3 JIBYX COCTABJISIONINX:
— I[EePBBIl IYHKT ¢ [IOCTABIIMK (3aKyIIKa y BHEIIHErO MOCTABIIUKA U COO-
CTBEHHOE [IPOU3BOJICTBO):

. __ _mpouss nepes gy .
Cij = € + ep LZ]) (1)

— IepBBI yHKT 4 CKJIa] (XpaHeHue):
__ Xpan nepes
Cij = €; + €p P Lij. (2)

B dopmymnax (1) u (2):
_ lepe

c6OPKH) IPOJLYKINY;

— CTOMMOCTD IIPOU3BOJACTBA (3aKYIKH, HepepabOTKHU, BBILYCKA HJIH
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XpaH

i — CTOMMOCTDb XPaHEHUAd €IUHUNBI TPOAYKIINN. Kak opaBujIo, CTOU-

— e
MOCTb XPaHEHHsI 3aBUCUT OT BPEMEHH XPaHEHHs, HO MOYKHO BBIBECTH HEKO-
TOPYIO CPEJIHIOI CTATUCTUYECKYIO BEJIMUNHY;

— €,P°" — rapud (CTOMMOCTD Ha €JIMHUILYy PACCTOSIHUS) TIEPEBO3KH €INHUIIBI
IIPOJLYKIINU;

— Lj; — paccrosgHme MeKIy IIyHKTaMH, OOBIYHO ollpejesisgeMoe Kak JJIHHA
KPATUIAMIIEro IMyTH MEXKJTy IIyHKTAMMI.

I1. 7. B kauecrBe nesieBoii dbyuxiyu (Kpurepus ONTUMU3AINA) BLIOPAHA MUHU-
Mu3arys 3aTpar F' Ha 3aKyIKy, TIPOM3BOJCTBO, XPAHEHNE U MEPEBO3KY BCEX BUJIOB
nponyknun P Ha Bcex cTajusaX S OT BHENIHUX MTOCTABIIUKOB 0 KOHEYHBIX ITOTPE-
outesneit. Tak Kak B COOTBETCTBHH C II. 3 00bEMBI MOTPEOJIEHIS TOTOBOI POy KITAN
bUKCHPOBAHBI, TO I1€JI1 MEHIMHU3AIUN 3aTPAT U MAKCUMU3AIUN IPUOBLIN B KOHTEK-
CTe PelleHns JTaHHON 331491 SKBUBAJIEHTHDL.

s mosiyYeHus ONTUMAJIBHOIO DENIeHUs B PAMKAX OJHOM ONTUMU3AIMOHHOMN
MIPOIIEYPhl ABTOPAM HACTOSIIEH pabOThl MOTPEDOBAIOCH BBECTU OMOJTHUTEIbLHBIE

IIOJIO?KCHM .

I1. 8. Ilo KaxKAOMy BH/y NPOJIYKIUH P YIS BCEX MOCTABIIMKOB OIPEJIEIISIIOTCS
CyMMAapHBIE MAKCHMAJLHO BO3MOZKHBIE OObEMBI MOCTABKH (IIPOM3BOJICTBA, Iepepa-
6orku, c6opku) npoaykiun [V?],

I
. Pl _ [P
peP: Y [V/] =Vl 3)
i=1
AmnajlornaHpIM 06pa30M HOCTYIAIOT JIJIsI CKJIAJI0B U KOHEIHBIX [TOTpeOuTes el —
OIIPENIEJIAIOT CyMMapHble MAKCUMAaJIbHO BO3MOXKHBIE 00bEMBI COOTBETCTBEHHO Xpa-

HEHUsl WM TTOTPebJIeHrsI OHOTO Bua poaykiuu [VP].

I1. 9. Omupenensatorcss IUMATUPYIONMIAE 3BEHbs TEIIOYKN TOCTABOK U yPAaBHOBE-
HIMBAIOTCs 0ObEMBI IIOCTABKU U HoTpebaenus npogyKimu. O6beMbl 1ocTaBku (po-
U3BOJICTBA) U HOTPEOJICHUS [0 BCEM 3BEHbAM IIEIIOUKH ONPEIEJISIOTCS U YPaBHOBE-
IMHBAIOTCS € y4eToM KO3(hDuImenToB Ay,+ (cM. 1. 1) — 3a/aua U3 OTKPBITOI IIOCTa-
HOBKH CBOJIUTCS K 3aKPBITO, T. €. €CJIH BO3MOXKHOCTHU IMOCTABIIUKOB IIPEBLIIIAIOT
BO3MOKHOCTH TOTpebUTE e, TO BBOAUTCI (DUKTUBHBLIN MOTpeOUTE L Ha HEIOCTa-
omue 00beMbl TOTpedsIeHNs, HAYe — (DUKTUBHBIN MMOCTABIIUK HA HEIOCTAIONINE
00bEMBI TIPOU3BOJICTBA.

Ha puc. 4 oTobpazkeHbl TOPsIIOK TPOU3BOACTBA U CyMMapHbIe 00bEeMbI 3aKyTIKH,
MIPOU3BOJICTBA, XPAHEHUS W TOCTABKU POy KITHH.

ITopsmok mpousBoACTBA:

— Cramusa 1 — 3aKkylKa 1 IOCTaBKa JETaJIe:
— 3aKyIKa U IOCTAaBKa JeTajieill p1 u po Jjisd COOPKU arperaTos ps;
— 3aKyIKa U IOCTaBKa JeTajiell p3 U Py JJjisd COOPKU arperaTos pg;
— Cranusa 2 — cO6opKa, XpaHEHHE U MOCTaBKa arperaTos:

— cbopKa arperaTos ps U Pg;
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Puc. 4. Tlpumep ompenesieHusi CyMMapHBIX 06bEMOB IPOIYKIUH.

— IepeMeIleHne arperaTon Ps U Pg HA CKJIIAJIBI;

— IIOCTaBKa arperaToB Ps U Pg i COOPKU MOTOBO IPOIYKIUU P7;
— Cragus 3 — cOopKa, XpaHEHUE U [TOCTABKA TOTOBOMI POy KIIAN:

— cbopKa roTOBOIt MPOJIYKIINN P7;

— IepeMelrenne roTOBOH MPOJYKIINU P7 HA CKJIAJIBI;

— IIOCTaBKa TOTOBOI MPOLYKIMHA Py KOHEIHBIM HOTPEOUTEIISIM.

Cymmapible 06beMbl IPUBEIEHE! ¢ y9eToM KoaddunuenTos k,,+ B nepecdere
Ha eJIMHUILY TOTOBOU HpoayKimu p7. OObeMbl 6€3 IMAaroHaJIbHOrO y30pa — MAaKCH-
MAaJIbHO BO3MOXKHBIE 0ObEMBI IOCTABKH ([IPOM3BOJCTBA, epepaboTku, cO0PKH, Xpa-
HeHus, I0TPebJIeH s ) IPOAYKIUHI, C JUATOHAJIBHBIM Y30POM — HEIOCTAIoNHe 00be-
MBI OTHOCHTEJIFHO CAMOTO IIPOU3BOAUTETLHOTO 3BEHA IEMIOYKHU ITOCTABOK. Kak BUIHO
u3 puc. 4, caMbIM TPOU3BOIUTEILHBIM 3BEHOM ([Vrflax]) SABJISIETCS TIOCTABKA JeTaJIeH
P3, JOCTATOYHBIX I COOPKHU 11 eIMHUIl TOTOBOM MPOILYKINH, CAMBIM CJIa0bIM 3Be-
HOM ([V7in ) — cOOpKa roToBOM MPOAYKIUU P7 B KosmdecTBe 6 enuauil. Ha 3BeHbs

m
C HeJOCTATOIYHBIMU obbemaMu BBOJATCA d)HKTI/IBHI)Ie IIOCTaBIIUKW WJIA HOTpe6I/ITe.HI/I
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Ha, COOTBETCTBYIOINE 00 bEMBI [Vﬁ'p]. Hamnpuwmep, s nocraBku merasieit p; 6ymer

BBeJIeH (DUKTUBHBIN BHEITHUIT ITOCTABIIUK C 00HEMOM, JIOCTATOYHBIM [ COOPKH 3

€JINHUT] TOTOBOH MPOYKIINH, JJisi COOPKHU arperaTtoB ps — (PUKTUBHOE COOCTBEHHOE

[IpeIPUATHAE Ha 2 €IMHULBI, JJIs XPAHEHUs arperarta p; — (PUKTUBHBIN cKJag Ha 1

€JIUHUILY, JJIsl TI0JIy YeHUs TOTOBOM IIPOJLyKITNH Py — (DUKTUBHBIHM TOTPEOUTEND 2 e1u-

HUIL 1 T. 1.

II. 10. Ilo 3BeHbsM TIeNN, HEe OTHOCSIIUMCS K JIMMUTHUPYIONIAM, OIIPEAEISTIOTCS

CyMMAapHbIE pPeaJibHble U (PUKTUBHBIE O0BEMBI TIOCTABKU U TOTPEOJIEHUST POy KIAN

OTHOCHTEJTLHO camMoro ciaboro ssena [V u [V 1P,

[Vﬁ] F 3

%//% ‘_ = (V]

T__ [V‘rfﬁ]

- [V'rrsun

V]
— v

k4

Ps=ps +p4
(cobcTReHHEIE TpeATIPHATHA)

Puc. 5. TIlpumep onperesneHnst peajibHOrO U (PUKTHBHOIO OOHEMOB IPOLYKIIUM.

O6bembl NEePECIUTHIBAIOTCA B UCXOAHBIX €IUHUIAX U3MEPECHUAd TPOAYKIINN P C

YHUeTOM OIpee/IeHHBIX B II. Y IMMATHPYIONHNX 3BeHbeB 1 Koaddunuentos k,, . Ha

puC. 5 IPUHATHI cJeayomue obo3HaueHns: 00beMoB (pu p = 6):

[VP] = [V*™P] 4 [V*P] — cymmapHbIe MAKCHMATIBHO BO3MOKHbIE 06BEMBI
nocraBky (IIPOU3BOJCTBA, IIepepaboTKH, COOPKN) HPOYKIMH OT PEATbHBIX

[TOCTABIIUKOB;
[Vrﬁin] = [V™P] — cymMMapHBIe peasibHble 00'bEMbI IOCTABKY IIPOJLYKITUH OT

peaIbHBIX TOCTABIIUKOB, KOTOPBIE OyAyT JefCTBUTEILHO BOCTPEOOBAHDL;
[V*EP] — cymmapnbie hUKTHBHBIC 06HEMBI HOCTABKH IIPOLYKIIH OT PEa/Ib-
HBIX [TOCTABIIUKOB, KOTOPBIE MOI'YT OBITH MOCTABJIEHBI, HO B JIGHCTBUTEIb-
HOCTH HE BOCTPEOOBaHbI (M30LITOK MPOJLYKIUHN );

[VEP] — cymmaphble bUKTHBHBIE 06BEMbI TIOCTABKH MPOILYKIUH OT (K-
TUBHBIX [OCTABIIUKOB, KOTOPbIE B NEHCTBUTEIBHOCTH HE MOTLYT ObITH IO-
cTaBJieHb! (1eDUIUT TPOILYKIUHY);
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— [VE.] = [V&=P] + [VIEP] + [V//P] — cymmapuble 06beMbI IOCTABKH IIPO-
JYKIUH, KOTOPBIe OY/IyT PACIPE/eJeHbl P PEIIeHNN 331a5N.

AnayiornaHpIM 06PA30M OIIPE/IETIAIOTCS COOTBETCTBYIONTNE OO'HEMBI JIJTsT CKJIAIOB
U KOHEYHBIX MOTpebuTesei.

IT. 11. Kazkuplii myHKT ceTw (BHENIHUIl IOCTABIIUK, COOCTBEHHOE IPEIIIPHUTHE,
CKJIaJl, KOHEUHBIH OTPEOUTENb) Pa3IeIseTcs Ha JiBe YacTh (t — TUI 9acTH):

— t = r — peaJjibHasi 9aCTb, C KOTOPOI OCYIIECTBJISIETCS peasibHasl MOCTABKA,
Wi oTpedJIeHNE TIPOLYKITUAMT;

— t = f — JukTHBHAS YaCTb, C KOTOPOIl OCYIECTBIISAETCs (DUKTUBHAS TIO-
CTaBKa WJIN MOTPeOIEHNE TTPOLY KITHH.

Peanpaast 9acTh MOXKeT OBITH TOJBKO Y PEATHHBIX ITOCTABIIAKOB WX TOTPEOnTE-
Jiett, GUKTUBHAS YACTh — Y PeabHBIX U (PUKTUBHBIX. OYeBUIHO, 9TO Y (PUKTUBHBIX
[IOCTABIIMKOB 00HEMBI TIOCTABKU C PeabHOI dacTu 7 paBHbI ().

B coorBercTBUM ¢ TAKAM JI€JIEHHEM ITyHKTOB CTOUMOCTH ITOCTABKHU cﬁ}tj P enn-
HUIBI TPOIAYKIUU P MEXKJIY JABYMSI IYHKTAME § U j JEIATCS HA 4 COCTABJISIONINE:
rrp
i
Ha DeajibHyI0 YacTh PEaJIbHOrO MoTpebuTess (TPaJuliOHHAs CTOMMOCTH

— C — CTOUMOCTDH IIOCTaBKHU C peaanofx'I JaCTU PeaJiIbHOI'O IIOCTaBIIUKA

nocrasku, cM. dopmyisr (1), (2));

— czf P — BN — cTOoMMOCTD HOCTaBKH C PeajbHON YaCTH PeaabHOr0 HOCTaB-

IUKa Ha (DUKTUBHYIO 9aCTh PEAJHHOIO WK (DUKTUBHOTO MOTPEOUTEIS;
frp
ij

GUKTUBHOIO MOCTABIIUKA HA PEAJHHYIO 9aCTh PEAJHLHOIO MOTPEOUTEI;

—c = BN — cromMOCTb TOCTaBKH ¢ (PUKTUBHON YaCTU PEATbHOTO WA

— cfjj P — BN — cTONMOCTL HOCTaBKHU ¢ (PUKTUBHON YACTH PeasbHOTO MIII
(GUKTUBHOIO TOCTABIIUKA HA (PUKTUBHYIO YaCTh PEAJHHOTO WIH (DUKTUB-
HOT'O TIOTpeOUTEIS.

Eciu xorst 661 0/inH U3 TIYHKTOB SABJIsI€TCS (DUKTUBHBIM U MIOCTABKA BBITIO/THSI-
eTcs ¢ ygacTreM PUKTUBHON JACTH MMYHKTA, TO CTOUMOCTh ITOCTABKU ng i'P 3anaercs
6oJibIUM 4ucaoMm BN.

AnajiorugsasiM 06pa30M IIPH OIIPEIEIeHUN 00'bEMOB IIOCTABOK IIPOLYKIIUU P MEXK-
JIy OBYyMs IIyHKTAMW ¢ U j MCKOMBbIE OObEMBI OYIyT NEJUTHCH HA 4 COCTABJISAIONINE

titj .p
ij -

MaremaTudyecKasi IIOCTAHOBKA 3aJauamn

YuuThiBas yKa3aHHbBIE BBIIIE [IOJIOXKEHUs, MHOTOCTaIMHHYIO ITPON3BOJICTBEHHO-
pacCIIpeIesIUTebHYIO 3824y MOXKHO C(OOPMYINPOBATH CJIELYIONUM 00pa30M: MIHU-
MU3UPOBATh CyMMAapHble 3aTpaThl F' Ha 3aKyIIKy, IPOU3BOJCTBO, XPAHEHHE U II€pe-
BO3KY BCEX BHUJIOB IPOJYKIuu P Ha BeeX cTajusx S OT MePBUYHBIX IIOCTABITUKOB 10
KOHEYHBIX [TOTpebuTesieii:

J

o tit]‘.p titj.p .
) D T @

i=1 j=1 te{r.f}
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C YYETOM CJIeIyIOMUX OrPAHMYeHHUIL:

(0.1) a1 peasibHBIX OCTABIIUKOE § — CyMMAPHBIIl IOCTABJIEHHDIH 06BHEM MTPO-
JIYKIIUK P C peaibHOi 1 (PUKTUBHBIX YacTell OHOrO peasbHOTO IIOCTABITUKA JOJKeH
PaBHATBLCS €0 MAKCUMAJIBHO BOZMOXKHOMY OO'beMY NPOM3BOJICTEA (3aKyIKH, Tepe-
paboTKu, cGOpKU, XPAHEHHs! ):

VpeP Viel : ZZ T = [V (5)

j=1te{r f}

(0.2) mst peasibHBIX TIOCTABIIUKOB § — CyMMAPHBIH [OCTABJIEHHBIN 00bEM TIPO-
JIYKIUA p ¢ (PUKTUBHON YaCTU BCEX PEAJBHBIX OCTABIIUKOB JIOJIKEH PABHSITHCS
u30bITOUHOMY 00beMy (M30BITKY) STOH MPOJAYKIUN B CETH:

VpeP : ZZ Sooalr = vt (6)

i=1 j=1te{r,f}

(0.3) ayisi DUKTUBHBIX HOCTABIIMKOB i — CYMMADHBIH IIOCTABJIEHHBIA 00beM
NpOyKIMK p (PUKTUBHOIO MOCTABIIUKA JOJKEH PABHATHCS HEIOCTAIONEMY 00heMy
(nedunury) 310l NPOAYKIMHU B CETH:

VpeP Viell : Z ST oalir = v (7)
j=1lte{r,f}

(0.4) miia peasbHbIX IOTPEOUTEIIEl j — CyMMAPHBII OTPEbJIsIeMbIil 00beM IIPO-
nykmuu p € M p+, nocTynaionmii Ha (PUKTUBHYIO U PEAJIBHYIO YacTU OJIHOTO pPeasib-
HOTO MOTPEOUTEIS, TOJIZKEH PABHATHCS M0 MAKCHMAJIBLHO BO3MOXKHOMY 00bEMY TIPO-
U3BOJCTBA (3aKyIKH, lepepaboTKu, cOOPKM, XpaHEHUsl, OTPEOJICHNs) IIPOLYKIUK
p" ¢ yuerom koabdurmenta ky,+

Vpt e Pt peP A pe MP ,Vje Z S al T k- [VE ] (8)
=1 te{r,f}

(0.5) miig peasibHbIX IOTPEOUTEIIEl j — CyMMAapHBIH OTPebJIseMbIil 00beM IIPO-
nykiuu p € M p+, mocTynammuil Ha GUKTUBHYIO 9aCTh BCEX PEaIbHBIX MOTpebuTe-
Jiefl, JI0JIZKeH PaBHATBLCs M30LITOYHOMY 00beMy (M3OBITKY) HIPOJYKIUUA P B CETH C
yderom Koaddunuenra k,,+

+ t; T
Vpt e PY.WYpe P A pe MP ZZ Z :ztjp* pp+-[VTfp]; (9)
=1 j=1te{r,f}
(0.6) mast GuKTUBHBIX TOTpebUTENEH j — CyMMApPHBIH MOTPeOIIsSeMbIil 06 beM
nponykuuu p € M P’ GbUKTUBHOrO MOTPEOUTEIS JTO2KEH PABHATHCS HEJOCTAIOIIEMY
o6beMy (Jedunury) IpojyKIun p B CeTH ¢ yderoM Koddduuuenra Ky, :

vpt e Pt ¥pe P ApeMP , VjieJl Z > ztfpfkpﬁ-[‘/jf'f'p*}; (10)
i=1te{r,f}
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(O.7) 1is1 peasibHBIX OTPebUTEIEd §, IPOU3BOJLANINX MHOIOKOMIIOHEHTHY IO IIPO-
JYKIIUIO pT — CyMMapHble IIoTpebJisgeMble 00beMbl PA3HBIX BHUJIOB IMPOAYKIUN P, €
M? u Pw € Mp+, HOCTyIIalole C peajibHOI YacTU peaslbHbIX IIOCTABIIMKOB Ha
PEAIbHYI0 YaCTh PEALHOTO TOTPEOUTEIIS, JTOJIKHBI OBITH B3AUMOCOTIIACOBAHBI (paB-

HBIMHU) C y4eToM K03 bumuenTos ky, ,+ 1 ky

Vp' € P*,(¥p, € PAp, € MP ) A (¥py € PApy € MP ) Apy # pu, Vi€ J

i<x§j””> i(szﬁw). (11)
i—1 Fp,p+ i—1 Kpup+ 7

(0.8) 11l peasibHOrO MPOMEXKYTOYHOrO y3ja (IIOTPeOUTeIg-I0CTABIINKA) | —
CYMMADHBIi IOTPeB/IseMbLi 06beM IpoAyKiu p € MP' | mocTynalomuii ¢ peatbHoil
JACTU peasbHBIX MOCTABIIUKOB MPEBLIYINEro Tana (CTaaun) Ha PeabHYI IacTh
PeAsbHOr0 MPOMEKYTOTHOTO y3Ja, JOJKEH ObITh B3aMMOCOIVIACOBAH (DABHBIM) C
HOCTABJIAEMBIM (A NPOUZBOJUMBIM) UM 00'HEMOM TIPOJAYKIMU P, HOCTYIAIONHAM Ha
peasibHbIE YaCTH peasbHBIX MOTpebuTesedi ciemyomnero srama (CTaguu), ¢ yIeToM
koadbdunmenta k), :

Ir rr.p L"
+ . r 17 rr.p’
Vpt € Pt Ype PApe MP VjeJ :Z ﬁ :Z!Eﬂp; (12)
i=1 =1

(0.9) 00bEMBI TTOCTABOK JIFOOOI TPOLYKITUH HE JIOZKHBI OBITH OTPUIIATETHHBIMHE:
VielVjeJVleL:a?>0, 25" >0, 2[]" >0, z[[" >0, 2]/ >0. (13)

OI‘paHI/I‘IeHI/IH 00eCcIIeuYnBalOT B3aNMOCOIIACOBAHHOCTD «IIepeMeIeHudg» 110 BCel

IIEIIOYKe IIOCTaBOK:

— (0.2) u (0.5) — u3BBITOUYHOrO 0ObEMA MPOAYKIUHN OT PEAJbHBIX MOCTAB-
IYKOB, KOTOPbIE MOT'YT GBITH IIOCTABJIEHBI, HO B JIEHCTBUTEILHOCTH HE BOC-
TpeboBanbl ((PUKTUBHAS YACTD);

— (0.3) u (0.6) — nedunurHOro 06bEMa TPOAYKIHA OT (DUKTHBHBIX OCTAB-
IIUKOB, KOTOPBIE B JEHCTBUTEIBHOCTH HE MOTYT OBITH HOCTaBJeHbI (HuK-
TUBHAS YACTD);

— (0.7) u (0.8) — peanbHBle 00bEMBI HOCTABKU TPOJYKIMH OT DPEAJbHBIX
LIOCTABIINKOB, KOTOpbIe OyAyT AefiCTBUTENBHO BOCTPEOOBAHBI (peasbHast

YacTh).

IIpenyioxkeHHbIT BAPHAHT IIOCTAHOBKH 33J@4YU C Y4eTOM JIMHEWHOCTDH €ro IieJie-
BOIt DYHKITMHU X OTPAHWYEHUN TPSMO YKA3BIBAET HA BO3MOXKHOCTH IPUMEHEHUS JIJIst
ee PEIIeHns] METO/1a JUHEHHOr0 IPOrPAMMUPOBAHUS — CUMNAEKC-MEMOOA, KOTOPBIH
TIO3BOJIAT 3& OJHY ONTHUMHU3AIMOHHYIO IPOIEAYPY HOJIYyYUTHh UTOIOBBIN ONTHUMAJIb-
HBIH IJTAH TPOU3BOJCTBA W MOCTABKHU MPOIYKIINA IO BCEM 3BEHBbIM IeNovYKu. Bosee
TOr0, B CUMILJIIEKC-METO/IE UCIIOJIb3YeTCs CXO¥Kas C YPABHUBAHUEM O0bEMOB KOHIIEII-
Iisl — HEPABEHCTBA B 3aJiade IPeoOpPa3yIoTCs B PABEHCTBA IIyTEM BBOJIA TaK HAa3bI-

BAEMBIX «CBODOOJIHBIX [IEPEMEHHBIX> [22, 23)].
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Mertoauka periieHust 3aaa49u

B ofiem Buze MeToauka (JropuTM) pelieHus 3aa9u BBINVISIUT CJIELYIOIIM
obpazoMm.

(M.1) Omnpenensiiorcs: kK03 PUIEHTHI TpuBeIeHns Ky, + TPOIYKIHUE C BUIOM
P K OpoIyKunum ¢ suaoM p'. Ecim mpomykmms ¢ Buzom p me Tpebyerca mjis Ipo-
M3BOJCTBA IIPOLYKIUH C BHIOM P, TO COOTBETCTBYIONHi K03ddumuenT kppt = 0.
B s1ux xoadduimenTax MOXKHO TaKKe yIeCcThb HeOOXOUMbIe DE3EPBbI (HAIIpUMED,
HA CJIydail HU3KOIO Ka4eCTBa ChIPbsl WM OpaKa KOMIJIEKTYIONINX ).

(M.2) st peasibHBIX OCTABIIUKOB U IIOTPEOUTEIEH OIIPEIeJIIIOTCA CyMMaPHbIe
MAKCUMAJBHO BO3MOXKHBIE OOBEMBI ITPOU3BOJICTBA (3aKYyNKH, repepaboTKu, COOPKH,
XpaHeHUsl, TOTpebJieHns1) Beex BuoB npoayknuu [VP]. B caydae HeoGxoammocTn
(ny1st ypaBHOBEIUBaHUsT 06bEMOB) BBOJISTCA (DUKTUBHBIE MOCTABIIUKA U /WA O-
TpebUTeNN, IMYHKTHI JEJSTCS HA JBE YaCTH U ONPEHESIOTCS CyMMapHbe 00beMbl
[‘/rr.p]7 [Vrf.p] u [fop]

(M.3) Onpezensorcs paccrosiiust L;; oT mOCTaBIIUKA ¢ 0 MOTpebuTess j (Kak
[IPABUJIO, METOJOM OIpeJIeJieHns Kpardaiimux myreii a rpade). Ecau npogykuus
MOCTABINUKA ¢ TOTpebuTesio j He Tpebyercd, To L;; = 0.

(M.4) [y KazKgoro BUJAA OPOAYKIUHA P ONPEIEJISeTCs CTOMMOCTh IIOCTABKU
c:; P euHUIBI TPOJyKIUM OT TIOCTABIUKA 4 JI0 noTpebutens j (cM. dopmysst (1),

rfp _frp ffp

(2)). Crommocrn dbukTHBHBIX MOCTaBOK C;3 ¥, i’ m ¢}’ epumumpr posyKIIM P

3amaioTcs 6oapmmM gucaom BN.

(M.5) OnrnMmusanyonHas 3aada pemaercs B nocranoske (4)—(13) cummiekc-
METOJIOM.

(M.6) ITocsie BBIIOJIHEHUS ONITUMU3ANMOHHOI POy Phl U3 ILIAHA YIAJSIOTCS
BCe (PUKTUBHBIE ITOCTABKH xzf P s z{jr'p u m{jf P
TeJIbHBIE PeaJIbHbIE O0BEMBI IIPOU3BOJICTBA U MTOCTABKM BCEX BUJIOB POy KITUH JIJIs

, TEM CaMbIM OIIPEESIAI0TCA OKOHYa-
KOHKPETHBIX PeasIbHBIX IIOCTABIINKOB U IIOTpebUTEeit.

3akJrrouyeHue

IIpenmoxkennasi MOCTAaHOBKA IMPOU3BOJICTBEHHO-PACIPEIETUTEILHON 331841
CBO€il TTPOCTOTO CYIECTBEHHO OTJIMIAETCS OT paHee Oy OJIMKOBAHHBIX JPYTUME aB-
Topamu. [ToMuMO MOCTAHOBKM 3a/a9u IIPEJIOKEHa METOINKA €€ PeIleHns Ha Oa3e
CUMILIEKC-METO/1a, He TPEOYIOIIEro JIMIITHEro MPeICTABIeHHs. DTO HO3BOJIAIO U30e-
2KaTh IPUMEHEHUs PA3JIMYHBIX 9BPUCTUYECKUX NPUEMOB JJjId €€ PelleHUsd.

C moMOIIIBIO M3JI0YKEHHO METOIUKH MOXKHO TOJIYYUTh ONTHUMAJIbHBI IIJIAH [IPO-
U3BOJICTBA U IIOCTABOK B CETAX CO CJIOXKHON CTPYKTYPO# IPOU3BOICTBA I'OTOBOI IIPO-
AYKINAH 38 OJHY ONTUMU3AIMOHHYIO IIPOLEIYPY.

IlocranoBka u MeTOIMKA MOTLYT CTATh OCHOBOM JJIs PEIIeHds JAPYrux, OoJiee
CJIO’KHBIX CUTYalldil, a TaKxKe B C/Iydasx IPUMEHEeHUs KJIaCCUIeCKOH TpaHCIOPTHON
3aJa40 Wik ee MOAUMUKAIIAN.
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MULTISTAGE
PRODUCTION-DISTRIBUTION PROBLEM

V. V. Anisimov and E. V. Sazanova

Abstract: The paper presents a new formulation of the production-distribution problem
in networks with a complex structure of manufacturing the end product. The paper
highlights different features of the problem, including the sequence of procedures for
product manufacturing and delivery, taking into account various types of products at
one stage, the distinction between a step and a stage. The concepts of "fictitious" and
"real" parts (volumes) of product supply from real suppliers were introduced, which
made it possible to avoid the use of heuristic methods in solving the problem. The
paper presents a technique based on the simplex method for optimizing the production
and supply of different types of products at each stage of the production chain, allowing
the problem to be solved in one optimization procedure. The results of the study can
be useful for planning in complex and multidisciplinary ("network") companies to make
economically sound decisions in the field of production chain management.

DOI: 10.25587/2411-9326-2024-2-99-115

Keywords: production-distribution problem, supply chains, transportation problem,
simplex method, sequential production of products, optimization of supplies, fictitious
supplies, multidisciplinary ("network") companies.
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MaremaTudeckas >KU3Hb
Me>KropoicKoii Hay YHO-HCCJIeJOBATEJIbCKUII CEMUHAP
«HekJyaccudeckue 3aga4m MaTeMaTUdeCcKoOil (pu3mKm»

30 mapra 2024 1.

«K Bompocy mocTaHOBKE M pa3pernMOCTA OCHOBHBIX KPAaeBbIX 3a/1ad JJIsd Ha-
IPY?KEHHBIX TUIEPOOJNIECKUX yPABHEHUIT.

Hoxnamank: A. X. Arraes (HCTUTYT NpUKIAIHON MATEMATHKYA M ABTOMATH-
zanuu KBHIT PAH, Hasbuuk, Poccus).

B noxitaze 06CyKII€HBI BOIPOCHI, CBSI3aHHBIE C BJIUSTHUEM HATDY3KHU HA ITOCTa-
HOBKY U Pa3peliuMOCTb TOU UJIU NHON KpaeBOii 3a1a4u JIJId JUHEHHBIX HArPy 2KEeHHbIX
runepOoIMYecKUX YPaBHEHUI BTOPOrO IOPSAIKa C JABYMs HE3ABUCHUMBIMHU II€pEMEH-
HBIMU.

13 anpesnsa 2024 .

«Perienust KpaeBbIX 38129 JJIs HEPETYJISIPHO BBIPOKIAIONIUXCST JUIANTTHICCKIX
YPaBHEHUH ¢ aHAJTUTHICCKUMU KOI(DDUIMEHTAMU B MPSIMOYTOJTHLHUKE .

Hoxnamauk: /1. IT. Emenssros (BMK MI'Y umenun M. B. Jlomonocosa, Mocksa,
Poccust)

B mpsmoyrompauke 2: 0 < z < 1, 0 < y < b paccMaTpuBaercss KpaeBast
samaga F (B repmunosornn M. B. Kempima) st ypasHeHust

yPul, +ul, + c(y)ul, + a(y)u = f(z,y)

C aHAJUTUIECKAMH B 3aMBbIKAHUU 00JacTu {2 KO3(PDUIMEHTAME 1 TPABON 9acThIO.
MeTroioM criekTpaJibHOro Bbiieerus ocobennocreii 1. C. JJomoBa BBOAUTCS CYETHOE
YHCJIO HOBBIX IIEPEMEHHBIX T) M CTABUTCS PACIIMPEHHAS PEryJISIPU30BAHHA KPAeBast
3aja4a, GopMabHOE PENIeHne KOTOPOl CTPOUTCS B BUJE PANA U sIBISETCH AHAJIU-
TUYECKUM IO TIEPEMEHHBIM Y U Tk.

YcraHaBIUBAIOTCS JOCTATOYHBIE YCJIOBUS Ha KOIMMUITUEHTHI U IIPABYIO YACTh
HCXOJTHOTO yPaBHEHUsI, IPH KOTOPBIX (POPMATBLHOE PEIleHne PACIIMPEHHON 3a/1a9u
CXOIUTCS U [IPH TIOJCTAHOBKE Tk = g (Y) ABJIAETCS KJIACCHIECKUM PEIIEHUEM HCXOJI-
Hoit 3amaqan. Bun dyuxnuit g (y) ykassiBaercs aBHo. Taxkum 00pa3oM J0Ka3bIBAETCs
anaJjior Teopembl Komu — KoBajieBckoit [j1st BBIPDOXKIAIOIINXCS YPABHEHUN JTAHHOTO
KJIACCA, YCTAHABJIUBAIOIINI SIBHBIM 00PAa30M XapakTep HeaHAJUTUIECKON 3aBUCUMO-
CTU DeIleHns] YPABHEHUSI OT [T€PEMEHHON Y B OKPECTHOCTU OTPE3Ka BBIPOXKICHUSI.

Takzke OyJeT yCTAHOBJIEHO, YTO IIOJIyYEHHBINA MOCJIE MOACTAHOBKU T = gk (Yy)
PS CXOAWTCS TIPU CYIIECTBEHHO Oojiee CIabbix TPeOOBAHUSX HA KOIDDUIMEHTHI
ypaBHEHUSI.
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B ciywaax kpaesbix 3azau D u E ¢ Belpoxkaenusmu y, tae 0 < m < 2,
IIOJIyY€eHbl aHAJOTMYHbIE PE3YJIbTATHI, KAcalolnuecs o0IIero Bujia ux popMaIbHOTO
peIlleHns, XapaKTepa ero HeaHAJUTHIECKOH 3aBUCHMOCTH OT IIEPEMEHHOTO Y U CXO-
JUMOCTHU B objiacTu €.

27 ampessa 2024 1.

«HcenemoBanme BOIIPOCOB PA3pEITUMOCTH SBOJIIOIMOHHBIX YPABHEHUIT C HECKOJIb-
KnMu Tpon3BogHbIMU ['epacmmoBa — KamyTos.

Hoxnaguuk: K. B. Boiiko (Yenabunckuit rocynapcrsenubiii ynusepeurer, Je-
Js6uHCK, Poccust)

JlokJ1a/T TIOCBSIIIIEH BOIIPOCAM CYIIECTBOBAHUS U €IMHCTBEHHOCTH PEIIeHUs Ha-
YaJIbHBIX 33/1a4 IS JIMHEHHBIX U KBa3UJIMHEIHBIX YpaBHEHU € JPOOHBIMU IIPOU3-
BOJHBIMHU B 6aHAXOBBIX IIPOCTPAHCTBAX C IIPUJIOKEHUSIMU K HAYAJIHbHO-KPAEBBIM 3a-
JlagaM JJIs yPaBHEHU U CUCTEM yPaBHEHUI B YACTHBIX IIPOU3BOJHBIX. B "acTHOCTH,
paccMoTpeHa 3aada Ko fajist pa3penieHHbIX OTHOCHTEIBHO CTaPIeil TPOM3BOIHOM
JINHEWHBIX yPABHEHUI C OrPAHMYEHHBIME OI€PATOPAMU IIPU MMPOU3BOAHBIX [epacu-
MoBa — KarryTo, mosrydensl TeopeMa o ee 0JIHO3HAYHOU Pa3PeIMOCTA U [IPEJICTaB-
JIEHUE pellleHnsi B TepMuHax nHTerpaJjos tuna Jlandopaa — Teitsopa. 1o mosso-
JILJIO WICCJIEJIOBATH COOTBETCTBYIOIINE KBA3U/INHEHHbIE YDABHEHN, & TaKKe 33 a9l
tuna [Tloyosrepa — CumopoBa jiist TUHEHHBIX U KBa3UJIMHEHHBIX YPABHEHUN C BbI-
POXKJIEHHBIM OIIEPATOPOM TIPHU CTApPIeil TPOU3BOIHON P yCJIOBUN CIEKTPAIBHOMN
OTPAHUYEHHOCTH APl OIIEPATOPOB IIPH JIBYX CTAPIINX IIPOU3BO/IHBIX.

Iist mccoemoBanns 3a7aqn Ko [j1s ypaBHEHUI ¢ HECKOJBKUMU JIPOOHBIMA
npoussogubiME (multi-term fractional equations) u suHEHHBIME 3aMKHYTBHIMHI OII€-
paTopaMy IIpH HUX BBEJIEHO B PACCMOTDEHUE IOHATHE DAa3PENIAIOIIEro ceMeicTBa
YPaBHEHUS W IIPEJJIOXKEHBI yCJIOBUS CEKTOPUAJBHOCTA HAOOpa OMEpPATOPOB, IOKa-
3aHBbl UX HEOOXOIUMOCTb U JOCTATOYHOCTH IS CYIIECTBOBAHUS AHAJUTUIECCKUX B
CEKTOpe pas3pernammunx ceMeiicTs ypaBueHus. DopMmysia MpeICTABICHUS PEIICHUS
JINHEHOTO HEOJIHOPO/IHOTO YPaBHEHUs II03BOJIMJIA UCCIEI0BATh 3a7a4dy Kommm s
COOTBETCTBYIOIIUX KBA3WJIMHENHBIX ypaBHEHUIl, B KOTOPBLIX HEJIMHENHBIH olepaTop
3aBUCUT OT HECKOJIBKUX MJIAJIINX MPOM3BOIHBIX |epacumoBa — Kamyro. Berpox-
JIEHHBIE JIMTHEWHbIE ¥ KBAa3WJINHEHHbIE YDABHEHNS UCCJIEIOBAHBI IIPU YCJIOBUU CEKTO-
PUAJIBHOCTH I1aphl OIIEPATOPOB IIPU CTAPIINX ITPOU3BO/IHBIX.

AbcTpakTHBIE PE3YIIBTATHI UCIIOIBL30BAHBI JIJTsl UCCJIEI0BAHUS HAYAJTbHO-KPAEBBIX
3324 [ YPABHEHUI ¢ MHOIOWIEHAMH OT JJIUIITHIECKOTO OIIePATOPA, [ CHCTEM
yPaBHEHUI, MOJIEIUPYIOMMUX JUHAMUKY ¥ TEPMOKOHBEKIUIO BA3KOYIPYTOil Cpeibl,
Ha4YaJbHBIX 33/1a4 JJIs CHUCTEM OOBIKHOBEHHBIX JuddepeHIalbHbIX yPaBHEHUH C
HECKOJIBKUMU JIPOOHBIMUA TTPOU3BOTHBIMH.

11 maa 2024 r.

«PazpemumMocTb HEKOTOPBIX 0OPATHBIX 33184 JJIs IICEBIONTAPAO0TNIECKOTO yPaB-
HEHUS».

Hoxnaguuk: C. E. Aitrxkanos (Kazaxckuii HalmoHa IbHbI yHUBEPCUTET UMEHU
Anp-®apabu, Hyp-Cynran, Kasaxcran)

B nokiazne paccMoTpeHbl 0OpaTHBIE 33/[a9n ONPEIeeHUs KO3 puImenTa mpa-
BOIf 9YaCTH IICEBONAPA0OINIECKOr0 YPABHEHN, 3aBUCHIIETO OT BPEMEHHO! ITepeMeH-
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noii. Takake paccMOTpEHBI OOpaTHBIE 33J[a9U sl TICEBI0IAPabOJINIECKOrO ypaBHe-
HUsl, HEN3BeCTHbIE KO3 DUIINEHTHI KOTOPOI'O 3aBUCAT KaK OT IIPOCTPAHCTBEHHOM I1e-
PEeMeHHOM, TaK U OT BpeMeHHO# mepemeHHOl. B HacTosiiiee BpeMsi MCCJIEIOBAHUS
MPsIMBIX U OOPATHBIX 33144 Il CODOJIEBCKUX YPABHEHMIT aKTUBHO PAa3BUBAIOTCH B
CBSI3U C HEOOXOJMMOCTHIO MOJEJIMPOBAHUS W YIPABJICHUS IPOIECCAMU B THIPOIH-
HaMUKe, MeXaHWKe, Teiopu3nke, MEXaHUKe OKPyzKaromeil cpepl. Jloka3piBaroTCs
CYIIIeCTBOBAHNE U €JUHCTBEHHOCTD PETYJISPHBIX PEIleHnit 00paTHBIX 3aad.

25 mag 2024 r.

«PerynsipuzoBannast aCHMITOTHKA PEIIEHUs] CUHTYJISIPDHO BO3MYIIIEHHON 3a1a91
Komm mns ommopomnoro ypasuenns Lllpemunrepa ¢ moTenmuasioM (Q = 2, comep-
Karmeit poKaaIbHbIe TOTKT».

Hoxnaguuk: A. I. Enucees (MockoBckuit sueprerudeckuii uncruryr, Mocksa,
Poccust)

B macrosiiiee BpeMs pa3imdaHBIM METOAAM aCUMIITOTHIECKOTO MHTEIDUPOBAHUST
CUHTYJISTPHO BO3MYIIIEHHBIX 38189 ITOCBSIIEHO OIPOMHOE KOJIMIECTBO PabOT, UX CTOJIb
MHOT'O, YTO IIOJIHOIO 0030pa B JOKJIAJe OIPAHUIEHHOTO 00'beMa IIPUBECTH HE MPE-
CTaBJISIETCS BO3MOKHBIM.

Jannasi pabora mocssinena pa3sutuio Meroja peryispusanuun C. A. Jlomosa
Ha CHUHI'YJISPHO BO3MYIIEHHBIE 331291 IIPU HAJIMYHUH CIEKTPAJIBHBIX OCOOEHHOCTEH ¥
IIPEJIEJIbHOTO OollepaTopa. B 4acTHOCTH, CTPOUTCH PEryJsipU30BAHHOE aCHMIITOTHYE-
CKOE DellleHne CHHTYJISPHO BO3MYIIIEHHO! OfHOpOAHOM 3aa4u Korn s ypaBHeHus
HIpeaunrepa mpu HAJIMYUKA «CAJBHON» TOYKH TMOBOPOTA y IIPEMEJBHOIO OIEepaTo-
pa Ha IPOMEXKYTKaxX BPEMEHW, cojepkaiux (hoKaJbHble TOUKU. Ha ocHOBe muen
ACHUMIITOTUYECKOI'O HHTEIPUPOBAHUSA 33129 C HECTAOMILHBIM CIIEKTPOM YKa3aHO, Ka-
KM 0Opa30oM CJIe/IyeT BBOJUTH PEryJIApU3UpPyIoNine (PyHKIUU, TOIPOOHO OIMUCAH
dopMaIM3M METOMA PEryJIsipU3allid JJIsd YKa3aHHOTO BUIa OCOOEHHOCTH, IIPOBEIE-
HO 0DOCHOBAHWE ITOrO AJITOPUTMA U IIOCTPOEHO aCUMIITOTHIECKOE PeIreHne JIF00ro
nopsiiKa no Masiomy napamerpy. OcHoBHas mpobJieMa, ¢ KOTOPOI CTAJTKMBAETCS UC-
CJIeJI0BATENb IIPU IPUMEHEHUH MEeTOa PEeryJisapH3alui, CBI3aHa C IIOMCKOM U OIIH-
CaHMEM PeryJspU3upyomux (yHKINUNA, KOTOPbIE COJEPKAT B cebe HEPABHOMEDPHYIO
CHUHTYJISIPHYIO 3aBHCHUMOCTH DEIIeHNs MCKOMOM 3aJ/1a9M, BBIJIE/Isisi KOTOPhIE, MOYKHO
OCTABIIIYIOCS YaCTh PEIIEHUs] NCKATh B BUJE CTEIMEHHBIX PSJIOB II0 MAJIOMY IapaMeT-

py.

8 uronsa 2024 r.

«JIpobHbIil aHam3 Ha ocHOBe d-omeparopa. O6oOIIeHre IPOU3BOIHBIX, (DOPMY-
sibt Hetorona — JleitOHuMIA 1 OCHOBHOI TE€OpEMBI aareOphl».

Hoxmamauk: B. A. Yypukos (ToMckuii rocynapcTBeHHbBI yHUBEPCUTET, TOMCK,
Poccust)

PaccmaTpuBaeTcs moaxo 1 mocTpoeHus d-aHaII3a, B KOTOpOM 00001maeTcst mHTe-
rpogud depeHnupoBane Ha J00bIe BeIeCTBEHHbIE U KOMILJIEKCHBIE TTOPsIKu. B oc-
HOBe d-aHaju3a JeXUT d-oreparop nHTerpoanddepeHIMpOBaHus BEIECTBEHHBIX 1
KOMIIJIEKCHBIX [TOPSIJIKOB, MMEIOIINi ajareOpandeckuii XxapakTep U JeHCTBYIOMNNA Ha
crereHHble (DYHKIMY U HA WX KOHEUHBbIE U ODECKOHEUYHBIE CyIeprno3uluu. B qacTHOM
cIydae, KOra IopsIoK HHTerpoanddepeHImpoBanus paseH 1, d-onepaTop coBIaia-
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€T ¢ orepaTopamMu HHTerpoauddepeHIInPOBAHNS CTEIEHHBIX (PYHKIIAN KJIACCHIECKO-
ro aHajm3a. PaccMOTpeHbl HEKOTOPbIE YaCTHBIE CJIydan U 0boOIeHns d-omnepaTopa,
B 9aCTHOCTHU, 00O0OIIeHIe Ha CIy4dail HEKOTOPBIX IIEPEMEHHBIX BEIECTBEHHBIX IOPSI-
KOB.

Paccmorpensr ocobennoctu d-ananmza. [lokazama MHOTO3HAYHOCTH ITPOU3BO/I-
HBIX B d-aHAJN3€e, & TAK2KE MHOTO3HATHOCTH 1mepBooOpa3ubix. Jlano obobiienue dhop-
myabl Hoiorona — Jleiibuuria.

Ilokazana BaxKHasi POJIb JIPOOHOCTEIIEHHDBIX PSJIOB B d-aHAJM3€E C MTOCTOSHHBIM
IIArOM, 9€Pe3 KOTOPBIE BHIPAYKAIOTCSI MHOTHE dJIEMEHTAPHBIE U CIeNUaIbHbIE (DYHK-
myn d-aHaan3a: YKCIOHEHTHI, TUIepO0IMYecKre U TPUTOHOMEeTprdecKre (byHKINA 1
ap. Ilonyuena (-pyuxmusa Pumana ¢ momompio d-orepaTopa KOMILIEKCHBIX TTOPSII-
KOB JIJUCKPETHOH IIepeMEeHHOMA.

BrogsTcsa OMMHOMBI JIIOOBIX BENIECTBEHHBIX ITOPSAJIKOB, C IIOMOIIBI0 KOTOPBIX
00001Tat0TCs aaredpandecKkne ypaBHEHUs HA CJIydail JIFOObIX BENECTBEHHBIX MOPSI-
koB. IIpuBogurcs cmocob pemrenus Takux ypaBuHeHuil. st sroro dopmymupyercs
TeopeMa U JaeTcs ee J0Ka3aTeJIbCTBO, B OCHOBE KOTOPOIO JIEXKUT KJIACCHYECKAs OC-
HOBHAs T€OpeMa, ajredpsI.

O6cy Xk aeTcst YaCTHBIM CIydail d-aHaJn3a, B COOTBETCTBUH C KOTOPBIM JIJIsT JIFO-
60ro mopsiika HHTErpoandGEPEHIINPOBAHNS MOXKHO PA3BUBATH CBOIO BETBb aHAJIA3A
AHAJIOTUIHO KJIACCHIECKOMY aHAJIM3Y.

ITokasbiBaeTCs BO3MOXKHOCTD HCIIOJIB30BAHUS JIJIsI PACYETOB CBOIICTB OTHOPOI-
HBbIX (HPAKTATIOB U (PUUKO-XUMUIECKUX IIPOIECCOB B HUX.

22 uionga 2024 r.

«CrpsiTaHHBIE ATTPAKTOPBI B YPABHEHUSIX OHOXUMUYECKON KUHETUKU.

Hoxnaguuk: B. II. Tony6araukos (Mucruryr maremaruku um. C. JI. CobosieBa
CO PAH, Hosocubupck, Poccust).

PaccmaTpuBaiorcst TpexMepHbIe CUCTEMbI OOBIKHOBEHHBIX I depeHITnaAIbHBIX
ypaBHEHU HUOXUMUIECKON KHHETUKH C OJI0YHO-THHEHHBIMEU TPaBbIMU YacTaMu. B da-
30BBIX [OPTPETAX TAKUX CUCTEM OMUCAHBI CIPITAHHBIE ATTPAKTOPBI, YCTAHOBJIEHBI
YCJIOBUSI CYIIECTBOBAHUS IUKJIOB, JIEXKAIUX BHE 00JIaCTell MPUTSIKEHNUs] TAaKUX aT-
TpakTOpOoB. [losydeHsl pe3ysibTaThl O HEeIUHCTBEHHOCTH IIUKJIOB B TaKUX (Pa30BbIX
[opTpeTax.



BHIUMAHUIO ABTOPOB

1. K ny6smkanuu B KypHase «Maremarudeckue 3amerkn CBOY» npunuma-
I0TCSI CTaThH, COJIEPKAINNE HOBbIE PE3YJILTATHI B 00JIACTH MAaTeMAaTUKHI, MEXAHUKHU 1
nadopmaruku. Ctarby, OMyOJINKOBAHHBIE DaHee, & TaKXKe HAIIPABJICHHBbIE B APYIHe
U31aHUs, PeJlaKineil He pacCMaTpUBAIOTCs. PeaKIMOHHBIN COBET BIIpaBe BO3JEP-
JKaThCsl OT IIPUHSITUSI CTATHU K PACCMOTPEHHIO, €CJIX OHA HE COOTBETCTBYET PO UIIIO
JKypHaJIA.

2. Hampapiisisi CTAThIO B PEJIAKINIO JKyPHAJa, aBTop (COaBTOpBI) Ha Ge3BO3-
ME3HON OCHOBe IepeaeT(I0T) U3JATeI0 Ha CPOK JIEHCTBUs aBTOPCKOrO IPaBa, 110
JEeHCTBYIONEMY 3aKOHOAATENbCTBY PP MCKIIOUATEHEHOE TPABO Ha HCIIOJIL30BAHIE
CTaThbyU WM OTJEJBHON ee yacTu (B Cilydae IPUHITUS CTATHU K OIyOJIMKOBAHUIO) HA
TEPPUTOPHUH BCEX I'OCY/IAPCTB, I'Jie aBTOPCKUE IIPaBa B CHJLY MEKJIyHapOJHBIX JOI'0-
BopoB Poccuiickoit @enepaliun sBIAIOTCA OXPaHAEMBIMI, B TOM YHCJIE CJIEJyIOIIIe
IIpaBa: Ha BOCIIPOU3BEJIEHUE, Ha PACIPOCTPAHEHNe, Ha IIyOJIUYIHBIN IOKa3, Ha JOBe-
JleHue JI0 BCEOOIIEro CBeJEeHMsl, Ha [EPEBOJl HA MHOCTPAHHBIE A3BIKU (M UCKIIOYM-
TeJIbHOE IIPAaBO Ha KCIIOJIb30BaHUE IIE€PEBEJEHHOIO ITPOU3BE/ICHNS BhINICYKa3aHHBIMUI
criocobamMu), Ha OPEJOCTABJIEHUE BCEX BBINICIEPEYUCICHHBIX [IPAB JIPYIHM JIUIIAM.
OJHOBPEMEHHO €O CTaThell aBTOP (COABTOPHI) HAIIPABJISIET B PEJAKIUIO MOIICAH-
HBI JIMIIEH3UOHHBINM JIOTOBOP Ha IIPaBO HCIIOJIbL30BAaHUA HAYYHOI'O IIPOU3BEJICHUSA B
xKypruaje. O6paszery 10roBopa BBICBLIAETCS ABTOPAM IO JEKTPOHHON MOYTEe BMECTE
¢ COODIIEHNEM O TIPUHATUU CTATHU K ME€YATH.

3. Hust paccMoTpeHus CTaThu Ha IIPEAMET ee IMyOJIMKAINA B >KypHAJIE B pe-
JTAKITUIO TIPEJICTABJIAIOTCA TEKCT CTAThU 00beMOoM He 6ojiee 1,5 aBTOPCKHUX JIMCTOB
(18 crpaHumI xKyPHAJIBHOIO TEKCTA), HAIIMCAHHOI HA PYCCKOM HJIH, 110 COIJIACOBAHUIO
¢ pelakiyeil, Ha aHTVIMHCKOM s3BIKE, & TaKKe COIPOBOJIMTEJHHOE MUCHBMO, B KOTO-
POM COODIIAETCSI, 9TO CTAThsI HAIPABJSIETC UMEHHO B »KypHasa «Maremarndeckue
samerku CBO®VY», u undopmaimst 06 aBTope (KOJUIEKTHBE aBTOPOB) € YKA3aHUEM
dbaMmwIni, UMEHH W OTYECTBA, IIOJHOTO MOYTOBOIO aJpeca JJis MEPEIMUCKU, MeCTa
paboThl, MOAPOOHOTO CIIy2KEOHOTO ajapeca, ajapeca JIEKTPOHHOHM MOYThI U HOMEPA
teniedona. CraTbu oObemoMm Gosiee 1,5 aBTOPCKUX JIMCTOB, KAK IPABUJIO, HE Pac-
CMATPHUBAIOTCS U MOT'YT OBITH IIPUHSATHI K PACCMOTPEHUIO U OITyOJINKOBAHBI JIUIIH IO
CHENUAJIHHOMY PENIeHUIO PeJIAKIIMOHHOTIO COBeTa.

4. Crarbs T0/KHA OBITH MOATOTOBJIEHA C MCIIOJIB30BAHIEM TEKCTOBOIO PEIaK-
topa LaTeX u npejcrasiena B Buje daiioB ¢popmaros pdf u tex.

5. B mauane crarbu ykaspsaercs ungekc YK u/umm MSC. Crarbs compo-
BOXKJaeTCsi aHHOTarmer oobemom He meree 100 ciioB, KeyaTeabHO 6€3 opmys, u
CICKOM KJIIOUEBBIX CJIOB. AHHOTAIMS U CIHUCOK JIOJKHBI OBITH IIPEJICTABIEHBI HA
DPYCCKOM U aHTJINHCKOM SI3BbIKAX.

6. Crucok JimrepaTyphl medaTaercs B KoHIle Tekcra. CChUIKM HA JINTEPATYPY
B TEKCTE HyMEPYIOTCS B IOPsiJIKE UX MOSIBJIEHUSI U JIAIOTCS B KBAJIPATHBIX CKOOKAX.
CcbLIKE Ha HEOIyOJIMKOBAHHBIE pabOTHI HexKenaTebHbl. OdopMIIeHIe JINTEPATYPbI
JIOJIZKHO COOTBETCTBOBATH TPEOOBAHUAM CTAHIAPTOB (IpuMepbl 6ubnorpaduaeckux
OIMCAHUN CM. B [OCJIEJHUX HOMEPAX YKYPHAJIA).

7. VI3nmanume OCyIIeCTBJISET PElEH3UPOBAHUE BCEX IOCTYIAIONINX B PEIAKIIUAIO
MAaTepPHUaJIOB, COOTBETCTBYIONINX €€ TEMATHKe, C IeJIbI0 UX IKCIIEPTHON oreHKu. Bce
PEIeH3eHTh!l ABJIAIOTCA IPU3HAHHBIMY CIIEIUAJINCTAMU 110 TEMaTUKe PEIeH3UPYEMbIX
MaTE€pPUAJIOB U UMEIOT B T€UEHUE MOCJIETHUX 3 JIET IIyOJIMKAINY 10 TEMATUKE PEIleH-
3upyeMoii cTaTbu. PeleH3nn XpaHAaTCs B PEJAKINK U3JaHUS B TeUeHue H JeT.
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8. IlpuHsiTas K pacCMOTPEHUIO CTAThs HAIIPABJIAETCS HA aHOHUMHOE DEIeH3!-
poBanue. Ha oCHOBaHMM DEIEH3WHU PEJICOBET IPUHUMAET PelieHre O BO3MOXKHOCTH
yOJIMKAIIMKE CTAThH, KOTOPOE COODINaeTcsi aBTopy. ABTOp BIIpaBe COOOIIUTH CBOU
3aMevuaHnsl U BO3parkKeHusl K pereHsnn. lloBTOpHOE pelieHue pesicoBera 1Mo CTarbe
SABJISIETCH OKOHIATE/IbHBIM.

9. Penaxnus m3gaHus HalpaBiideT aBTOPAM IIPEJCTABIEHHBIX MAaTEPUAJIOB KO-
W PEIeH3nii NN MOTUBUPOBAHHBINA OTKA3, & TAKXKe 00S3yeTCsi HAIIPABJIATH KOIHH
peniensnit B MuHICTEpCTBO HAYKM U BBICIIEro obpasoBanus Poccuiickoit Oemepariun
IPU TOCTYTJIEHUN B PEJIAKITAIO U3/IAHUST COOTBETCTBYIOIIETO 3aIIPOCA.

10. Tlocie peJaKIMOHHON MOArOTOBKH HEIOCPEJICTBEHHO Iepe/| IyO/auKanueil
ABTOPY BBICBLIAETCS KOPPEKTypa. II0 BO3MOXKHOCTH B HamboJiee KOPOTKHE CPOKH
HEeOOXOUMO ee MIPOYeCThb, BHECTH UCHPAaBJeHHs (IPaBKa IPOTUB ABTOPCKOIO OPUTH-
HaJla, HEXKeJIATeJIbHA) U HAIPABUTH B pefakiuio. CraTbsd BBIXOJUT B CBET TOJIBKO
[OCJIe HOJIyYeHUsI OT aBTopa (KOJUIEKTHBA aBTOPOB) aBTOPCKON KOPPEKTYDHI, IO/
[UCAHHO aBTOPOM (BCEMH COABTOPAMHU) B [EYATD.

11. B coorBercTBUEM ¢ MEXKIYyHAPOIHBIMUA 3aKOHAMU 00 aBTOPCKOM mpase Pe-
JTaKIUs YBEJOMJISIET aBTOPOB Ky pHaJIa 00 UX OTBETCTBEHHOCTH 34, [OJIy Y€HUuEe UMU B
cIy4ae HeOOXOIUMOCTHU IIMCBMEHHOI'O pa3peIleHns Ha UCIIOJb30BaHUE OXPAHAEMBIX
aBTOPCKUM IIPABOM MaTePUAJIOB, TAKUX, KaK [IUTAThI, BOCIIPOU3BE/IeHNE JJAHHBIX, UJI-
JIIOCTpanuil ¥ JIIOOBIX UHBIX MATEPHAJIOB, KOTOPbIE MOT'YT OBITH HCIIOJIB30BAHBI B UX
IyOIMKAINSX, & TAKXKE O TOM, 9TO BBITEKAIOINIAsl OTCIO/A OTBETCTBEHHOCTH 3a Ha-
pyIlIeHre TaKWX aBTOPCKUX IPAB JIEXKUT Ha aBTopax. lliara 3a omybsmkoBaHmE C
aBTOPOB WIN YUPEXKIEHUI, Tjie pabOTAIOT ABTOPHI, HE B3UMAETCsI, U Oy OJINKOBAHHBIE
CTaTbU HE OIJIAYMBAIOTCA.

12. IIpaBa aBTOPOB Ha MCIIOIHL30BAHIE MATEPUAJIOB CTATEN U TIEPEBOJOB CTaTEH
u3 xxypHasa «Maremarnaeckue 3amerku CBOY» B MHBIX MyOJIMKAIUSX OIPEIEIIsi-
I0TCsl OOIIUMU MEZK/TyHAPOJHBIME U POCCUHCKUMU 3aKOHAMU 00 aBTOPCKUX IIPABaX.
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