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УДК 517.938

О СПРЯТАННОМ АТТРАКТОРЕ ОДНОЙ

НЕСИММЕТРИЧНОЙ МОДЕЛИ ГЕННОЙ СЕТИ

В. П. Голубятников, Е. А. Ситняковская

Аннотация. Рассмотрена модель простейшей кольцевой генной сети, регулиру-
емой одной отрицательной и двумя положительными связями между тремя ком-
понентами этой сети. Модель представлена трехмерной динамической системой с
кусочно-линейными пороговыми правыми частями. В ее фазовом портрете описан
спрятанный аттрактор, установлены условия существования цикла, лежащего вне
области притяжения этого аттрактора.

DOI: 10.25587/2411-9326-2024-2-3-13

Ключевые слова: фазовые портреты динамических систем, стратификация фа-
зовых портретов, стационарная точка, инвариантная область, многоступенчатая
функция, циклы, спрятанные аттракторы, нелокальные осцилляции.

Введение

В работах [1, 2] изучалась трехмерная динамическая система кинетического

типа, моделирующая функционирование простейшей генной сети, регулируемой

двумя положительными и одной отрицательной связью между ее компонентами:

dx

dt
= L(z)− x; dy

dt
= � (x)− y; dz

dt
= � (y)− z. (1)

В первом из этих этих уравнений и в многомерных аналогах системы (1), рас-

смотренных в [3–5], функция L монотонно убывает. Это означает, что регуля-

торная связь между компонентами с концентрациями z(t) и x(t) отрицательна.

Функция � монотонно возрастает, такими функциями в уравнениях биохими-

ческой кинетики описывают положительные связи [6–8].

Следуя [9, 10], где при построении и анализе обобщенных пороговых мо-

делей генных сетей изучались подобные динамические системы биохимической

кинетики с многоступенчатыми правыми частями, рассмотрим динамическую

систему (1), у которой

L(w) = 2c для 0 ≤ w < c− ε; L(w) = c для c− ε ≤ w < c+ ε;

L(w) = 0 для c+ ε ≤ w <∞; � (w) = 0 при 0 ≤ w < c− ε; (2)

� (w) = c при c− ε ≤ w < c+ ε; � (w) = 2c при c+ ε ≤ w <∞.

Работа поддержана РНФ, проект 23-21-00019, https://rscf.ru/project/23-21-00019/.

c© 2024 Голубятников В. П., Ситняковская Е. А.
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Здесь положительный параметр ε достаточно мал, см. ниже.

Для динамических систем вида (1), у которых функции L и � являются

одноступенчатыми: L(w) = b1 > 0 при w ≤ 1 и Lj(w) = 0 при w > 1; � (w) = 0

при w ≤ 1 и � (w) = b2 > 0 при w > 1; и для подобных систем, имеющих бо́льшие

размерности, в работах [2, 11] получены условия существования, единственности

и устойчивости циклов и описаны гомеоморфные торам инвариантные окрест-

ности таких циклов.

Отметим, что при моделировании генных сетей средствами качественной

теории дифференциальных уравнений и в других разделах чистой и приклад-

ной математики подобные разрывные ступенчатые функции в правых частях

уравнений используются систематически (см. [12–14]).

Лемма 1. Параллелепипед Q = [0, 2c] × [0, 2c] × [0, 2c] является положи-

тельно инвариантной областью: траектории всех его точек с ростом t из него

не выходят.

Доказательство состоит в вычислении знаков правых частей уравнений

системы в граничных точках области Q (см. [11, 15]. Для краткости будем

называть такие области инвариантными.

Следуя [16, 17], с целью локализации траекторий динамической системы

(1), (2) в ее фазовом портрете разобьем инвариантную область Q плоскостями

x = c − ε, x = c + ε, y = c − ε, y = c + ε, z = c − ε, z = c + ε на 27 блоков

и перенумеруем эти блоки мультииндексами {r1r2r3} трехбуквенного алфавита

0, 1, 2:

r1 = 0, если в блоке 0 ≤ x < c− ε; r1 = 1, если в блоке c− ε ≤ x < c+ ε;

r1 = 2, если в блоке c+ ε ≤ x; r2 = 0, если в блоке 0 ≤ y < c− ε; (3)

r2 = 1, если в блоке c− ε ≤ y < c+ ε; r2 = 2, если в блоке c+ ε ≤ y.
Аналогичным образом по координате z определяется и индекс r3.

Так же, как и в предыдущих публикациях [5, 18] и др., в дальнейшем будем

рассматривать только такие траектории системы (1), (2), которые с ростом t не

пересекаются с ребрами блоков разбиения (3). Построенный ниже цикл этой ди-

намической системы переходит из блока в блок только через внутренние точки

их общих граней.

Следующие утверждения доказываются в точности так же, как лемма 1 и

ее многомерные аналоги (см. [11, 16]), и основаны на вычислении знаков произ-

водных dx
dt ,

dy
dt ,

dz
dt на внутренних гранях блоков разбиения (3).

Лемма 2. Центральный куб

Q1 = [c− ε; c+ ε]× [c− ε; c+ ε]× [c− ε; c+ ε] = {111}

разбиения (3) является инвариантной областью в фазовом портрете системы

(1), (2).
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В блоке {111} система (1), (2) принимает вид

dx

dt
= c− x; dy

dt
= c− y; dz

dt
= c− z.

Нетрудно проверить, что точка S0 = (c, c, c) стационарна и устойчива.

Лемма 3. Динамическая система (1), (2) имеет единственную стационар-

ную точку S0, содержащуюся в блоке {111}. Траектории всех точек этого блока

с ростом t→∞ экспоненциально стремятся к точке S0.

Лемма 4. Для любых двух соседних блоков B1 и B2 разбиения (3) тра-

ектории всех внутренних точек их общей двумерной грани B1 ∩ B2 переходят

либо из блока B1 в B2, либо из блока B2 в B1.

Как и для систем вида (1) с одноступенчатыми правыми частями (см.

[11, 18]), будем обозначать такие переходы через B1 → B2 и соответственно

B2 → B1. Для гладких и для одноступенчатых функций L, � у аналогов дина-

мической системы (1) указанные переходы изучались в [1, 4, 19] при построении

стратификаций и инвариантных областей в фазовых портретах этих систем и

поиске их циклов. Такие построения мы используем и при изучении динамиче-

ских систем с многоступенчатыми правыми частями.

Лемма 5. Во внутренности каждого блока разбиения (3) инвариантного

кубаQ система (1), (2) линейна, ее траектории прямолинейны и их продолжения

пересекаются в одной точке.

В частности, продолжения траекторий всех точек блока {000} пересекаются

в точке с координатами (2c; 0; 0).

Доказательство. В блоке {000} динамическая система (1), (2) принимает

вид

dx

dt
= 2c− x; dy

dt
= −y; dz

dt
− z.

Ее решения описываются уравнениями

x(t) = 2c+ (x(0) − 2c)e−t, y(t) = y(0)e−t, z(t) = z(0)e−t; (4)

продолжения этих решений за пределы блока {000} при t → ∞ стремятся к

точке (2c; 0; 0). �

Дословно теми же рассуждениями с аналогами формул вида (4) устанав-

ливается

Следствие 1. Продолжения траекторий всех точек блока {100} стремятся

к точке (2c; c; 0);

продолжения траекторий всех точек блока {200} стремятся к точке (2c; 2c; 0);

продолжения траекторий всех точек блока {210} — к точке (2c; 2c; c)
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продолжения траекторий всех точек блока {220} — к точке (2c; 2c; 2c) и т. д.

Рассмотрим определяемую соотношениями x = c− ε, 0 ≤ y < c− ε, 0 ≤ z <
c− ε грань F0 = {000}∩ {100}, разделяющую первые два блока верхней строки

следующей кольцевой диаграммы:

{000} −−−−→ {100} −−−−→ {200} −−−−→ {210} −−−−→ {220}
x

y

{001} {221}
x

y

{002} ←−−−− {012} ←−−−− {022} ←−−−− {122} ←−−−− {222} .

(5)

Обозначим остальные грани, разделяющие соседние блоки этой диаграммы,

подобным же образом:

F1 = {100} ∩ {200}, где x = c+ ε; F2 = {200} ∩ {210}, где y = c− ε;
F3 = {210} ∩ {220}, где y = c+ ε; F4 = {220} ∩ {221}, где z = c− ε; и т. д.

Стрелки диаграммы (5) обозначают указанные в лемме 4 сдвиги вдоль тра-

екторий динамической системы (1), (2) точек, лежащих в перечисленных здесь

блоках.

В отличие от рассмотренных в [20, 21] динамических систем с многоступен-

чатыми правыми частями, система (1), (2) не имеет симметрий относительно

циклической перестановки координат σ : x→ y → z → x, однако решения этой

системы в блоках {000}, {220}, {002}, отстоящих друг от друга в диаграмме (5)

на четыре шага, имеют одинаковое геометрическое описание — продолжения та-

ких решений за пределы перечисленных трех блоков пересекаются в вершинах

Q куба (2c, 0, 0), (2c, 2c, 2c), (0, 0, 2c) соответственно (см. следствие 1).

Аналогичным образом продолжения решений системы (1), (2) в блоках

{100}, {221}, {012} за их пределы пересекаются в точках (2c, c, 0), (c, 2c, 2c),

(0, 0, c) соответственно. Эти три блока, как и предыдущие три, отстоят друг от

друга в диаграмме (5) на четыре шага. Такие симметрии в описании решений

этой системы имеются и в трех блоках {200}, {222}, {002}, и в трех блоках

{210}, {122}, {001}.
Обозначим через � объединение всех двенадцати блоков, перечисленных

в (5).

2. Существование цикла системы (1), (2)

Основным результатом этой работы является

Теорема. Если 4ε ≤ c, то область � содержит по крайней мере один цикл

C динамической системы (1), (2). Этот цикл переходит из блока в блок согласно

стрелкам диаграммы (5).
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Подобные кольцевые диаграммы используются при поисках периодических

траекторий широкого круга динамических систем вида (1) и их многомерных

аналогов (см. [2, 18, 22]).

Замечание. Область � не является инвариантной относительно положи-

тельных сдвигов вдоль траекторий системы (1), (2): траектории точек, лежа-

щих в блоках {220} и {200}, выходят из них только в блоки {221} и {210}
соответственно, однако траектории точек блока {210} могут выходить из него

не только в блок {220}, в который указывает стрелка диаграммы (5), но и в

блок {211}, если эти точки лежат достаточно близко к верхней грани z = c− ε
по сравнению с их расстояниями до грани y = c− ε.

1. Для доказательства теоремы опишем переходы Fj → Fj+1 траекторий

точек, принадлежащих описанным выше граням, разделяющим блоки диаграм-

мы (5):

x1 = c+ ε; y1 =
y0(c− ε) + 2cε

c+ ε
; z1 =

z0(c− ε)
c+ ε

.

Аналогичными дробно-линейными функциями, как и в [23], с помощью

формул вида (4) определяются координаты точки X2 = (x2, y2, z2) ∈ intF2, в ко-

торой заканчивается прямолинейный участок траектории точкиX1 = (x1, y1, z1),

лежащей во внутренности грани F1. Рассматривая композиции таких пере-

ходов траекторий с грани на грань, мы видим, что траектория точки X0 =

(x0, y0, z0) ∈ intF0 после переходов через блоки {100} и {200} попадает в точку

X2 = (x2, y2, z2) ∈ F2 с координатами

x2 = 2c− (c2 − ε2)(c+ ε)

2c2 − y0(c− ε)
, y2 = c− ε, z2 =

z0(c
2 − ε2)

2c2 − y0(c− ε)
.

В свою очередь, траектория точки X2 после перехода через блоки {210} и {220}
попадает в точку X4 = (x4, y4, z4) ∈ F4 с координатами

x4 = 2c− (c2 − ε2)(2c− x2)

2c2 − z2(c− ε)
, y4 = 2c− (c2 − ε2)(c+ ε)

2c2 − z2(c− ε)
, z4 = c− ε.

Для того чтобы траектория точки X0 замкнулась после композиции двена-

дцати переходов с грани на грань, потребуется выполнение следующих соотно-

шений:

2c− y4 = z0 =
(c+ ε)(c2 − ε2)[2c2 − y0(c− ε)]

4c2 − 2c2(c− ε)y0 − (c− ε)(c2 − ε2)z0
,

2c− x4 = y0 =
(c+ ε)(c2 − ε2)2

4c2 − 2c2(c− ε)y0 − (c− ε)(c2 − ε2)z0
.

Опуская нулевые индексы, получаем уравнения двух гипербол

2c2(c− ε)yz + (c− ε)(c2 − ε2)z2 − 4c4z − (c2 − ε2)2y+ 2c2(c+ ε)(c2 − ε2) = 0, (6)

2c2(c− ε)y2 + (c− ε)(c2 − ε2)yz − 4c4y + (c+ ε)(c2 − ε2)2 = 0. (7)
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Рис. 1. Пересечение гипербол (6) и (7).

Будем искать такую точку (y∗, z∗) пересечения этих гипербол, что точка

x0 = c− ε, y0 = y∗, z0 = z∗ содержится во внутренности грани F0, т. е.

0 < y∗ < c− ε; 0 < z∗ < c− ε.
На рис. 1 изображено пересечение гипербол (6) и (7) при c = 1 и ε = 0.1.

У гиперболы (6) одна из асимптот горизонтальна: z =
(c+ε)2(c−ε)

2c2 , уравнение

ее наклонной асимптоты имеет вид

2c2y + (c2 − ε2)z =
(c2 + ε2)(7c4 − 4c2ε2 + ε4)

2c2(c− ε) .

Гипербола (7) имеет вертикальную асимптоту y = 0 и наклонную:

2c2y + (c2 − ε2)z =
4c4

c− ε .

Обозначим через K квадрат, задаваемый соотношениями 0 < y < c − ε и

0 < z < c − ε. Простые вычисления показывают, что при ε ≤ c
4 в квадрате K

верхняя ветвь гиперболы (6) выпукла вниз и пересекает вертикальные стороны

этого квадрата — ось OZ и прямую y = c − ε, а правая ветвь гиперболы (7)

выпукла вверх и пересекает его горизонтальные стороны — ось OY и прямую

z = c − ε. Следовательно, эти две ветви имеют в квадрате K в точности одну

точку пересечения. Остальные точки пересечения гипербол (6) и (7) лежат вне

K. Более точная оценка параметра ε связана с решением уравнения восьмой

степени; в частности, при ε = c/3 в этом квадрате гиперболы (6) и (7) точек

пересечения не имеют.

2. Итак, при ε ≤ c
4 на грани F0 существует в точности одна точка M0

с координатами x0 = c − ε, y0 = y∗, z0 = z∗ такая, что после четырех шагов

по диаграмме (5), т. е. при соответствующем сдвиге вдоль ее траектории, она

перейдет в точку M4 ∈ F4 с координатами x4 = 2c− y∗, y4 = 2c− z∗, z4 = c− ε.
После следующих четырех шагов по диаграмме (5) она перейдет в точку M8 ∈
F8 с координатами x8 = 2c−y4, y8 = c−ε, z8 = 2c−x4, а еще через четыре шага

вернется на грань F0 в исходное свое положениеM0. Следовательно, траектория

такой точки M0 оказывается циклом системы (1), (2). �
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Рис. 2. Цикл C динамической системы (1), (2); c = 1, ε = 0.1 (слева); c = 1,
ε = 0.15 (справа).

3. Вычислительные эксперименты

На рис. 2 показаны некоторые результаты из серии численных эксперимен-

тов с траекториями системы (1), (2). В обоих представленных случаях началь-

ная точка выбрана в центре грани F0 и построенный двенадцатиугольный цикл

C проходит через блоки, перечисленные в диаграмме (5).

Заключение

Построенный кусочно-линейный цикл C ⊂ � представляет собой пример

нелокального колебания; подобные нелокальные осцилляции других динами-

ческих систем изучались в [20, 21, 24]. Внутренность окрестности � цикла C

не пересекается с внутренностью инвариантной окрестности {111} устойчивой

стационарной точки S0.

Проведенные построения переносятся и на модели генных сетей бо́льших

размерностей, и на динамические системы с правыми частями более общего ви-

да, которые моделируют описанные в [5, 16, 17] генные сети с более сложными

комбинациями положительных и отрицательных связей между их компонента-

ми (см. также [25–27]).
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models of circular gene networks,” J. Appl. Ind. Math., 13, No. 3, 472–479 (2019).

12. Yomdin Y., “Semialgebraic complexity of functions,” J. Complexity, 21, 111–148 (2005).

c© 2024 V. P. Golubyatnikov, E. A. Sitnyakovskaya



On a hidden attractor of one asymmetric gene network model 13
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ЗАДАЧА О РАВНОВЕСИИ

ПЛАСТИНЫ КИРХГОФА ––– ЛЯВА,

КОНТАКТИРУЮЩЕЙ С ПРЕПЯТСТВИЕМ,

ИМЕЮЩИМ УГЛОВУЮ ФОРМУ

Н. П. Лазарев, Г. М. Семенова,

А. С. Никулин

Аннотация. Исследована нелинейная математическая модель равновесия пласти-
ны, контактирующей с препятствием специальной формы. Пластина может контак-
тировать с препятствием, состоящим из двух частей, одна из них задается наклон-
ными образующими, а другая ограничивает пластину со стороны боковой грани.
При этом пластина может контактировать как по боковой грани, так и в точках
кривой, соответствующей пересечению лицевой (внешней) поверхности пластины и
боковой цилиндрической поверхности пластины. Данное обстоятельство приводит
к тому, что ставятся граничные условия в виде трех неравенств, выполненных на
одной и той же кривой. Наряду с моделью упругой пластины рассмотрен также
случай неоднородной пластины, в которой жесткое включение находится вблизи
контактной границы. Доказана однозначная разрешимость задач для обеих моде-
лей. При условии дополнительной гладкости решений указанных задач найдены
условия оптимальности в виде граничных условий, а также соответствующие экви-
валентные дифференциальные постановки.

DOI: 10.25587/2411-9326-2024-2-14-30

Ключевые слова: вариационная задача, наклонное препятствие, пластина, усло-
вие непроникания, контактная задача.

Введение

Контактные задачи механики упругих тел с условиями типа неравенств в

рамках известного подхода Синьорини предполагают, что в исходном состоя-

нии тело соприкасается с препятствием либо с другим деформируемым телом

на заданной части внешней границы [1–5]. В случае пластин моделей Тимо-

шенко или Кирхгофа — Лява математическая модель строится по отношению к

срединной плоскости [5, 6]. При этом для описания контактного взаимодействия

на боковой цилиндрической поверхности, ограничивающей пластину, ставятся

условия не на поверхности, а на кривой, лежащей в срединной плоскости [7–9].

Представляют интерес также нелинейные задачи, в которых рассматривается

Работа выполнена при поддержке Российского научного фонда проект No. 24-21-00081.
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контакт по лицевой поверхности пластины, в частности, для моделей механи-

ческого взаимодействия c тонкими упругими балками [10–13], для моделей кон-

такта двух упругих пластин [14–16]. В недавних работах были предложены

математические модели для пластин, где описывается контакт с наклонными

препятствиями [17], контакт по боковой грани и лицевой поверхности пласти-

ны [8].

В настоящей работе предлагается новая математическая модель, в кото-

рой есть контактное взаимодействие с препятствием, имеющим угловую фор-

му. При этом для описания контакта с препятствием по боковой поверхности

пластины за основу берутся более общие предположения по сравнению с [18], а

именно, считаем, что ширина контактной зоны не обязана совпадать с толщиной

пластины. Установлены следующие вопросы математической корректности для

исследуемой модели: существование и единственность решения задачи. Также

при условии дополнительной гладкости решения найдены условия оптималь-

ности в виде граничных условий, а также эквивалентная дифференциальная

постановка.

1. Вариационная постановка

Пусть� ⊂ R2 — ограниченная область с достаточно гладкой границей � , ко-

торая состоит из двух кривых: � = � 0∪γ, �0∩γ = ∅, meas(�0) > 0, meas(γ) > 0.

Обозначим через ν = (ν1, ν2) внешнюю нормаль к границе � области �. Для

простоты предположим, что пластина имеет равномерную толщину 2h. Зада-

дим трехмерное декартово пространство {x1, x2, z} так, чтобы пластина соот-

ветствовала множеству {�}× [−h, h] ⊂ R3. При этом лицевые поверхности пла-

стины в исходном состоянии задаются множествами {�}×{−h}, {�}×{h}, для

определенности будем изучать задачу о возможном контакте с нижней лицевой

поверхностью, т. е. заданной множеством {�} × {−h}.
Обозначим через χ = χ(x) = (W (x), w(x)) вектор перемещений точек сре-

динной поверхности (x ∈ �), через W = (w1, w2) — перемещения в плоскости

{x1, x2}, а через w — перемещения вдоль оси z (прогибы). Тензоры деформаций

и напряжений обозначаются через εij = εij(W ), σij = σij(W ) соответственно [5],

εij(W ) =
1

2

(
∂wj

∂xi
+
∂wi

∂xj

)
, σij(W ) = aijrlεrl(W ), i, j = 1, 2,

где {aijrl} — заданный тензор упругости, который предполагается симметрич-

ным и положительно определенным:

aijrl = arlij = ajirl, i, j, r, l = 1, 2, aijrl ∈ L∞(�),

aijrlξijξrl ≥ c0|ξ|2 ∀ξ, ξij = ξji, i, j = 1, 2, c0 = const > 0.

Здесь и далее используется соглашение о суммировании по повторяющимся ин-

дексам. Введем изгибающие моменты следующими формулами [5]:

mij(w) = −dijrlw,rl , i, j = 1, 2,

(
w,rl =

∂2w

∂xr∂xl

)
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где тензор {dijrl} имеет те же характеристики симметрии, ограниченности и по-

ложительной определенности, что и тензор {aijrl}. Пусть B(· , ·) — билинейная

форма, определенная равенством

B(χ, χ) =

∫

�

{σij(W )εij(W )−mij(w)w,ij } dx,

где χ = (W,w), χ = (W,w).

Введем следующие пространства Соболева:

H1
�0

(�) = {v ∈ H1(�) | v = 0 на �0},

H2
�0

(�) =

{
v ∈ H2(�) | v =

∂v

∂ν
= 0 на �0

}
,

H(�) = H1
�0

(�)2 ×H2
�0

(�), ‖χ‖ = ‖χ‖H(�) =
(
‖W‖2H1(�)2 + ‖w‖2H2(�)

)1/2
.

Функционал потенциальной энергии пластины Кирхгофа — Лява имеет следу-

ющий вид:

�(χ) =
1

2
B(χ, χ)−

∫

�

Fχdx, χ = (W,w),

где вектор F = (f1, f2, f3) ∈ L2(�)3 описывает внешние силы [5]. Заметим, что

следующее неравенство, обеспечивающее коэрцитивность функционала �(χ):

B(χ, χ) ≥ c‖χ‖2 ∀χ ∈ H(�), (1)

с константой c > 0, не зависящей от χ, имеет место для билинейной формы

B(·, ·) [5].

Перейдем к описанию недеформируемого препятствия и ограничений на

перемещения для точек пластины, которые соприкасаются с контактной по-

верхностью препятствия в исходном состоянии. Предположим, что для каждого

сечения плоскостью, параллельной оси Oz, проходящей через точку (x1, x2, 0) ∈
γ × {0} вдоль нормали (ν1(x), ν2(x), 0) к боковой цилиндрической поверхности,

имеем конфигурацию взаимного расположения края пластины и препятствия в

исходном состоянии, изображенную на рис. 1.

Рис. 1. Сечение пластины плоскостью, перпендикулярной срединной плоскости
пластины.
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Опишем сначала ограничения на перемещения в точках боковой цилиндри-

ческой поверхности. Считаем, что пластина в исходном состоянии соприкаса-

ется боковой цилиндрической поверхностью с препятствием по полосе шириной

l = l(x), где 0 < l(x) ≤ 2h, x ∈ γ. Зададим границу этой части углового препят-

ствия следующим множеством:

{(x1, x2, z) | (x1, x2) ∈ γ, z ∈ [−h,−h+ l]}.

Очевидно, что при l ≡ 2h препятствие соприкасается по всей ширине боко-

вой поверхности пластины. Рассуждая по аналогии с [5, 27], имеем следующее

граничное условие на γ, описывающее непроникание точек пластины в препят-

ствие. Потребуем, чтобы было выполнено следующее соотношение:

Wν − z ∂w
∂ν
≤ 0 на γ, z ∈ [−h,−h+ l], (2)

где Wν = wiνi,
∂w
∂ν = ∂w

∂xi
νi. Неравенство (2) в силу линейности может быть

эквивалентно представлено в виде системы двух неравенств

Wν + h
∂w

∂ν
≤ 0, Wν + (h− l)∂w

∂ν
≤ 0 на γ. (3)

Предположим, что граница второй части препятствия задана по отноше-

нию к каждой точке x ∈ γ прямолинейными образующими. Здесь мы приме-

няем подход, предложенный в [17], где рассматривалась вариационная задача

о контакте пластины с наклонным препятствием. Чтобы описать образующие

препятствия, рассмотрим фиксированную точку (x1, x2, 0) ∈ γ × {0} и прохо-

дящее через эту точку сечение плоскостью, параллельной оси Oz и вектору

(ν1(x), ν2(x), 0), где x = (x1, x2). Будем считать, что пересечение второй части

препятствия с указанным сечением проходит по прямолинейному отрезку (или

прямой), лежащему на прямой с коэффициентом наклона k > 0 (в плоскости,

построенной осью Oz′ и осью, построенной вектором (ν1(x), ν2(x), 0), рис. 2.).

Рис. 2. Сечение в точке x ∈ γ.

Считая, что для каждого x ∈ γ имеется своя образующая (прямая или

прямолинейный отрезок), имеем функцию k(x), x ∈ γ. В частности, когда
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γ представляет собой прямолинейный отрезок, а k(x) ≡ k0 — постоянная, в

качестве препятствия выступает часть наклонной плоскости. В общем случае с

точки зрения разрешимости соответствующей задачи достаточно потребовать,

чтобы k(x) ∈ L∞(γ). При этом соответствующее условие непроникания можно

выразить в следующем виде:

k

(
Wν + h

∂w

∂ν

)
≤ w на γ. (4)

Таким образом, с учетом ограничений на перемещения множество допустимых

перемещений запишем в виде

K = {χ = (W,w) ∈ H(�) | χ удовлетворяет (3), (4)}.

Сформулируем вариационную постановку задачи равновесия. Требуется найти

функцию ξ = (U, u) ∈ K такую, что

�(ξ) = inf
χ∈K

�(χ). (5)

Теорема 1. Задача (5) имеет единственное решение.

Доказательство. Применим известную теорему Вейерштрасса [4], чтобы

показать существование решения задачи минимизации [5]. Функционал энергии

является коэрцитивным и слабо полунепрерывным снизу на H(�) [5]. Легко

видеть, что множество K выпукло. Можно доказать замкнутость множества

K так же, как в [27]. Указанные свойства множества допустимых перемеще-

ний обеспечивают слабую замкнутость множества K. Следовательно, для за-

дачи минимизации (5) все условия теоремы Вейерштрасса выполняются как

для функционала �(χ), так и для множества допустимых функций K. Это

означает, что задача (5) имеет хотя бы одно решение. Функционал выпуклый и

дифференцируемый, а множествоK является выпуклым, как следствие, задача

(5) эквивалентна следующему вариационному неравенству:

ξ ∈ K, B(ξ, χ− ξ) ≥
∫

�

F (χ− ξ) dx ∀χ ∈ K. (6)

Предполагая, что существуют два разных решения ξ1 и ξ2, выпишем из вариа-

ционного неравенства (6) два следующих неравенства:

B(ξ1, ξ2 − ξ1) ≥
∫

�

F (ξ2 − ξ1) dx, B(ξ2, ξ1 − ξ2) ≥
∫

�

F (ξ1 − ξ2) dx.

Складывая их, получим, что

B(ξ2 − ξ1, ξ2 − ξ1) ≤ 0.

Это означает с учетом (1), что ξ1 = ξ2, а также влечет за собой единственность

решения задачи (5).
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2. Дифференциальная постановка

Пусть l(x) — непрерывная функция, заданная на γ, удовлетворяющая свой-

ству 0 < l(x) ≤ 2h для всех x ∈ γ. Предположим, что решение ξ = (U, u) ∈ K
является достаточно гладкой функцией. Цель данного раздела — найти из ва-

риационного неравенства уравнения равновесия в области � и условия опти-

мальности, выполненные на γ. Будем применять следующие формулы Грина

для функций χ = (W,w) ∈ K [5]:

∫

�

σij(U)εij(W ) dx = −
∫

�

σij,j(U)wi dx+

∫

�

(σν(U)Wν + στ (U)Wτ ) d� , (7)

∫

�

mij(u)w,ij dx =

∫

�

mij,ij(u)w dx +

∫

�

(
tν(u)w −mν(u)

∂w

∂ν

)
d� , (8)

где

σν(U) = σij(U)νiνj , mν(u) = −mijνiνj ,

στ (U) =
(
σ1
τ (U), σ2

τ (U)
)

= (σ1j(U)νj , σ2j(U)νj)− σν(U)ν,

tν(u) = −mij,kτkτjνi −mij,jνi, τ = (−ν2, ν1),
Wν = wiνi, Wτ =

(
W 1

τ ,W
2
τ

)
, wi = (Wν)νi +W i

τ , i = 1, 2.

Наряду с вариационной формулировкой задачи (5) можно иметь дело с

соответствующей дифференциальной постановкой. А именно, справедлива

Теорема 2. Предположим, что решение ξ = (U, u) задачи (5) достаточ-

но гладкое. Тогда вариационная задача (5) эквивалентна следующей краевой

задаче:

−mij,ij(u) = f3 в �, (9)

−σij,j(U) = fi в �, i = 1, 2, (10)

σν(U)− tν(u)k ≤ 0, −(h− l)(σν(U)− tν(u)k)+(mν(u)− tν(u)kh) ≤ 0 на γ, (11)

tν(u) ≤ 0, στ (U) = (0, 0), Uν + h
∂u

∂ν
≤ 0, Uν + (h− l)∂u

∂ν
≤ 0 на γ, (12)

σν(U)− 1

h
mν(u) ≤ 0, σν(U)Uν − tν(u)u+mν(u)

∂u

∂ν
= 0 на γ, (13)

U = (0, 0), u =
∂u

∂ν
= 0 на �0. (14)

Доказательство. Подставляя χ = ξ ± χ̃, где χ̃ ∈ C∞0 (�)3, в качестве

тестовой функции в (6), получаем следующее соотношение:
∫

�

(σij(U)εij(W̃ )−mij(u)w̃,ij ) dx =

∫

�

Fχ̃ dx,

которое означает, что следующие уравнения равновесия:

−mij,ij(u) = f3 в �, (15)
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−σij,j(U) = fi в �, i = 1, 2, (16)

выполнены в смысле распределений. Используя формулы Грина (7), (8) при-

менительно к (6) с учетом (15), (16), можно показать, что

∫

�

(
σν(U)(W −U)ν+στ (U)(Wτ −Uτ)− tν(u)(w−u)+mν(u)

(
∂w

∂ν
− ∂u

∂ν

))
d� ≥ 0

(17)

∀χ = (W,w) ∈ K.
Поскольку K является выпуклым конусом в H(�), можно подставить χ = λξ с

неотрицательным λ ≥ 0 в (17) и получить

∫

�

(
σν(U)Uν + στ (U)Uτ − tν(u)u+mν(u)

∂u

∂ν

)
d� = 0, (18)

(
σν(U)Wν + στ (U)Wτ − tν(u)w +mν(u)

∂w

∂ν

)
d� ≥ 0 (19)

для всех χ = (W,w) ∈ K. Предположим, что χ = (W,w) ∈ K и χ = (0, 0, 0) на

�0. В этом случае можно переписать (19) следующим образом:

∫

γ

(
σν(U)Wν + στ (U)Wτ − tν(u)w +mν(u)

∂w

∂ν

)
d� ≥ 0 ∀χ = (W,w) ∈ K. (20)

Поскольку значение Wτ не входит в неравенства (3), (4) вследствие произволь-

ности Wτ на γ, из (20) заключаем, что

στ (U) = (0, 0) на γ.

Следовательно, (20) можно выразить в следующем виде:

∫

γ

(
σν(U)Wν − tν(u)w +mν(u)

∂w

∂ν

)
d� ≥ 0 ∀χ = (W,w) ∈ K. (21)

Выбрав в (21) пробные функции χ = (W,w) такие, что W = (0, 0), w ≥ 0, ∂w
∂ν = 0

на γ, получим

tν(u) ≤ 0 на γ.

Теперь рассмотрим (21) с тестовыми функциями, удовлетворяющими свойствам

w = 0, Wν + h∂w
∂ν = 0 и ∂w

∂ν ≥ 0 на γ. В результате находим

∫

γ

(
σν(U)Wν − 1

h
mν(u)Wν

)
d� ≥ 0.

Отсюда, поскольку значение Wν ≤ 0 может быть произвольным (неотрицатель-

ным), получаем

σν(U)− 1

h
mν(u) ≤ 0 на γ.
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Далее, подставляя в (21) тестовые функции, удовлетворяющие

Wν + (h− l)∂w
∂ν

= 0, w = k(Wν + h
∂w

∂ν
),

∂w

∂ν
≤ 0 на γ,

установим, что

∫

γ

(
Wν(σν (U)− tν(u)k) + (mν(u)− tν(u)kh)

∂w

∂ν

)
d�

=

∫

γ

(
−(h− l)∂w

∂ν
(σν(U)− tν(u)k) + (mν(u)− tν(u)kh)

∂w

∂ν

)
d� ≥ 0.

Откуда следует, что

−(h− l)(σν(U)− tν(u)k) + (mν(u)− tν(u)kh) ≤ 0 на γ.

Подставляя далее в (21) χ = (W,w) такие, что w = kWν ≤ 0, ∂w
∂ν = 0, нетрудно

установить, что справедливо неравенство
∫

γ

(σν(U)Wν − tν(u)kWν) d� ≥ 0,

которое означает, что

σν(U)− tν(u)k ≤ 0 на γ.

Заметим, что в силу ξ = (U, u) ∈ K и следующих вышеустановленных нера-

венств:

tν(u) ≤ 0, σν(U)− tν(u)k ≤ 0, σν(U)− 1

h
mν(u) ≤ 0 на γ,

−(h− l)(σν(U)− tν(u)k) + (mν(u)− tν(u)kh) ≤ 0 на γ,

выражение σν(U)Wν− tν(u)w+mν(u)∂w∂ν неотрицательно на γ. Действительно,

для случая ∂w
∂ν ≥ 0 на некотором подмножестве γ+ ⊂ γ с положительной мерой

meas(γ+) > 0 имеем

σν(U)Wν − tν(u)w +mν(u)
∂w

∂ν
= (σν(U)− tν(u)k)

(
Wν + h

∂w

∂ν

)

− tν(u)

(
w − k

(
Wν + h

∂w

∂ν

))
+ (mν(u)− hσν(U))

∂w

∂ν
≥ 0 на γ+;

также и для другого случая, когда ∂w
∂ν ≤ 0 на некотором подмножестве γ− ⊂ γ

с положительной мерой meas(γ−) > 0, следующее выражение неотрицательно:

σν(U)Wν − tν(u)w +mν(u)
∂w

∂ν

= (σν (U)− tν(u)k)

(
Wν + (h− l)∂w

∂ν

)
− tν(u)

(
w − k

(
Wν + h

∂w

∂ν

))

+ (−(h− l)(σν(U)− tν(u)k) + (mν(φ) − tν(u)kh))
∂w

∂ν
≥ 0 на γ−.
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Остается заметить, что γ+ ∪ γ− = γ. Обратимся теперь к тождеству (18). По-

скольку подынтегральное выражение в интеграле (18) является неотрицатель-

ным п.в. на γ, можно легко сделать вывод о том, что имеет место равенство

σν(U)Uν − tν(u)u+mν(u)
∂u

∂ν
= 0 на γ.

Обратно, чтобы получить из соотношений (9)–(14) вариационное неравен-

ство (6), умножим (9) на (u−w) и каждое из равенств (10) на соответствующую

разность (ui−wi), i = 1, 2, гдеW = (w1, w2), w такие, что χ = (W,w) ∈ K. После

интегрирования по области � и суммирования находим, что

−
∫

�

(σij,j(U)(U −W ) +mij,ij(u)(w − u)) dx =

∫

�

F (χ− ξ) dx.

Затем с помощью формул Грина выявляем, что
∫

�

(σij(U) εij(W − U) dx−mij(u)(w − u),ij ) dx

−
∫

�

(σν(U)(Wν − Uν) + στ (U)(Wτ − Uτ )) d�

+

∫

�

(
tν(u)(w − u)−mν(u)

(
∂w

∂ν
− ∂u

∂ν

))
d� =

∫

�

F (χ− ξ) dx. (22)

Принимая во внимание равенства στ (U) = (0, 0) на γ, ξ = χ = (0, 0, 0) на �0,

можем представить интеграл по � в левой части (22) следующим образом:

I =

∫

γ

(
tν(u)(w − u)−mν(u)

(
∂w

∂ν
− ∂u

∂ν

)
− σν(U)(Wν − Uν)

)
d� . (23)

Ввиду равенства в (13) и στ (U) = (0, 0), выполненных на γ, перепишем (23) в

виде следующего интеграла:

I =

∫

γ

(
tν(u)w −mν(u)

∂w

∂ν
− σν(U)Wν

)
d� . (24)

Можно показать, что подынтегральное выражение в (24) неотрицательно в силу

включения χ ∈ K и соотношений (11)–(14). Остается заметить, что ввиду I ≤ 0,

неравенство (22) влечет за собой выполнение вариационного неравенства (6).

Замечание 1. Полученные соотношения на границе можно трактовать

как условия оптимальности, поскольку решение задачи минимизации должно

удовлетворять найденным граничным условиям. Полученные краевые условия

отражают соотношения между физическими величинами в рамках настоящей

модели, в этом смысле они представляют интерес с точки зрения приложений,

также данные соотношения могут быть использованы в случае поиска доста-

точно гладкого решения или применения его свойств.
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3. Задача о жестком включении,

примыкающем к границе

Предположим теперь, что пластина имеет жесткое объемное включение,

выходящее на внешнюю границу. Задачи для пластин с жесткими включениями

исследованы во многих работах, например, случай пластины Кирхгофа — Лява

с отслоившимся включением исследован в [19], модель контакта двух пластин

с жесткими включениями изучена в [20]. Анализ зависимости функционала

энергии от возмущения геометрии отслоившегося жесткого включения проведен

в [21, 22]. Возможность предельного перехода по параметру ширины жесткого

включения с отслоением обоснована в статье [23]. Модель гиперупругого тела с

жестким включением исследована в [24]. Численная реализация задач в рамках

моделей упругих тел с жесткими включениями дана, например, в [25, 26].

В рамках настоящего раздела предположим, что для границы γ возмож-

ного контакта выполняется, что γ 6= � \ �0, кроме того, будем считать, что

граница состоит из шести кривых: � = �0 ∪ �1 ∪ �2 ∪ �3 ∪ �4 ∪ �5, meas(�i) > 0,

i = 0, 1, 2, 3, 4, 5. Пусть односвязная подобласть ω ⊂ � такова, что границы

∂ω, ∂(�\ω) соответствующих областей ω, �\ω являются достаточно гладки-

ми. Пусть введенные выше кривые соответствуют следующим множествам:

�2 = (∂ω∩� )\γ, �3 = ∂ω∩γ, �4 = γ\∂ω (рис. 3). В этом случае дополнительно к

условиям (3), (4), описывающим контактное взаимодействие на γ, учитываются

соотношения, характеризующие перемещения в точках подобласти ω. Исполь-

зуем следующее пространство, с помощью которого будем задавать свойства

объемного жесткого включения:

R(ω) = {ζ(x) = (ρ(x), l(x)) | ρ(x) =

= b(x2,−x1) + (c1, c2); l(x) = a0 + a1x1 + a2x2, x = (x1, x2) ∈ ω},

где b, c1, c2, a0, a1, a2 ∈ R [19, 27].

Рис. 3. Срединная плоскость пластины (кривая γ обозначена пунктирной линией).

Задача минимизации в данном случае примет следующий вид:

�(ξ) = inf
χ∈Kω

�(χ), (25)
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где множество допустимых функций имеет вид

Kω = {χ = (W,w) ∈ H(�) | χ удовлетворяет (2), (3), χ|ω = ζ, ζ ∈ R(ω)}.

Выпуклость множества Kω очевидна, замкнутость устанавливается так же, как

и в работе [23]. Аналогично доказательству теоремы 1 можно показать, что

задача имеет единственное решение ξ, которое удовлетворяет вариационному

неравенству

ξ ∈ Kω, B(ξ, χ− ξ) ≥
∫

�

F (χ− ξ)dx ∀χ ∈ Kω. (26)

Предположим, что решение достаточно гладкое. Подставляя в (26) χ = ξ + φ,

φ ∈ C∞0 (� \ ω)3, находим

−mij,ij(u) = f3 в � \ ω, (27)

−σij,j(U) = fi в � \ ω, i = 1, 2, (28)

Подставляя в (26) тестовые функции χ = 2ξ, χ = 0, находим, что
∫

�\ω

(σij(U) εij(U)−mij(u)u,ij ) dx =

∫

�

Fξ dx, (29)

∫

�\ω

(σij(U)εij(W )−mij(u)w,ij ) dx ≥
∫

�

Fχdx ∀χ ∈ Kω. (30)

Анализируя (30) с тестовыми функциями, обращающимися в нуль в области

ω, можно получить, что на части границы �4 выполняются соотношения вида

(11)–(13):

σν(U)− tν(u)k ≤ 0, −(h− l)(σν(U)− tν(u)k) + (mν(u)− tν(u)kh) ≤ 0 на �4,

tν(u) ≤ 0, στ (U) = (0, 0), Uν + h
∂u

∂ν
≤ 0, Uν + (h− l)∂u

∂ν
≤ 0 на �4, (31)

σν(U)− 1

h
mν(u) ≤ 0, σν(U)Uν − tν(u)u+mν(u)

∂u

∂ν
= 0 на �4. (32)

На частях границы �1 и �5, которые свободны от нагрузок и не соприкасаются

с препятствием, следуя [28], можно получить соотношения

στ (U) = (0, 0), σν(U) = tν(u) = mν(u) = 0 на �1 ∪ �5. (33)

Далее рассмотрим (20) с тестовой функцией вида χ = ξ + χ̃, χ̃ = (W̃ , w̃) ∈ Kω,

такой, что w̃(x) = l̃(x), W̃ (x) = ρ̃(x), x ∈ ω. Получим
∫

�\ω

(σij(U)εij(W̃ )−mij(u)w̃,ij ) dx ≥
∫

�

Fχ̃ dx ∀ χ̃ ∈ Kω. (34)

Применим (34) и формулы Грина (7), (8) в предположении гладкости области

�\ω, для которых обозначения нормали и касательной оставим такими же, как
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для кривой � . Заметим также, что значения следов на границе ∂(�\ω) будут

браться по отношению к области �\ω. При этом, используя равенства χ̃ =

(0, 0, 0) на �0, (33), с учетом (27), (28) устанавливаем, что имеет место формула
∫

�4

(
σν(U)W̃ν − tν(u)w̃ +mν(u)

∂w̃

∂ν

)
d�

+

∫

∂ω\(�2∪�3)

(
σν(U)ρ̃ν + στ (U)ρ̃τ − tν(u)l̃ +mν(u)

∂w̃

∂ν

)
d� ≥

∫

ω

F ζ̃ dx (35)

для всех χ̃ = (W̃ , w̃) ∈ Kω, χ̃(x) = ζ̃(x), x ∈ ω, где ζ̃ = (ρ̃, l̃) ∈ R(ω). Подставляя

в (35) χ = (0, 0, 0), χ = 2ξ, ввиду соотношений (31), (32) находим
∫

∂ω\(�2∪�3)

(
σν(U)ρ0ν + στ (U)ρ0τ − tν(u)l0 +mν(u)

∂u

∂ν

)
d� =

∫

ω

Fζ0 dx, (36)

где ξ(x) = ζ0(x) = (ρ0(x), l0(x)), x ∈ ω. По аналогии с предыдущими рассужде-

ниями, можно доказать, что имеет место

Теорема 3. В рамках предположения о том, что решение ξ = (U, u) до-

статочно гладкое, вариационная задача (25) эквивалентна следующей краевой

задаче:

−mij,ij(u) = f3 в � \ ω,
−σij,j(U) = fi в � \ ω, i = 1, 2,

σν(U)− tν(u)k ≤ 0, −(h− l)(σν(U)− tν(u)k) + (mν(u)− tν(u)kh) ≤ 0 на �4,

tν(u) ≤ 0, στ (U) = (0, 0), Uν + h
∂u

∂ν
≤ 0, Uν + (h− l)∂u

∂ν
≤ 0 на �4,

σν(U)− 1

h
mν(u) ≤ 0, σν(U)Uν − tν(u)u+mν(u)

∂u

∂ν
= 0 на �4,

U = (0, 0), u =
∂u

∂ν
= 0 на �0,

στ (U) = (0, 0), σν(U) = tν(u) = mν(u) = 0 на �1 ∪ �5,
∫

�4

(
σν(U)W̃ν − tν(u)w̃ +mν(u)

∂w̃

∂ν

)
d�

+

∫

∂ω\(�2∪�3)

(
σν(U)ρ̃ν + στ (U)ρ̃τ − tν(u)l̃ +mν(u)

∂w̃

∂ν

)
d� ≥

∫

ω

F ζ̃ dx,

для всех χ̃ = (W̃ , w̃) ∈ Kω, χ̃(x)|ω = ζ̃(x), x ∈ ω, где ζ̃ = (ρ̃, l̃) ∈ R(ω),
∫

∂ω\(�2∪�3)

(
σν(U)ρ0ν + στ (U)ρ0τ − tν(u)l̃0 +mν(u)

∂ũ

∂ν

)
d� =

∫

ω

Fζ0 dx,

где ξ(x)|ω = ζ0(x), x ∈ ω.
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Заключение

В работе предложена математическая модель равновесия пластины, кон-

тактирующей с препятствием специальной формы. Препятствие обуславливает

ограничения на перемещения в виде неравенств (3), (4) на кривой γ. Дока-

зано, что вариационные задачи для упругой пластины (5) и для пластины с

жестким включением (25) имеют единственные решения. При дополнительной

регулярности решений в рамках теоремы 2 и теоремы 3 найдены эквивалентные

дифференциальные постановки для исходных вариационных задач.
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EQUILIBRIUM PROBLEM FOR

A KIRCHHOFF––LOVE PLATE CONTACTING

WITH AN INCLINED AND LATERAL OBSTACLES

N. P. Lazarev, G. M. Semenova,

and A. S. Nikulin

Abstract: A nonlinear mathematical model of the equilibrium of a plate contacting
with two obstacles is investigated. The first non-deformable obstacle is defined by in-
clined generatrices, and the second one restricts the plate displacements on the side face.
In this case, the plate can contact both along the side edge and at the points of the curve
corresponding to the intersection of the front surface of the plate and the side cylindrical
surface of the plate. These circumstances lead to the fact that boundary conditions are
imposed in the form of three inequalities fulfilled on the same curve. Along with the
model of a homogeneous plate, the case of a nonhomogeneous plate in which a rigid
inclusion is located near the contact boundary is also considered. The unique solvability
of the problems for both models is proven. Under the condition of additional smooth-
ness of the solutions to these problems, optimality conditions are found in the form of
boundary conditions, as well as the corresponding equivalent differential formulations.
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Keywords: variational problem, inclined obstacle, plate, non-penetration condition,
contact problem.
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Аннотация. Рассматривается вопрос о регулярной разрешимости в пространствах
Соболева параболических обратных коэффициентных задач в слоистых средах с
условиями сопряжения типа неидеального контакта. Решение имеет все обобщен-
ные производные, входящие в уравнение, суммируемые с некоторой степенью. В ка-
честве условий переопределения рассматриваются значения решения в отдельных
точках, лежащих внутри области определения. Доказательство основано на полу-
чаемых априорных оценках и теореме о неподвижной точке.

DOI: 10.25587/2411-9326-2024-2-31-45

Ключевые слова: параболическое уравнение, обратная задача, начально-краевая
задача, существование, единственность.

Введение

Рассматривается вопрос об определении вместе с решением краевой задачи

правой части специального вида и коэффициентов в параболической системе.

Пусть G — область в Rn с границей � и Q = (0, T )× G. Считаем, что область

G разделена на два открытых множества G+ и G−, G− ⊂ G, G+ ∪ G− = G,

G+ ∩ G− = ∅, положим �0 = ∂G+ ∩ ∂G−, S0 = (0, T ) × �0, S = (0, T ) × � .

Система уравнений имеет вид

Mu = ut +Au = f(t, x), (t, x) ∈ Q = G× (0, T ), (1)

где u— вектор длины h, G ∈ Rn — ограниченная область с границей � . Функция

f и эллиптический оператор второго порядка A в G± представимы в виде

−A(t, x,D) = A0(t, x,Dx) +

r∑

i=1

qi(t)Ai(t, x,Dx),

f = f0(t, x) +

s∑

i=r+1

fi(t, x)qi(t),

Работа выполнена при финансовой поддержке Российского научного фонда и правитель-
ства Ханты-Мансийского автономного округа-ЮГРЫ (грант № 22-11-20031).

c© 2024 Пятков С. Г., Потапков А. А.
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Ai =

n∑

k,l=1

aikl(t, x)∂xkxl
+

n∑

k=1

aik(t, x)∂xk
+ ai0.

ajij , a
j
i , a

j
0 — h × h-матрицы-функции, h ∈ N. Уравнение (1) дополняется на-

чальными и граничными условиями

u|t=0 = u0, Bu|S = g(t, x), (2)

где Bu = u или Bu =
n∑

i=1

γi(t, x)uxi + σu, и условиями сопряжения

∂u+

∂N
(t, x) − α1(t, x)u

+(t, x)− α2(t, x)u
−(t, x) = g+(t, x), (t, x) ∈ S0, (3)

∂u−

∂N
(t, x)− β1(t, x)u

+(t, x)− β2(t, x)u
−(t, x) = g−(t, x), (t, x) ∈ S0, (4)

где

∂u±

∂N
(x0, t) = lim

x∈G±, x→x0∈�0

n∑

i,j=1

aijuxiνj ,

ν — внешняя единичная нормаль к ∂G− и

u± = lim
x∈G±, x→x0∈�0

u(t, x).

Условия переопределения имеют вид

〈u(t, bj), ej〉 = ψj(t), j = 1, 2, . . . , s, (5)

где bj ∈ G и ej — некоторые векторы единичной длины и скобки 〈., .〉 обозна-

чают скалярное произведение в Rn. Неизвестными в задаче (1)–(5) являются

решение u и функции qi(t) (i = 1, 2, . . . , s). Мы не считаем, что � или �0 состо-

ят из одной компоненты связности. Вообще говоря, их может быть много и на

каждой из них есть свои граничные условия или соответственно свои условия

сопряжения. В процессе доказательств мы не оговариваем это дополнительно,

чтобы не усложнять изложение. Условия сопряжения (3), (4) обобщают извест-

ные в теории тепломассопереноса условия неидеального контакта на границе

двух сред
∂u+

∂N

∣∣∣∣
S0

=
∂u−

∂N

∣∣∣∣
S0

,
∂u+

∂N

∣∣∣∣
S0

= α(u+ − u−). (6)

Если α → ∞, то получим стандартную постановку задачи дифракции (см. [1,

§ 13, гл. 3]), когда условия имеют вид

u+ = u−,
∂u+

∂N

∣∣∣∣
S0

=
∂u−

∂N

∣∣∣∣
S0

.

Проблемы вида (1)–(5) возникают при описании процессов тепломассопере-

носа, диффузионных процессов, процессов фильтрации, в экологии и во многих

других областях. В частности, такие задачи возникают при описании темпера-

турных режимов почв северных территорий (см. [2]). Теоретических резуль-

татов, посвященных задачам (1)–(5), довольно мало или нет совсем, в отличие
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от случая одной среды. Опишем полученные результаты в последнем случае.

Отметим монографию [3], посвященную обратным параболическим задачам, и

монографии [4–6], где описаны основные постановки, в том числе и в параболи-

ческом случае. Стоит отметить работы [7, 8], где в случае n = 1 определяется

теплопроводность как функция времени и получены теоремы существования и

единственности, а в качестве данных берутся значения решения в отдельных

точках, возможно являющихся граничными. Теплопроводность, не зависящая

от одной из пространственных переменных, и часть коэффициентов по данным

Коши на боковой поверхности цилиндра и интегральным данным определяются

в [9, 10]. Получены теоремы существования и единственности решений и оцен-

ки устойчивости. В монографии [4] (см. также, например, результаты работы

[11] и др.) получены теоремы существования и единственности решений, в том

числе и старших коэффициентов, не зависящих от некоторых пространственных

переменных с данными переопределения на сечениях пространственной области

плоскостями. В силу специфики метода все коэффициенты также не зависят

от части пространственных переменных. Более полные результаты получены в

цикле работ [12–15], где показана корректность обратных задач об определении

коэффициентов в случае задания решения на пространственных многообразиях

или в отдельных точках, как и в нашем случае. Обратные задачи с точечными

данными исследовались в работах А. И. Прилепко и его учеников, и ряд инте-

ресных задач описан в [3]. Аналогичные результаты, но при несколько других

условиях на данные и в других пространствах, получены в [16, 17]. Определе-

ние коэффициента теплопроводности λ(T ) по значениям решения на некоторой

кривой, лежащей на границе, исследуется в работе [18], и получены теорема

единственности и оценки устойчивости. Численному решению задачи (1)–(5)

посвящено огромное количество работ, и подавляющее большинство численных

методов основаны на сведении задачи к задаче оптимального управления и ми-

нимизации соответствующего целевого функционала [19–21] (см. результаты

также в [22, 23]).

Наша работа близка к работам [24, 25] по постановке и результатам. В пер-

вой из них рассматривалась обратная задача об определении старших коэф-

фициентов в параболическом уравнении в случае обычной начально-краевой

задачи (не задачи сопряжения), а во второй — задача сопряжения с условиями

сопряжения типа дифракции. В качестве граничных данных в обеих работах

использовалось условие Дирихле и условие

∂u

∂N
+ σu|S = g

(т. е. граничное условие с производной по конормали). В нашей работе рас-

смотрена система параболических уравнений с краевыми условиями с косой

производной и Дирихле и условиями сопряжения типа неидеального контакта.

В качестве условий переопределения, в отличие от других работ, мы задаем зна-

чения некоторых линейных комбинаций координат вектор-решения в заданных

точках.
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Опишем содержание работы. В разд. 1 описаны условия на данные за-

дачи и приведены вспомогательные результаты. В разд. 2 приведена теорема

существования и единственности решений задачи (1)–(5).

1. Определения и вспомогательные утверждения

Пусть E — банахово пространство. Через Lp(G;E) (G — область в Rn)

обозначается пространство измеримых функций, определенных на G со зна-

чениями в E, с конечной нормой ‖‖u(x)‖E‖Lp(G) [26]. Обозначения для про-

странств Соболева W s
p (G;E), W s

p (Q;E) и т. д. стандартные (см. [27, 28]). Если

E = R или E = Rn, то последнее пространство обозначаем просто через W s
p (Q).

Определения пространств Гёльдера Cα,β(Q), Cα,β(S) могут быть найдены, на-

пример, в [1]. Под нормой вектора понимаем сумму норм координат. Для дан-

ного интервала J = (0, T ) положим W s,r
p (Q) = W s

p (J ;Lp(G)) ∩ Lp

(
J ;W r

p (G)
)
.

Соответственно W s,r
p (S) = W s

p (J ;Lp(� )) ∩ Lp

(
J ;W r

p (� )
)
. Все рассматриваемые

пространства и коэффициенты уравнения (1) считаем вещественными. Далее

считаем, что параметр p > n + 2 зафиксирован и � , �0 ∈ C2. Определение гра-

ницы класса Cs, s ≥ 1, можно найти в [1, гл. 1]. Пусть Bδ(b) — шар радиуса δ с

центром в точке b. Зафиксируем параметр δ > 0 такой, что Bδ(bi)∩ (�0∪� ) = ∅

для всех i, Bδ(bi) ∩Bδ(bj) = ∅ для i 6= j, i, j = 1, 2, . . . , s. Если необходимо, его

всегда можно уменьшить. Введем обозначения: Qτ = (0, τ)×G, Gδ = ∪iBδ(bi),

Sτ
0 = (0, τ)× �0, Q± = (0, T )×G±, Q±τ = (0, τ)×G±, Sτ = (0, τ)× � .

Условия согласования и гладкости данных могут быть записаны в виде

u0|G± ∈W 2−2/p
p (G±), B(0, x,D)u0|� = g(0, x),

g ∈W k0,2k0

p (S), g± ∈W s0,2s0
p (S0),

∂u+
0

∂N
(0, x)− α1(0, x)u

+
0 (x) − α2(0, x)u

−
0 (x) = g+(0, x), x ∈ �0,

∂u−0
∂N

(0, x)− β1(0, x)u
+
0 (x) − β2(0, x)u

−
0 (x) = g−(0, x), x ∈ �0,

(7)

где k0 = s1 = 1 − 1/2p в случае Bu = u и k0 = s0 = 1/2 − 1/2p в противном

случае,

u0(x) ∈W 3−2/p
p (Gδ), f0 ∈ Lp

(
0, T ;W 1

p (Gδ)
)
. (8)

Ниже будут встречаться включения вида f ∈ Lp

(
0, T ;W 1

p (Gδ)
)

или аналогич-

ные, где соответствующее множество Gδ состоит из нескольких компонент связ-

ности (в данном случае Bδ(bj)). По определению это означает, что f |Bδ(bj) ∈
Lp

(
0, T ;W 1

p (Bδ(bj))
)

для всех j. В качестве нормы в этом пространстве рассмат-

риваем сумму норм по соответствующим компонентам связности. Аналогично

для других множеств. Рассмотрим вспомогательное уравнение

Mu = ut + Lu = f0(t, x), Lu = −
n∑

i,j=1

aijuxixj +

n∑

i=1

aiuxi + a0u, (9)

и вспомогательные задачи

Mu+ = f0, (t, x) ∈ Q+, Bu+|S = ϕ,
∂u+

∂N

∣∣∣
S0

= g+, u+|t=0 = 0; (10)
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Mu− = f0, (t, x) ∈ Q−, ∂u−

∂N

∣∣∣∣
S0

= g−, u−|t=0 = 0, (11)

Считаем, что функции aij |G± непрерывны в Q± и допускают продолжение до

непрерывных функций класса C(Q±). Обозначим через a±ij предельные значе-

ния функций aij |G± на �0. Запишем соответствующие условия:

ak ∈ Lp(Q), aij |Q± ∈ C(Q±), a±ij ∈W s0,2s0
p (S0), i, j = 1, 2, . . . , n, (12)

где k = 0, 1, . . . , n. Далее предположим, что

f0 ∈ Lp(Q), αk, βk ∈ W s0,2s0
p (S0), γi, σ ∈W s0,2s0

p (S), k = 1, 2, (13)

aij ∈ L∞
(
0, T ;W 1

p (Gδ)
)
, al ∈ Lp

(
0, T ;W 1

p (Gδ)
)
, l = 0, 1, . . . , n, (14)

где i, j = 1, . . . , n. Мы считаем, что для вспомогательных задач (10), (11) вы-

полнены условия параболичности и Лопатинского. Условие параболичности

записывается в виде: найдется постоянная δ1 > 0 такая, что все корни p поли-

нома

det(A0(t, x, ξ) + pE) = 0, A0(t, x, ξ) =

n∑

i,j=1

aijξiξj ,

E — единичная матрица, удовлетворяют условию

Re p ≤ −δ1|ξ|2 ∀ξ ∈ Rn ∀(t, x) ∈ Q±. (15)

Пусть R0u = u в случае условий Дирихле на S и

R0u =

n∑

j=1

γj∂xju

в противном случае. Условие Лопатинского (оно должно быть выполнено на

S и S0 для задачи (10) и на S0 для задачи (11)) на S может быть записано в

виде (см. (LS) условие [27, c. 198]): для любых (t0, x0) ∈ S, ξ ∈ Rn таких, что

(ξ, ν(x0)) = 0 (ν(x) — внешняя единичная нормаль в � в точке x), всех ~h ∈ Ch,

λ таких, что Reλ ≥ 0 и |ξ|+ |λ| 6= 0, система обыкновенных дифференциальных

уравнений

(λE +A0(t0, x0, ξ + iν(x0)∂y))v(y) = 0, R0(t0, x0, ξ + iν(x0)∂y)v(0) = h (16)

имеет единственное убывающее на бесконечности решение класса C([0,∞)).

Аналогично формулируется условие Лопатинского на S0. При этом надо учесть,

что для задачи (10)

A0(t, x, ξ)|S0
=

n∑

i,j=1

a+
ijξiξj

и для задачи (11)

A0(t, x, ξ)|S0
=

n∑

i,j=1

a−ijξiξj .
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Теорема 1. Пусть выполнены условия (7), (12), (13) и для вспомогатель-

ных задач (10), (11) выполнены условия параболичности и Лопатинского. Тогда

существует единственное решение u|Q± ∈ W 1,2
p (Q±) задачи (9), (2)–(4). Спра-

ведлива оценка

‖u‖W 1,2
p (Q+) + ‖u‖W 1,2

p (Q−) ≤ c[‖u0‖W 2−2/p
p (G+)

+ ‖u0‖W 2−2/p
p (G−)

+ ‖f‖Lp(Q) + ‖g‖
W

k0,2k0
p (S)

+ ‖g+‖
W

s0,2s0
p (S0)

+ ‖g−‖
W

s0,2s0
p (S0)

]. (17)

Если g = 0, g± = 0, то справедлива оценка

‖u‖W 1,2
p (Q+

τ )+‖u‖W 1,2
p (Q−τ ) ≤ c[‖u0‖W 2−2/p

p (G+)
+‖u0‖W 2−2/p

p (G−)
+‖f‖Lp(Qτ )], (18)

где постоянная c не зависит от u0, f, τ ∈ (0, T ].

Доказательство. Основное утверждение теоремы есть следствие теоре-

мы 3 в [29]. Отметим, что мы изменили условия гладкости на коэффициенты

a±ij , γk, σ0, αk, βk по сравнению с теми, что присутствуют в формулировке тео-

ремы 3 в [29], заменив условие их принадлежности классам Гёльдера условием

их принадлежности классам Соболева. Замена вполне возможна, в доказатель-

стве теоремы 3 в [29] в этом случае необходимо использовать результаты из [27,

теорема 2.1], где условия на граничные операторы также задаются в терминах

пространств Соболева, вместо соответствующих результатов из [1, теорема 10.4].

Второе утверждение и оценка (18) вытекают из стандартных рассуждений, сов-

падающих, например, с теми, которые были использованы в работе [17, теоре-

ма 2; 16, теорема 1].

Теорема 2. Пусть выполнены условия (7), (8), (12)–(14) и для вспомо-

гательных задач (10), (11) выполнены условия параболичности и Лопатинско-

го. Тогда решение u|Q± ∈ W 1,2
p (Q±) задачи (9), (2)–(4) обладает свойством

ut ∈ Lp

(
0, T ;W 1

p (Gδ1)
)
, u ∈ Lp

(
0, T ;W 3

p (Gδ1 )
)

для всех δ1 < δ. Если g, g± = 0,

то справедлива оценка

‖u‖W 1,2
p (Q+

τ ) + ‖u‖W 1,2
p (Q+

τ ) + ‖u‖Lp(0,T ;W 3
p (Gδ1

)) + ‖ut‖Lp(0,T ;W 1
p (Gδ1

))

≤ c[‖u0‖
W

2− 2
p

p (G+)
+ ‖u0‖

W
2− 2

p
p (G−)

+ ‖u0‖
W

2− 2
p

p (G+)
+ ‖u0‖

W
3− 2

p
p (Gδ)

+ ‖f‖Lp(Qτ ) + ‖f‖Lp(0,τ ;W 1
p (Gδ))], (19)

где постоянная c не зависит от τ ∈ (0, T ] и δ1 < δ фиксировано.

Доказательство. Утверждение о дополнительной гладкости решений и

оценке получается с использованием теоремы 1 и повторяет доказательство тео-

ремы 1 в [16] (см. также теорему 4, п. 3, § 2, гл. 4 в [30]). Утверждение также

вытекает из [24, теорема 1].

Обозначим левую часть неравенства в (19) через ‖u‖Hτ
δ1

, а ‖f‖Lp(Qτ ) +

‖f‖Lp(0,τ ;W 1
p (Gδ)) — через ‖f‖W τ

δ
. Соответствующие банаховы пространства обо-

значаются через Hτ
δ1

и W τ
δ соответственно. Пространство Hτ

δ1
состоит из функ-

ций u ∈ Lp(Q
τ ) таких, что u|G± ∈ W 1,2

p (Q±τ ), u ∈ Lp

(
0, T ;W 3

p (Gδ1)
)
, ut ∈

Lp

(
0, T ;W 1

p (Gδ1)
)
, u удовлетворяет однородным начальным и граничным усло-

виям и условиям сопряжения.



О некоторых классах коэффициентных обратных задач 37

2. Основные результаты

Будем считать, что

ψa ∈ C1([0, T ]), ψa(0) = 〈u0(ba), ea〉,
fm ∈ Lp(Q) ∩ Lp

(
0, T ;W 1

p (Gδ)
)
, akij ∈ L∞

(
0, T ;W 1

p (Gδ)
)

akij |Q± ∈ C(Q±), akl ∈ Lp(Q), (akij)
± ∈ W s0,2s0

p (S0);

akl ∈ Lp

(
0, T ;W 1

p (Gδ)
)
, akij(t, ba), a

k
l (t, ba), fm(t, ba) ∈ C([0, T ]),

(20)

для i, j = 1, 2, . . . , n, l = 0, 1, . . . , n, k = 0, 1, . . . , r, a = 1, . . . , s, m = 0, r +

1, . . . , s. Ввиду (8) следы fm(t, bp), a
k
l (t, bj) определены и fm(t, bp), a

k
l (t, bj) ∈

Lp(0, T ); более того, fm(t, x), akl (t, x) ∈ C(Gδ;Lp(0, T )) (после, может быть, из-

менения на множестве меры 0) (см. [31, § 2,3,4, соотношения (3.1)–(3.9), след-

ствие 4.3]).

Рассмотрим матрицу B0 размера s× s со строками

〈A1(0, bj , D)u0(bj), ej〉, . . . , 〈Ar(0, bj, D)u0(bj), ej〉,
〈fr+1(0, bj), ej〉, . . . , 〈fs(0, bj), ej〉, j ≤ s.

Потребуем, чтобы

detB0 6= 0. (21)

Пусть u, ~q — решение задачи (1)–(5), где u принадлежит классу, описанному в

теореме 2, а ~q = (q1, q2, . . . , qs) ∈ C([0, T ]). Полагая t = 0, x = bj в (1), придем

к системе уравнений

B0~q0 = ~g0, ~q0 = (q01, . . . , q0s)
T , q0i = qi(0), (22)

~g0 = ((ψ1t − 〈A0u0 + f0, e1〉)(0, b1), . . . , (ψst − 〈A0u0 + f0, es〉)(0, bs))T .
В силу (21) система (22) имеет единственное решение ~q0. Пусть

apl =

r∑

i=1

aiplq0i, ak =

r∑

i=1

aikq0i p, l = 1, . . . , n, k = 0, 1, . . . , n.

Определим оператор

A0 = A0 +

n∑

p,l=1

apl∂
2
xpxl

+

n∑

p=1

ap∂xp + a0.

Пусть также µi = qi − q0i, S(~µ) = −A0 − A1(~µ). Задача (1)–(4) перепишется в

виде

ut + S(~µ)u = f, u|t=0 = u0, Bu|� = g, A1(µ) =

r∑

i=1

µiAi, (23)

∂u+

∂N
(t, x)− α1(t, x)u

+(t, x)− α2(t, x)u
−(x) = g+(t, x), x ∈ �0,

∂u−

∂N
(t, x) − β1(x)u

+(t, x)− β2(x)u
−(t, x) = g−(t, x), x ∈ �0.

(24)



38 С. Г. Пятков, А. А. Потапков

Теорема 3. Пусть выполнены условия (7), (8), (13), (20), (21) и для вспо-

могательных задач (10), (11), где L = −A0, выполнены условия параболичности

и Лопатинского. Тогда найдется число τ0 ∈ (0, T ] такое, что на (0, τ0) существу-

ет единственное решение (u, q1, q2, . . . , qs) задачи (1)–(5) такое, что

u|Q± ∈W 1,2
p (Q±τ0), u ∈ Lp

(
0, τ0;W

3
p (Gδ1)

)
, ut ∈ Lp

(
0, τ0;W

1
p (Gδ1 )

)

для всех δ1 ∈ (0, δ), qj ∈ C([0, τ0]), j = 1, 2, . . . , s.

Доказательство. Пусть ~q = (q1, . . . , qs)
T . Найдем решение � задачи

(23), (24), где ~µ = 0, вместо функции f возьмем функцию

f = f0 +

s∑

i=r+1

fi(t, x)q0i,

а в качестве функций g, u0, g
± — наши данные из (2)–(4). В силу теорем 1, 2

существует решение задачи (23), (24) такое, что

�|Q± ∈W 1,2
p (Q±), � ∈ Lp

(
0, T ;W 3

p (Gδ1)
)
, �t ∈ Lp

(
0, T ;W 1

p (Gδ1 )
)

для всех δ1 ∈ (0, δ). После замены u = v + � придем к задаче

Lv = vt + S(~µ)v = A1(~µ)�+

s∑

i=r+1

fi(t, x)µi(t) = f1(~µ), (t, x) ∈ Q, (25)

∂v+

∂N
(t, x)− α1(t, x)v

+(t, x)− α2(t, x)v
−(t, x) = 0, (t, x) ∈ S0, (26)

∂v−

∂N
(t, x)− β1(t, x)v

+(t, x)− β2(t, x)v
−(t, x) = 0, (t, x) ∈ S0, (27)

v|t=0 = 0, Bv|S = 0, (28)

v(t, bj) = ψj(t)− 〈�(t, bj), ej〉 = ψ̃j , i = 1, . . . , s. (29)

Имеем �,∇� ∈ W 1,2
p ((0, T ) × Bδ1(bj)) для всех j. В силу теорем вложения

�(t, x),∇� ∈ C1−(n+2)/2p,2−(n+2)/p((0, T )×Bδ1(bj)) (см. § 6.3 и теорему 1 (разд.

«замечания», с. 424) в [32]). В частности, Dα�(t, bj) ∈ C([0, T ]) при |α| ≤ 2.

Тогда и произведения akij(t, bj)�xixj (t, bj), a
k
i (t, bj)�xi(t, bj), a

k
0(t, bj)�(t, bj) при-

надлежат C([0, T ]). Следовательно, A0�(t, bj) ∈ C([0, T ]) (после, может быть,

изменения на множестве меры нуль). Имеем fk(t, bj) ∈ C([0, T ]). Из уравнения

для � вытекает, что �t(t, bj) ∈ C([0, T ]), т. е. �(t, bj) ∈ C1([0, T ]) для всех j.

Таким образом, задача (1)–(5) сведена к эквивалентной и более простой задаче

(25)–(29), которую и будем исследовать. В силу теоремы 1 для любой функции

f1 ∈ Lp(Q
τ ) существует единственное решение v = (∂t − A0)−1f1 уравнения

vt −A0v = f1, удовлетворяющее условиям (26)–(28) и оценке

‖v‖W 1,2
p (Q+

τ ) + ‖v‖W 1,2
p (Q−τ ) ≤ c‖f1‖Lp(Qτ ), (30)

где постоянная c не зависит от τ . Тогда уравнение vt−A0v−A1(~µ)v = f1 можно

переписать в виде

v = (∂t −A0)−1A1(~µ)v + (∂t −A0)−1f1. (31)
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Используя условия на операторы Ai, нетрудно получить оценку

‖(∂t −A0)−1A1(~µ)v‖W 1,2
p (Q+

τ ) + ‖(∂t −A0)−1A1(~µ)v‖W 1,2
p (Q−τ )

≤ c‖A1(~µ)v‖Lp(Qτ ) ≤ c1‖~µ‖C([0,τ ])(‖v‖W 1,2
p (Q+

τ ) + ‖v‖W 1,2
p (Q−τ )). (32)

Фиксируем q ∈ (0, 1) и положимR0 = q/c1. Тогда в силу теоремы о неподвижной

точке при ‖~µ‖C([0,τ ]) ≤ R0 уравнение

vt + S(~µ)v = vt −A0v −A1(~µ)v = f1 (33)

имеет единственное решение такое, что v|Q± ∈ W 1,2
p (Q±τ ), выполнены условия

(26)–(28) и имеет место оценка

‖v‖W 1,2
p (Q+

τ ) + ‖v‖W 1,2
p (Q−τ ) ≤ c2‖f1‖Lp(Qτ ). (34)

Положим BR0,τ = {~µ ∈ C([0, τ ]) : ‖~µ‖C([0,τ ]) ≤ R0}. Постоянная c2 в (33) не за-

висит от µ ∈ BR0,τ и τ ∈ (0, T ]. Пусть f1 ∈ W τ
δ . Используя теорему 2, получим,

что решение задачи (33), (26)–(28) обладает свойством vt ∈ Lp

(
0, τ ;W 1

p (Gδ1 )
)
,

v ∈ Lp

(
0, τ ;W 3

p (Gδ1 )
)

для всех δ1 < δ и справедлива оценка ‖v‖Hτ
δ1
≤ c3‖f1‖W τ

δ
,

где постоянная c3 не зависит µ ∈ BR0,τ и τ ∈ (0, T ]. Очевидно, что, взяв

δ2 < δ1 < δ, эту оценку можем переписать в виде

‖v‖Hτ
δ2
≤ c4‖f1‖W τ

δ1
, (35)

где c4 не зависит µ ∈ BR0,τ и τ ∈ (0, T ], но зависит от выбора постоянных

δi. Таким образом, решение v задачи (25)–(28) на интервале (0, τ) такое, что

v ∈ Lp

(
0, T ;W 3

p (Gδ1)
)
, vt ∈ Lp

(
0, T ;W 1

p (Gδ1)
)

для всех δ1 ∈ (0, δ), существует

при всех µ ∈ BR0,τ . Построили отображение ~µ → v = v(~µ) (~µ = (µ1, . . . , µs)).

Изучим его свойства. Имеем

v = (∂t + S(~µ))−1f, f =

r∑

i=1

µiAi�(t, x) +

s∑

i=r+1

fi(t, x)µi(t). (36)

Фиксируем δ2 < δ1 < δ. Имеем оценку (35), т. е.

‖v‖Hτ
δ2

= ‖(∂t + S(~µ))−1f‖Hτ
δ2
≤ c4‖f‖W τ

δ1
. (37)

Из условий на коэффициенты имеем

‖f‖W τ
δ1
≤ c3‖~µ‖C([0,τ ]), (38)

где постоянная c2 не зависит от τ и зависит от норм коэффициентов в Q и ве-

личин ‖fi‖W τ
δ1

, ‖�‖Hτ
δ1

(их можно заменить на ‖fi‖WT
δ

, ‖�‖HT
δ
). Считая, что

~µi ∈ BR0,τ (i = 1, 2), рассмотрим два решения v1, v2 задачи (25)–(28), отвеча-

ющие двум различным наборам ~µi (~µi = (µ1i, µ2i, . . . , µsi) (i = 1, 2). Вычитая

второе уравнение (25) из первого, получим, что разность ω = v2−v1, vi = v(~µi),

удовлетворяет уравнению

ωt + S

(
µ1 + µ2

2

)
ω =

r∑

j=1

(µj2(t)− µj1(t))Aj(t, x,D)(v1 + v2)/2

+

r∑

j=1

(µj2(t)− µj1(t))Aj(t, x,D)� +

s∑

j=r+1

fj(t, x)(µj2(t)− µj1(t)). (39)
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Фиксируем δ2 < δ1 < δ. Имеем (µ1 + µ2)/2 ∈ BR0,τ и тем самым справедлива

оценка (см. (37))

‖ω‖Hτ
δ2
≤ c‖f̃‖W τ

δ1
, (40)

f̃ =

r∑

j=1

(µj2(t)− µj1(t))Aj

(
v1 + v2

2
+ �

)
+

s∑

j=r+1

fj(t, x)(µj2(t)− µj1(t)).

Из оценок (40), (38) вытекает неравенство

‖ω‖Hτ
δ2
≤ c‖f̃‖W τ

δ1
≤ c4‖~µ2 − ~µ1‖C([0,τ ]), (41)

где, как и ранее, постоянная c4 зависит от норм (как линейная функция)

‖(v1 + v2)/2‖Hτ
δ1

, ‖fi‖Hτ
δ1

. Пусть v, ~µ — решение задачи (25)–(29) и, таким обра-

зом, v = v(~µ). Полагая x = bj в уравнении (25) с учетом того, что vt(t, bj) = ψ̃′j ,

и умножая его на скалярно на ej , получим

ψ̃′j + 〈S(~µ)v(t, bj), ej〉 =
r∑

i=1

µi〈Ai�, ej〉+
s∑

i=r+1

µi〈fi(t, bj), ej〉. (42)

Правую часть этого равенства можно записать в виде B(t)~µ, где строки матри-

цы B(t) записываются в виде

〈A1�, ej〉, . . . , 〈Ar�, ej〉, 〈fr+1(t, bj), ej〉, . . . , 〈fs(t, bj), ej〉.

МатрицаB(0) совпадают с матрицейB0 из (21) и, значит, detB(0) 6= 0. Функции

fi(t, bj), a
i
kl(t, bj), a

i
k(t, bj) непрерывны по t в силу условий (20). Как отмечено

выше, Dα
x�(t, bj) ∈ C([0, T ]) при |α| ≤ 2. Таким образом, все элементы матрицы

B непрерывны по t и тем самым существуют τ0 ≤ T и постоянная δ3 > 0 такие,

что

| detB(t)| ≥ δ3 > 0 ∀t ∈ [0, τ0]. (43)

Тогда систему (42) можно записать в виде

~µ(t) = B−1H(~µ)(t) = R(~µ), H(~µ) = (ψ̃′1 + 〈S(~µ)v(t, b1), ej〉,
ψ̃′2 + 〈S(~µ)v(t, b2), ej〉, . . . , ψ̃′s + 〈S(~µ)v(t, bs), ej〉)T .

(44)

По доказанному оператор, сопоставляющий вектор-функции ~µ вектор H(~µ),

где v — решение задачи (25)–(28), определен для всех векторов ~µ таких, что

~µ ∈ BR0,τ (τ ≤ τ0). Свойства отображения ~µ → v(~µ) уже исследованы. По-

кажем, что можно найти такое τ1 ≤ τ0, что оператор R(~µ) = B−1H(~µ)(t),

R : C([0, τ1]) → C([0, τ1]), определен, переводит шар BR0,τ1 в себя и является

в нем сжимающим. Рассмотрим величину ψ̃′j(0). По построению (см. (22))

ψ̃′j(0) = ψ′j(0)− 〈A(0, bj , D)u0(bj), ej〉+
s∑

i=r+1

q0i〈fi(0, bj), ej〉 = 0,

где j = 1, . . . , s. Пусть ~ψ = (ψ̃′1, ψ̃
′
2, . . . , ψ̃

′
s)

T . Тогда ~ψ ∈ C([0, T ]), ~ψ(0) =

0 и B−1(t)~ψ ∈ C([0, T ]). В этом случае найдется число τ1 ≤ τ0 такое, что
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‖B−1(t)~ψ‖C([0,τ ]) ≤ R0/2 при τ ≤ τ1. Отметим, что R(0) = B−1(t)~ψ(t). Получим

оценки, считая, что ~µi ∈ BR0,τ и τ ≤ τ1. Оценим ‖R(~µ1)−R(~µ2)‖C([0,τ ]) с τ ≤ τ1.
Имеем

‖R(~µ1)−R(~µ2)‖C([0,τ ]) ≤ c0
(

s∑

i=1

‖A0v1(t, bi)−A0v2(t, bi)‖C([0,τ ])

+

s∑

i=1

r∑

k=1

‖µ1kAkv1(t, bi)− µ2kAkv2(t, bi)‖C([0,τ ])

)
. (45)

Далее используем условия на коэффициенты и вложение W θ
p (G) ⊂ C(G) при

θ > n/p [26, теоремы 4.6.1, 4.6.2]. Возьмем θ ∈ (n/p, 1−2/p) (у нас n/p < 1−2/p).

Рассмотрим одно из последних слагаемых. Имеем

‖µ1kAkv1(t, bi)− µ2kAkv2(t, bi)‖C([0,τ ])

≤ ‖(µ1k − µ2k)(Akv1(t, bi) +Akv2(t, bi))‖C([0,τ ])/2

+

∥∥∥∥
(µ1k + µ2k)

2
(Ak(v1(t, bi)−Av2(t, bi))

∥∥∥∥
C([0,τ ])

≤ ‖µ1k − µ2k‖C([0,τ ])c5
∑

|α|≤2

‖Dα(v1(t, bj) + v2(t, bj))‖C([0,τ ])

+ ‖µ1k + µ2k‖C([0,τ ])c6
∑

|α|≤2

‖Dαv1(t, bj)−Dαv2(t, bj)‖C([0,τ ])

≤ ‖µ1k − µ2k‖C([0,τ ])c7‖v1(t, x) + v2(t, x)‖C([0,τ ];W 2+θ
p (Gδ2

))

+ ‖µ1k + µ2k‖C([0,τ ])c8‖v1(t, x)− v2(t, x))‖C([0,τ ];W 2+θ
p (Gδ2

)), (46)

где ci не зависят от τ . Отметим, что vi ∈ Hτ
δ2

. Тогда vi ∈ C
(
[0, τ ];W

3−2/p
p (Gδ2)

)

и справедлива оценка

‖v1 − v2‖C([0,τ ];W
3−2/p
p (Gδ2

))
≤ c9‖v1 − v2‖Hτ

δ2
. (47)

Это есть следствие теоремы [33, теорема III 4.10.2] и теорем об интерполяции

пространств Соболева. Отметим, что постоянная c здесь может быть взята

не зависящей от τ ∈ (0, T ]. Последнее вытекает из того простого факта, что

функции из Hτ
δ2

можно продолжить нулем при t < 0 с сохранением класса.

Используя интерполяционные неравенства [26] и (47), можем записать

‖v1(t, x) − v2(t, x))‖C([0,τ ];W 2+θ
p (Gδ2

))

≤ c10‖v1(t, x) − v2(t, x))‖θ1

C([0,τ ];W
3−2/p
p (Gδ2

))
‖v1(t, x)− v2(t, x))‖1−θ1

C([0,τ ];Lp(Gδ2
)),

где θ1 = (2 + θ)/(3− 2/p). Из формулы Ньютона — Лейбница имеем

‖v1(t, x)− v2(t, x))‖1−θ1

C([0,τ ];Lp(Gδ2
)) ≤ τ (1−θ1)(p−1)/p‖v1t(t, x)− v2t(t, x))‖Lp(Qτ ).

Окончательно (β0 = (1− θ1)(p− 1)/p)

‖v1(t, x)− v2(t, x))‖C([0,τ ];W 2+θ
p (Gδ2

)) ≤ c11τβ0‖v1 − v2‖Hτ
δ2
. (48)
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Аналогично получим, что

‖v1(t, x) + v2(t, x)‖C([0,τ ];W 2+θ
p (Gδ2

)) ≤ c11τβ0‖v1 + v2‖Hτ
δ2
. (49)

Из (46), (41), (48), (49) приходим к оценке

‖µ1kAkv1(t, bi)− µ2kAkv2(t, bi)‖C([0,τ ]) ≤ c12τβ0‖~µ1 − ~µ2‖C([0,τ ]), (50)

где постоянная c12 не зависит от τ ≤ τ1. Аналогично получим

‖A0v1(t, bi)−A0v2(t, bi)‖C([0,τ ]) ≤ c13τβ0‖µ1k − µ2k‖C([0,τ ]). (51)

Окончательно имеем оценку (см. (29))

‖R(~µ1)−R(~µ2)‖C([0,τ ]) ≤ c15τβ0‖µ1k − µ2k‖C([0,τ ]). (52)

Выбрав τ2 ≤ τ1 такое, что c14τ
β0 ≤ 1/2, придем к тому, что оператор R сжи-

мающий и переводит шар BR0,τ в себя для всех τ ≤ τ2. Применяя теорему

о неподвижной точке, покажем существование решения системы (44). Поло-

жим v = v(~µ). Покажем, что построенная функция удовлетворяет условиям

переопределения (29). Возьмем в (25) x = bj и умножим полученное равенство

скалярно на ej . Получим систему равенств

〈vt(t, bj), ej〉+ 〈S(~µ)v(t, bj), ej〉 =
r∑

j=1

µj〈Aj�(t, bj), ej〉+
s∑

j=r+1

〈fj(t, bj), ej〉µj(t).

(53)

Вычитая эти равенства из (42), получим 〈vt(t, bj), ej〉 − ψ̃′j = 0 для всех j, зна-

чит, выполнены условия (29). Единственность решений вытекает из оценок,

приведенных при доказательстве существования решений. �

Замечание. Оценка устойчивости для решений также имеет место.
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ПРОИЗВОДНЫХ ПОЛИНОМИАЛЬНОГО ТИПА

И. В. Рахмелевич

Аннотация. Исследуются двумерные нелинейные уравнения в частных произ-
водных второго порядка с переменными коэффициентами, левая часть которых
представляет собой однородный полином второй степени по искомой функции и ее
производным. Рассматривается множество линейных мультипликативных преоб-
разований неизвестной функции, сохраняющих вид исходного уравнения. Анало-
гично линейным уравнениям инварианты Лапласа определяются как инварианты
этого преобразования. Получены выражения для инвариантов Лапласа через коэф-
фициенты уравнения и их первые производные. Для рассматриваемых уравнений
найдены эквивалентные системы уравнений первого порядка, содержащие инвари-
анты Лапласа. Показано, что если один из инвариантов Лапласа равен нулю, то
соответствующая система сводится к одному уравнению первого порядка. Также в
этом случае при выполнении некоторых дополнительных условий на коэффициенты
может быть получено решение исходного уравнения в квадратурах. Исследования
проведены для гиперболического уравнения со смешанной производной и для нели-
нейного уравнения второго порядка общего вида с однородным полиномом второй
степени по искомой функции и ее производным. Для этих случаев получены вы-
ражения для инвариантов Лапласа и приведены соответствующие эквивалентные
системы.
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Ключевые слова: дифференциальное уравнение в частных производных, гипер-
болическое уравнение, инвариант Лапласа, линейное мультипликативное преобра-
зование.

Введение

При исследовании свойств симметрии и классификации линейных гипер-

болических уравнений с переменными коэффициентами весьма эффективным

является подход, основанный на использовании инвариантов Лапласа [1, 2]. Как

известно, инварианты Лапласа — это функции коэффициентов уравнения и их

производных, инвариантные относительно линейного мультипликативного пре-

образования, которое переводит исходное дифференциальное уравнение в урав-

нение того же вида. Первоначально эти инварианты были найдены для двумер-

ного линейного гиперболического уравнения с переменными коэффициентами

u′′xy + a(x, y)u′x + b(x, y)u′y + c(x, y)u = 0. (0.1)

c© 2024 Рахмелевич И. В.
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Здесь и ниже приняты обозначения u′x ≡ ∂u/∂x, u′y ≡ ∂u/∂y, u′′xy ≡ ∂2u/∂x∂y

и т. д. Для данного уравнения инварианты Лапласа имеют вид [1, 2]

h = a′x + ab− c, k = b′y + ab− c. (0.2)

В дальнейшем инварианты Лапласа были найдены для различных типов ли-

нейных уравнений как второго, так и более высоких порядков [3–6]. Также

в ряде работ инварианты Лапласа и их обобщения применялись к исследова-

нию некоторых классов нелинейных уравнений в частных производных [7–9].

Целью данной работы является нахождение инвариантов Лапласа для двумер-

ных нелинейных уравнений второго порядка с переменными коэффициентами,

содержащих однородный полином второй степени от искомой функции и ее про-

изводных.

1. Гиперболическое уравнение

со смешанной производной

Рассмотрим нелинейное гиперболическое уравнение второго порядка отно-

сительно неизвестной функции u = u(x, y):

uu′′xy + b12(x, y)u
′
xu
′
y + b01(x, y)uu

′
x + b02(x, y)uu

′
y + c(x, y)u2 = 0. (1.1)

Левая часть уравнения (1.1) представляет собой однородный полином специ-

ального вида по неизвестной функции и ее производным.

Применим к уравнению (1.1) мультипликативное преобразование искомой

функции, которое имеет вид

u(x, y) = λ(x, y)v(x, y). (1.2)

Подставив (1.2) в уравнение (1.1), после дифференцирования и элементарных

преобразований получаем уравнение относительно новой неизвестной функции

v(x, y):

vv′′xy + b̃12(x, y)v
′
xv
′
y + b̃01(x, y)vv

′
x + b̃02(x, y)vv

′
y + c̃(x, y)v2 = 0. (1.3)

Здесь и всюду далее знаком «тильда» отмечены величины, относящиеся к пре-

образованному уравнению. Найдем, каким условиям должны удовлетворять

коэффициенты уравнений (1.1), (1.3), чтобы одно из этих уравнений можно

было привести к другому с помощью преобразования (1.2).

Коэффициенты преобразованного уравнения (1.3) определяются выраже-

ниями

b̃12 = b12, b̃01 = b01 +
λ′y
λ

(1 + b12), b̃02 = b02 +
λ′x
λ

(1 + b12), (1.4)

c̃ = c+
λ′x
λ
b01 +

λ′y
λ
b02 +

λ′xλ
′
y

λ2
b12 +

λ′′xy
λ
. (1.5)

Из формул (1.4) получаем

λ′x =
b̃02 − b02
1 + b12

λ, λ′y =
b̃01 − b01
1 + b12

λ. (1.6)
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Дифференцируя первое из соотношений (1.6) по y, а второе по x, находим сме-

шанные производные:

λ′′xy = ((Ã2 −A2)
′
y + (Ã1 −A1)(Ã2 −A2))λ, (1.7a)

λ′′yx = ((Ã1 −A1)
′
x + (Ã1 −A1)(Ã2 −A2))λ. (1.7б)

Здесь введены обозначения:

A1 =
b01

1 + b12
, A2 =

b02
1 + b12

, Ã1 =
b̃01

1 + b̃12
, Ã2 =

b̃02

1 + b̃12
. (1.8)

На основании теоремы о равенстве смешанных производных из (1.7а,б) следует:

(Ã1 −A1)
′
x = (Ã2 −A2)

′
y. (1.9)

Далее, подставляя (1.6), (1.7б) в (1.5) и учитывая (1.8), получаем

c̃−c = (Ã1−A1)
′
x+(1+b12)(Ã1−A1)(Ã2−A2)+b01(Ã2−A2)+b02(Ã1−A1). (1.10)

После некоторых элементарных преобразований (1.10) приводится к виду

c̃− c = (Ã1 −A1)
′
x + (1 + b12)(Ã1Ã2 −A1A2). (1.11)

Преобразуем (1.11) так, чтобы в левой части были только слагаемые, относя-

щиеся к преобразованному уравнению, а в правой части — относящиеся только

к исходному уравнению, тогда с учетом (1.8) и первой формулы (1.4) находим

∂

∂x

(
b̃01

1 + b̃12

)
+

b̃01b̃02

1 + b̃12
− c̃ =

∂

∂x

(
b01

1 + b12

)
+

b01b02
1 + b12

− c. (1.12)

Из (1.12) следует, что функция

I1 =
∂

∂x

(
b01

1 + b12

)
+

b01b02
1 + b12

− c (1.13)

не изменяется при преобразовании (1.2) и поэтому является инвариантом урав-

нения (1.1) относительно данного преобразования.

Для нахождения второго инварианта, подставляя (1.6), (1.7а) в (1.5) и учи-

тывая (1.8), получаем

c̃−c = (Ã2−A2)
′
y+(1+b12)(Ã1−A1)(Ã2−A2)+b01(Ã2−A2)+b02(Ã1−A1). (1.14)

В результате рассуждений, аналогичных приведенным выше, (1.14) преобразу-

ется к виду

∂

∂y

(
b̃02

1 + b̃12

)
+

b̃01b̃02

1 + b̃12
− c̃ =

∂

∂y

(
b02

1 + b12

)
+

b01b02
1 + b12

− c. (1.15)

Из (1.15) следует, что функция

I2 =
∂

∂y

(
b02

1 + b12

)
+

b01b02
1 + b12

− c (1.16)

также является инвариантом уравнения (1.1) относительно преобразования (1.2).

Используя соотношения (1.6), нетрудно выразить функцию λ(x, y), опреде-

ляющую вид преобразования (1.2), через коэффициенты уравнений (1.1), (1.3):

λ(x, y) = λ0 exp

{∫ (
b̃02 − b02
1 + b12

dx+
b̃01 − b01
1 + b12

dy

)}
, (1.17)

где λ0 — произвольная постоянная.

Итак, в результате проведенных рассуждений доказана следующая
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Теорема 1.1. Уравнение (1.1) может быть приведено с помощью преоб-

разования (1.2) к другому уравнению (1.3) того же вида в том и только в том

случае, если инварианты I1, I2, определяемые формулами (1.13), (1.16), оди-

наковы для обоих уравнений и если выполнено условие b̃12 = b12. При этом

коэффициент λ(x, y) преобразования (1.2) определяется формулой (1.17).

Следствие 1. Если для уравнения (1.1) I1 = I2 = 0, то это уравнение с

помощью преобразования (1.2) может быть приведено к виду

vv′′xy + b12(x, y)v
′
xv
′
y = 0. (1.18)

Данное утверждение следует из того факта, что для уравнения (1.18) оба ин-

варианта равны 0, а коэффициент b12 такой же, как у исходного уравнения

(1.1).

Теорема 1.2. Уравнение (1.1) эквивалентно следующим системам уравне-

ний относительно неизвестных функций u(x, y), w(x, y):




uu′y +
b01

1 + b12
u2 = w,

w′x +

(
b02 + (b12 − 1)

u′x
u

)
w = I1u.

(1.19)





uu′x +
b02

1 + b12
u2 = w,

w′y +

(
b01 + (b12 − 1)

u′y
u

)
w = I2u.

(1.20)

Доказательство. 1. Рассмотрим нелинейный дифференциальный опера-

тор

P [u] =

(
∂

∂x
+ p2 + p3

u′x
u

)(
u
∂

∂y
+ p1u

)
u, (1.21)

где p1,2,3(x, y) — пока неопределенные коэффициенты, которые будут определе-

ны ниже. Раскрывая скобки, преобразуем оператор (1.21):

P [u] = uu′′xy + (1 + p3)u
′
xu
′
y + p1(2 + p3)uu

′
x + p2uu

′
y + (p1p2 + (p1)

′
x)u2. (1.22)

Определим коэффициенты p1, p2, p3 так, чтобы выполнялись соотношения

1 + p3 = b12, p1(2 + p3) = b01, p2 = b02. (1.23)

Из (1.23) находим, что эти коэффициенты определяются выражениями

p1 =
b01

1 + b12
, p2 = b02, p3 = b12 − 1. (1.24)

Используя (1.22), (1.23), (1.24) и учитывая (1.13), P [u] можно представить в

виде

P [u] = (uu′′xy+b12(x, y)u
′
xu
′
y+b01(x, y)uu

′
x+b02(x, y)uu

′
y+c(x, y)u2)+I1u

2. (1.25)
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Выражение в скобках в (1.25) совпадает с левой частью уравнения (1.1). Поэто-

му если u(x, y) удовлетворяет уравнению (1.1), то (1.25) сводится к следующему:

P [u] = I1u
2. (1.26)

Вводя новую неизвестную функцию

w(x, y) = uu′y + p1u
2,

получаем из (1.21), (1.23) и (1.26), что функции u(x, y), w(x, y) удовлетворяют

системе уравнений (1.19).

2. Рассмотрим нелинейный дифференциальный оператор

Q[u] =

(
∂

∂y
+ q2 + q3

u′y
u

)(
u
∂

∂x
+ q1u

)
u. (1.27)

Проводя рассуждения, аналогичные п. 1 доказательства, находим

q1 =
b02

1 + b12
, q2 = b01, q3 = b12 − 1, (1.28)

тогда Q[u] можно представить в виде

Q[u] = (uu′′xy+b12(x, y)u
′
xu
′
y+b01(x, y)uu

′
x+b02(x, y)uu

′
y+c(x, y)u2)+I2u

2. (1.29)

Аналогично п. 1 если u(x, y) удовлетворяет уравнению (1.1), то (1.29) сводится

к следующему:

Q[u] = I2u
2. (1.30)

Вводя новую неизвестную функцию

w(x, y) = uu′x + q1u
2,

получаем из (1.27), (1.28) и (1.30), что функции u(x, y), w(x, y) удовлетворяют

системе уравнений (1.20) . Теорема доказана.

Используя системы (1.19), (1.20) , можно получить общее решение уравне-

ния (1.1) в квадратурах в некоторых частных случаях, которые приведем ниже.

Случай 1. I1 = 0, b12 = 1. Решая второе уравнение системы (1.19),

находим

w(x, y) = w0(y) exp

(
−
∫
b02 dx

)
, (1.31)

где w0(y) — произвольная функция. Подставляя (1.31) в первое уравнение си-

стемы (1.19), находим общее решение уравнения (1.1):

u(x, y) =

{[
u0(x) + 2

∫
w0(y) exp

(∫
b01 dy −

∫
b02 dx

)
dy

]
exp

(
−
∫
b01 dy

)} 1
2

,

(1.32)

где u0(x), w0(y) — произвольные функции.
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Случай 2. I2 = 0, b12 = 1. Аналогично случаю 1, решая второе уравнение

системы (1.20), находим

w(x, y) = w0(x) exp

(
−
∫
b01 dy

)
, (1.33)

где w0(x) — произвольная функция. Подставляя (1.33) в первое уравнение си-

стемы (1.20), находим общее решение уравнения (1.1):

u(x, y)=

{[
u0(y)+2

∫
w0(x) exp

(
−
∫
b01 dy +

∫
b02 dx

)
dx

]
exp

(
−
∫
b02 dx

)} 1
2

,

(1.34)

где u0(y), w0(x) — произвольные функции.

2. Инварианты уравнения общего вида.

Анализ гиперболического уравнения

Рассмотрим теперь двумерное уравнение второго порядка общего вида, со-

держащее однородный полином от искомой функции и ее производных:

u(a11u
′′
xx + a12u

′′
xy + a22u

′′
yy) + b11(u

′
x)

2

+ b12u
′
xu
′
y + b22(u

′
y)

2 + b01uu
′
x + b02uu

′
y + cu2 = 0. (2.1)

Предполагается, что коэффициенты уравнения (2.1) являются функциями неза-

висимых переменных: aij = aij(x, y), bij = bij(x, y), c = c(x, y). Применим к

уравнению (2.1) линейное мультипликативное преобразование (1.2), в результа-

те чего (2.1) приводится к виду

v(ã11v
′′
xx+ ã12v

′′
xy+ ã22v

′′
yy)+ b̃11(v

′
x)2+ b̃12v

′
xv
′
y+ b̃22(v

′
y)

2+ b̃01vv
′
x+ b̃02vv

′
y+ c̃v2 = 0.

(2.2)

Коэффициенты уравнений (2.1) и (2.2) связаны соотношениями

ã11 = a11, ã12 = a12, ã22 = a22, b̃11 = b11, b̃12 = b12, b̃22 = b22, (2.3)

b̃01 = b01 + 2(a11 + b11)
λ′x
λ

+ (a12 + b12)
λ′y
λ
, (2.4а)

b̃02 = b02 + 2(a22 + b22)
λ′y
λ

+ (a12 + b12)
λ′x
λ
, (2.4б)

c̃ = c+a11
λ′′xx
λ

+b11

(
λ′x
λ

)2

+a12

λ′′xy
λ

+b12
λ′xλ

′
y

λ2
+a22

λ′′yy
λ

+b22

(
λ′y
λ

)2

+b01
λ′x
λ

+b02
λ′y
λ
.

(2.5)

Решая систему уравнений (2.4а,б) относительно
λ′x
λ ,

λ′y
λ и учитывая соотношения

(2.3), находим

λ′x = (B̃1 −B1)λ, λ′y = (B̃2 −B2)λ, (2.6)

где

B1 =
2b01(a22 + b22)− b02(a12 + b12)

�
, B2 =

2b02(a11 + b11)− b01(a12 + b12)

�
,

(2.7)
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� = 4(a11 + b11)(a22 + b22)− (a12 + b12)
2, (2.7а)

B̃1 =
2b̃01(ã22 + b̃22)− b̃02(ã12 + b̃12)

�̃
, B̃2 =

2b̃02(ã11 + b̃11)− b̃01(ã12 + b̃12)

�̃
,

(2.8)

�̃ = 4(ã11 + b̃11)(ã22 + b̃22)− (ã12 + b̃12)
2. (2.8а)

Дифференцируя первое из соотношений (2.6) по y, а второе по x, получаем

λ′′xy = ((B̃1 − B1)
′
y + (B̃1 −B1)(B̃2 −B2))λ, (2.9а)

λ′′yx = ((B̃2 −B2)
′
x + (B̃1 −B1)(B̃2 −B2))λ. (2.9б)

На основании теоремы о равенстве смешанных производных из (2.9а,б) находим

(B̃1 −B1)
′
y = (B̃2 −B2)

′
x, (2.10)

или

B̃′1y − B̃′2x = B′1y −B′2x. (2.10а)

В свою очередь, из (2.10а) следует, что при преобразовании (1.2) для уравнения

(2.1) величина

I1 = B′1y −B′2x (2.11)

является инвариантом.

Подставим в (2.5) выражения (2.6) для
λ′x
λ ,

λ′y
λ с учетом (2.7), (2.7а), (2.8),

(2.8а). После дифференцирования и некоторых преобразований получаем вы-

ражение для второго инварианта:

I2 = a11B
′
1x +a12B

′
1y +a22B

′
2y +

(a22 + b22)b
2
01 + (a11 + b11)b

2
02 − (a12 + b12)b01b02

�
.

(2.12)

Из проведенных выше рассуждений следует

Теорема 2.1. Уравнение (2.1) может быть приведено с помощью преоб-

разования (1.2) к другому уравнению (2.2) того же вида в том и только в том

случае, если инварианты I1, I2, определяемые формулами (2.11), (2.12), одина-

ковы для обоих уравнений и если выполнены условия (2.3) для коэффициентов

обоих уравнений.

Замечание. Для сравнения с результатами разд. 1 вместо I1, I2 будем

использовать инварианты J1 = I2 − a12I1, J2 = I2, так что для J2 справедливо

выражение (2.12), а J1 определяется выражением

J1 = a11B
′
1x+a12B

′
2x+a22B

′
2y +

(a22 + b22)b
2
01 + (a11 + b11)b

2
02 − (a12 + b12)b01b02

�
.

(2.13)

Нетрудно проверить, что в частном случае a11 = b11 = a22 = b22 = 0, a12 = 1

инварианты (2.13), (2.12) сводятся к инвариантам (1.13), (1.16) соответственно,

полученным в разд. 1 для гиперболического уравнения со смешанной производ-

ной.
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Теорема 2.2. Пусть коэффициенты уравнения (2.1)

a11 = 1, a22 = −1, a12 = 0, (2.14)

что соответствует гиперболическому уравнению канонического вида.

1. Если выполнено дополнительное условие

b12 = −b11 − b22, (2.15)

то уравнение (2.1) эквивалентно следующей системе уравнений:





u(u′x − u′y) +
b01 + b02

2 + b11 − b22
u2 = w,

w′x + w′y +

(
b01(1− b22)− b02(1 + b11)

2 + b11 − b22
+ (b11 − 1)

u′x
u
− (b22 + 1)

u′y
u

)
w = H1u.

(2.16)

2. Если выполнено дополнительное условие

b12 = b11 + b22, (2.17)

то уравнение (2.1) эквивалентно следующей системе уравнений:





u(u′x + u′y) +
b01 − b02

2 + b11 − b22
u2 = w,

w′x − w′y +

(
b01(1− b22) + b02(1 + b11)

2 + b11 − b22
+ (b11 − 1)

u′x
u

+ (b22 + 1)
u′y
u

)
w = H2u.

(2.18)

Здесь H1, H2 — инварианты уравнения (2.1), которые для рассматриваемого

случая определяются выражениями

H1 =

(
∂

∂x
+

∂

∂y

)
b01 + b02

2 + b11 − b22
+
b201(1 − b22)− b202(1 + b11) + b01b02b12

(2 + b11 − b22)2
−c, (2.19)

H2 =

(
∂

∂x
− ∂

∂y

)
b01 − b02

2 + b11 − b22
+
b201(1 − b22)− b202(1 + b11) + b01b02b12

(2 + b11 − b22)2
−c. (2.20)

Доказательство. Пусть нелинейный дифференциальный оператор P [u]

определяется выражением

P [u] =

(
p1

∂

∂x
+ p2

∂

∂y
+ p3 + p4

u′x
u

+ p5

u′y
u

)(
q1u

∂

∂x
+ q2u

∂

∂y
+ q3u

)
u, (2.21)

где p1,2,3,4,5(x, y), q1,2,3(x, y) — пока неопределенные коэффициенты, которые бу-

дут определены ниже. В результате элементарных преобразований выражение

(2.21) можно представить в виде

P [u] = p1q1uu
′′
xx+(p1q2+p2q1)uu

′′
xy+p2q2uu

′′
yy+(p1+p4)q1(u

′
x)

2+(p2+p5)q2(u
′
y)

2

+ (p1q2 + p2q1 + p4q2 + p5q1)u
′
xu
′
y + (p1q

′
1x + p2q

′
1y + 2p1q3 + p3q1 + p4q3)uu

′
x

+ (p1q
′
2x + p2q

′
2y + 2p2q3 + p3q2 + p5q3)uu

′
y + (p1q

′
3x + p2q

′
3y + p3q3)u

2, (2.22)
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Определим pi, qi так, чтобы коэффициенты во всех слагаемых в (2.22), кроме

последнего, совпадали с соответствующими коэффициентами уравнения (2.1).

Учитывая условия (2.14), получаем систему уравнений относительно pi, qi:

p1q1 = 1, p1q2 + p2q1 = 0, p2q2 = −1, (2.23а)

(p1 + p4)q1 = b11, (p1 + p4)q2 + (p2 + p5)q1 = b12, (p2 + p5)q2 = b22, (2.23б)

p1q
′
1x + p2q

′
1y + 2p1q3 + p3q1 + p4q3 = b01, (2.23в)

p1q
′
2x + p2q

′
2y + 2p2q3 + p3q2 + p5q3 = b02. (2.23г)

Из уравнений (2.23а) нетрудно получить, что

p2/p1 = ±1. (2.24)

Далее, из уравнений (2.23а,б) следует:

p4/p1 = b11 − 1, p5/p2 = −b22 − 1. (2.25)

Подставим (2.25) во второе из уравнений (2.23б). Учитывая (2.24), получаем

p2

p1
(b11 + b22) = −b12. (2.26)

На основании (2.24) рассмотрим два возможных случая.

Случай 1. p2/p1 = 1. Без ограничения общности положим p1 = 1, тогда с

учетом (2.23а), (2.25) имеем

p2 = q1 = 1, q2 = −1, p4 = b11 − 1, p5 = −b22 − 1. (2.27)

Кроме того, из (2.26) в этом случае следует условие (2.15). Подставляя (2.27) в

(2.23в,г), получаем систему линейных уравнений относительно p3, q3:
{

p3 + (1 + b11)q3 = b01,

−p3 + (1 − b22)q3 = b02.
(2.28)

Из (2.28) находим

p3 =
b01(1 − b22)− b02(1 + b11)

D
, q3 =

b01 + b02
D

, D = 2 + b11 − b22. (2.29)

Учитывая (2.27) и (2.29), выражение (2.22) преобразуем к виду

P [u] = (uu′′xx−uu′′yy+b11(u
′
x)2+b22(u

′
y)

2 +b12u
′
xu
′
y +b01uu

′
x+b02uu

′
y +cu2)+H1u

2,

(2.30)

где H1 определяется выражением (2.19). Нетрудно проверить, что при выпол-

нении условий (2.14)

H1 = I1 + I2,

где I1, I2 определяются выражениями (2.11), (2.12); поэтому H1 также является

инвариантом Лапласа.
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Если в условиях данной теоремы функция u = u(x, y) удовлетворяет урав-

нению (2.1), то выражение в скобках в правой части (2.30) тождественно равно 0

и (2.30) сводится к следующему:

P [u] = H1u
2. (2.31)

Вводя новую неизвестную функцию

w(x, y) = q1uu
′
x + q2uu

′
y + q3u

2, (2.32)

получаем из (2.21), (2.27), (2.29), (2.31), что функции u(x, y), w(x, y) удовлетво-

ряют системе уравнений (2.16).

Случай 2. p2/p1 = −1. Без ограничения общности положим p1 = 1, тогда

с учетом (2.23а), (2.25) имеем

p2 = −1, q1 = 1, q2 = −1, p4 = b11 − 1, p5 = b22 + 1. (2.33)

Аналогично случаю 1 из (2.26) следует условие (2.17). Подставляя (2.33) в

(2.23в,г), получаем систему линейных уравнений относительно p3, q3:
{
p3 + (b11 + 1)q3 = b01,

p3 + (b22 − 1)q3 = b02.
(2.34)

Из (2.34) находим

p3 =
b01(1 − b22) + b02(1 + b11)

D
, q3 =

b01 − b02
D

, D = 2 + b11 − b22. (2.35)

Проводя рассуждения, аналогичные случаю 1, получаем, что если в условиях

данной теоремы функция u = u(x, y) удовлетворяет уравнению (2.1), то

P [u] = H2u
2, (2.36)

где H2 определяется выражением (2.20). Нетрудно проверить, что при выпол-

нении условий (2.14)

H2 = I1 − I2, (2.37)

где I1, I2 определяются выражениями (2.11), (2.12); поэтому H2 также является

инвариантом Лапласа.

Вводя новую неизвестную функцию с помощью выражения (2.32), получа-

ем из (2.21), (2.33), (2.35), (2.36), что функции u(x, y), w(x, y) удовлетворяют

системе уравнений (2.18). Теорема доказана.

Заключение

В данной работе найдены инварианты Лапласа для двумерных уравнений

в частных производных, левая часть которых имеет вид однородного полинома

второй степени по искомой функции и ее производным и получены эквивалент-

ные исходному уравнению системы уравнений первого порядка, содержащие
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инварианты Лапласа. Инварианты Лапласа определяются как инварианты ли-

нейного мультипликативного преобразования, преобразующего исходное урав-

нение к уравнению того же вида. Исследования проведены для гиперболиче-

ского уравнения второго порядка со смешанной производной и для уравнения

второго порядка общего вида. Приведены некоторые решения, полученные в

квадратурах, для случая, когда один из инвариантов Лапласа равен 0. Данный

подход может быть обобщен для нелинейных многомерных уравнений более

сложного вида.
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type contraction, which is shown to have fixed points in a metric space with an appro-
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1. Introduction and mathematical preliminaries

It is a widely recognized fact that Banach’s contraction mapping principle is

the origin of what is known today as metric fixed point theory. It is a vast and ex-

panding domain having important implications in various branches of mathematics.

Several generalizations of this celebrated principle were established over the years.

These efforts are also being continued in contemporary academics. Some prominent

instances from these works are [1–5], etc. Particularly in [2] Nalder proved a mul-

tivalued generalization of Banach’s result. Later a generalization was advanced by

Mizoguchi and Takahashi [1], where they have extended the result of Nalder [2] with

the replacement of the contractive constant k (0 ≤ k < 1) by a suitable function.

In [6] Suzuki provided an example of the function used in [1], which is known as

MT-function, and showed that [1] is a real generalization of [2]. This function has

been used in a number of works in recent times, as, for instances [6–11]. In the

following we consider MT-functions for replacement of contraction constants.

On the other hand a separate type of contraction mapping was defined by

Kannan [12] which is now known by his name as Kannan type contraction. These

mappings are important since they are not necessarily continuous and hence are

different in category from the Banach’s contraction. The work of Kannan initiated

the line of research for investigation of fixed points of functions with discontinuities.

Kannan type contractions have appeared in a large number of papers like those

c© 2024 B. S. Choudhury, C. Bandyopadhyay, P. Chakraborty
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in references [4, 13–15]. In this paper we consider such mappings to establish our

results.

The use of binary relations in establishing fixed point results has become a new

trend. In this line of research the contractive conditions are not assumed to hold on

the whole space, but only on some pairs of points which are related by a suitable

binary relation R. The notion of R-completeness enables us to take the domain

of the function to be non-complete. The relation theoretic notions are effective to

encompass a larger class of sets to be considered as the domain sets and allows a less

restrictive class of functions to be taken into account for fixed point studies on these

domain sets. This is a new and emerging area in the field of fixed point theory. A

few works in this line are [16–19].

In this paper the above three ideas are incorporated to fabricate new fixed point

results. Illustrative examples are provided to support them. It is noted that in one

of the examples one of the fixed points is a point of discontinuity of the function.

The concept of Hyers–Ulam–Rassias stability has its root in the question which

Ulam [20] had raised in 1940 that whether an approximately linear transformation

has a linear approximation? This question was partially addressed affirmatively by

Hyers in the context of Banach spaces [21]. The notion of Hyers–Ulam–Rassias

stability of the fixed point equation x = fx has appeared in the literature in several

works like [21–27]. Here we discuss the Hyers–Ulam–Rassias stability of our fixed

point problem and show that approximate fixed points can be approximated by the

actual fixed point.

Given two operators on X , if the distances between the images of each point

under those maps are bounded by a finite number, then determining a bound for the

distance between the fixed points sets (if non-empty) of the two operators is known

as the problem of data dependence. Few works in this topic are [26, 28–30]. Here in

our paper we have a data dependence result for our problem.

In this paper we denote N as the set of natural numbers; R as the set of real

numbers and R+ as the set of non- negative real numbers.

Definition 1.1 [16]. Let X be a nonempty set. A subset R of X × X is a

binary relation on X . We say that x and y are R-comparative if either (x, y) ∈ R

or (y, x) ∈ R. We denote it by [x, y] ∈ R.

Definition 1.2 [16]. Let X be a nonempty set and R be a binary relation on

X . A sequence {xn} ⊆ X is called R-preserving if (xn, xn+1) ∈ R, for all n ∈ N.

Definition 1.3 [31]. Let (X, d) be a metric space and R be a binary relation

on X . We say that (X, d) is R-complete if every R-preserving Cauchy sequence in

X is convergent.

Definition 1.4 [16]. Let X be a nonempty set and T be a self-mapping on X .

A binary relation R defined on X is called T -closed if for any x, y ∈ X , (x, y) ∈ R

implies (Tx, T y) ∈ R.

Definition 1.5 [31]. Let (X, d) be a metric space and R be a binary relation

on X and x ∈ X . A mapping T : X → X is called R-continuous at x if for any R-
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preserving sequence {xn}, Txn → Tx, whenever xn → x. T is called R-continuous

if it is R-continuous at each point of X.

Definition 1.6 [16]. Let (X, d) be a metric space. A binary relation R defined

on X is called d-self closed if every R-preserving convergent sequence {xn} (with

xn −→ x, as n −→ ∞), has a subsequence {xnk
} such that [xnk

, x] ∈ R, for all

k ∈ N.

Definition 1.7 [32]. Let X be a nonempty set and R be a binary relation on

X . For x, y ∈ X , a path of length k (where k is a natural number) in R from x to

y is a finite sequence {z0, z1, z2, . . . , zk} ⊆ X satisfying the following conditions:

(i) z0 = x and zk = y,

(ii) (zi, zi+1) ∈ R for each i where 0 ≤ i ≤ k − 1.

Definition 1.8 [17]. A relation R is called transitive if (x, z) ∈ R, whenever

(x, y), (y, z) ∈ R.

Definition 1.9 [17]. Given a mapping T : X → X , a relation R is called

T -transitive if (Tx, T z) ∈ R whenever (Tx, T y), (Ty, T z) ∈ R, for all x, y, z ∈ X .

Definition 1.10. Let (X, d) be a metric space and R be a relation on it. X

is called R-connected if for all x, y ∈ X there is a path in R from x to y.

Definition 1.11 [1, 7, 8]. A function ϕ : [0, ∞)→ [0, 1) is said to be an MT -

function if it satisfies Mizoguchi–Takahashi’s condition, that is, lim sup
s→t+

ϕ(s) < 1 for

all t ∈ [0,∞).

Clearly, if ϕ : [0, ∞) → [0, 1) is a nondecreasing function or a nonincreasing

function, then ϕ is an MT-function.

In particular, if ϕ : [0,∞)→ [0, 1) is defined by f(t) = c, where c ∈ [0, 1), then

ϕ is an MT -function.

We now state a result, given by W. S. Du [9], which will be useful to prove our

theorem.

Theorem 1.1 [9]. Let φ : [0,∞) → [0, 1) be a function. Then the following

statements are equivalent:

(a) φ is an MT-function.

(b) For each t ∈ [0,∞), ∃ r(1)t ∈ [0, 1) and ε
(1)
t > 0 such that φ(s) ≤ r(1)t for all

s ∈ (t, t+ ε
(1)
t ).

(c) For each t ∈ [0,∞), ∃ r(2)t ∈ [0, 1) and ε
(2)
t > 0 such that φ(s) ≤ r

(2)
t for all

s ∈ [t, t+ ε
(2)
t ].

(d) For each t ∈ [0,∞), ∃ r(3)t ∈ [0, 1) and ε
(3)
t > 0 such that φ(s) ≤ r(3)t for all

s ∈ (t, t+ ε
(3)
t ].

(e) For each t ∈ [0,∞), ∃ r(4)t ∈ [0, 1) and ε
(4)
t > 0 such that φ(s) ≤ r

(4)
t for all

s ∈ [t, t+ ε
(4)
t ).

In the following we use the following notations:

• X(T ; R) := {x : (x, Tx) ∈ R}.
• F (T ) := {x : x = Tx}.
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• G(T, ε) := {x : d(x, Tx) ≤ ε}.
Definition 1.12 [27]. Let X be a nonempty set and T a self-mapping on X .

The fixed point problem x = Tx is said to be generalized Hyers–Ulam–Rassias stable

if there exists a function f : [0,∞) → [0,∞), which is non-decreasing, continuous

at 0 with f(0) = 0, such that for each ε > 0 and each w ∈ G(T, ε) there exists

x0 ∈ F (T ), with d(x0, w) < f(ε).

If f(t) = ct for some c > 0, then the problem is called Hyers–Ulam–Rassias

stable.

2. Existence of fixed points

Theorem 2.1. Let (X, d) be a metric space equipped with a binary relation

R and a self map T . Assume that the following conditions hold:

(i) (X, d) is R-complete;

(ii) X(T ; R) is non empty;

(iii) R is T -closed;

(iv) either T is R-continuous or R is d-self closed;

(v) there exists an MT-function ϕ : [0,∞) → [0, 1) such that for all x, y ∈ X ,

with [x, y] ∈ R the following condition holds:

d(Tx, T y) ≤ 1

2
ϕ(d(x, y))(d(x, Tx) + d(y, T y)). (2.1)

Then T has a fixed point.

Proof. Since X(T ;R) 6= φ, let us choose x0 ∈ X(T ;R) and construct a se-

quence {xn} by xn = Txn−1, n ∈ N. Since (x0, T x0) ∈ R and R is T -closed,

(xn, xn+1) ∈ R for all n ∈ N. So the sequence {xn} is R-preserving.

d(x1, x2) = d(Tx0, T x1) ≤
1

2
ϕ(d(x0, x1))(d(x0, T x0) + d(x1, T x1))

=
1

2
ϕ(d(x0, x1))(d(x0, x1) + d(x1, x2)),

=⇒ d(x1, x2) ≤
ϕ(d(x0, x1))

2− ϕ(d(x0, x1))
d(x0, x1).

Put ψ(t) =
ϕ(t)

2−ϕ(t) . So, lim sup
s→t+

ψ(s) < 1. Therefore ψ(t) is an MT -function. Note

that ψ(t) < 1 for any t > 0. Thus, d(x1, x2) ≤ ψ(d(x0, x1))d(x0, x1) < d(x0, x1).

Continuing the above process n-times, we have

d(xn+1, xn+2) ≤ ψ(d(xn, xn+1))d(xn, xn+1) < d(xn, xn+1). (2.2)

Thus, the sequence {d(xn, xn+1)} is monotone decreasing in [0,∞). Then

lim
n→∞

d(xn, xn+1) = inf
n∈N

d(xn, xn+1) ≥ 0.

Let inf
n∈N

d(xn, xn+1) = t0. Since ψ is an MT-function, there exists rt0 ∈ [0, 1) and

εt0 > 0 such that ψ(d(xn, xn+1)) ≤ rt0 whenever t0 ≤ d(xn, xn+1) < t0 + εt0 . As
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lim
n→∞

d(xn, xn+1) = t0, for the above εt0 > 0, ∃l ∈ N such that t0 ≤ d(xn, xn+1) <

t0 + εt0 , for all n ∈ N with n ≥ l. Let

λ = max{ψ(d(x1, x2), ψ(d(x2, x3)), . . . , ψ(d(xl−1, xl), rt0}.
Therefore we have

0 ≤ ψ(d(xn, xn+1) ≤ λ < 1) for all n ∈ N. (2.3)

Using this in (2.2) we get

d(xn, xn+1) ≤ λd(xn−1, xn) ≤ λnd(x0, x1). (2.4)

Now, for m,n ∈ N with m ≥ n, we have

d(xn, xm) ≤
m−1∑

i=n

d(xi, xi+1) ≤
m−1∑

i=n

λid(x0, x1)

≤ d(x0, x1)

m−1∑

i=n

λi ≤ d(x0, x1)

∞∑

i=n

λi =
λn

1− λd(x0, x1). (2.5)

Now, lim
n→∞

λn = 0 as λ ∈ (0, 1). Thus from (2.3) we have, d(xn, xm) → 0, as

m,n → ∞. Therefore {xn} is a Cauchy sequence. Since (X, d) is R-complete and

{xn} is R-preserving Cauchy sequence, there exists z ∈ X such that {xn} converges

to z.

Now we consider two cases to incorporate condition-(iv) of this theorem.

Case-I: T is R-continuous.

Since xn+1 = Txn, taking limn → ∞ and using R-continuity of T , we have

z = Tz. Hence z is a fixed point of T .

Case-II: R is d-self closed.

If R is d-self closed, since {xn} is R-preserving and xn → z as n → ∞ , there

exists a subsequence {xnk
} of {xn} such that [xnk

, z] ∈ R for all k ∈ N. Therefore,

d(xnk+1, T z) = d(Txnk
, T z) ≤ 1

2
ϕ(d(xnk

, z))(d(xnk
, T xnk

) + d(z, T z))

=
1

2
ϕ(d(xnk

, z))(d(xnk+1, xnk
) + d(z, T z)).

Taking limit superior k →∞ in the above inequality, we get

d(z, T z) ≤ 1

2
(lim sup

k→∞
ϕ(d(xnk

, z)))d(z, T z).

This implies that d(z, T z) = 0 that is z = Tz.

Hence in any cases, T has a fixed point. �

Example 2.1. Let X = (−2,∞), endowed with the usual metric d. R is a

relation on X , defined by (x, y) ∈ R if 1 ≥ x ≥ y ≥ 0. T : X → X be a mapping

defined by

Tx =





x
5 if x ∈ [0,∞),

0 if x ∈ (−2, 0] ∩Q,
−
√

2 if x ∈ (−2, 0] ∩Qc.
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Let {xn} be any R-preserving Cauchy sequence in X . Then xn ≥ xn+1 and

xn ≥ 0, ∀n ∈ N. Clearly {xn} is convergent. Hence (X, d) is R-complete.

Again we have (1, T (1)) ∈ R, as 0 ≤ T (1) = 1
5 ≤ 1. So X(T,R) is non empty.

If (x, y) ∈ R, then 1 ≥ x ≥ y ≥ 0 which implies 1 > x
5 ≥

y
5 ≥ 0. Thus

(Tx, T y) ∈ R. Hence R is T -closed.

To show that T is R-continuous, let x ∈ X be any element. If x < 0 or x > 1

then there is no R-preserving sequence converging to x. Then the condition of R-

continuity is vacuously satisfied for such x. Now assume 0 ≤ x ≤ 1 and {xn} be

any R-preserving sequence converging to x. Then, xn ≥ xn+1 and xn ≥ 0, ∀n ∈ N.

Thus Txn = xn

5 −→ x
5 = Tx, as n −→∞. Thus T is R-continuous.

Now, let ϕ : [0,∞) → [0, 1) be defined by ϕ(t) = 1
2 , for all t ≥ 0. Clearly ϕ is

an MT -function.

For any [x, y] ∈ R,

d(Tx, T y) =

∣∣∣x
5
− y

5

∣∣∣ = |x− y|
5

.

Again we have

1

2
ϕ(d(x, y))(d(x, Tx) + d(y, T y)) =

1

2
× 1

2
×
(∣∣∣x− x

5

∣∣∣+
∣∣∣y − y

5

∣∣∣
)

=
1

2
× 1

2
×
(∣∣∣∣

4x

5

∣∣∣∣+
∣∣∣∣
4y

5

∣∣∣∣
)

=
1

2
× 1

2
× 4(x+ y)

5
=

(x+ y)

5
.

Since [x, y] ∈ R, either (x, y) ∈ R or (y, x) ∈ R. In any case,

d(Tx, T y) =
|x− y|

5
≤ x+ y

5
=

1

2
ϕ(d(x, y))(d(x, Tx) + d(y, T y)).

So the relation (2.1) is satisfied.

Hence all the conditions of Theorem 2.1 are satisfied. Here it is seen that 0 is

a fixed point of T .

Remark 1. In this example it is seen that other than 0, the point −
√

2 is also

a fixed point of T . Thus fixed points are not unique.

Remark 2. If we take x = −
√

3, y = −1 then relation (2.1) is not satisfied.

Hence the relation (2.1) is not necessarily satisfied for every pair x, y ∈ X . This

shows that our theorem do not require the function T to be contractive on the whole

space X , but only to satisfy the contractive condition on those elements which are

related by R for assuring the existence of a fixed point.

Remark 3. In this example it is seen that the function T is not continuous

when x < 0, but it is R-continuous on the whole space. So our result do not require

continuity of T but only R-continuity.

Remark 4. The function T has discontinuities at both of its fixed points.

Remark 5. The domain of the function T is non-complete. So our result do

not require the domain of T to be complete but only to be R-complete.
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3. Uniqueness of the fixed point

Lemma 3.1. Let (X, d) be a metric space equipped with a binary relation R

on X . Let T be a self map on X and there exists an MT-function ϕ : [0,∞)→ [0, 1)

such that for all x, y ∈ X, with [x, y] ∈ R the following condition holds:

d(Tx, T y) ≤ 1

2
ϕ(d(x, y))(d(x, Tx) + d(y, T y)). (3.1)

If T has two distinct fixed points x0 and y0, then [x0, y0] /∈ R.

Proof. If possible let T has two distinct fixed points x0, y0, and [x0, y0] ∈ R.

By equation (2.2) we have

d(Tx0, T y0) ≤
1

2
ϕ(d(x0, y0))(d(x0, T x0) + d(y0, T y0)) =

1

2
ϕ(d(x0, y0)) × 0 = 0

since x0 = Tx0, y0 = Ty0. Thus we have Tx0 = Ty0, that is x0 = y0, which is a

contradiction to our assumption. Hence the result is proved. �

Note. If T has fixed points x0, y0 with [x0, y0] ∈ R, then x0 = y0.

Theorem 3.1. In addition to the conditions stated in Theorem 2.1, if the

following conditions hold:

(vi) T (X) is R-connected;

(vii) R is T -transitive;

then, the fixed point is unique.

Proof. Suppose that, along with the conditions stated in Theorem 2.1, the

above conditions (vi) and (vii) also hold. Let x, y be two fixed points of T .

By (vi), there is a path {z0, z1, . . . , zk} of finite length such that x = z0, y = zk,

zi ∈ T (X) and (zi, zi+1) ∈ R for 0 ≤ i ≤ k − 1.

As R is T -transitive, we have (x, y) ∈ R. Then, by the previous lemma, we

conclude that x = y.

Thus the fixed point is unique. �

Remark 3.1. The following example 3.1 shows that conditions of Theorem 2.1,

although sufficient for ensuring the existence of a fixed point, is not enough to assure

its uniqueness. We have Theorem 3.1 for that purpose. We now present one example

to illustrate the role of Theorem 3.1 for the uniqueness part.

Example 3.1. Let X = R endowed with the usual metric d, R be the relation

defined on X by (x, y) ∈ R if x ≥ y ≥ 0, φ be the MT-function as in example 2.1

and T : X → X be a mapping defined by

Tx =





x
5 if x ≥ 0,

0 if x < 0, x ∈ Q,
2 if x < 0, x 6∈ Q.

By the similar argument as in the example 2.1 it can easily be verified that all

the conditions of Theorem 3.1 are satisfied.
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Moreover for any x, y ∈ T (X), we have x ≥ 0 and y ≥ 0. As, either x ≥ y or

y ≥ x, [x, y] ∈ R. Thus there is a path of length 1 from x to y.

Again, if x, y, z ∈ T (X) with (x, y) ∈ R and (y, z) ∈ R then x ≥ y ≥ 0 and

y ≥ z ≥ 0. Therefore x ≥ z ≥ 0 which implies (x, z) ∈ R. Hence R is T -transitive.

Thus we see that all the conditions of Theorem 3.1 are satisfied. Here it is seen

that 0 is the unique fixed point of T .

4. Hyers–Ulam–Rassias stability and data dependence

In this section we first investigate the Hyers–Ulam–Rassias stability of our fixed

point problem.

Theorem 4.1. Let X,T and R be as in Theorem 2.1. Consider the fixed point

problem

x = Tx. (4.1)

In addition to the conditions in Theorem 2.1 if the following condition hold:

(viii) if x∗ ∈ F (T ), then [u, x∗] ∈ R ∀u ∈ X ,

then the problem (4.1) is Hyers–Ulam–Rassias stable.

Proof. By condition (viii) and Lemma 3.1, it is clear that F (T ) = {z}. Let

ε > 0 and consider w ∈ G(T, ε). Then d(w, Tw) ≤ ε. By condition (viii) we have

[w, z] ∈ R, so from relation (2.1) we have

d(Tz, Tw) ≤ 1

2
ϕ(d(z, w))(d(z, T z) + d(w, Tw))

≤ 1

2
ϕ(d(z, w))(d(z, z) + d(w, Tw)) ≤ 1

2
ϕ(d(z, w))d(w, Tw)).

Then finally we have

d(w, z) ≤ d(w, Tw) + d(Tw, z) = d(w, Tw) + d(Tw, T z)

≤ d(w, Tw) +
1

2
ϕ(d(z, w)) d(w, Tw)) ≤ ε+

1

2
ϕ(d(z, w))ε ≤ ε+

1

2
ε =

3

2
ε.

since ϕ(d(z, w)) < 1. Thus taking f(ε) = 3
2ε, we have for each ε > 0 and each

w ∈ G(T, ε) there exists x0 ∈ F (T ), with d(x0, w) < f(ε). Hence the problem is

Hyers–Ulam–Rassias stable. �

We now establish a data dependence result.

Theorem 4.2. Let (X, d) be a metric space and T1, T2 : X → X two self maps.

Let the following conditions be satisfied:

(ix) T1 satisfies all the conditions of Theorem 3.1 and F (T2) 6= ∅.

(x) d(T1x, T2x) < η, ∀x ∈ X for some η > 0.

(xi) for any u ∈ F (T2), (u, T1u) ∈ R.

Then d(s, t) ≤ η
1−λt

, for some 0 ≤ λt < 1, where s ∈ F (T1) and t ∈ F (T2).

Proof. Clearly by Theorem 3.1, F (T1) = {z}. Thus we put s = z. Let

t ∈ F (T2). By the condition (xi) we have (t, T1t) ∈ R. Thus taking x0 = t and
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xn = T1xn−1, n ∈ N, we can provide the argument as in Theorem 2.1 to get xn → z

as n→∞.

By relation (2.4), we have

d(xn, xn+1) ≤ λtd(xn−1, xn) ≤ λtnd(x0, x1), ∀n ∈ N.

Again, by condition (x), we have

d(x0, x1) = d(T2x0, T1x0) ≤ η.

Therefore,

d(s, t) = d(s, x0) ≤
n∑

i=0

d(xi, xi+1) + d(xn+1, s)

≤
n∑

i=0

λt
id(x0, x1) + d(xn+1, s) ≤ d(x0, x1)

n∑

i=0

λt
i + d(xn+1, s). (4.2)

Taking limit as n→∞ in (4.2), we get

d(s, t) ≤ d(x0, x1)

∞∑

i=0

λt
i + d(s, s) =

1

1− λt
d(x0, x1) ≤

η

1− λt
.

Hence our theorem is proved. �
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TIME–OPTIMAL CONTROL PROBLEM ASSOCIATED

WITH A FOURTH–ORDER PARABOLIC EQUATION
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Abstract: We consider a boundary control problem for a fourth-order parabolic equa-
tion in a bounded one-dimensional domain. At a part of the boundary, a value of the
solution is given and it is required to find control to get the average value of solution. By
the method of separation of variables, the problem is reduced to the Volterra integral
equation of the first kind. The existence of the control function was proven by the
Laplace transform method and an estimate on the minimum time to reach the given
average temperature in the rod was found.
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1. Introduction. Problem statement

In this paper, we consider the following fourth-order parabolic equation

∂u(x, t)

∂t
+
∂4u(x, t)

∂x4
= 0, (x, t) ∈ �T := (0, l)× (0,∞), (1)

with boundary conditions

u(0, t) = h(t), u(l, t) = 0, t ≥ 0, (2)

and

uxx(0, t) = 0, uxx(l, t) = 0, (3)

and initial condition

u(x, 0) = 0, 0 ≤ x ≤ l. (4)

Let M > 0 be some given constant. We say that the function h(t) ∈ W 1
2 (R+)

is an admissible control, if this function satisfies the conditions

h(0) = 0, |h(t)| ≤M, t ≥ 0.

Assume that the weight function ρ(x) ∈ W 1
2 ([0, l]) satisfies the conditions

ρ(x) ≥ 0, ρ′(x) ≤ 0,

l∫

0

ρ(x) dx = 1, 0 ≤ x ≤ l. (5)

Let

ρ(x) =

∞∑

k=1

ρk sin
kπx

l
, x ∈ (0, l),

c© 2024 F. N. Dekhkonov
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where ρk is the Fourier coefficient of the function ρ(x) and it follows

ρk =
2

l

l∫

0

ρ(x) sin
kπx

l
dx, k = 1, 2, . . . . (6)

It is well known that some fourth-order parabolic equations were introduced to

describe the epitaxial growth of nanoscale thin films, and thus have been of increasing

interest in materials science in recent years [1].

Time-Optimal Problem. Let θ > 0 be a given constant. Problem consists

of looking for the minimal value of T > 0 so that for t > 0 the solution u(x, t) of the

problem (1)–(4) with control function h(t) exists and for some T1 > T satisfies the

equation
l∫

0

ρ(x)u(x, t) dx = θ, T ≤ t ≤ T1. (7)

The optimal control problem for the second order parabolic type equations was

studied by Fattorini and Friedman [2, 3]. Time-optimal problems with control on

the boundary for the second order parabolic equation have been treated by Egorov

[4].

The boundary control problem for a second order parabolic type equation with

a piecewise smooth boundary in an n-dimensional domain was studied by Albeverio

and Alimov [5] and an estimate for the minimum time required to reach a given

average temperature was found. In [6, 7], mathematical models of thermocontrol

processes for the second order parabolic equation are considered. In the model under

consideration, the temperature inside a domain is controlled by m convectors acting

on the boundary. In this work, the necessary and sufficient conditions for achieving

the given projection of the temperature into some m−dimensional subspace are

studied. Control problems for the second-order parabolic equation in the three-

dimensional domain are studied in [8].

Control problems for second-order parabolic equations in bounded two-dimen-

sional domains are studied in works [9, 10]. In these articles, an estimate was found

for the minimum time required to heat a bounded domain to an estimate aver-

age temperature. The existence of control function is proved by Laplace transform

method. Similar control problems in the one-dimensional domain were studied in

[11–14]. In [15], the existence of control functions was proved using the Laplace

transform method when there are two control functions on the boundary.

Basic information on optimal control problems is given in detail in monographs

by Lions and Fursikov [16, 17]. General numerical optimization and optimal control

for second-order parabolic equations have been studied in many publications such

as [18]. Practical applications of optimal control problems for equations of parabolic

type are presented in [19].

Some boundary control problems for the pseudo-parabolic equation in one- and

two-dimensional bounded domains were studied in works [20–22]. In these works, the

existence of the control function is proved using the method of Laplace transform.



72 F. N. Dekhkonov

In recent years, due to the increasing interest in physics and mathematics, much

effort has been devoted to the study of boundary control problems for fourth-order

parabolic equations. In [23], Guo considered the null- boundary control problem

for a fourth-order parabolic equation in a one- dimensional bounded domain. This

problem uses the method of reducing the control problem to well-posed problems

proposed by Guo and Littman [24].

In [25], the null interior controllability for a fourth-order parabolic equation was

studied. The method they used is based on Lebeau–Rabbiano inequality. The initial

boundary value problem of a class of fourth-order semilinear parabolic equations was

studied by Xu, et al. [26], and the global existence and nonexistence of solutions with

initial data in the potential well are derived. Further research results on the global

dynamic behavior of solutions associated with fourth-order parabolic equations for

the epitaxial thin film model were studied by Chen [27].

In this work, the boundary control problem for the fourth-order parabolic equa-

tion is considered. The boundary control problem studied in this work is reduced to

the Volterra integral equation of the first kind by the Fourier method (Section 2).

In Section 3, the existence of a solution to the integral equation is proved using

the Laplace transform method. Section 4 gives an estimate of the minimum time

required to reach a given average temperature of the rod.

We consider{
X(4)(x) = λX(x), 0 < x < l,

X(0) = X(l) = 0, X ′′(0) = X ′′(l) = 0, 0 ≤ x ≤ l.
Then we have

λk =
k4π4

l4
, Xk(x) = sin

kπ

l
x, k = 1, 2, . . . .

Set

βk =
π3k3

l3
ρk, k = 1, 2, . . . . (8)

Theorem 1. Let

0 < θ <
β1M

λ1
.

Set

T0 = − 1

λ1
ln

(
1− θλ1

β1M

)
.

Then a solution Tmin of the time-optimal problem exists and the estimate Tmin ≤ T0

is valid.

2. Integral equation

By the solution of the problem (1)–(4) we mean function u(x, t), expressed the

form

u(x, t) = h(t)
l − x
l
− w(x, t), (9)

where the function w(x, t) ∈ C4,1
x,t (�T ) ∩C(�T ), wxx ∈ C(�T ) is the solution to the

problem

wt(x, t) + wxxxx(x, t) =
l − x
l

h′(t),
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with boundary conditions

w(0, t) = w(l, t) = 0, wxx(0, t) = wxx(l, t) = 0, t ≥ 0,

and initial condition

w(x, 0) = 0, 0 ≤ x ≤ l.
Consequently, we have (see [28])

w(x, t) =
2

π

∞∑

k=1

1

k




t∫

0

e−λk(t−s)h′(s) ds


 sin

kπx

l
. (10)

It follows from (9) and (10), we get the solution of the problem (1)–(4):

u(x, t) =
l − x
l

h(t)− 2

π

∞∑

k=1

1

k




t∫

0

e−λk(t−s)h′(s) ds


 sin

kπx

l
. (11)

Let there existsM0 > 0 constant. Then we denote by W (M0) the set of function

f ∈ W 2
2 (−∞,+∞), f(t) = 0 for t ≤ 0 which satisfies the condition

‖f‖W 2
2
(R+) ≤M0.

From (11) and the condition (7), we can write

f(t) =

l∫

0

ρ(x)u(x, t) dx

= h(t)

l∫

0

ρ(x)
l − x
l

dx− 2

π

∞∑

k=1

1

k

l∫

0

ρ(x) sin
kπx

l
dx

t∫

0

e−λk(t−s)h′(s) ds,

where f(t) = θ for T ≤ t ≤ T1.

Then from (6), we have

f(t) = h(t)

l∫

0

ρ(x)
l − x
l

dx− l

π

∞∑

k=1

ρk
k

t∫

0

e−λk(t−s)h′(s) ds. (12)

According to Parseval equation, we have

l∫

0

ρ(x)
l − x
l

dx =
l

π

∞∑

k=1

ρk
k
. (13)

From (12) and (13) we may write

f(t) = h(t)

l∫

0

ρ(x)
l − x
l

dx− h(t)
l

π

∞∑

k=1

ρk
k

+
l

π

∞∑

k=1

ρkλk
k

t∫

0

e−λk(t−s)h(s) ds =
π3

l3

∞∑

k=1

ρkk
3

t∫

0

e−λk(t−s)h(s) ds.

We set

K(t) =

∞∑

k=1

βke
−λkt, t > 0, (14)
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where βk is defined by (8).

Then we get the integral equation

t∫

0

K(t− s)h(s) ds = f(t), t > 0, (15)

where f(t) = θ = const > 0 for T ≤ t ≤ T1.

Theorem 2. There exists M0 > 0 such that for any function f ∈ W (M0) the

solution h(t) of the equation (15) exists and satisfies condition |h(t)| ≤M .

Lemma 1 [11]. Let g(x) ≥ 0 and g′(x) ≤ 0 on x ∈ [0,∞). Then the following

inequality is valid:
nπ∫

0

g(x) sinxdx ≥ 0, n = 1, 2, . . . .

Corollary 1. Let the function ρ(x) satisfies conditions (5). Then the following

inequality is valid:
l∫

0

ρ(x) sin
kπx

l
dx ≥ 0, k = 1, 2, . . . .

Proposition 1. For the coefficients {ρk}k∈N defined by (6), the following es-

timate is valid:

0 ≤ ρk ≤
C

k
, k = 1, 2, . . . ,

where C = const > 0.

Proof. According to Lemma 1, we have

ρk ≥ 0, k = 1, 2, . . . .

From (6), we write

ρk =
2

l

l∫

0

ρ(x) sin
kπx

l
dx = −2

l
ρ(x)

l

kπ
cos

kπx

l

∣∣∣∣
x=l

x=0

+
2

kπ

l∫

0

ρ′(x) cos
kπx

l
dx =

2

kπ
(ρ(0)− (−1)kρ(l)) +

o(1)

k
.

It is clear that ρ(0) − (−1)kρ(l) ≥ 0, k = 1, 2, . . . , where function ρ(x) is satisfies

conditions (5). Then we obtain

0 ≤ ρk ≤
C

k
.

Proposition 1 is proved.

Proposition 2. Let α ∈
(

3
4 , 1
)
. Then for the function K(t) defined by (14)

the following estimate:

0 < K(t) ≤ Cαt
−α, 0 < t ≤ 1,
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is valid, where Cα is a constant only depending on α.

Proof. It is clear that from (8) and Proposition 1, we have

0 ≤ βk ≤ Ck2.

Let 3/4 < α < 1 and η > 0. Then the maximum value of the function χ(t, η) =

tαe−ηt is reached at the point t = α
η and this value is equal to αα

ηα e
−α. As a result,

for any 3/4 < α < 1, we get the estimate

K(t) =
1

tα

∞∑

k=1

βkt
αe−λkt ≤ Cααe−α

tα

∞∑

k=1

k2

λαk
≤ Cα

tα
,

where λk = k4π4

l4 and

∞∑

k=1

k2

λαk
=

l4α

π4α

∞∑

k=1

1

k4α−2
< +∞.

Proposition 2 is proved.

3. Proof of Theorem 2

We write integral equation (15)

t∫

0

K(t− s)h(s) ds = f(t), t > 0.

We use the Laplace transform method to solve equation (15). We introduce the

notation

h̃(p) =

∞∫

0

e−pth(t) dt.

Then we obtain the following equation using Laplace transform

f̃(p) =

∞∫

0

e−pt dt

t∫

0

K(t− s)h(s) ds = K̃(p)h̃(p).

Consequently, we obtain

h̃(p) =
f̃(p)

K̃(p)
, where p = σ + iτ, σ > 0, τ ∈ R,

and

h(t) =
1

2πi

σ+i∞∫

σ−i∞

f̃(p)

K̃(p)
ept dp =

1

2π

+∞∫

−∞

f̃(σ + iτ)

K̃(σ + iτ)
e(σ+iτ)t dτ. (16)

Proposition 3. The following estimate is valid:

|K̃(σ + iτ)| ≥ Cσ√
1 + τ2

, σ > 0, τ ∈ R,

where Cσ is a constant only depending on σ.



76 F. N. Dekhkonov

Proof. It is clear that

K̃(p) =

∞∫

0

K(t)e−pt dt =

∞∑

k=1

βk

∞∫

0

e−(p+λk)t dt =

∞∑

k=1

βk
p+ λk

,

where K(t) is defined by (14) and

K̃(σ + iτ) =

∞∑

k=1

βk
σ + λk + iτ

=

∞∑

k=1

βk(σ + λk)

(σ + λk)2 + τ2
− iτ

∞∑

k=1

βk
(σ + λk)2 + τ2

= Re K̃(σ + iτ) + i Im K̃(σ + iτ),

where

Re K̃(σ + iτ) =

∞∑

k=1

βk(σ + λk)

(σ + λk)2 + τ2
, Im K̃(σ + iτ) = −τ

∞∑

k=1

βk
(σ + λk)2 + τ2

.

We know that

(σ + λk)
2 + τ2 ≤ [(σ + λk)

2 + 1](1 + τ2),

and we have the following inequality:

1

(σ + λk)2 + τ2
≥ 1

1 + τ2

1

(σ + λk)2 + 1
. (17)

Consequently, according to (17) we can obtain the following: estimates

|Re K̃(σ + iτ)| =
∞∑

k=1

βk(σ + λk)

(σ + λk)2 + τ2
≥ 1

1 + τ2

∞∑

k=1

βk(σ + λk)

(σ + λk)2 + 1
=

C1,σ

1 + τ2
, (18)

and

| Im K̃(σ + iτ)| = |τ |
∞∑

k=1

βk
(σ + λk)2 + τ2

≥ |τ |
1 + τ2

∞∑

k=1

βk
(σ + λk)2 + 1

=
C2,σ|τ |
1 + τ2

,

(19)

where C1,σ, C2,σ as follows

C1,σ =

∞∑

k=1

βk(σ + λk)

(σ + λk)2 + 1
, C2,σ =

∞∑

k=1

βk
(σ + λk)2 + 1

.

From (18) and (19), we have the estimate

|K̃(σ + iτ)|2 = |Re K̃(σ + iτ)|2 + | Im K̃(σ + iτ)|2 ≥
min(C2

1,σ, C
2
2,σ)

1 + τ2
,

and

|K̃(σ + iτ)| ≥ Cσ√
1 + τ2

, where Cσ = min(C1,σ, C2,σ). (20)

Proposition 3 is proved.

Then, when σ → 0 from (16), we obtain

h(t) =
1

2π

+∞∫

−∞

f̃(iτ)

K̃(iτ)
ei τt dτ. (21)
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Proposition 4 [21]. Let f(t) ∈ W (M0). Then for the imaginary part of the

Laplace transform of function f(t), the inequality
+∞∫

−∞

|f̃(iτ)|
√

1 + τ2 dτ ≤ C1‖f‖W 2
2
(R+),

is valid, where C1 > 0 is a constant.

Proof of Theorem 2. We prove that h ∈ W 1
2 (R+). Indeed, according to

(20) and (21), we obtain

+∞∫

−∞

|h̃(τ)|2(1 + |τ |2) dτ =

+∞∫

−∞

∣∣∣∣∣
f̃(iτ)

K̃(iτ)

∣∣∣∣∣

2

(1 + |τ |2) dτ

≤ C0

+∞∫

−∞

|f̃(iτ)|2(1 + |τ |2)2 dτ = C0‖f‖2W 2
2
(R+),

where C0 = min(C1,0, C2,0) which is defined by (20). Further,

|h(t)− h(s)| =

∣∣∣∣∣∣

t∫

s

h′(ξ) dξ

∣∣∣∣∣∣
≤ ‖h′‖L2

(t− s)1/2.

From (20), (21) and Propositions 3 and 4, we have

|h(t)| ≤ 1

2π

+∞∫

−∞

|f̃(iτ)|
|K̃(iτ)|

dτ

≤ 1

2πC0

+∞∫

−∞

|f̃(iτ)|
√

1 + τ2 dτ ≤ C1

2πC0
‖f‖W 2

2
(R+) ≤

C1M0

2πC0
= M,

where

M0 =
2πC0

C1
M.

Theorem 2 is proved.

4. Proof of Theorem 1

We consider the following integral equation:
t∫

0

K(t− s)h(s) ds = θ, T ≤ t ≤ T1,

where K(t) is defined by (14).

Proposition 5. The following estimate is valid:

K(t) ≥ β1e
−λ1t,

where the function K(t) is defined by (14).

The proof of its proposition is based on the fact that the functional series defined

by (14) is non-negative.



78 F. N. Dekhkonov

We introduce a specific heating as

L(t) =

t∫

0

K(t− s) ds =

t∫

0

K(s) ds.

The physical meaning of this function is the average temperature in the rod (see

[5]). It is known L(0) = 0 and L′(t) = K(t) > 0.

We set

L∗ = lim
t→∞

L(t) =

∞∫

0

K(s) ds.

Certainly, the average temperature of the rod in the case where the heater is acting

with unit load cannot exceed L∗. It is clear that from (14) we write

L∗ =

∞∫

0

K(s) ds =

∞∑

k=1

βk
λk

< +∞,

where βk is defined by (8) and λk = k4π4

l4 .

Proposition 6 [10]. Let 0 < θ < ML∗. Then there exist T > 0 and a real-

valued measurable function h(t) and the following equality
T∫

0

K(T − s)h(s) ds = θ,

is valid.

It is clear that the value T , which was found in Proposition 6, gives a solution

to the problem. Namely, T is the root of the equation

L(T ) =
θ

M
. (22)

Lemma 2. Let

0 < θ <
β1M

λ1
.

Then there exists T > 0 so that

T < − 1

λ1
ln

(
1− θλ1

β1M

)
,

and the Eq. (22) is fulfilled.

Proof. For obtaining the required estimate we use Proposition 5. We may

write

L(t) =

t∫

0

K(s) ds ≥ β1

t∫

0

e−λ1s ds =
β1

λ1
(1 − e−λ1t). (23)

Consider the following equation for the defining of T0:

β1

λ1
(1− e−λ1T0) =

θ

M
. (24)

Then

T0 = − 1

λ1
ln

(
1− θλ1

β1M

)
.
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In accordance with (23) and (24) we have

0 <
θ

M
≤ L(T0).

Then obviously there exists T , 0 < T < T0, which is a solution to the equation

(22).

Lemma 2 is proved.

The proof of Theorem 1 follows from lemma 2.

5. Conclusion

Note that in case where the temperature θ is small enough, the value of T0 can

be replaced by the following one:

T0 =
θ

β1M
.

Hence, in this case the estimate of optimal time given by Theorem 1 is proportional

to required temperature θ and inversely proportional to size of the rod l and to the

maximum output of heat source M .
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APPLICATION OF AN INDICATOR

RANDOM PROCESS FOR MODELING

OPEN STOCHASTIC SYSTEMS

V. Doobko and E. Karachanskaya

Abstract: The authors present a method of indicator random processes, applicable to
constructing models of jump processes associated with the diffusion process. Indicator
random processes are processes that take only two values: 1 and 0, in accordance with
some probabilistic laws. It is shown that the indicator random process is invariant when
reduced to an arbitrary positive degree. Equations with random coefficients used in
modeling dynamic systems, when applying the method of indicator random processes,
can take into account the possibility of adaptation to external changes, including random
ones, in order to preserve indicators important for the existence of the system, which can
be continuous or discrete. In the case of indicator random processes, defined as func-
tions of the Poisson process, equations for dynamic processes in a media with abruptly
changing properties are constructed and studied. To study the capabilities of the pro-
posed method, dynamic models of the diffusion process in media were studied with delay
centers and diffusion processes during transitions by switching from one subspace to an-
other. For these models, equations for characteristic functions are constructed. Using
the method of indicator random processes, a characteristic function for the Kac model
was constructed. It is shown that in the case of dependence of the indicator random
process on the Poisson process, the equation for the characteristic function corresponds
to the telegraph equation. This result coincides with the result of Kac.

DOI: 10.25587/2411-9326-2024-2-81-98

Keywords: indicator random processes, stochastic dynamical models.

1. Introduction

An open system is a system that has external interactions. These systems have

applications in engineering and economics [1], and they are used to describe the

dynamics of quantum systems [2], as well as in financial mathematics [3, 4]. Open

stochastic quantum systems can be described by quantum stochastic differential

equations [5]. Modeling processes in an open system is difficult due to external

random disturbances that greatly affect the process.

Modeling of diffusion processes with jumps is still a pressing problem, since

many applied problems are described by similar models. Sharp fluctuations in op-

tion prices have led to the need to study jump diffusion models, for example, the

Merton model [6, 7], and Kou model [8]. Stochastic processes that can instantly

change their parameters due to a jump, described by systems of stochastic differen-

tial equations with regime switching, are used in problems of financial mathematics

c© 2024 V. Doobko, E. Karachanskaya
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[9, 10]. Switching jump-diffusion models are applied in control theory, problems of

diffusion in random media [11–15], and others.

In contrast to the models mentioned above, we will consider the Itô stochastic

differential equations with regime switching based on the method, which we propose

below. These equations can be used in the simulation of dynamic systems that can

adapt to external changes, including random ones. These changes in the structure

of the system can be continuous, discrete or mixed. If changes in the coefficients

of the equations are jump-like, then one of the ways to model transitions from one

state of the system to another is to use methods from the theory of queuing systems.

Nevertheless, to describe the dynamics of the implementation of these states, one

needs to use a stochastic equation.

The purpose of the article is to show the possibility of studying random processes

described by the stochastic differential Itô equations, the properties of which can

change jump-like at random times, using the method of indicator random processes.

In our opinion, it is also important to obtain the same mathematical results us-

ing different methods, based on different initial assumptions. This allows you to look

at a mathematical problem from different angles and make a choice of initial axioms

and interpretations within a particular area of mathematics. When solving applied

problems, many proof schemes are considered as multiple approaches to solving a

problem, expanding the possibilities for choosing the most adequate interpretation.

When modeling systems with regime switching, a Markov chain is used, which

is specified by an intensity matrix. In the simplest case, the intensities are constant,

and the random times t, at which switching occurs, usually have an exponential

distribution. The use of a random indicator process to model systems such as systems

with regime switching allows the state of the system to change at a random time t,

which can be determined by an arbitrary distribution, for example, uniform. Thus,

the proposed method allows solving a wider class of problems.

In the [16], a method and an idea for its use in modeling diffusion with delay

centers are proposed. In this work, we present new application examples of our

method [17].

The main original contributions of this work are: 1) demonstration of the ap-

plication of our method of indicator random processes to construct several models

of random processes associated with diffusion processes, 2) differential equations

for characteristic functions are constructed for these models of random processes,

3) equations for characteristic functions are solved analytically, which allows us to

determine the probabilistic characteristics of these processes.

The structure of the article is as follows. Section 2 introduces the concept of an

indicator random process and its properties. It also presents the procedure for con-

structing a complete group of random events for any time using a set of incompatible

indicator random processes. In Section 3, a characteristic function of a mixture of

independent processes is constructed using a set of incompatible indicator random

processes. This mixture has the property that at any time only one of the many

specified random processes will be realized. In Section 4, several interesting exam-
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ples of the use of indicator random processes for constructing mathematical models

of physical processes are considered. The application of the method proposed in

the article is shown for constructing a model of the diffusion process with time de-

lay centers, a diffusion model with a random change in the direction of movement,

and a diffusion model with random transitions between subspaces. The examples

presented have independent theoretical significance, as they result in new mathe-

matical models for random processes of practical value. The example presented in

the Appendix is of methodological significance.

2. Indicator random process

Indicator functions are often used to identify subsets, points, and properties

from a certain set. An indicator function in the form of a "delta function" is used,

for example, to make the transition from the original, generally nonlinear dynamic

system to an equivalent description in terms of linear partial differential equations

[18].

Let us introduce the concept of an indicator random process. Here and below,

all random processes under consideration are defined on a common probability space.

Definition 1. A random process χ(t) is called an indicator random process if

it takes only two values: 1 or 0.

To study the properties of the process χ(t), we use the following notations:

Prob(A) is the probability of an event A, E[χ(t)] is the mathematical expectation

of a random process χ(t), t ≥ 0 is a time.

Property 1. For any time t the following conditions are satisfied:

(χ(t))α = χ(t), (1 − χ(t))α = 1− χ(t) ∀α > 0. (1)

Property 2. The following equalities are satisfied:

E[χ(t)] = Prob(χ(t) = 1), P rob(χ(t) = 0) = 1− E[χ(t)]. (2)

Definition 2. Two and more random processes ξ1(t), ξ2(t), . . . are called in-

compatible processes if for every t ≥ 0 only one process from this collection is nonzero:

ξk1
(t1) 6= 0, ξj(t1) = 0 ∀ j 6= k1;

ξk2
(t2) 6= 0, ξj(t2) = 0 ∀ j 6= k2;

. . .

(3)

Lemma 1. Let χj(t), j = 1, 2, . . . , n − 1, be independent indicator random

processes. Then the random processes

z1(t) = χ1(t); zk(t) = χk(t)
k−1∏

j=1

(1− χj(t)), k = 2, 3, . . . , n− 1;

zn(t) =

n−1∏

j=1

(1− χj(t)),

(4)
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form a complete group of incompatible processes for every t ≥ 0.

Proof. 1. Each of the processes (4) can take only two values: 1 and 0. Let us

consider the product of random processes zl(t)zk(t) at any time t for any 1 ≤ k, l < n.

Taking into account Definition 1 of an indicator random process and Property 1, we

obtain

zl(t)zk(t) = χk(t)
k−1∏

j=1

(1− χj(t))χl(t)
l−1∏

j=1

(1 − χj(t))

= χk(t)(1 − χk(t))
k−1∏

j=1

(1− χj(t))
2χl(t)

l−1∏

i=k+1

(1− χi(t)) = 0. (5)

Similarly, for any 1 ≤ k < n the following holds: zk(t)zn(t) = 0. Therefore, random

processes (4) are incompatible (see Definition 2).

2. Consider the process Zn(t) =
n∑

j=1

zn(t), j = 1, 2, . . . n:

Zn(t) = χ1(t) +

n−1∑

k=2

χk(t)
k−1∏

j=1

(1 − χj(t)) +

n−1∏

j=1

(1− χj(t))

= χ1(t) + (1− χ1(t))[χ2(t) + χ3(t)(1− χ2(t)) + . . .

+ χn−1(t)(1 − χ2(t)) · · · (1 − χn−2(t)) + (1− χ2(t)) · · · (1− χn−1(t))]. (6)

At any time t, the process (6) will take the value 1 (due to Definition 1 of

processes χj(t)). Thus, at any given time t, only one of the processes (4) will take

the value 1.

The results (5), (6) lead to the statement of the Lemma.

Remark 1. Using a given set of incompatible processes that form the complete

group, and knowing their probabilities, one can proceed to constructively specify the

realizations of random processes with variable structure (see Appendix A).

3. Characteristic function

for a sum of incompatible processes

Let g1(t), . . . , gn(t) be random processes. Consider the random process

Y (t) =

n∑

j=1

yj(t),

where

y1(t) = χ1(t)g1(t); yk(t) = χk(t)
k−1∏

j=1

(1− χj(t))gk(t), k = 2, 3, . . . , n− 1;

yn(t) =

n−1∏

j=1

(1− χj(t))gn(t),
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and indicator random processes χj(t), j = 1, 2, . . . , n, are independent of each other

and with the random processes gl(t), l = 1, . . . , n. Then the random process Y (t)

has the form:

Y (t) = χ1(t)g1(t) +

n−1∑

k=2

χk(t)
k−1∏

j=1

(1 − χj(t))gk(t) +

n−1∏

j=1

(1− χj(t))gn(t). (7)

In accordance with Lemma 1, at any time t only one of the processes gk(t),

k = 1, . . . , n, will be realized.

Let us construct the characteristic function of the random process (7).

Theorem 1. Let χj(t), j = 1, 2, . . . , n− 1, be independent indicator random

processes, and Prob(χi(t) = 1) = pi(t). Then the characteristic function of the

process (7) has the form:

J(t) = p1(t)E[eiβg1(t)]+

n−1∑

k=2

E[eiβgk(t)]pk(t)
k−1∏

j=1

(1−pj(t))+E[eiβgn(t)]

n−1∏

j=1

(1−pj(t)).

Proof. Construct the characteristic function for the process (7):

J(t) = E[eiβY (t)]

= E

[
exp

{
iβ

(
χ1(t)g1(t) +

n−1∑

k=2

χk(t)
k−1∏

j=1

(1− χj(t))gk(t) +

n−1∏

j=1

(1− χj(t))gn(t)

)}]

= E

[
eiβg1(t)

n−1∏

k=2

exp

{
iβχ1(t)

k−1∏

j=1

(1−χj(t))gk(t)

}
exp

{
iβ

n−1∏

j=1

(1−χj(t))gn(t)

}]
.

Further, we apply the exponential series expansion, taking into account Lemma 1,

Property 2, and the mutual independence of gk(t) and χl(t) for any indices k, l. Next,

we calculate the mathematical expectation, and taking into account (2), we obtain

the statement of the theorem.

4. Application of indicator random processes

Let us examine several interesting examples of using indicator random processes

to construct mathematical models of physical processes which are associated with

diffusion processes.

4.1. Processes in an environment with jump-like changes in proper-

ties. Using the properties of indicator random processes χ1(t) and χ2(t), we can

construct an equation for dynamic processes with jump-like changes in properties.

Let us consider the system of the Itô stochastic differential equations:

dx(t) = χ1(t)a1(x(t), t) dt + χ2(t)B1(x(t), t) dw(t)

+ (1 − χ1(t))a2(x(t), t) dt + (1− χ2(t))B2(x(t), t) dw(t),

where x(t), aj(x(t), t) ∈ Rn, Bj(x(t), t) is the matrix of size n×m, j = 1, 2, w(t) is

the m-dimensional Wiener process with independent components.



86 V. Doobko and E. Karachanskaya

Using the indicator random process χ(t), one can also construct a model of the

diffusion process with transitions from one subspace to another:

dx(t) = χ(t)[a1(x(t), y(t), t) dt +B1(x(t), y(t), t)dw(t)],

dy(t) = (1 − χ(t))[a2(x(t), y(t), t) dt +B2(x(t), y(t), t) dw(t)],
(8)

etc. Such problems arise in the course of simulating a diffusion process with a non-

random modulus of speed, when the magnitude of the velocity modulus can change

abruptly under the influence of external random disturbances, and remain constant

between these jumps [19].

If the coefficients of (8) satisfy conditions

Bj(x(t), y(t), t) = 0, a1(x(t), y(t), t) = −a2(x(t), y(t), t) = c, c = const > 0,

then the process x(t) + y(t) corresponds to the Kac model of particle motion with

random changes in the direction of velocity [20].

4.2. Diffusion process with random time delay centers. We propose

a new version of the model of dynamic process with delay centers using indicator

random processes.

The process under consideration proceeds for some time, then at a random

moment in time it stops for a random period of time and then proceeds again for a

random time. The points in space at which the process stops are called the center

of time delay.

A delay center, or a time absorption center, arises, for example, for queuing

processes: a device becomes a delay center when serving a customer. For the diffusion

process, such centers can be considered points in space where a particle temporarily

stopping and leaves them at a random moment in time.

We will correlate the randomness of the moment of stopping the particle’s move-

ment and the moment of resumption of its movement with a random function of a

random function N(t) that have non-random integer values and independent incre-

ments (indicator random process) [16]:

χ(t) = χ(N(t)).

Definition 3. An indicator random function χ(t) is called conditionally peri-

odic if it satisfies the condition

χ(N(t) + 2k) = χ(t), k ∈ N. (9)

The conditions (1), (9) are satisfied by the function

χ(t) = χ(N(t)) = 0.5(1 + cos[πN(t)]). (10)

This function has the following properties:

χ(t) =

{
0.5(1 + cos[πN(t)]) = 1, for N(t) = 2s, s ∈ N ∪ {0},
0.5(1 + cos[πN(t)]) = 0, for N(t) = 2s+ 1, s ∈ N ∪ {0}.
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For example, asN(t) we can take a homogeneous Poisson process: E[N(t)] = µt.

Then E[χ(N(t))] = 0.5(1 + exp{−2µt}).
To model the diffusion process with random time delay centers (diffusion inter-

ruption) and subsequent restoration of the movement process, let us use the following

Itô stochastic differential equation:

dx(t) = χ(t)[a(x(t), t) dt +B(x(t), t) dw(t)], (11)

where, in the general case, x(t), a(x(t), t) ∈ Rn, B(x(t), t) is the matrix of size n×m
and w(t) is the m-dimensional Wiener process with independent components.

As is known, diffusion occurs by several mechanisms. Surface diffusion is a gen-

eral process involving the motion of molecules, and atomic clusters at solid material

surfaces, and the corresponding model is the system of equations (11) in R2. Bulk

diffusion, i.e. diffusion in the bulk of the material, can be modelled by the system

of equations (11) in R3.

Let us consider the equation

dx(t) = a(t) dt+ 0.5(1 + cos[πN(t)])b(t) dw(t), x(0) = 0. (12)

This model corresponds to the case when the state of the system changes ac-

cording to a deterministic law, and then, over a random period of time, it is affected

by random disturbances. Let us make a change of variables:

y(t) = x(t)−
t∫

0

a(τ) dτ.

Then the equation (12) takes the form

dy(t) = 0.5(1 + cos[πN(t)])b(t) dw(t), (13)

where y(t), a(t), b(t),∈ R, N(t) is the Poisson process, w(t) is the one-dimensional

Wiener process, and N(t) and w(t) are mutually independent ones. Suppose, that

y(0) = 0.

The characteristic function for the random process (13) is

J1(t) = E[eiβy(t)] = E


exp



0.5iβ

t∫

0

(1 + cos[πN(τ)])b(τ) dw(τ)






.

Applying Itô formula, Property 1, and the Poisson distribution [21], we obtain

D(t) =
dE[y2(t)]

dt
= 0.5b2〈1 + cos[πN(t)]〉 =

1

4
b2(1 + e−2λt), (14)

where b2 is the diffusion coefficient without time delay centers. It follows from the

equality (14) that

D(0) =
b2

2
, D(∞) =

b2

4
.
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Note that the difference between probabilities for even and odd N(t) is due

to the fact that N(t) ∈ N ∪ {0} and N(0) = 0, i.e., N(t) does not start with

an odd number. This leads to a discrepancy among the analytical expressions for

probabilities:

∞∑

s=0

Prob(N(t) = 2s) = e−µt
∞∑

s=0

(µt)2s

(2s)!
= e−µt coshµt = 0.5(1 + e−2µt),

∞∑

s=0

Prob(N(t) = 2s+ 1) = e−µt
∞∑

s=0

(µt)2s+1

(2s+ 1)!
= e−µt sinhµt = 0.5(1− e−2µt)

= 1−
∞∑

s=0

Prob(N(t) = 2s).

The equality of probabilities is only asymptotic:

lim
t→∞

∞∑

s=0

Prob(N(t) = 2s) = lim
t→∞

∞∑

s=0

Prob(N(t) = 2s+ 1) = 0.5.

We can conclude that if in a homogeneous media there is a nonlinear time

dependence of the average square displacement of a particle and an asymptotic

decrease in the diffusion coefficient, then there exist time delay centers.

4.3. Diffusion with random change in direction of movement. The

Kac model. Let us consider one-dimensional particle movement with speed v, when

the direction of movement changes at random times [20]:

dx+(t) = χ(t)v dt, dx−(t) = −(1− χ(t))v dt.

Since we are interested in the total displacement x(t) = x+(t) + x−(t), we obtain

the equation

dx(t) = (2χ(t)− 1)v dt. (15)

For χ(t) we take the representation (10):

χ(t) = χ(N(t)) = 0.5(1 + cos[πN(t)]).

Let v = const = c > 0. Then the characteristic function for the process x(t) takes

the form:

I(t) = E


exp



iβ

t∫

0

cos[πN(τ)]c dτ






. (16)

Theorem 2. If N(t) is the stationary Poisson process with parameter λ, then

the characteristic function for the process x(t) subordinate to the system (15) is a

solution to the Cauchy problem:

d2I(t)

dt2
+ 2λ

dI(t)

dt
+ c2β2I(t) = 0, I(0) = 0,

dI(0)

dt
= icβ. (17)
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Proof. Let us differentiate (16):

dI(t)

dt
= E


iβ cos[πN(t)]c exp



iβ

t∫

0

cos[πN(τ)]c dτ






. (18)

Let f(x) ∈ C∞. Then

df(N(t)) = [f(N(t) + 1)− f(N(t))] dN(t), (19)

where dN(t) is an advanced increment, i.e., it is independent of the previous values

of N(t). Since E[dN(t)] = λdt, λ > 0, then taking into account (18), we obtain

d
dI(t)

dt
= −c2β2E


cos2[πN(t)] exp



iβ

t∫

0

cos[πN(τ)]c dτ






 dt

+ iβcE


(cos[π(N(t) + 1)]− cos[πN(t)]) exp



iβ

t∫

0

cos[πN(τ)]c dτ






λdt

= −c2β2E


exp



iβ

t∫

0

cos[πN(τ)]c dτ






 dt

+ 2iβcλE


cos[πN(t)] exp



iβ

t∫

0

cos[πN(τ)]c dτ






 dt

= −c2β2I(t) dt− 2λ
dI(t)

dt
dt.

From the last equality we obtain the statement of the theorem.

Remark 2. As is known, the characteristic function allows one to find the

distribution density function. Applying the inverse Fourier transform to the equation

(17) from Theorem 2, we obtain the telegraph equation for the distribution density

function ρ(x, t):
∂2ρ(x, t)

∂t2
+ 2λ

∂ρ(x, t)

∂t
− c2 ∂

2ρ(x, t)

∂x2
= 0,

which coincides with the results obtained [20].

Note that the Kac model is finding new applications. In particular, it is used to

study the model of random colliding particles interacting with the infinite reservoir

at a fixed temperature and chemical potential [22]. This is the so-called thermostat

problem, in which particles can leave the system towards the reservoir or enter

the system from the reservoir at random times. Accordingly, the proposed random

indicator process method can also be used to solve the thermostat problem.

4.4. Diffusion model with random transitions from one subspace to

another. Two-dimensional case. Let us consider the following diffusion model:

dx(t) = χ̃(t)b dw(t), dy(t) = (1− χ̃(t))b dw(t), (20)
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where b is the diffusion coefficient, i.e., at random moments of time the process

occurs either in the space x(t) or y(t). Such models can describe the diffusion process

in random porous media. As a random process χ̃(t) we choose the representation

χ(t) = 0.5(1+cosN(t)). Then the characteristic function for the process {x(t), y(t)},
in accordance with (20), takes the form:

J(t) = E


exp



iα

t∫

0

0.5(1 + cosN(τ))b dw(τ) + iβ

t∫

0

0.5(1− cosN(τ))b dw(τ)






.

Theorem 3. If (N(t)/π) is the stationary Poisson process with parameter λ,

then J(t) is a solution to the equation:

d2J(t)

dt2
+ 0.5(4λ+ [α2 + β2]b2)

dJ(t)

dt
+ 0.5(λα2 + 0.5α2β2b2 + λβ2b2)J(t) = 0. (21)

Proof. Since the processes N(t) and w(t) are independent, we obtain

J(t) = E


exp



i

t∫

0

0.5[(α+ β) + (α − β) cosN(τ)]b dw(τ)








= E


exp



−

t∫

0

2−3[(α+ β) + (α− β) cosN(τ)]2b2 dτ








= E


exp



−

t∫

0

2−3[(α+ β)2 + 2(α2 − β2) cosN(τ) + (α − β)2]b2 dτ








= E


exp



−α

2

t∫

0

2−2(1 + cosN(τ))b2 dτ − β2

t∫

0

2−2(1− cosN(τ))b2 dτ






.

(22)

For compactness, let us denote by f(t) the last expression under the mathematical

expectation sign in (22):

f(t) = exp



−α

2

t∫

0

2−2(1 + cosN(τ))b2 dτ − β2

t∫

0

2−2(1− cosN(τ))b2 dτ



. (23)

Next we get

dJ(t)

dt
= −E[f(t){α22−2(1 + cosN(t))b2 + β22−2(1− cosN(t))b2}]. (24)

Taking into account that dN(t) is an advanced increment, i.e., it does not depend

on the previous values of N(t), for which, due to the properties of the Poisson

distribution,

E[d(N(t)/π)] = λdt, λ > 0.
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Let us calculate the differential (compare with (19)):

d cosN(t) = [cos(N(t) + π)− cosN(t)] d(N(t)/π) = −2 cosN(t) d(N(t)/π).

The process cosN(t) have the following properties:

cosN(t) cosN(t) ≡ 1, (1− cosN(t))(1 + cosN(t)) = 1− cos2N(t) ≡ 0,

(1− cosN(t))2 = 2(1− cosN(t)), (1 + cosN(t))2 = 2(1 + cosN(t)).

Then

d2J(t)

dt2
= E[f(t){0.5α2b2 cosN(t)− β22−22b2 cosN(t)}]λ

+ E[f(t){α22−2(1 + cosN(t))b2 + β22−2(1− cosN(t))2b4}2]
= E[f(t){0.5α2b2 cosN(t)− 0.5β2b2 cosN(t)}]λ

+ E[f(t){α42−4(1 + cosN(t))2b4 + β42−4(1− cosN(t))2b4}]
= λE[f(t){0.5α2(1 + cosN(t))b2 + 0.5β2(1− (cosN(t)))b2}]

− 0.5λ(α2 + β2)b2J(t)

+ E[f(t){α42−3(1 + cosN(t)b4 + β42−3(1− cosN(t))b4}].

Therefore, we get the equation

∂2J(t)

∂t2
= −2λ

∂J(t)

∂t
− 0.5λ(α2 + β2)b2J(t)

+ E[f(t)α42−3(1 + cosN(t))b4] + E[f(t)β42−3(1− cosN(t))b4]. (25)

Let us continue the transformation for the last terms in (25). For simplicity, let

us examine each of them separately.

Considering the first term:

E[f(t)α42−3(1 + cosN(t))b4]

= 0.5α2b2E[f(t){α22−2(1 + cosN(t))b2 + β22−2(1− cosN(t))b2}]
− α2β2b4E[f(t)2−3(1− cosN(t))],

and taking into account (24), we have

E[f(t)α42−3(1 + cosN(t))b4] = −0.5α2b2
dJ(t)

dt
− α2β2b4E[f(t)2−3(1 − cosN(t))].

(26)

Let us transform the second term:

E[f(t)β42−3(1− cosN(t))b4]

= 0.5β2b2E[f(t){α22−2(1 + cosN(t))b2 + β22−2(1 − cosN(t))b2}]
− α2β2b4E[f(t)2−3(1 + cosN(t))]

= −0.5β2b2
dJ(t)

dt
− α2β2b4E[f(t)2−3(1 + cosN(t))]. (27)
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Substituting the resulting representations (26) and (27) into (25), we obtain:

α2β2b4E[f(t)2−3(1 − cosN(t)] + α2β2b4E[f(t)2−3(1 + cosN(t))] = α2β2b42−2J(t).

As a result, taking into account the notation E[f(t)] = J(t), we obtain

d2J(t)

dt2
= −2λ

dJ(t)

dt
− 0.5λ(α2 + β2)b2J(t)

− 0.5α2β2b2
dJ(t)

dt
− α2β2b42−2E[f(t)]

= −(2λ+ 0.5α2β2b2)
dJ(t)

dt
− [α2β2b42−2 + 0.5λ(α2 + β2)b2]J(t).

The statement of Theorem 3 is obtained.

The equation (21) can be solved. However, its construction will be cumbersome.

Using the result obtained in Theorem 3, we find an explicit view of the characteristic

function for a simpler process. We will solve the equation for a simpler model, and

then we will show how to move to the explicit form of solving the equation (21).

As such a simple model, consider the characteristic function J(t) for the diffusion

model (20):

d2J(t)

dt2
+ 0.5(4λ+ [α2 + β2]b2)

dJ(t)

dt
+ 0.5(λα2 + 0.5α2β2b2 + λβ2)b2J(t) = 0.

The equation for the characteristic function J1(t) should coincide with (21) if

we set α = 0. Formally, this corresponds to the following substitutions of coefficients

in (21):

0.5(4λ+ [α2 + β2]b2) ⇒ 0.5(4λ+ β2b2),

0.5(λα2 + 0.5α2β2 + λβ2b2) ⇒ 0.5λβ2b2.
(28)

Accordingly, the characteristic function J1(t) for the diffusion model with delay

centers is a solution to the equation:

d2J1(t)

dt2
+ 0.5(β2b2 + 4λ)

dJ1(t)

dt
+ 0.5λβ2b2J1(t) = 0. (29)

Since the conditions are satisfied

2−2(β2b2 + 4λ)2 − 2λβ2b2 = 2−2β4b4 + 2β2b2λ+ 4λ2 − 2β2b2λ

= 2−2β4b4 + 4λ2 > 0 ∀λ > 0,

then the solution to the equation (29) [23, p. 375, formula 235(a)] will be as follows:

J1(t) = C1 exp

{
−0.5t(β2b2 + 4λ) + t

√
1

4
β4b4 + 4λ2

}

+ C2 exp

{
−0.5t(β2b2 + 4λ)− t

√
1

4
β4b4 + 4λ2

}
.
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Since 1
4 (β2b2 + 4λ)2 > 1

4β
4b4 + 4λ2, then the first and second terms decrease with

increasing t, and therefore lim
t→∞

J1(t) = 0. Taking into account the initial conditions

dJ1(t)

dt

∣∣∣∣
t=0

= −0.5β2b2, J1(t)|t=0 = 1,

we obtain an equation for determining the constants:

C1 + C2 = 1,

0.5β2b2 = C1 exp

{
−0.5t(β2b2 + 4λ) + t

√
1

4
β4b4 + 4λ2

}

+ C2 exp

{
−0.5t(β2b2 + 4λ)− t

√
1

4
β4b4 + 4λ2

}
,

0.5β2b2 = (1− C2) exp

{
−0.5t(β2b2 + 4λ) + t

√
1

4
β4b4 + 4λ2

}

+ C2 exp

{
−0.5t(β2b2 + 4λ)− t

√
1

4
β4b4 + 4λ2

}
,

2λ = C2

√
1

4
β4b4 + 4λ2.

Having solved these equations, we establish that

C2 = 2λ

(√
1

4
β4b4 + 4λ2

)−1

=

(
1

16
λ−2β4b4 + 1

)−0.5

,

C1 = 1−
(

1

16
λ−2β4b4 + 1

)−0.5

.

Thus, the solution to the equation (29) takes the form

J1(t) = exp

{
−0.5t(β2b2 + 4λ) + t

√
1

4
β4b4 + 4λ2

}

+

(
1

16
λ−2β4b4 + 1

)−0.5[
exp

{
−0.5t(β2b2 + 4λ)− t

√
1

4
β4b4 + 4λ2

}

− exp

{
−0.5t(β2b2 + 4λ) + t

√
1

4
β4b4 + 4λ2

}]
.

Since the condition is satisfied
(

1

16
λ−2β4b4 + 1

)−0.5

< 1,

then J1(t) > 0 for all t ≥ 0.

Using inverse substitutions of coefficients based on relations (28), we obtain

the solution to the equation (21). Taking into account the relationship between

characteristic functions and moments, we can find random moments for the processes

under consideration.
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Conclusion

The proposed method of indicator random processes, together with the use of

the method of characteristic functions, allows us to consider both previously known

models and new ones that have a physical interpretation, such as a model of a

diffusion process with random centers of time delay and a diffusion model with

random transitions from one subspace to another. Theorems have been proven

in which equations for the characteristic functions of the random processes under

consideration are obtained. These equations are solved analytically, which makes it

possible to determine the probabilistic characteristics of these random processes.

Also we note that if a complete group of incompatible random processes is given,

then it is established that there is a set of independent indicator random processes.

Based on the latter, it is possible to construct a complete group of events whose

distribution will coincide with the distribution of a given group of incompatible

events (see Appendix A).

Of course, this brief description cannot capture all aspects of the method of the

indicator random processes.

Appendix. Application of a random

indicator process to specify realizations of

random processes with variable structure

Lemma 2. Let the following be given: a collection of independent set-events

Aj , j = 1, 2, . . . , n − 1, and a complete group of incompatible events Bj, j =

1, 2, . . . , n:

B1 = A1; Bj = Aj

⋂
(

j−1⋂

k=1

Ak

)
, j = 2, 3, . . . , n− 1; Bn =

n−1⋂

k=1

Ak.

Let us assume that a set of probabilities is given:

Prob(Bj), j = 1, 2, . . . , n− 1; Prob(Bn) = 1−
n−1∑

j=1

Prob(Bj).

Then it is possible to establish a one-to-one correspondence between the sets Prob(Aj)

and Prob(Br), r, j = 1, 2, . . . , n− 1.

Proof. Due to the independence of Aj , j = 1, 2, . . . , n− 1, we get the equali-

ties:

Prob(B1) = Prob(A1),

P rob(B2) = Prob(A2)Prob(A1),

P rob(B3) = Prob(A3)Prob(A2)Prob(A1),

. . . ,

P rob(Bn−1) = Prob(An−1)

n−2∏

k=1

Prob(Ak)
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or

Prob(B1) = Prob(A1),

P rob(B2) = Prob(A2)(1 − Prob(A1)),

P rob(B3) = Prob(A3)(1 − Prob(A2))(1 − Prob(A1)),

. . . ,

P rob(Bn−1) = Prob(An−1)

n−2∏

k=1

(1− Prob(Ak)).

Switching from one equality to another, we obtain

Prob(B1) = Prob(A1),

P rob(B2) = Prob(A2)(1− Prob(A1)) = Prob(A2)(1− Prob(B1))

⇒ Prob(A2) =
Prob(B2)

1− Prob(B1)
,

P rob(B3) = Prob(A3)(1− Prob(A2))(1 − Prob(A1))

⇒ Prob(A3) =
Prob(B3)

1− Prob(B1)− Prob(B2)
,

. . . ,

P rob(Bn−1) = Prob(An−1)

n−2∏

k=1

(1− Prob(Ak))

⇒ Prob(An−1) =
Prob(Bn−1)

1−
n−2∑
k=1

Prob(Bk)

.

Thus, a one-to-one correspondence is established.

Consider an example. Let χj(t) be independent indicator random processes.

For example, χj(t) can be as follows:

χj(t) = 0.5(1− cos(πNj(t)), (30)

where Nj(t) are independent Poisson processes with variable intensity λj(t), and

Prob(Nj(t) = m) =
amj (t)

m!
e−aj(t), m = 0, 1, 2, . . . , aj(t) =

t∫

0

λj(τ) dτ.

Let the events Bj , j − 1, . . . , n, be incompatible events that form a complete group.

Let us assume that events Aj are associated with process χj(t), and events Bj are

associated with the process Nj(t).

Let the events Bj, j − 1, . . . , n, be incompatible events that form a complete

group. Let us assume that the event process Aj is associated with the process χj(t),

and the event process Bj is associated with probabilities Probt(Bj) = pj(t).
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Taking into account (30), events Aj will correspond only to odd values of the

process Nj(t). Therefore,

Probt(Aj) = Prob(Nj(t)|Nj(t) = 2k, k ∈ N ∪ {0})

= e−aj(t)
∞∑

m=0

(aj(t))
2m

(2m)!
= e−aj(t) coshaj(t) = 0.5(1 + e−2aj(t)).

Let us proceed to comparing the distributions Probt(Aj) and Probt(Bj):

0 < Probt(Aj) = 0.5(1− e−2aj(t))

=
Probt(Bj)

1−
j−1∑
k=1

Probt(Bk)

=
pj(t)

1−
j−1∑
k=1

pk(t)

= pj(χ(t)) < 1,

1− 2pj(χ(t)) = e−2aj(t) = 1− 2pj(t)

1−
j−1∑
k=1

pk(t)

=

−
j∑

k=1

pk(t)− pj(t)

1−
j−1∑
k=1

pk(t)

≥ 0.

From this equality it follows:

aj(t) = 0.5 ln




1−
j−1∑
k=1

pk(t)

1−
j∑

k=1

pk(t)]− pj(t)


 . (31)

As the numerator in the equality (31) is positive,

1−
j−1∑

k=1

pk(t) =

n∑

k=j

pk(t) ≥ 0,

it is necessary to establish the conditions when the denominator is positive:

1−
j∑

k=1

pk(t) ≥ pj(t) ⇒
n∑

k=j+1

pk(t) ≥ pj(t) ∀ j = 1, . . . , n− 1. (32)

The requirement follows from (32):

pj+1(t) ≥ pj(t).

Such ranking is always possible, and therefore we consider it as the initial one.

Since aj(t) ≥ 0, the following inequality must hold:

1−
j−1∑

k=1

pk(t) ≥ 1−
j∑

k=1

pk(t)− pj(t).

Indeed,
[
1−

j∑

k=1

pk(t)

]
+ pj(t) ≥

[
1−

j∑

k=1

pk(t)

]
− pj(t) ⇒ 0 ≥ −2pj(t).
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МНОГОСТАДИЙНАЯ

ПРОИЗВОДСТВЕННО–РАСПРЕДЕЛИТЕЛЬНАЯ

ЗАДАЧА

В. В. Анисимов, Е. В. Сазанова

Аннотация. Представлена новая постановка производственно-распределительной
задачи в сетях со сложной структурой производства готовой продукции. Выделены
особенности задачи, включая последовательность процедур производства и постав-
ки продукции, учет разнообразных видов продукции на одной стадии, различие
между этапом и стадией. Введены понятия «фиктивная» и «реальная» часть (объ-
емы) поставки продукции от реальных поставщиков, которые позволили избежать
применения эвристических приемов при решении задачи. Представлена методика,
основанная на симплекс-методе, для оптимизации производства и поставок различ-
ных видов продукции на каждой стадии производственной цепочки, позволяющая
решить задачу за одну оптимизационную процедуру. Результаты исследования мо-
гут быть полезны при планировании в комплексных и многопрофильных («сете-
вых») компаниях для принятия экономически обоснованных решений в области
управления производственными цепочками.

DOI: 10.25587/2411-9326-2024-2-99-115

Ключевые слова: производственно-распределительная задача, цепочки поставок,
транспортная задача, симплекс-метод, последовательное производство продукции,
оптимизация поставок, фиктивные поставки, многопрофильные («сетевые») ком-
пании.

Введение

Крупные многопрофильные компании («сетевые компании») могут владеть

бизнесом по производству и поставке сложной и высокотехнологической про-

дукции, для которой необходимы многочисленные промежуточные стадии об-

работки, изготовления и сборки продукции предприятиями этой компании или

компаний-партнеров. В частности, одни предприятия могут из сырья изготав-

ливать (отливать, штамповать) детали (комплектующие), другие — собирать из

них агрегаты (узлы, блоки), а третьи — заниматься сборкой из агрегатов гото-

вой продукции (конечного изделия или продукта) в виде сложных комплексов

(машин, оборудования). При планировании производства и поставки такого из-

делия (изделий) встает задача минимизации затрат или увеличения прибыли

на всех стадиях производственно-распределительной цепочки.

Данная работа имеет непосредственное отношение к проблемам проектиро-

вания (моделирования) и управления цепочками поставок и производственно-

c© 2024 Анисимов В. В., Сазанова Е. В.
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Рис. 1. Взаимосвязь видов продукции при производстве готовой продукции.

распределительных сетей [1, 2]. В свете глобализации производства и расшире-

ния направлений ведения бизнеса крупных компаний этой проблематике уде-

ляется повышенное внимание — выпускается специализированная литература

и публикуются многочисленные статьи. В работах [1, 3–5] приведены хороший

обзор и анализ исследований в этой области.

В [2, 6] наиболее четко выражены две ключевые особенности таких сетей:

— наличие в сети пунктов (узлов) разного типа:

— внешние поставщики или производители отдельных видов продукции,

не выпускаемых на предприятиях компании;

— собственные предприятия (заводы, фабрики) переработки, производ-

ства или сборки видов продукции;

— распределительные центры (склады) продукции;

— конечные потребители (клиенты, дилеры) готовой продукции;

— сложная структура производства готовой продукции. На отдельных ста-

диях (этапах) для изготовления более сложного вида продукции может по-

требоваться предварительные закупка, изготовление и поставка в пункт

производства нескольких, более простых видов продукции. Схематично

данная особенность показана на рис. 1.

Вторая особенность является ключевой при производстве подавляющего
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числа видов продукции, но она игнорируется большинством исследователей.

В настоящей работе предлагается конструктивный подход к ее учету, который

может быть использован при оперативном и тактическом (на срок от нескольких

недель до года) планировании работ действующих (устоявшихся) производст-

венно-распределительных сетей.

Обзор исследований

Для решения производственно-распределительных задач предлагались раз-

личные методы линейного, целочисленного и динамического программирова-

ния, нечеткие множества, генетические алгоритмы и различные эвристические

приемы [1, 3–5].

В то же время для определения оптимального плана поставки (в том числе

включая производство) продукции из пунктов отправления в пункты потреб-

ления на практике давно и успешно применяют транспортную задачу. Клас-

сическая ее постановка известна как «транспортная задача Монжа — Канто-

ровича». Гаспар Монж впервые формализовал данную задачу [7], а Леонид

Канторович и Марк Гавурин предложили действенный метод ее решения [8].

Формулировка транспортной задачи как задачи линейного программирования

была предложена Фрэнком Хичкоком [9]. С середины XX века и по настоящее

время появились многочисленные варианты ее постановки и решения, связан-

ные со специфическими условиями и нюансами, возникающими на практике.

В частности, транспортные задачи [10, 11]:

— открытая и закрытая (замкнутая);

— с запретами;

— с ограниченными пропускными возможностями;

— с промежуточными пунктами (многоэтапная);

— с промежуточной обработкой;

— многопродуктовая со взаимозаменяемыми видами продукции;

— и др.

Для решения классической и некоторых специфических видов транспорт-

ных задач могут быть применены различные методы оптимизации.

— Венгерский метод. Разработан Гарольдом Куном [12] для решения за-

дачи о назначениях и был в значительной степени основан на более

ранних работах двух венгерских математиков: Денеса Кенига и Йене

Эгервари. В дальнейшем метод был усовершенствован для решения

классической транспортной задачи [13, 14].

— Метод потенциалов. Первый точный метод решения транспортной за-

дачи, предложенный Леонидом Канторовичем и Марком Гавуриным

[8].

— Симплекс-метод. Разработан Джорджем Данцигом для решения задач

линейного программирования и применен им для решения транспорт-

ной задачи [15].
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— Метод разрешающих слагаемых (метод приближения условно-оптималь-

ными планами) Александра Лурье [16, 17].

— Метод дифференциальных рент (алгоритм вычеркивающей нумера-

ции) Александра Брудно [18].

— Метод фиктивной диагонали (метод Ордена — Маша) [19];

— и т. д.

Несмотря на обилие методов решения транспортной задачи, подавляющее

большинство методов не подходит для рассматриваемой задачи в силу отмечен-

ной выше особенности — сложной структуры производства готовой продукции.

В частности, венгерский метод и метод потенциалов не позволяют ее решить за

одну оптимизационную процедуру. Для того чтобы решить задачу на стадии s

необходимо распределить объемы поставок на стадии s − 1 или наоборот. Со-

ответственно возможны два варианта последовательного решения с помощью

этих методов, где на каждой стадии решается несколько транспортных задач:

— прямой метод — вначале с помощью серии транспортных задач распре-

деляется продукция на 1-й стадии (исходная продукция), затем, зная

распределенные объемы на начальной стадии, распределяется продук-

ция на 2-й стадии и т. д., вплоть до распределения готовой продукции

на последней стадии;

— обратный метод — тот же набор транспортных задач, но решаемых в

обратном порядке.

Так, если готовая продукция (например, оборудование или устройство) со-

стоит из трех агрегатов, а те, в свою очередь, состоят каждый из трех разных

комплектующих, то в общей сложности надо решить 13 транспортных задач

(1 + 3 + 9). При этом и прямой, и обратный метод не гарантируют нахожде-

ние итогового оптимального плана производства и поставки готовой продукции.

Описанные варианты решения являются аналогом алгоритма A∗ [20], где каж-

дый уровень алгоритма соответствует определенной стадии решения задачи.

В подавляющем большинстве проанализированных работ эта ключевая осо-

бенность производственно-распределительных сетей либо игнорируется, либо в

них рассматриваются двух- или трехстадийные процедуры по производству го-

товой продукции из одного вида сырья или полуфабриката (например, с неко-

торыми упрощениями схемы: сахарная свекла — сахар, доски — стулья, бокси-

ты — глинозем — алюминиевые чушки). Таким образом, на отдельной стадии

перемещается только один вид продукции, что может быть легко учтено за счет

ввода в модель соответствующего коэффициента приведения.

В ряде работ [6, 21] эта особенность явно обозначена и введена в модель, но

привела к необходимости использования в методе (методике) решения задачи

эвристических приемов, что не гарантирует получения оптимального результа-

та.
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Основные положения

Перед формулировкой постановки задачи и изложения методики ее реше-

ния примем следующие положения.

П. 1. Под продукцией (видом продукции) p будем понимать любой матери-

альный или нематериальный актив, перемещаемый между пунктами (узлами)

сети, за исключением самих транспортных средств доставки. Как правило, это

материальные объекты (например, сырье или готовая продукция), но они могут

и не иметь физического воплощения (например, информация, знания, услуги и

т. д.) [2].

Перерабатываемая продукция — продукция внешних поставщиков или про-

дукция собственных предприятий, необходимая для производства готовой про-

дукции (например, сырье, полуфабрикаты, детали, комплектующие, агрегаты

и т. п.).

Готовая продукция — продукция, поступающая конечным потребителям.

Многокомпонентная (составная, сложная) продукция p+ — продукция,

для изготовления которой требуется несколько видов перерабатываемой про-

дукции. Как правило, готовая продукция является многокомпонентной, но и

некоторые виды перерабатываемой продукции могут быть, в свою очередь, мно-

гокомпонентными. В частности, для производства на последней стадии едини-

цы готовой продукции p+ (см. рис. 1) может потребоваться поставка нескольких

разных видов агрегатов p с предыдущих стадий, cоставляющих множествоMp+

.

Тогда необходимо приведение объемов поставки агрегатов V p к объемам произ-

водства готовой продукции V p+

через соответствующий коэффициент приведе-

ния kpp+ : kpp+ · V p+

= V p. Например, для сборки одного автомобиля требуется

один двигатель, четыре колеса, два стеклоочистителя и т. д. Тогда при сборке

автомобилей в количестве V p+

штук потребуется 1·V p+

двигателей, 4·V p+

колес,

2 · V p+

стеклоочистителей и т. д. Аналогичным образом через коэффициенты

kpp+ выполняется приведение объемов для всех предыдущих стадий вплоть до

первичной перерабатываемой продукции. В целях обобщения примем, что мно-

жествоMp+

может также включать только один вид продукции (например, для

складов или конечных потребителей).

П. 2. Пункты производственно-распределительной сети, как отмечено вы-

ше, могут быть четырех типов: внешние поставщики, собственные предпри-

ятия, распределительные центры (склады), конечные потребители. Каждую

пару пунктов, соединенных дугой (перемещением одного вида продукции), как

и в классической транспортной задаче, можно отнести к пункту одного из двух

типов: поставщик i и потребитель j.

П. 3. Объемы поставки, производства, переработки, сборки, хранения или

потребления одного вида продукции p в пункте i (j) ограничены максимально

возможной величиной
[
V p
i

]
(
[
V p
j

]
).
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П. 4. Пропускная способность каналов поставки продукции между пункта-

ми не ограничена.

П. 5. Для производства и поставки готового изделия требуется несколь-

ко стадий переработки, где на каждой стадии от поставщика к потребителю

перемещаются разные виды продукции (рис. 2).

Следует отметить, что в данной работе перемещение одного и того же вида

продукции через склад (группу складов) является одной стадией. Это положе-

ние не отменяет того факта, что в каждой конкретной паре поставщик-склад,

склад-склад или склад-потребитель в соответствии с п. 2 первый является по-

ставщиком, а второй потребителем (рис. 3).

Рис. 2. Многостадийное производство и поставка продукции.

Рис. 3. Стадия производства.

П. 6. Стоимость поставки cij единицы продукции p между двумя пунктами

i и j складывается из двух составляющих:

— первый пункт i поставщик (закупка у внешнего поставщика или соб-

ственное производство):

cij = eпроизв
i + eперев

p Lij ; (1)

— первый пункт i склад (хранение):

cij = eхран
i + eперев

p Lij . (2)

В формулах (1) и (2):

— eперев
i — стоимость производства (закупки, переработки, выпуска или

сборки) продукции;
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— eхран
i — стоимость хранения единицы продукции. Как правило, стои-

мость хранения зависит от времени хранения, но можно вывести неко-

торую среднюю статистическую величину;

— eперев
p — тариф (стоимость на единицу расстояния) перевозки единицы

продукции;

— Lij — расстояние между пунктами, обычно определяемое как длина

кратчайшего пути между пунктами.

П. 7. В качестве целевой функции (критерия оптимизации) выбрана мини-

мизация затрат F на закупку, производство, хранение и перевозку всех видов

продукции P на всех стадиях S от внешних поставщиков до конечных потре-

бителей. Так как в соответствии с п. 3 объемы потребления готовой продукции

фиксированы, то цели минимизации затрат и максимизации прибыли в контек-

сте решения данной задачи эквивалентны.

Для получения оптимального решения в рамках одной оптимизационной

процедуры авторам настоящей работы потребовалось ввести дополнительные

положения.

П. 8. По каждому виду продукции p для всех поставщиков определяются

суммарные максимально возможные объемы поставки (производства, перера-

ботки, сборки) продукции [V p],

p ∈ P :

I∑

i=1

[
V p
i

]
= [V p]. (3)

Аналогичным образом поступают для складов и конечных потребителей —

определяют суммарные максимально возможные объемы соответственно хра-

нения или потребления одного вида продукции [V p].

П. 9. Определяются лимитирующие звенья цепочки поставок и уравнове-

шиваются объемы поставки и потребления продукции. Объемы поставки (про-

изводства) и потребления по всем звеньям цепочки определяются и уравнове-

шиваются с учетом коэффициентов kpp+ (см. п. 1) — задача из открытой поста-

новки сводится к закрытой, т. е. если возможности поставщиков превышают

возможности потребителей, то вводится фиктивный потребитель на недоста-

ющие объемы потребления, иначе — фиктивный поставщик на недостающие

объемы производства.

На рис. 4 отображены порядок производства и суммарные объемы закупки,

производства, хранения и поставки продукции.

Порядок производства:

— Стадия 1 — закупка и поставка деталей:

— закупка и поставка деталей p1 и p2 для сборки агрегатов p5;

— закупка и поставка деталей p3 и p4 для сборки агрегатов p6;

— Стадия 2 — сборка, хранение и поставка агрегатов:

— сборка агрегатов p5 и p6;
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Рис. 4. Пример определения суммарных объемов продукции.

— перемещение агрегатов p5 и p6 на склады;

— поставка агрегатов p5 и p6 для сборки готовой продукции p7;

— Стадия 3 — сборка, хранение и поставка готовой продукции:

— сборка готовой продукции p7;

— перемещение готовой продукции p7 на склады;

— поставка готовой продукции p7 конечным потребителям.

Суммарные объемы приведены с учетом коэффициентов kpp+ в пересчете

на единицу готовой продукции p7. Объемы без диагонального узора — макси-

мально возможные объемы поставки (производства, переработки, сборки, хра-

нения, потребления) продукции, с диагональным узором — недостающие объе-

мы относительно самого производительного звена цепочки поставок. Как видно

из рис. 4, самым производительным звеном
([
V 7

max

])
является поставка деталей

p3, достаточных для сборки 11 единиц готовой продукции, самым слабым зве-

ном
(
[V 7

min]
)

— сборка готовой продукции p7 в количестве 6 единиц. На звенья

с недостаточными объемами вводятся фиктивные поставщики или потребители
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на соответствующие объемы
[
V ff.p

]
. Например, для поставки деталей p1 будет

введен фиктивный внешний поставщик с объемом, достаточным для сборки 3

единиц готовой продукции, для сборки агрегатов p5 — фиктивное собственное

предприятие на 2 единицы, для хранения агрегата p5 — фиктивный склад на 1

единицу, для получения готовой продукции p7 — фиктивный потребитель 2 еди-

ниц и т. п.

П. 10. По звеньям цепи, не относящимся к лимитирующим, определяются

суммарные реальные и фиктивные объемы поставки и потребления продукции

относительно самого слабого звена [V rr.p] и [V rf.p].

Рис. 5. Пример определения реального и фиктивного объемов продукции.

Объемы пересчитываются в исходных единицах измерения продукции p с

учетом определенных в п. 9 лимитирующих звеньев и коэффициентов kpp+ . На

рис. 5 приняты следующие обозначения объемов (при p = 6):

— [V p] = [V rr.p] + [V rf.p] — суммарные максимально возможные объемы

поставки (производства, переработки, сборки) продукции от реальных

поставщиков;

—
[
V p

min

]
= [V rr.p] — суммарные реальные объемы поставки продукции от

реальных поставщиков, которые будут действительно востребованы;

— [V rf.p] — суммарные фиктивные объемы поставки продукции от реаль-

ных поставщиков, которые могут быть поставлены, но в действитель-

ности не востребованы (избыток продукции);

— [V ff.p] — суммарные фиктивные объемы поставки продукции от фик-

тивных поставщиков, которые в действительности не могут быть по-

ставлены (дефицит продукции);
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—
[
V p

max

]
= [V rr.p] + [V rf.p] + [V ff .p] — суммарные объемы поставки про-

дукции, которые будут распределены при решении задачи.

Аналогичным образом определяются соответствующие объемы для складов

и конечных потребителей.

П. 11. Каждый пункт сети (внешний поставщик, собственное предприятие,

склад, конечный потребитель) разделяется на две части (t — тип части):

— t = r — реальная часть, с которой осуществляется реальная поставка

или потребление продукции;

— t = f — фиктивная часть, с которой осуществляется фиктивная по-

ставка или потребление продукции.

Реальная часть может быть только у реальных поставщиков или потребите-

лей, фиктивная часть — у реальных и фиктивных. Очевидно, что у фиктивных

поставщиков объемы поставки с реальной части r равны 0.

В соответствии с таким делением пунктов стоимости поставки c
titj .p
ij еди-

ницы продукции p между двумя пунктами i и j делятся на 4 составляющие:

— crr.pij — стоимость поставки с реальной части реального поставщика

на реальную часть реального потребителя (традиционная стоимость

поставки, см. формулы (1), (2));

— crf.pij = BN — стоимость поставки с реальной части реального постав-

щика на фиктивную часть реального или фиктивного потребителя;

— cfr.pij = BN — стоимость поставки с фиктивной части реального или

фиктивного поставщика на реальную часть реального потребителя;

— cff.pij = BN — стоимость поставки с фиктивной части реального или

фиктивного поставщика на фиктивную часть реального или фиктив-

ного потребителя.

Если хотя бы один из пунктов является фиктивным или поставка выполня-

ется с участием фиктивной части пункта, то стоимость поставки c
titj .p
ij задается

большим числом BN .

Аналогичным образом при определении объемов поставок продукции p меж-

ду двумя пунктами i и j искомые объемы будут делиться на 4 составляющие

x
titj .p
ij .

Математическая постановка задачи

Учитывая указанные выше положения, многостадийную производственно-

распределительную задачу можно сформулировать следующим образом: мини-

мизировать суммарные затраты F на закупку, производство, хранение и пере-

возку всех видов продукции P на всех стадиях S от первичных поставщиков до

конечных потребителей:

F =

I∑

i=1

J∑

j=1

∑

t∈{r,f}

c
titj .p
ij · xtitj .pij → min, (4)
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с учетом следующих ограничений:

(О.1) для реальных поставщиков i — суммарный поставленный объем про-

дукции p с реальной и фиктивных частей одного реального поставщика должен

равняться его максимально возможному объему производства (закупки, пере-

работки, сборки, хранения):

∀p ∈ P, ∀i ∈ Ir :

J∑

j=1

∑

t∈{r,f}

x
titj .p
ij =

[
V p
i

]
; (5)

(О.2) для реальных поставщиков i — суммарный поставленный объем про-

дукции p с фиктивной части всех реальных поставщиков должен равняться

избыточному объему (избытку) этой продукции в сети:

∀p ∈ P :

Ir∑

i=1

J∑

j=1

∑

t∈{r,f}

x
ftj .p
ij =

[
V rf.p

]
; (6)

(О.3) для фиктивных поставщиков i — суммарный поставленный объем

продукции p фиктивного поставщика должен равняться недостающему объему

(дефициту) этой продукции в сети:

∀p ∈ P, ∀i ∈ If :

J∑

j=1

∑

t∈{r,f}

x
ftj .p
ij =

[
V ff.p
i

]
(7)

(О.4) для реальных потребителей j — суммарный потребляемый объем про-

дукции p ∈Mp+

, поступающий на фиктивную и реальную части одного реаль-

ного потребителя, должен равняться его максимально возможному объему про-

изводства (закупки, переработки, сборки, хранения, потребления) продукции

p+ с учетом коэффициента kpp+ :

∀p+ ∈ P+, ∀p ∈ P ∧ p ∈Mp+

, ∀j ∈ Jr :

I∑

i=1

∑

t∈{r,f}

x
titj .p
ij = kpp+ ·

[
V p+

j

]
; (8)

(О.5) для реальных потребителей j — суммарный потребляемый объем про-

дукции p ∈ Mp+

, поступающий на фиктивную часть всех реальных потребите-

лей, должен равняться избыточному объему (избытку) продукции p+ в сети с

учетом коэффициента kpp+ :

∀p+ ∈ P+, ∀p ∈ P ∧ p ∈Mp+

:

I∑

i=1

Jr∑

j=1

∑

t∈{r,f}

xtif.pij = kpp+ · [V rf.p+

]; (9)

(О.6) для фиктивных потребителей j — суммарный потребляемый объем

продукции p ∈Mp+

фиктивного потребителя должен равняться недостающему

объему (дефициту) продукции p+ в сети с учетом коэффициента kpp+ :

∀p+ ∈ P+, ∀p ∈ P ∧ p ∈Mp+

, ∀j ∈ Jf :

I∑

i=1

∑

t∈{r,f}

xtif.pij = kpp+ ·
[
V ff.p+

j

]
; (10)
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(О.7) для реальных потребителей j, производящих многокомпонентную про-

дукцию p+ — суммарные потребляемые объемы разных видов продукции pv ∈
Mp+

и pw ∈ Mp+

, поступающие с реальной части реальных поставщиков на

реальную часть реального потребителя, должны быть взаимосогласованы (рав-

ными) с учетом коэффициентов kpvp+ и kpwp+ :

∀p+ ∈ P+, (∀pv ∈ P ∧ pv ∈Mp+

) ∧ (∀pw ∈ P ∧ pw ∈Mp+

) ∧ pv 6= pw, ∀j ∈ Jr :

Ir∑

i=1

(
xrr.pv

ij

kpvp+

)
=

Ir∑

i=1

(
xrr.pw

ij

kpwp+

)
; (11)

(О.8) для реального промежуточного узла (потребителя-поставщика) j —

суммарный потребляемый объем продукции p ∈Mp+

, поступающий с реальной

части реальных поставщиков предыдущего этапа (стадии) на реальную часть

реального промежуточного узла, должен быть взаимосогласован (равным) с

поставляемым (≈ производимым) им объемом продукции p+, поступающим на

реальные части реальных потребителей следующего этапа (стадии), с учетом

коэффициента kpp+ :

∀p+ ∈ P+, ∀p ∈ P ∧ p ∈Mp+

, ∀j ∈ Jr :

Ir∑

i=1

(
xrr.pij

kpp+

)
=

Lr∑

l=1

xrr.p
+

jl ; (12)

(О.9) объемы поставок любой продукции не должны быть отрицательными:

∀i ∈ I, ∀j ∈ J, ∀l ∈ L : xrr.pij ≥ 0, xrr.pjl ≥ 0, xrf.pij ≥ 0, xfr.pij ≥ 0, xff.pij ≥ 0. (13)

Ограничения обеспечивают взаимосогласованность «перемещения» по всей

цепочке поставок:

— (О.2) и (О.5) — избыточного объема продукции от реальных постав-

щиков, которые могут быть поставлены, но в действительности не вос-

требованы (фиктивная часть);

— (О.3) и (О.6) — дефицитного объема продукции от фиктивных постав-

щиков, которые в действительности не могут быть поставлены (фик-

тивная часть);

— (О.7) и (О.8) – реальные объемы поставки продукции от реальных

поставщиков, которые будут действительно востребованы (реальная

часть).

Предложенный вариант постановки задачи с учетом линейность его целе-

вой функции и ограничений прямо указывает на возможность применения для

ее решения метода линейного программирования — симплекс-метода, который

позволит за одну оптимизационную процедуру получить итоговый оптималь-

ный план производства и поставки продукции по всем звеньям цепочки. Более

того, в симплекс-методе используется схожая с уравниванием объемов концеп-

ция — неравенства в задаче преобразуются в равенства путем ввода так назы-

ваемых «свободных переменных» [22, 23].
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Методика решения задачи

В общем виде методика (алгоритм) решения задачи выглядит следующим

образом.

(М.1) Определяются коэффициенты приведения kpp+ продукции с видом

p к продукции с видом p+. Если продукция с видом p не требуется для про-

изводства продукции с видом p+, то соответствующий коэффициент kpp+ = 0.

В этих коэффициентах можно также учесть необходимые резервы (например,

на случай низкого качества сырья или брака комплектующих).

(М.2) Для реальных поставщиков и потребителей определяются суммарные

максимально возможные объемы производства (закупки, переработки, сборки,

хранения, потребления) всех видов продукции [V p]. В случае необходимости

(для уравновешивания объемов) вводятся фиктивные поставщики и/или по-

требители, пункты делятся на две части и определяются суммарные объемы

[V rr.p], [V rf.p] и [V ff.p].

(М.3) Определяются расстояния Lij от поставщика i до потребителя j (как

правило, методом определения кратчайших путей на графе). Если продукция

поставщика i потребителю j не требуется, то Lij = 0.

(М.4) Для каждого вида продукции p определяется стоимость поставки

crr.pij единицы продукции от поставщика i до потребителя j (см. формулы (1),

(2)). Стоимости фиктивных поставок crf.pij , cfr.pij и cff.pij единицы продукции p

задаются большим числом BN.

(М.5) Оптимизационная задача решается в постановке (4)–(13) симплекс-

методом.

(М.6) После выполнения оптимизационной процедуры из плана удаляются

все фиктивные поставки xrf.pij , xfr.pij и xff.pij , тем самым определяются оконча-

тельные реальные объемы производства и поставки всех видов продукции для

конкретных реальных поставщиков и потребителей.

Заключение

Предложенная постановка производственно-распределительной задачи

своей простотой существенно отличается от ранее опубликованных другими ав-

торами. Помимо постановки задачи предложена методика ее решения на базе

симплекс-метода, не требующего лишнего представления. Это позволило избе-

жать применения различных эвристических приемов для ее решения.

С помощью изложенной методики можно получить оптимальный план про-

изводства и поставок в сетях со сложной структурой производства готовой про-

дукции за одну оптимизационную процедуру.

Постановка и методика могут стать основой для решения других, более

сложных ситуаций, а также в случаях применения классической транспортной

задачи или ее модификаций.
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Межгородской научно-исследовательский семинар

«Неклассические задачи математической физики»

30 марта 2024 г.

«К вопросу постановки и разрешимости основных краевых задач для на-

груженных гиперболических уравнений».

Докладчик: А. Х. Аттаев (Институт прикладной математики и автомати-

зации КБНЦ РАН, Нальчик, Россия).

В докладе обсуждены вопросы, связанные с влиянием нагрузки на поста-

новку и разрешимость той или иной краевой задачи для линейных нагруженных

гиперболических уравнений второго порядка с двумя независимыми перемен-

ными.

13 апреля 2024 г.

«Решения краевых задач для нерегулярно вырождающихся эллиптических

уравнений с аналитическими коэффициентами в прямоугольнике».

Докладчик: Д. П. Емельянов (ВМК МГУ имени М. В. Ломоносова, Москва,

Россия)

В прямоугольнике �: 0 < x < 1, 0 < y < b рассматривается краевая

задача E (в терминологии М. В. Келдыша) для уравнения

y2u′′yy + u′′xx + c(y)u′y + a(y)u = f(x, y)

с аналитическими в замыкании области � коэффициентами и правой частью.

Методом спектрального выделения особенностей И. С. Ломова вводится счетное

число новых переменных τk и ставится расширенная регуляризованная краевая

задача, формальное решение которой строится в виде ряда и является анали-

тическим по переменным y и τk.

Устанавливаются достаточные условия на коэффициенты и правую часть

исходного уравнения, при которых формальное решение расширенной задачи

сходится и при подстановке τk = gk(y) является классическим решением исход-

ной задачи. Вид функций gk(y) указывается явно. Таким образом доказывается

аналог теоремы Коши — Ковалевской для вырождающихся уравнений данного

класса, устанавливающий явным образом характер неаналитической зависимо-

сти решения уравнения от переменной y в окрестности отрезка вырождения.

Также будет установлено, что полученный после подстановки τk = gk(y)

ряд сходится при существенно более слабых требованиях на коэффициенты

уравнения.
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В случаях краевых задач D и E с вырождениями ym, где 0 < m < 2,

получены аналогичные результаты, касающиеся общего вида их формального

решения, характера его неаналитической зависимости от переменного y и схо-

димости в области �.

27 апреля 2024 г.

«Исследование вопросов разрешимости эволюционных уравнений с несколь-

кими производными Герасимова — Капуто».

Докладчик: К. В. Бойко (Челябинский государственный университет, Че-

лябинск, Россия)

Доклад посвящен вопросам существования и единственности решения на-

чальных задач для линейных и квазилинейных уравнений с дробными произ-

водными в банаховых пространствах с приложениями к начально-краевым за-

дачам для уравнений и систем уравнений в частных производных. В частности,

рассмотрена задача Коши для разрешенных относительно старшей производной

линейных уравнений с ограниченными операторами при производных Гераси-

мова — Капуто, получены теорема о ее однозначной разрешимости и представ-

ление решения в терминах интегралов типа Данфорда — Тейлора. Это позво-

лило исследовать соответствующие квазилинейные уравнения, а также задачи

типа Шоуолтера — Сидорова для линейных и квазилинейных уравнений с вы-

рожденным оператором при старшей производной при условии спектральной

ограниченности пары операторов при двух старших производных.

Для исследования задачи Коши для уравнений с несколькими дробными

производными (multi-term fractional equations) и линейными замкнутыми опе-

раторами при них введено в рассмотрение понятие разрешающего семейства

уравнения и предложены условия секториальности набора операторов, дока-

заны их необходимость и достаточность для существования аналитических в

секторе разрешающих семейств уравнения. Формула представления решения

линейного неоднородного уравнения позволила исследовать задачу Коши для

соответствующих квазилинейных уравнений, в которых нелинейный оператор

зависит от нескольких младших производных Герасимова — Капуто. Вырож-

денные линейные и квазилинейные уравнения исследованы при условии секто-

риальности пары операторов при старших производных.

Абстрактные результаты использованы для исследования начально-краевых

задач для уравнений с многочленами от эллиптического оператора, для систем

уравнений, моделирующих динамику и термоконвекцию вязкоупругой среды,

начальных задач для систем обыкновенных дифференциальных уравнений с

несколькими дробными производными.

11 мая 2024 г.

«Разрешимость некоторых обратных задач для псевдопараболического урав-

нения».

Докладчик: С. Е. Айтжанов (Казахский национальный университет имени

Аль-Фараби, Нур-Султан, Казахстан)

В докладе рассмотрены обратные задачи определения коэффициента пра-

вой части псевдопараболического уравнения, зависящего от временной перемен-
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ной. Также рассмотрены обратные задачи для псевдопараболического уравне-

ния, неизвестные коэффициенты которого зависят как от пространственной пе-

ременной, так и от временной переменной. В настоящее время исследования

прямых и обратных задач для соболевских уравнений активно развиваются в

связи с необходимостью моделирования и управления процессами в гидроди-

намике, механике, теплофизике, механике окружающей среды. Доказываются

существование и единственность регулярных решений обратных задач.

25 мая 2024 г.

«Регуляризованная асимптотика решения сингулярно возмущенной задачи

Коши для однородного уравнения Шредингера с потенциалом Q = x2, содер-

жащей фокальные точки».

Докладчик: А. Г. Елисеев (Московский энергетический институт, Москва,

Россия)

В настоящее время различным методам асимптотического интегрирования

сингулярно возмущенных задач посвящено огромное количество работ, их столь

много, что полного обзора в докладе ограниченного объема привести не пред-

ставляется возможным.

Данная работа посвящена развитию метода регуляризации С. А. Ломова

на сингулярно возмущенные задачи при наличии спектральных особенностей у

предельного оператора. В частности, строится регуляризованное асимптотиче-

ское решение сингулярно возмущенной однородной задачи Коши для уравнения

Шредингера при наличии «сильной» точки поворота у предельного операто-

ра на промежутках времени, содержащих фокальные точки. На основе идеи

асимптотического интегрирования задач с нестабильным спектром указано, ка-

ким образом следует вводить регуляризирующие функции, подробно описан

формализм метода регуляризации для указанного вида особенности, проведе-

но обоснование этого алгоритма и построено асимптотическое решение любого

порядка по малому параметру. Основная проблема, с которой сталкивается ис-

следователь при применении метода регуляризации, связана с поиском и опи-

санием регуляризирующих функций, которые содержат в себе неравномерную

сингулярную зависимость решения искомой задачи, выделяя которые, можно

оставшуюся часть решения искать в виде степенных рядов по малому парамет-

ру.

8 июня 2024 г.

«Дробный анализ на основе d-оператора. Обобщение производных, форму-

лы Ньютона — Лейбница и основной теоремы алгебры».

Докладчик: В. А. Чуриков (Томский государственный университет, Томск,

Россия)

Рассматривается подход построения d-анализа, в котором обобщается инте-

гродифференцирование на любые вещественные и комплексные порядки. В ос-

нове d-анализа лежит d-оператор интегродифференцирования вещественных и

комплексных порядков, имеющий алгебраический характер и действующий на

степенные функции и на их конечные и бесконечные суперпозиции. В частном

случае, когда порядок интегродифференцирования равен 1, d-оператор совпада-
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ет с операторами интегродифференцирования степенных функций классическо-

го анализа. Рассмотрены некоторые частные случаи и обобщения d-оператора,

в частности, обобщение на случай некоторых переменных вещественных поряд-

ков.

Рассмотрены особенности d-анализа. Показана многозначность производ-

ных в d-анализе, а также многозначность первообразных. Дано обобщение фор-

мулы Ньютона — Лейбница.

Показана важная роль дробностепенных рядов в d-анализе с постоянным

шагом, через которые выражаются многие элементарные и специальные функ-

ции d-анализа: экспоненты, гиперболические и тригонометрические функции и

др. Получена ζ-функция Римана с помощью d-оператора комплексных поряд-

ков дискретной переменной.

Вводятся полиномы любых вещественных порядков, с помощью которых

обобщаются алгебраические уравнения на случай любых вещественных поряд-

ков. Приводится способ решения таких уравнений. Для этого формулируется

теорема и дается ее доказательство, в основе которого лежит классическая ос-

новная теорема алгебры.

Обсуждается частный случай d-анализа, в соответствии с которым для лю-

бого порядка интегродифференцирования можно развивать свою ветвь анализа

аналогично классическому анализу.

Показывается возможность использования для расчетов свойств однород-

ных фракталов и физико-химических процессов в них.

22 июня 2024 г.

«Спрятанные аттракторы в уравнениях биохимической кинетики».

Докладчик: В. П. Голубятников (Институт математики им. С. Л. Соболева

СО РАН, Новосибирск, Россия).

Рассматриваются трехмерные системы обыкновенных дифференциальных

уравнений биохимической кинетики с блочно-линейными правыми частями. В фа-

зовых портретах таких систем описаны спрятанные аттракторы, установлены

условия существования циклов, лежащих вне областей притяжения таких ат-

тракторов. Получены результаты о неединственности циклов в таких фазовых

портретах.
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