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Математические заметки СВФУ
Январь—март, 2023. Том 30, № 1

УДК 514.755.5

К ПРОЕКТИВНО–ДИФФЕРЕНЦИАЛЬНОЙ

ГЕОМЕТРИИ КОМПЛЕКСОВ m–МЕРНЫХ

ПЛОСКОСТЕЙ ПРОЕКТИВНОГО ПРОСТРАНСТВА

Pn, СОДЕРЖАЩИХ КОНЕЧНОЕ ЧИСЛО ТОРСОВ

И. В. Бубякин

Аннотация. Предметом исследования настоящей статьи является дифференци-
альная геометрия ρ-мерных комплексов Cρ m-мерных плоскостей в проективном
пространстве Pn, содержащих конечное число торсов. Настоящая работа относит-
ся к исследованиям в области проективной дифференциальной геометрии на осно-
ве метода подвижного репера Э. Картана и метода внешних дифференциальных
форм. Эти методы позволяют с единой точки зрения изучать дифференциальную
геометрию подмногообразий различных размерностей грассманова многообразия,
а также обобщить полученные результаты на более широкие классы многообра-
зий многомерных плоскостей. Для изучения таких подмногообразий применяется
грассманово отображение многообразия G(m,n) на (m+ 1)(n−m)-мерное алгебра-

ическое многообразие �(m,n) пространства PN , где N =
(

n+1
m+1

)

− 1.

Основная задача дифференциальной геометрии подмногообразий грассмано-
вых многообразий заключается в проведении единой классификации различных
классов таких подмногообразий, выяснения их строения и связанная с этим задача
определения произвола их существования, а также изучение свойств подмногообра-
зий различных классов. Пересечение алгебраического многообразия �(m,n) с его
касательным пространством Tl�(m,n) представляет собой конус Сегре Cl(m+1, n−
m). Этот конус имеет размерность n и несет плоские образующие размерностей
m + 1 и n −m, пересекающиеся по прямым. Проективизация PBl(2) этого конуса
есть многообразие Сегре Sl(m,n − m − 1). Многообразие Сегре Sl(m,n − m − 1)

инвариантно при проективных преобразованиях пространства P (m+1)(n−m)−1 =
PTl�(m, n), являющегося проективизацией с центром в точке l касательного про-
странства Tl�(m,n) к алгебраическому многообразию �(m,n). Многообразие Сегре
Sl(m,n − m − 1) используется для классификации рассматриваемых подмногооб-
разий грассманова многообразия G(m,n), а также для интерпретации их свойств в
терминах проективных алгебраических многообразий. Классификация подмного-
образий грассманова многообразия G(m, n) основана на различных конфигурациях
плоскости PTl�(m,n) и многообразия Сегре Sl(m,n − m − 1). Целью настоящей
статьи является геометрическое доказательство теоремы об определении порядка
многообразия Сегре Sl(m,n−m− 1).

DOI: 10.25587/SVFU.2023.10.59.001

Ключевые слова: грассманово многообразие, комплексы многомерных плоско-
стей, многообразие Сегре.
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1. Введение

В монографии [1] М. А. Акивисом и В. В. Гольдбергом исследуется тео-

рия подмногообразий в многомерном проективном пространстве. В частности

рассматриваются подмногообразия грассмановых многообразий. Те же авторы

в работе [2] изучают многообразия с вырожденным гауссовым отображением.

Эти многообразия являются многомерными аналогами торсов или развертыва-

ющихся поверхностей трехмерного евклидова пространства. В последнее время

многообразия с вырожденным гауссовым отображением изучаются как с про-

ективной точки зрения, так и с евклидовой. М. А. Акивис и В. В. Гольдберг

по проективной дифференциальной геометрии написали монографию [3], в ко-

торой получены фундаментальные результаты. Например, что многообразия с

вырожденным гауссовым отображением включают в себя не только конусы и

торсы, но и достаточно широкий класс гиперповерхностей, которые не являются

конусами или торсами. В своих рассуждениях авторы систематически исполь-

зуют фокальные образы: фокальные гиперповерхности и фокальные конусы,

ассоциированные с многообразием с вырожденным гауссовым отображением.

Это позволяет авторам глубоко изучить дифференциальную геометрию иссле-

дуемых многообразий и провести полную их классификацию.

М. А. Акивисом и В. В. Гольдбергом написана фундаментальная моногра-

фия [4], в которой наряду с глубоким изучением дифференциальной геометрии

конформного и псевдоконформного пространств произвольной размерности и

подмногообразий в этих пространствах основательно исследуется дифференци-

альная геометрия грассмановых многообразий, многообразий с грассмановой

структурой и многообразий с почти грассмановой структурой. Почти грассма-

нову структуру М. А. Акивис рассматривает как расслоение конусов Сегре на

многообразии. Результаты, полученные в этой монографии, имеют фундамен-

тальный характер по проективной и конформной дифференциальным геомет-

риям. Эти результаты являются классическими — настолько они глубоки как

по содержанию, так и по форме и полноте изложения.

Указанное определение почти грассмановой структуры использовали в

дальнейшем в интегральной геометрии Радона — Хелгасона И. М. Гельфанд

и С. П. Гиндикин в монографии [5], а также в других своих работах, решая ос-

новную задачу интегральной геометрии для n-мерных допустимых комплексов

прямых и n-мерных допустимых комплексов m-мерных плоскостей в проектив-

ном пространстве Pn. Полученные И. М. Гельфандом и С. П. Гиндикиным

формулы обращения лежат в основе компьютерной томографии. Такие задачи

были положены в основу послойного изображения внутренней структуры иссле-

дуемого объекта. В том числе в этих исследованиях были получены новейшие

научные достижения: в 2003 г. за изобретение метода магнитно-резонансной

томографии — способа получения томографических — послойных изображений

для исследования внутренних органов и тканей человека Нобелевскую премию

по физиологии и медицине получили Мэнсфилд и Лотербур. В 2010 г. была
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создана четырехмерная электронная томография — техника визуализирования

динамики трехмерных объектов во времени. Эта техника позволяет наблюдать

за пространственно-временными характеристиками микрообъектов.

Таким образом, М. А. Акивис и В. В. Гольдберг открывают новое поле ис-

следований в проективной дифференциальной геометрии, в частности, диффе-

ренциальную геометрию подмногообразий грассманова многообразия, которое

успешно развивается и применяется в настоящее время. Актуальность таких

исследований заключается в том, что дифференциальная геометрия подмного-

образий грассмановых многообразий расширяет теорию грассмановых многооб-

разий [6–9], связана с исследованиями лагранжевых и квантовых грассмановых

многообразий [10, 11], а также применяется в теоретической физике [12, 13].

Предметом исследований автора является геометрия комплексов m-мерных

плоскостей в проективном пространстве Pn, содержащих конечное число тор-

сов. Отметим, что некоторые классы таких комплексов [5] из изучаемых ком-

плексов двумерных плоскостей исследовались в [14]. Настоящая работа отно-

сится к исследованиям в области проективной дифференциальной геометрии

на основе метода подвижного репера Э. Картана и метода внешних диффе-

ренциальных форм [1]. Эти методы позволяют с единой точки зрения изу-

чать дифференциальную геометрию подмногообразий различных размерностей

грассманова многообразия, а также обобщить полученные результаты для кон-

кретных многообразий на более широкие классы многообразий многомерных

плоскостей. Основная задача дифференциальной геометрии подмногообразий

грассмановых многообразий заключается в проведении единой классификации

различных классов таких подмногообразий, выяснения их строения и связан-

ная с этим задача определения произвола их существования, а также изучение

свойств подмногообразий различных классов. Данные исследования являются

продолжением работ [15–23]. Для изучения таких подмногообразий применя-

ется грассманово отображение многообразия G(m,n) на (m+ 1)(n−m)-мерное

алгебраическое многообразие �(m,n) пространства PN , где N =
(

n+1

m+1

)
− 1.

Заметим, что в дифференциальной геометрии подмногообразий грассмано-

ва многообразия операцию суммирования будем производить по правилу Эйн-

штейна, как это принято в тензорном анализе, в частности, в его приложениях

к общей теории относительности.

В работах [24, 25] М. А. Акивис отмечает, что пересечение алгебраического

многообразия �(m,n) с его касательным пространством Tl�(m,n) представляет

собой конус Сегре Cl(m + 1, n −m). Этот конус имеет размерность n и несет

плоские образующие размерностей m+ 1 и n−m, пересекающиеся по прямым.

Проективизация PBl(2) этого конуса есть многообразие Сегре Sl(m,n−m− 1).

Многообразие Сегре Sl(m,n −m − 1) инвариантно при проективных преобра-

зованиях пространства P (m+1)(n−m)−1 = PTl�(m,n), являющегося проективи-

зацией с центром в точке l касательного пространства Tl�(m,n) к алгебраи-

ческому многообразию �(m,n), и его будем использовать для классификации
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рассматриваемых подмногообразий грассманова многообразия G(m,n), а также

для интерпретации их свойств в терминах проективных алгебраических много-

образий. Классификация подмногообразий грассманова многообразия G(m,n)

основана на различных конфигурациях плоскости PTl�(m,n) и многообразия

Сегре Sl(m,n−m−1). Целью настоящей статьи является геометрическое дока-

зательство теоремы об определении порядка многообразия Сегре Sl(m,n−m−1).

Дифференциальная геометрия грассмановых многообразий представляет

самостоятельный интерес для дифференциальной геометрии, а также одновре-

менно является одним из важных средств построения и изучения других много-

образий в проективных пространствах. Одной из наиболее красивых областей

дифференциальной геометрии, где во всей полноте проявляются преимущества

инвариантных бескоординатных методов исследования, является теория ком-

плексов многомерных плоскостей проективного пространства [14].

2. Отображение и многообразие Сегре S(m,n)

Отображение Сегре [26–28] определяется как отображение

ϕ : Pm × Pn → P (m+1)(n+1)−1,

которое переводит упорядоченную пару точек X и Y проективных пространств

Pm и Pn в точку Z, однородные координаты которой — попарные произведе-

ния однородных координат точек X и Y , записанные в лексикографическом

порядке:

ϕ : (x0 : x1 : · · · : xm), (y0 : y1 : · · · : yn)→ (x0y
0 : x0y

1 : · · · : xiy
p : · · · : xmyn).

Образ этого отображения является проективным алгебраическим много-

образием, называемым многообразием Сегре, и обозначается S(m,n). Размер-

ность многообразия S(m,n) равна m+n. Если координаты точки Z в простран-

стве P (m+1)(n+1)−1 обозначить через zau, то многообразие S(m,n) представляет

собой пересечение квадрик:

zauz
b
v − zbuz

a
v = 0,

где u, v = 0, 1, . . . ,m; a, b = 0, 1, . . . , n. Запишем однородные координаты точ-

ки Z проективного пространства P (m+1)(n+1)−1 в виде прямоугольной матрицы

(zau) размеров (m+1)×(n+1). Тогда последняя система уравнений эквивалентна

условию вида

rang(zau) = 1.

Многообразие Сегре S(m,n) [24, 25] можно определить параметрическими

уравнениями в виде

zau = xuy
a,

в котором zau — однородные координаты точки Z проективного пространства

P (m+1)(n+1)−1. Из этих параметрических уравнений вытекает, что многообразие
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S(m,n) является образом прямого произведения двух проективных пространств

Pm и Pn размерностей соответственно m и n.

Отметим одно важное свойство многообразий Сегре S(m,n), а именно эти

многообразия остаются инвариантными при проективных преобразованиях про-

странства P (m+1)(n+1)−1, определяемых уравнениями

z∗au = λa
bµ

v
uz

b
v.

Многообразие S(m,n) несет n-параметрическое семейство m-мерных плос-

ких образующих: α-образующих, для получения параметрических уравнений

которых необходимо зафиксировать в уравнениях (1) однородные координаты

ya точки проективного пространства Pn, а также m-параметрическое семейство

n-мерных плоских образующих: β-образующих, для получения параметриче-

ских уравнений которых необходимо зафиксировать в последних уравнениях

однородные координаты xu точки проективного пространства Pm. При этом

через каждую точку многообразия Сегре S(m,n) проходит одна плоская обра-

зующая одного семейства и одна плоская образующая другого семейства. Лю-

бые две плоские образующие различных семейств пересекаются в одной точке,

а плоские образующие одного семейства не имеют общих точек.

Многообразие S(m,n) можно представить как семейство (m+n−1)-мерных

алгебраических многообразий Сегре S(m−1, n) для всех гиперплоскостей p про-

ективного пространства Pm или как семейство (m + n − 1)-мерных алгебраи-

ческих многообразий Сегре S(m,n− 1) для всех гиперплоскостей p∗ проектив-

ного пространства Pn. Замечая, что пересечение алгебраических многообра-

зий S(m,n− 1) и S(m− 1, n) для двух фиксированных гиперплоскостей p и p∗

проективных пространств Pn и Pm представляет собой (m+ n− 2)- мерное ал-

гебраическое многообразие Сегре S(m− 1, n− 1), можно многообразие S(m,n)

представить как семейство (m + n − 2)-мерных алгебраических многообразий

Сегре S(m−1, n−1) для всех гиперплоскостей p и p∗ проективных пространств

Pm и Pn.

Рассмотрим в качестве примера двумерное многообразие Сегре S(1, 1).

Многообразие S(1, 1) представляет собой невырожденную линейчатую квадри-

ку трехмерного проективного пространства, несущую однопараметрическое се-

мейство прямолинейных α-образующих и однопараметрическое семейство пря-

молинейных β-образующих. Через каждую точку этой квадрики проходит одна

α-образующая и одна β-образующая. При этом две прямолинейные образую-

щие, принадлежащие различным семействам, пересекаются, а две прямолиней-

ные образующие, принадлежащие одному семейству, не имеют общих точек.

Квадрика S(1, 1) определяется уравнением

z0
0z

1
1 − z1

0z
0
1 = 0.

Многообразие S(1, 1) можно представить как одномерное многообразие

α-образующих и как одномерное многообразие β-образующих. С другой сторо-
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ны, это многообразие Сегре S(1, 1) образуют прямые, пересекающие три фикси-

рованные прямые общего положения трехмерного проективного пространства.

Здесь следует заметить, что в аффинных координатах двумерному многооб-

разию Сегре S(1, 1) соответствуют однополостный гиперболоид и гиперболиче-

ский параболоид.

3. Характеристические (m − 1)- и (m + 1)-мерные

плоскости торсов, принадлежащих комплексам

m-мерных плоскостей n-мерного проективного

пространства, содержащих конечное число торсов

Рассмотрим в проективном пространстве Pn ρ-мерные (ρ = m(n−m−1)+1)

комплексы Cρ m-мерных плоскостей, содержащих конечное число торсов — раз-

вертывающихся поверхностей. Условие, при котором комплексы Cρ, содержа-

щие конечное число торсов, определяется из следующих рассуждений. Рассмот-

рим проективизацию касательной плоскости Tl�(m,n) с центром в точке l. Эта

проективизация представляет собой проективное пространство P (n−m)(m+1)−1

= PTl�(m,n). В этом проективном пространстве должно выполняться следую-

щее равенство:

dimPTlV
ρ + dimSl(m,n−m− 1)

= dimP (m+1)(n−m)−1 + dim(PTlV
ρ ∩ Sl(m,n−m− 1)).

Если размерность пересечения плоскости PTlV
ρ и многообразия Сегре

Sl(m,n−m− 1) равна r, то получим

(ρ− 1) + (m + (n−m− 1)) = (m + 1)(n−m)− 1 + r.

Отсюда следует, что

ρ− 1 = m(n−m− 1) + r.

Утверждение, что комплекс Cρ m-мерных плоскостей в проективном про-

странстве Pn содержит конечное число торсов, означает равенство нулю раз-

мерности пересечения плоскости PTlV
ρ и многообразия Сегре Sl(m,n−m− 1),

т. е. r = 0. Если r = 0, то искомую зависимость размерности комплекса Cρ, его

m-мерной образующей и проективного пространства Pn получаем в виде

ρ− 1 = m(n−m− 1).

Таким образом, комплекс Cρ m-мерных плоскостей в проективном про-

странстве Pn содержит конечное число торсов тогда и только тогда, когда раз-

мерность комплекса Cρ, его m-мерной образующей и проективного простран-

ства Pn связаны полученным соотношением.

Комплексу Cρ при грассмановом отображении [24, 25] соответствует ρ-мер-

ное многообразие V ρ, лежащее на алгебраическом многообразии �(m,n), яв-

ляющемся образом многообразия G(m,n) m-мерных плоскостей проективного
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пространства Pn. В каждой своей точке l, соответствующей m-мерной плоско-

сти L проективного пространства Pn, многообразие V ρ имеет ρ-мерную каса-

тельную плоскость TlV
ρ.

Проективизация касательной плоскости TlV
ρ с центром в точке l представ-

ляет собой (ρ − 1)-мерную проективную плоскость PTlV
ρ. Различным видам

взаимного расположения плоскости PTlV
ρ и инвариантного многообразия Се-

гре Sl(m,n−m−1) = Pm×Pn−m−1, являющимся проективизацией асимптоти-

ческого конуса Bl(2) асимптотических направлений второго порядка, соответ-

ствуют различные классы комплексов Cρ ⊂ G(m,n). При этом конус Bl(2) есть

конус Сегре Cl(m+1, n−m) и представляет собой пересечение алгебраического

многообразия �(m,n) и его касательного пространства Tl�(m,n), т. е.

Bl(2) = �(m,n) ∩ Tl�(m,n).

В проективном пространстве Pn рассмотрим семейство точечных реперов

AI (I, J,K = 0, 1, . . . , n) и семейство реперов, образованных гиперплоскостями

αI = (−1)IA0 ∧ . . . ∧AI−1 ∧AI+1 ∧ . . . ∧An.

Уравнения перемещения этих реперов имеют вид

dAI = ωJ
I AJ , dαI = −ωI

Jα
J ,

где ωJ
I — линейные дифференциальные формы, удовлетворяющие структурным

уравнениям проективного пространства Pn:

dωJ
I = ωK

I ∧ ωJ
K , ΣωI

I = 0.

Пусть L — m-мерная плоскость пространства Pn. Свяжем с этой плоско-

стью семейство точечных реперов так, чтобы точки Ai (i = 0, 1, . . . ,m) принад-

лежали плоскости L. Тогда

dAi = ωj
iAj + ωp

iAp, dAp = ωi
pAi + ωq

pAq,

где i, j = 0, 1, . . . ,m и p, q = m + 1,m + 2, . . . , n. Отсюда видно, что m-мерная

плоскость L в пространстве Pn зависит от (m + 1)(n −m) параметров, линей-

ными комбинациями дифференциалов которых являются формы ωp
i . На мно-

гообразии �(m,n) асимптотические направления второго порядка, выходящие

из точки l, определяются условием

d2l = 0 (modTl�(m,n)).

Отсюда следует, что уравнения конуса Bl(2) асимптотических направлений вто-

рого порядка имеют вид

ωp
i ω

q
j − ωq

i ω
p
j = 0. (1)

Из этих уравнений видно, что координаты ωp
i точки конуса Bl(2) допускают

параметрическое представление

ωp
i = aix

p. (2)
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Поэтому конус Bl(2) асимптотических направлений второго порядка совпадает

с конусом Сегре Cl(m + 1, n−m).

Рассмотрим теперь проективизацию касательной плоскости Tl�(m,n) с цен-

тром в точке l. Эта проективизация представляет собой проективное простран-

ство P (n−m)(m+1)−1 = PTl�(m,n), в котором формы ωp
i являются однород-

ными координатами произвольной точки. При проективизации асимптотиче-

скому конусу Bl(2) соответствует многообразие Сегре Sl(m,n −m − 1) проек-

тивного пространства P (n−m)(m+1)−1, определяемого теми же уравнениями (1),

что и конус Bl(2) в касательном пространстве Tl�(m,n). Многообразие Сегре

Sl(m,n−m−1) представляет собой ((m+1)(n−m)−1)−m(n−m−1) = (n−1)-

мерную алгебраическую поверхность, несущую два семейства плоских образую-

щих размерностей m и n−m−1, зависящих соответственно от n−m−1 и m па-

раметров. При этом две образующие, принадлежащие различным семействам,

имеют общую точку, а две образующие, принадлежащие одному семейству, не

пересекаются. Через каждую его точку проходит по одной образующей из каж-

дого семейства. В пространстве Pn многообразию Сегре Sl(m,n−m−1) соответ-

ствует совокупность m-мерных плоскостей, пересекающих m-мерную плоскость

L по (m− 1)-мерной плоскости. Каждая из этих m-мерных плоскостей лежит в

одной (m + 1)-мерной плоскости с m-мерной плоскостью L. Многообразие Се-

гре Sl(m,n−m− 1) остается инвариантным при проективных преобразованиях

пространства P (n−m)(m+1)−1.

Плоскость PTlV
ρ в пространстве P (n−m)(m+1)−1 = PTl�(m,n) определя-

ется теми же уравнениями, что и касательная плоскость TlV
ρ в касательном

пространстве Tl�(m,n).

Поскольку на комплексе Cρ m-мерная плоскость L зависит от ρ параметров,

среди форм ωp
i лишь ρ линейно независимых. Следовательно, комплекс Cρ

задается n− 1 (α = 1, 2, . . . , n− 1) дифференциальными уравнениями:

�αi
p ωp

i = 0, (3)

где ωp
i — линейные дифференциальные формы, определяющие перемещение m-

мерной плоскости L в пространстве Pn.

Рассмотрим однопараметрическое семейство m-мерных плоскостей L в про-

странстве Pn. Такое семейство представляет собой (m + 1)-мерную поверх-

ность с m-мерными плоскими образующими. Эта поверхность называется тор-

сом [1, 4], если она является тангенциально вырожденной поверхностью ранга

один. Торсу на алгебраическом многообразии �(m,n) соответствует кривая, ка-

сательные к которой служат прямолинейными образующими этого многообра-

зия. Данная кривая является асимптотической линией многообразия �(m,n),

поэтому в произвольной точке этой линии выполняются уравнения (1). Сле-

довательно, дифференциальные уравнения торсов в пространстве Pn можно

записать в виде

ωp
i = aix

pdt. (4)
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Каждый торс, проходящий через m-мерную плоскость L, определяет на ней

характеристическую (m−1)-мерную плоскость, которая является пересечением

двух бесконечно близких образующих, и характеристическую (m + 1)-мерную

плоскость — касательную плоскость к торсу. Найдем уравнения характеристи-

ческих образов торсов. Пусть M = xiAi (i = 0, 1, . . . ,m) — произвольная точка

m-мерной плоскости L . Дифференциал этой точки в силу (4) вычисляется так:

dM =
(
dxi + xjωi

j

)
Ai + (aix

i)(xpAp) dt,

где p = m + 1,m + 2, . . . , n. Отсюда видно, что характеристическая (m − 1)-

мерная плоскость в m-мерной плоской образующей L комплекса Cρ определя-

ется уравнением

aix
i = 0,

а характеристическая (m + 1)-мерная плоскость, содержащая m-мерную плос-

кую образующую L комплекса Cρб определяется m-мерной плоскостью L и точ-

кой:

S = xpAp.

Из системы (3) ввиду (4) получим следующую систему уравнений:

�αi
p aix

p = 0, (5)

где α = 1, 2, . . . , n − 1. Эта система определяет характеристическую (m − 1)-

мерную плоскость торса, принадлежащего комплексу Cρ, если выполняется

условие

rang
(
�αi
p ai

)
= n−m− 1. (6)

Из этого соотношения определяются характеристические (m− 1)-мерные плос-

кости в m-мерной образующей L комплекса Cρ. Условие

rang(�αi
p xp) = m (7)

определяет точки S пересечения характеристических (m+1)-мерных плоскостей

с аффинно двойственной к m-мерной плоскости L в пространстве Pn (n−m−1)-

мерной плоскостью. Эти точки вместе с m-мерной плоскостью L определяют

(m + 1)-мерные характеристические плоскости торса — (m + 1)-мерные каса-

тельные плоскости торса.

4. К геометрии инвариантного

многообразия Сегре Sl(m,n −m − 1)

В проективном пространстве Pn рассмотрим ρ-мерный комплекс Cρ (ρ =

m(n−m−1)+1) m-мерных плоскостей L, обладающий конечным числом торсов,

принадлежащих этому комплексу. Комплекс Cρ задается дифференциальными

уравнениями (3).
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Теорема. Многообразие Сегре Sl(m,n−m−1) представляет собой (n−1)-

мерную алгебраическую поверхность порядка
(

n−1

m

)
=
(

n−1

n−m−1

)
.

Доказательство. Определим порядок алгебраического многообразия Се-

гре Sl(m,n−m−1) как число точек этого многообразия, принадлежащих одной

(ρ− 1)-мерной плоскости, пересекающей многообразие Sl(m,n−m− 1) в конеч-

ном числе точек.

Заметим, что для нахождения порядка многообразия Сегре Sl(m,n−m−1)

необходимо определение пересечения m(n−m− 1) квадрик:

ωp
i ω

q
j − ωq

i ω
p
j = 0, (8)

тогда как условие, из которого находятся (m − 1)-мерные характеристические

плоскости m-мерной образующей L комплекса Cρ:

rang
(
�αi
p ai

)
= n−m− 1, (9)

приводит к определению пересечения m тангенциальных гиперповерхностей

класса n − m, лежащих в m-мерной плоскости L ⊂ Cρ, а условие, на основе

которого находятся (m+1)-мерные характеристические плоскости, проходящие

через m-мерную образующую L комплекса Cρ:

rang(�αi
p xp) = m, (10)

приводит к определению пересечения n −m− 1 гиперконусов с m-мерной вер-

шиной L ⊂ Cρ порядка m + 1.

На основании этого для решения поставленной задачи будем использовать

геометрию грассмановых многообразий, а также метод математической индук-

ции. При этом решение поставленной задачи методом математической индук-

ции состоит в том, что этот метод применяется в доказательстве утверждений

для многообразий V ρ, лежащих на грассмановых многообразияхG(1, n), G(2, n),

. . . , G(m,n), а также для многообразий V ρ, принадлежащих грассманову много-

образию G(m,n), где на первом шаге проверяется справедливость утверждения

для многообразия G(1, n), на втором шаге — для многообразия G(2, n), и, на-

конец, на третьем шаге в предположении, что утверждение справедливо для

многообразия G(m, k − 1) (k = 1, . . . , n), доказывается справедливость утвер-

ждения для многообразия G(m, k).

Итак, рассмотрим многообразие V 2
1 ⊂ P 3, лежащее на грассмановом мно-

гообразии G(1, 3). Условие (9), определяющее характеристические точки на

прямолинейной образующей A0 ∧ A1 многообразия V 2
1 ⊂ G(1, 3), представляет

собой квадратичное уравнение вида

det
(
∧α1i1
p1

ai1
)

= 0. (11)

где i1 = 0, 1; p1 = 2, 3; α1 = 1, 2. Это квадратичное уравнение определяет две

характеристические точки на прямолинейной образующей A0∧A1 многообразия
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V 2
1 . Поэтому плоскость PTlV

2
1 пересекает многообразие Сегре Sl(1, 1) в двух

точках и, следовательно,

degSl(1, 1) = 2. (12)

Это говорит о том, что

deg Sl(1, 1) =
(

3−1

1

)
=
(

3−1

3−1−1

)
= 2. (13)

Далее рассмотрим многообразие V 3
1 ⊂ P 4, лежащее на грассмановом много-

образии G(1, 4). Условие (9), из которого находятся характеристические точки

на образующей A0 ∧A1 многообразия V 3
1 ⊂ G(1, 4), представляет собой кубиче-

ское уравнение вида

det
(
∧α2i2
p2

ai2
)

= 0. (14)

где i2 = 0, 1; p2 = 2, 3, 4; α2 = 1, 2, 3. Это кубическое уравнение определяет три

характеристические точки на прямолинейной образующей A0∧A1 многообразия

V 3
1 . Поэтому плоскость PTlV

3
1 пересекает многообразие Сегре Sl(1, 2) в трех

точках и, следовательно,

degSl(1, 2) = 3. (15)

Это свидетельствует о том, что

deg Sl(1, 2) =
(

4−1

1

)
=
(

4−1

4−1−1

)
= 3. (16)

Теперь предположим, что утверждение теоремы верно для некоторого мно-

гообразия V k−1
1 ⊂ P k, лежащего на грассмановом многообразии G(1, k), т. е.

deg Sl(1, k − 2) =
(

k−1

1

)
=
(

k−1

k−1−1

)
. (17)

Докажем, что утверждение теоремы справедливо для многообразия V k
1 ⊂ P k+1,

лежащего на грассмановом многообразии G(1, k + 1):

deg Sl(1, k − 1) =
(

(k+1)−1

1

)
=
(

(k+1)−1

(k+1)−1−1

)
. (18)

Обозначим разность порядков многообразий Сегре Sl(m,n−m) и Sl(m,n−

m− 1) через µm:

µm = deg Sl(m,n−m)− degSl(m,n−m− 1). (19)

Поскольку m = 1, получим

µ1 = degSl(1, k − 1)− degSl(1, k − 2) = 1 =
(

k−1

0

)
. (20)

Поэтому по предположению имеем

deg Sl(1, k − 1) = degSl(1, k − 2) + µ1 = degSl(1, k − 2) + 1

= degSl(1, k − 2) +
(
k−1
0

)
=
(
k−1
1

)
+
(
k−1
0

)
=
(

k

1

)
. (21)

Это доказывает утверждение теоремы для многообразия V k
1 ⊂ G(1, k + 1).
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Рассмотрим многообразие V 3
2 пространства P 4, лежащее на грассмановом

многообразии G(2, 4). Условие (10) определяет характеристические трехмер-

ные характеристические плоскости, проходящие через двумерную образующую

A0∧A1∧A2 соответствующего торса, лежащего на многообразии V 3
2 . Оно пред-

ставляет собой кубическое уравнение вида

det
(
∧α3i3
p3

xp3
)

= 0. (22)

где i3 = 0, 1, 2; p3 = 3, 4; α3 = 1, 2, 3. Это кубическое уравнение определя-

ет три трехмерные характеристические плоскости. Поэтому плоскость PTlV
3
2

пересекает многообразие Сегре Sl(2, 1) в трех точках и, следовательно,

degSl(2, 1) = 3. (23)

Это говорит о том, что

deg Sl(2, 1) =
(

4−1

2

)
=
(

4−1

4−2−1

)
= 3. (24)

Для многообразия V 5
2 ⊂ P 5, лежащего на грассмановом многообразии G(2, 5),

доказательство утверждения теоремы приведено в работе [29], а именно плос-

кость PTlV
5
2 пересекает многообразие Сегре Sl(2, 2) в шести точках, т. е.

degSl(2, 2) =
(

4

2

)
=
(

4

5−2−1

)
= 6. (25)

Теперь предположим, что утверждение теоремы верно для некоторого мно-

гообразия V 2k−5
2 ⊂ P k, лежащего на грассмановом многообразии G(2, k), т. е.

deg Sl(2, k − 3) =
(

k−1

1

)
=
(

k−1

k−2−1

)
. (26)

Докажем, что утверждение теоремы справедливо для многообразия V 2k−3
2 ⊂

P k+1, лежащего на грассмановом многообразии G(2, k + 1):

degSl(2, k − 2) =
(

k

2

)
=
(

k

(k+1)−2−1

)
. (27)

Поскольку m = 2, получим

µ2 = deg Sl(2, k − 2)− deg Sl(2, k − 3) = k − 1 =
(

k−1

1

)
. (28)

Поэтому по предположению имеем

deg Sl(2, k − 2) = degSl(2, k − 3) + µ2 = degSl(2, k − 3) + (k − 1) =

= degSl(2, k − 3) +
(
k−1
1

)
=
(
k−1
2

)
+
(
k−1
1

)
=
(

k

2

)
. (29)

Это доказывает утверждение теоремы для многообразия V 2k−3
2 ⊂ G(2, k + 1).

Рассмотрим многообразие Vm+1
m пространства Pm+2, лежащее на грассма-

новом многообразии G(m,m + 2). Справедливость утверждения теоремы сле-

дует из двойственности данного многообразия многообразию V m+1
1 ⊂ Pm+2,

принадлежащему грассманову многообразию G(1,m + 2):

deg Sl(m, 1) = degSl(1,m) =
(

m+1

1

)
=
(

m+1

m

)
. (30)
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Теперь рассмотрим многообразие V 2m+1
m пространства Pm+3, лежащее на

грассмановом многообразииG(m,m+3). Справедливость утверждения теоремы

следует из двойственности данного многообразия многообразию V 2m+1
2 ⊂ Pm+3,

принадлежащему грассманову многообразию G(2,m + 3):

deg Sl(m, 2) = degSl(2,m) =
(

m+2

2

)
=
(

m+2

m

)
. (31)

Предположим, что утверждение теоремы верно для некоторого многооб-

разия V
m(k−m−1)+1
m ⊂ P k, лежащего на грассмановом многообразии G(m, k),

т. е.

degSl(m, k −m− 1) =
(

k−1

m

)
=
(

k−1

k−m−1

)
. (32)

Докажем, что утверждение теоремы справедливо для многообразия V
m(k−m)+1
m

⊂ P k+1, лежащего на грассмановом многообразии G(m, k + 1):

deg Sl(m, k −m) =
(

k

m

)
=
(

k

(k+1)−m−1

)
. (33)

При произвольном значении m получим

µm = deg Sl(m, k −m)− deg Sl(m, k −m− 1) =

= (k − 1)!/((m− 1)!(k −m)!) =
(

k−1
m−1

)
. (34)

Поэтому по предположению имеем

deg Sl(m, k −m) = deg Sl(m, k −m− 1) + µm =

= degSl(m, k −m− 1) + (k − 1)!/((m− 1)!(k −m)!) =

= deg Sl(m, k −m− 1) +
(

k−1
m−1

)
=
(

k−1

m

)
+
(

k−1
m−1

)
=
(

k

m

)
. (35)

Это доказывает утверждение, что многообразие Сегре Sl(m,n−m−1) представ-

ляет собой (n − 1)-мерную алгебраическую поверхность указанного в теореме

порядка.

Таким образом, имеем

deg Sl(m,n−m− 1) =
(

n−1

m

)
=
(

n−1

n−m−1

)
. (36)

Теорема полностью доказана.
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TO PROJECTIVE DIFFERENTIAL GEOMETRY OF

COMPLEXES OF m–DIMENSIONAL PLANES IN

PROJECTIVE SPACE Pn CONTAINING A FINITE

NUMBER OF DEVELOPABLE SURFACES

I. V. Bubyakin

Abstract: The article focuses on differential geometry of ρ-dimensional complexes Cρ

of m-dimensional planes in the projective space Pn containing a finite number of devel-
opable surfaces.

This article relates to researches on projective differential geometry based on the
moving frame method by E. Cartan and method of exterior differential forms. These
methods make it possible to study from a single viewpoint differential geometry of sub-
manifolds of different dimensions of a Grassmann manifold and also generalize the results
to wider classes of manifolds of multidimensional planes.

In order to study such submanifolds we apply the Grassmann mapping of the
manifold G(m,n) onto the (m + 1)(n −m)-dimensional algebraic manifold �(m,n) of

the space PN , where N =
(

n+1
m+1

)

− 1.

Primary task of differential geometry of submanifolds of Grassmann manifolds is
to carry out uniform classifications of various classes of such submanifolds, to determine
their structure and–a related task–to define the degree of freedom of their existence, and
also to research the properties of submanifolds of various classes.

The intersection of an algebraic manifold �(m, n) with its tangent space Tl�(m,n)
represents the Segre cone Cl(m + 1, n − m). This cone is of dimension n and carries
plane generatrices with dimensions m + 1 and n−m intersecting in straight lines. The
projectivization PBl(2) of this cone is the Segre manifold Sl(m,n−m − 1).

The Segre manifold Sl(m,n−m−1)s is invariant under projective transformations

of the space P (m+1)(n−m)−1 = PTl�(m, n), which is the projectivization with the
center at point l of the tangent space Tl�(m,n) to the algebraic manifold �(m,n). The
Segre manifold Sl(m,n−m− 1) is used for classification of the considered submanifolds
of the Grassmann manifold G(m,n), and also for interpretation of their properties in
projective algebraic manifold terms. Classification of submanifolds of the Grassmann
manifold G(m,n) is based on various configurations of plane PTl�(m,n) and on the
Segre manifold Sl(m,n −m − 1). The purpose of this article is to prove geometrically
a theorem for determining the order of the Segre manifold Sl(m,n−m− 1).

DOI: 10.25587/SVFU.2023.10.59.001

Keywords: Grassmann manifold, complexes of multidimensional planes, Segre mani-
fold.
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О ПЕРВОЙ СМЕШАННОЙ ЗАДАЧЕ

ДЛЯ ВЫРОЖДАЮЩИХСЯ ПАРАБОЛИЧЕСКИХ

УРАВНЕНИЙ В ЗВЕЗДНЫХ ОБЛАСТЯХ

С ЛЯПУНОВСКОЙ ГРАНИЦЕЙ

В БАНАХОВЫХ ПРОСТРАНСТВАХ

И. М. Петрушко,

Т. В. Капицына, М. И. Петрушко

Аннотация. Статья посвящена исследованию поведения решения параболическо-
го уравнения второго порядка с вырождением Трикоми на боковой границе цилин-
дрической области QT , где Q — звездная область, граница которой ∂Q — (n − 1)-
мерная замкнутая поверхность без края класса C1+λ, 0 < λ < 1. Рассматривается
вопрос об однозначной разрешимости первой смешанной задачи для уравнения, ко-
гда граничная и начальная функции принадлежат пространствам типа Lp, p > 1.
Данная тематика восходит к классическим работам Литтлвуда — Пэли и Ф. Рисса,
посвященных граничным значениям аналитических функций. Все направления
принятия граничных значений для равномерно эллиптических уравнений оказыва-
ются равноправными, и решение обладает свойством, аналогичным свойству непре-
рывности по отношению к набору переменных. В случае вырождения уравнения
на границе области, когда направления не равны, ситуация усложняется. В этом
случае постановка первой краевой задачи определяется типом вырождения.

DOI: 10.25587/SVFU.2023.56.84.002

Ключевые слова: вырождающиеся параболические уравнения, вырождение ти-
па Трикоми, функциональные пространства, первая смешанная задача, разреши-
мость, граничные и начальные значения решений, априорные оценки.

Рассмотрим поведение решения параболического уравнения

∂u

∂t
−

n∑

i,j=1

(aijuxj
)xi

+

n∑

i=1

aiuxi
+ a0u = f(x, t),

коэффициенты которого aij , ai ∈ C1(QT ), i, j = 1, 2, . . . , n, a ∈ (QT ), с вырож-

дением типа Трикоми на боковой границе цилиндрической области QT , где Q —

звездная область, граница которой ∂Q — (n−1)-мерная замкнутая поверхность

без края класса C1+λ, 0 < λ < 1. Также изучим вопрос об однозначной разреши-

мости первой смешанной задачи для уравнения, когда граничная и начальная

функции принадлежат пространствам типа Lp, p > 1.

Данной тематике положено начало в классических работах Ф. Рисса [1] и

Литтлвуда — Пэли [2–4], посвященных граничным значениям аналитических

c© 2023 Петрушко И. М., Капицына Т. В., Петрушко М. И.
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функций. Дальнейшее развитие этой тематики для равномерно эллиптических

уравнений получило в работах В. П. Михайлова [5, 6], А. К. Гущина [7, 8]. В бо-

лее ранних работах И. М. Петрушко [9, 10] было доказано, что условие на глад-

кость границы (∂Q ∈ C2) можно ослабить. Для этого в определении принятия

граничного значения при отображении границы ∂Q нужно брать сдвиг не по

нормали в каждой точке x ∈ ∂Q, а взять достаточно мелкое покрытие гра-

ницы и каждый кусок этого покрытия «параллельно» сдвигать по нормали в

одной фиксированной точке этого куска. Для областей с ляпуновской границей

было доказано, что приведенные выше утверждения о разрешимости и свой-

ствах решения первой смешанной задачи остаются справедливыми и при таком

определении принятия решением граничного и начального значений. При этом

разрешимость задачи и соответствующие оценки решения не зависят от выбора

покрытия границы.

В работах А. К. Гущина была предложена постановка задачи Дирихле, не

требующая для придания смысла входящим в нее объектам условия гладкости

границы. Для эллиптического уравнения без младших членов в этих работах

были доказаны однозначная разрешимость и справедливость оценки решения

рассматриваемой задачи Дирихле при существенно более слабых условиях на

гладкость границы области и коэффициентов уравнения. При этом было дока-

зано, что решение задачи Дирихле обладает свойством (n − 1)-мерной непре-

рывности, обобщающим непрерывность функции по совокупности переменных.

Свойство (n−1)-мерной непрерывности решения показывает, что в определении

принятия решением граничного значения можно сравнить не только значения

решения на «параллельных» к границе или близких к ним поверхностях, но и

на образах ∂Q при отображениях из довольно широкого класса. В частности,

поверхность ∂Q можно разбить на достаточно мелкие части и каждую из них

подвинуть и повернуть (не выходя из Q) так, чтобы точки переместились «не

очень далеко», при этом разные точки границы могут перейти в одну точку, но

нельзя допустить, чтобы таких точек было «слишком много».

Введенное А. К. Гущиным понятие (n−1)-мерной непрерывности получило

широкое применение в серии работ А. К. Гущина и В. П. Михайлова, посвя-

щенных исследованию разрешимости широкого класса нелокальных задач для

эллиптического уравнения второго порядка без младших членов. При наибо-

лее слабых ограничениях на гладкость границы (и на коэффициенты уравне-

ния) критерий существования граничного значения установлен в [11–15]. При

этом, как показано в [11], все направления принятия граничных значений для

равномерно эллиптических уравнений оказываются равноправными, решение

обладает свойством, аналогичным свойству непрерывности по совокупности пе-

ременных. В работе В. Ж. Думаняна [16] исследовалась разрешимость задачи

Дирихле для общего эллиптического уравнения второго порядка (с негладкими

коэффициентами) и были установление свойства (n− 1)-мерной непрерывности

решения.

Разрешимости краевых задач для вырождающихся эллиптических уравне-
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ний, начиная с работ Ф. Трикоми [17] и М. В. Келдыша [18], посвящено большое

число работ (см. [19, 20]). Однако практически мало исследовался вопрос о по-

ведении вблизи границы решений эллиптических и параболических уравнений,

вырождающихся на границе области. Отметим, например, работы И. М. Пет-

рушко [21], Т. В. Капицыной [22, 23].

Пусть область Q, граница которой принадлежит классу C1+λ, 0 < λ < 1,

является строго звездной относительно некоторой точки. Не умаляя общно-

сти, можно считать, что начало координат содержится в Q и область Q строго

звездная относительно начала координат. Для краткости такую область будем

называть просто звездной. В этом случае границу ∂Q области Q можно задать

уравнением

|x| = F (x),

где F (x) — положительная однородная функция нулевой степени:

∂Q = {|x| = F (x)}.

Область Q при этом задается неравенством

Q = {|x| < F (x)}.

Обозначим через Qδ
∗ подобласть области Q:

Qδ
∗ = {|x| < (1 − δ)F (x)}

с границами ∂Qδ
∗ = {|x| = (1−δ)F (x)}, и наряду с расстоянием r(x) = lim

y∈∂Q
|x−y|

будем рассматривать расстояние

r1 = 1−
|x|

F (x)
,

удовлетворяющее для всех x ∈ Q неравенствам

γ2r(x) ≤ r1(x) ≤ γ−1
2 r(x)

с постоянной γ2 > 0.

Решение задачи �u = −1, x ∈ Q, u|x∈∂Q = 0 будем обозначать через ρ(x).

Как известно, ρ(x) ∈ C1+λ(Q) и существует такая постоянная γ1 > 0, что для

всех x ∈ Q выполняются неравенства:

γ1r1(x) ≤ ρ(x) ≤ γ−1
1 r1(x).

Кроме того, существует такая постоянная C(.), зависящая от λ′, что

|ρxixj
| ≤

C(λ′)

[r1(x)]1−λ′
∀i, j = 1, . . . , n, ∀λ′, 0 < λ′ ≤ λ.

Обозначим через QT цилиндр Q× (0, T ). Рассмотрим в QT уравнение

Lu =
∂u

∂t
−

n∑

i,j=1

(aijuxj
)xi

+

n∑

i=1

aiuxi
+ a0u = f(x, t), (1)
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с вещественными коэффициентами aij , ai, i, j = 1, 2, . . . , n, принадлежащими

C1(QT ), a ∈ C(QT ).

Уравнение (1) будем предполагать параболическим в QT , т. е. для любой

точки x ∈ Qδ
∗, δ ∈ (0, δ0], и для любых t ∈ [0, T ] существует γδ > 0, γδ → 0 при

δ → 0, такое, что для всех ξ = (ξ1, . . . , ξn) ∈ Rn

�(x, ξ, t) =

n∑

i,j=1

aijξiξj ≥ γδ|ξ|
2
.

Для (x0, t) ∈ ∂Q× (0, T ) квадратичная форма вырождается, т. е.

�(x0, ξ, t) =

n∑

i,j=1

aij(x0, t)ξiξj ≥ 0.

Однако будем предполагать, что существует такая постоянная γ0 > 0, что для

всех (x0, t) ∈ ∂Q× (0, T )

γ0 ≤

n∑

i,j=1

aij(x0, t)νiνj ≤ (γ0)−1,

где ~ν(x0) — вектор внешней по отношению к Q единичной нормали к поверхно-

сти ∂Q в точке x0.

Будем предполагать, что правая часть уравнения (1) f(x, t) принадлежит

Lp(Q
T ), p > 1.

Определение 1. Функцию u(x, t) ∈ W 1,0
p,loc(Q

T ) называют обобщенным

решением уравнения (1), если для всех финитных в QT функций η(x, t) ∈

W 1,1
q (QT ), 1

p + 1
q = 1,

∫

QT

[
−uηt +

n∑

i,j=1

aijuxi
ηxj

+

n∑

i=1

aiuxi
η + auη

]
dxdt =

∫

QT

fη dxdt. (2)

Будем говорить, что функция ω(x, t) финитна по x в QT , если существует

область Q′, строго лежащая в Q , такая, что ω(x, t) = 0 вне Q′
T
. Предположим,

что функция u(x, t), определенная в QT , является обобщенным решением урав-

нения (1) из W 1,0
p,loc(Q

T ). Тогда в силу ограничений на коэффициенты уравнения

(1) для любой функции ω(x, t) ∈ W 1,1
q (QT ) и финитной по x в QT для любых

β ∈ (0, δ0) и T ′ ∈
(
T
2 , T

)
имеет место равенство

∫

Q

u(x, T ′)η(x, T ′) dx−

∫

Q

u(x, β)η(x, β) dx

+

T ′∫

β

∫

Q

[
−uηt +

n∑

i,j=1

aijuxi
ηxj

+

n∑

i=1

aiuxi
η + auη

]
dxdt =

T ′∫

β

∫

Q

fη dxdt.

Так как уравнение (1) параболическое в QT , справедлива следующая
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Лемма 1. Пусть u(x, t) — обобщенное из W 1,0
2,loc(Q

T ) решение уравнения

(1), правая часть которого f(x, t) ∈ Lp(Q
T ). Тогда для любых δ ∈ (0, δ0) и для

любого T ′ ∈
(
T
2 , T

)
справедливо равенство

1

p

∫

Qδ
∗

|u(x, T ′)|pρ

(
x

1− δ

)
dx−

1

p

∫

Qδ
∗

|u(x, δ)|pρ

(
x

1− δ

)
dx

+ (p− 1)

T ′∫

δ

∫

Qδ
∗

n∑

i,j=1

aijuxi
uxj
|u|p−2ρ

(
x

1− δ

)
dxdt

−

T ′∫

δ

∫

Qδ
∗

n∑

i=1

aiuxi
|u|p−1ρ

(
x

1− δ

)
dxdt

−
1

p

T ′∫

δ

∫

∂Qδ
∗

n∑

i,j=1

(
aij

ρxi
ρxj

|∇ρ|

)
|u|p dsdt−

1

p

T ′∫

δ

∫

Qδ
∗

n∑

i,j=1

(aijρxi
)xj
|u|p dxdt

−
1

p

T ′∫

δ

∫

Qδ
∗

n∑

i=1

(
aiρ

(
x

1− δ

))

xi

|u|p dxdt +

T ′∫

δ

∫

Qδ
∗

a|u|pρ

(
x

1− δ

)
dxdt

=

T ′∫

δ

∫

Qδ
∗

f |u|p−1 signuρ

(
x

1− δ

)
dxdt. (3)

Введем обозначения:

Mδ ≡Mδ(u) = max
δ≤µ≤δ0




T ′∫

µ

∫

∂Qµ
∗

|u|p dSµdt +

∫

Qµ
∗

|u(x, µ)|pρ

(
x

1− µ

)
dx


 ,

Nδ =

T ′∫

δ

∫

Qδ
∗

n∑

i,j=1

aijuxi
uxj
|u|p−2ρ

(
x

1− δ

)
dxdt +

∫

Qδ
∗

|u(x, T ′)|pρ

(
x

1− δ

)
dx.

Прежде всего отметим, что совершенно аналогично тому, как доказывается

лемма 2 работы [21], доказывается следующая

Лемма 2. Пусть u(x, t) — обобщенное из W 1,0
p,loc(Q

T ) решение уравнения

(1). Тогда для любого ε > 0 существует постоянная C(ε) такая, что для произ-

вольного δ ∈
(
0, δ0

2

]

T ′∫

δ

∫

Qδ
∗

|u|p

ρ
(

x
1−δ

)1−λ′
dxdt ≤ C(ε)

T ′∫

δ

∫

Qδ
∗

|u|pρ

(
x

1− δ

)
dxdt

+ ε

T ′∫

δ

∫

Qδ
∗

n∑

i,j=1

aijuxi
uxj
|u|p−2ρ

(
x

1− δ

)
dxdt.
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Из леммы 2 путем несложных рассуждений вытекают следующие леммы.

Лемма 3. Пусть u(x, t) — обобщенное из W 1,0
p,loc(Q

T ) решение уравнения

(1). Тогда для всех δ ∈
(
0, δ02

]
, справедлива оценка

M(δ) +

T ′∫

δ

∫

Qδ
∗

|u|pρ

(
x

1− δ

)
dxdt ≤ C1

[
‖f‖p

Lp(QT )
+ Nδ

]

с постоянной C1, не зависящей ни от δ, ни от T ′ ∈
[
T
2 , T

)
.

Лемма 4. Пусть u(x, t) — обобщенное из W 1,0
p,loc(Q

T ) решение уравнения

(1). Тогда для всех δ ∈
(
0, δ02

]
справедлива оценка

Nδ +

T ′∫

δ

∫

Qδ
∗

|u|pρ

(
x

1− δ

)
dxdt ≤ C2

[
‖f‖p

Lp(QT )
+ M(δ)

]

с постоянной C2, не зависящей ни от δ, ни от T ′ ∈
[
T
2 , T

)
.

Для любой функции u(x, t) ∈W 1,0
p,loc(Q

T ) функция

M(δ) =

T ′∫

δ

∫

∂Qδ
∗

|u|pρ

(
x

1− δ

)
dsdt +

∫

Qδ
∗

|u(x, δ)|pρ(x) dx

непрерывна по δ ∈
(
0, δ0

2

]
. Будем говорить, что функция u(x, t) принадлежит

классу H∗p , если функция M(δ) ограничена на
(
0, δ0

2

]
, т. е. если

sup
δ∈(0, δ02 ]

M(δ) <∞.

Теорема 1. Для того чтобы обобщенное из W 1,0
p,loc(Q

T ) решение уравнения

(1) с f(x, t) ∈ Lp(Q
T ), p > 1, принадлежало классу H∗p , необходимо и достаточно,

чтобы для любого T ′, T
2 < T ′ < T, выполнялось неравенство

∫

Q

|u(x, T ′)|pρ(x) dx +

T ′∫

0

∫

Q

n∑

i,j=1

aijuxi
uxj
|u|p−2r(x) dxdt <∞.

Доказательство. Необходимость. Пусть u(x, t) ∈ H∗p . Возьмем про-

извольное T ′ ∈
[
T
2 , T

)
. На основании леммы 4 имеем

T ′∫

δ

∫

Qδ
∗

n∑

i,j=1

aijuxi
uxj
|u|p−2ρ

(
x

1− δ

)
dxdt +

∫

Qδ
∗

|u(x, T ′)|pρ

(
x

1− δ

)
dx

≤ C3

[
M(δ) + ‖f‖pLр

(QT )
]
.
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Следовательно, для всех δ ∈
(
0, δ02

]

T ′∫

δ

∫

Qδ
∗

n∑

i,j=1

aijuxi
uxj
|u|p−2ρ

(
x

1− δ

)
dxdt < const .

А так как
T ′∫

δ

∫

Qδ
∗

n∑

i,j=1

aijuxi
uxj
|u|p−2ρ

(
x

1− δ

)
dxdt

есть интеграл по QT ′ от функции, равной
n∑

i,j=1

aijuxi
uxj
|u|p−2ρ

(
x

1− δ

)

при (x, t) ∈ Qδ
∗× (δ, T ′) и нулю при (x, t) ∈ QT ′ ∧ {Qδ

∗× (δ, T ′)}, по теореме Леви

функция
n∑

i,j=1

aijuxi
uxj
|u|p−2ρ(x) и функция

n∑
i,j=1

aijuxi
uxj
|u|p−2r(x) интегриру-

емы по QT ′ .

Достаточность. Пусть для произвольного числа T ′ ∈
(
T
2 , T

)
функция

n∑
i,j=1

aijuxi
uxj
|u|p−2r(x), а вместе с ней и функция

n∑
i,j=1

aijuxi
uxj
|u|p−2ρ(x) инте-

грируемы по QT ′ , т. е.

T ′∫

0

∫

Q

n∑

i,j=1

aijuxi
uxj
|u|p−2ρ(x) dxdt <∞. (4)

Как и выше, доказывается, что∫

Q

|u(x, T ′)|pρ(x) dx <∞.

Покажем, что функция u(x, t) принадлежит H∗p . Возьмем произвольное

T ′ ∈
(
T
2 , T

)
и такое T1, чтобы T ′ < T1 < T. Несложно доказать, что для всех

δ ∈
(
0, δ02

]

T1∫

T
2

∫

Qδ
∗
\Q

δ0
∗

|u|pρ

(
x

1− δ

)
dxdt

≤ C4




T1∫

0

∫

Q

n∑

i,j=1

aijuxi
uxj
|u|p−2ρ(x) dxdt +

T1∫

T
2

∫

∂Q
δ0
∗

|u|p dsdt


.

Следовательно, в силу того, что u(x, t) ∈W 1,0
p,loc(Q

T ), и неравенства (4) имеем

T1∫

T
2

∫

Q

|u|pρ(x) dxdt <∞, (5)
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и функция
∫
Q

|u(x, t)|pρ(x) dx для п.в. t ∈
(
T
2 , T1

)
ограничена, т. е. найдется

такое T ′′, T ′ < T ′′ < T1, что

∫

Q

|u(x, T ′′)|pρ(x) dx <∞. (6)

Но тогда в силу леммы 2 и неравенств (5) и (6) имеем

∫

Qδ
∗

|u(x, δ)|pρ

(
x

1− δ

)
dx +

T ′′∫

δ

∫

∂Qδ
∗

|u|p dsdt ≤ C5.

Так как T ′ < T ′′, то

sup
0<δ<δ0/2



∫

Qδ
∗

|u(x, δ)|pρ

(
x

1− δ

)
dx +

T ′∫

δ

∫

∂Qδ
∗

|u|p dsdt


 ≤ C5,

т. е. u(x, t) ∈ H∗p . Теорема доказана.

Будем говорить, что функция u(x, t) ∈ W 1,0
p,loc(Q

T ) принимает граничное

значение

u|∂Q×(0,T ) = ϕ, ϕ ∈ Lp(∂Q× (0, T )), p > 1, (7)

в смысле Lp, если

lim
δ→+0

T ′∫

δ

∫

∂Q

|[u((1− δ)x, t)− ϕ(x, t)]|
p
dxdt = 0. (8)

Будем говорить, что принадлежащая W 1,0
p,loc(Q

T ) функция u(x, t) удовле-

творяет начальному условию

u
∣∣
t=0

= u0(x), u0(x) ∈ Lp(Q, r), p > 1, (9)

в смысле Lp с весом r(x), если

lim
δ→+0

∫

Qδ
∗

|[u(x, δ)− u0(x)]|pr(x) dxdt = 0. (10)

Определение 2. Принадлежащая W 1,0
p,loc(Q

T ) функция u(x, t) называется

обобщенным из W 1,0
p,loc(Q

T ) решением первой смешанной задачи (1), (7), (5) с

f(x, t) ∈ Lp(Q
T ), p > 1, если она удовлетворяет интегральному тождеству (2)

для всех финитных в QT функций η(x, t) ∈W 1,1
q (QT ), 1

p + 1
q = 1, удовлетворяет

граничному и начальному условиям (7), (9) в смысле равенств (8), (10).
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Теорема 2. При любых функциях ϕ ∈ Lp(∂Q × (0, T )), p > 1, u0(x) ∈

Lp(Q, r), p > 1, и любой функции f(x, t) ∈ Lр(Q
T ), p > 1, первая смешанная

задача (1), (7), (5) имеет обобщенное решение u(x, t) ∈W 1,0
p,loc(Q

T ). Это решение

единственно и для него справедлива оценка

∫

Q

|u(x, T ′)|pr(x) dx +

T ′∫

0

∫

Q

n∑

i,j=1

aijuxi
uxj
|u|p−2r(x) dxdt +

∫

QT ′

|u|p dxdt

+ max
0≤δ≤δ0




T ′∫

δ

∫

∂Qδ
∗

|u|p dsdt +

∫

Qδ
∗

|u(x, δ)|pρ

(
x

1− δ

)
dx




≤ C6

[
‖f‖pLр

(QT ′) + ‖ϕ‖pLp(∂Q×(0,T ′)) + ‖u0‖
p
Lp(Q,r)

]
. (11)

Доказательство. Пусть u(x, t) — обобщенное из W 1,0
p,loc(Q

T ) решение за-

дачи (1), (7), (5). В силу (8) и (10) функция u(x, t) принадлежит классу H∗p .

Следовательно, по теореме 1 для любого T ′ ∈
(
T
2 , T

)
функция

n∑

i,j=1

aijuxi
uxj
|u|p−2ρ(x)

интегрируема по QT ′ и на основании теоремы Лебега при δ → +0

T ′∫

δ

∫

Qδ
∗

n∑

i,j=1

aijuxi
uxj
|u|p−2ρ

(
x

1− δ

)
dxdt→

T ′∫

0

∫

Q

n∑

i,j=1

aijuxi
uxj
|u|p−2ρ dxdt.

Так как из принадлежности u(x, t) классу H∗p вытекает, что

T ′∫

0

∫

Q

|u|p dxdt <∞,

аналогично
T ′∫

δ

∫

Qδ
∗

|u|pρ

(
x

1− δ

)
dxdt→

T ′∫

0

∫

Q

|u|pρ dxdt

при δ → +0.

Следовательно, в неравенствах лемм 3 и 4 можно перейти к пределу при

δ → +0, в результате получим неравенство

T ′∫

0

∫

Q

n∑

i,j=1

aijuxi
uxj
|u|p−2ρ(x) dxdt +

T ′∫

0

∫

Q

|u|p dxdt + lim
δ→+0

M(δ)

≤ C7

[
‖f‖pLр

(QT ) + ‖ϕ‖pLp(∂Q×(0,T )) + ‖u0‖
p
Lp(Q,r)

]
,

из которого следует оценка (11).
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Перейдем к доказательству существования решения.

Возьмем произвольные функции ϕ ∈ Lp(∂Q × (0, T )), u0(x) ∈ Lp(Q, r) и

произвольную функцию f(x, t) ∈ Lр(QT ).

Пусть {ϕm} — последовательность функций из C2(∂Q× [0, T ]), сходящаяся

в Lp(∂Q× (0, T )) к функции ϕ:

‖ϕm − ϕ‖Lp(∂Q×(0,T )) → 0 (12)

при m → ∞, а {u0m} — последовательность функций из C2(Q), сходящаяся в

Lp(Q, r) к функции u0(x):

‖u0m − u0‖Lp(Q,r) → 0 (13)

при m→∞.

Пусть {fm} — некоторая последовательность функций из C2(QT ), сходя-

щаяся в Lp(Q
T ) к функции f(x, t) :

‖fm − f‖Lp(QT ) → 0 (14)

при m→∞.

Обозначим через um(x, t) решение первой смешанной задачи для уравнения

∂u

∂t
−

1

m
�u −

n∑

i,j=1

(aijuxi
)xj

+

n∑

i=1

aiuxi
+ au = fm(x, t) (15)

с граничной функцией ϕm(x, t) и начальной функцией u0m(x). Так как решение

из W 2,1
p (QT ) является решением из W 1,0

p,loc(Q
T ), для um(x, t) справедлива оцен-

ка (11). Стало быть, последовательность {um} сходится к некоторой функции

u(x, t) в некотором банаховом пространстве B с нормой

‖u‖pB =

T ′∫

0

∫

Q

|u|p dxdt + max
0≤δ≤δ0




T ′∫

δ

∫

∂Qδ
∗

|u|p dsdt +

∫

Qδ
∗

|u(x, δ)|pρ

(
x

1− δ

)
dx


,

т. е.

‖um − u‖B → 0 при m→∞. (16)

Покажем, что функция u(x, t) является обобщенным решением из простран-

ства W 1,0
p,loc(Q

T ) задачи (1), (7), (9). Поскольку ‖v‖Lp
≤ ‖v‖B для всех v ∈ B, то

u ∈ Lp(Q
T ) и ‖um− u‖Lp(QT ) → 0 при m→∞. Учитывая, что функция um(x, t)

— обобщенное решение из W 1,0
p (QT ) уравнения (1), при любой финитной в QT

функции η ∈ W 2,1
q (QT )

(
1
p + 1

q = 1
)

∫∫

QT

[
−
∂η

∂t
−

1

m
�η −

n∑

i,j=1

(aijηxi
)xj
−

n∑

i=1

(aiη)xi
+ aη

]
um dxdt =

∫∫

QT

fmη dxdt.
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Переходя в этом равенстве к пределу при m → ∞ (supp η ⋐ QT и учитывая,

что ‖fm − f‖Lp(QT ) → 0 при m→∞), получим, что для любой финитной в QT

функции η ∈ W 2,1
q (QT )

(
1
p + 1

q = 1
)

функция u(x, t) удовлетворяет равенству

∫∫

QT


−∂η

∂t
−

n∑

i,j=1

(aijηxi
)xj
−

n∑

i=1

(aiη)xi
+ aη


u dxdt =

∫∫

QT

fη dxdt.

Но тогда функция u(x, t) принадлежит W 1,0
p,loc(Q

T ) и является решением из

W 1,0
p,loc(Q

T ) уравнения (1).

Покажем справедливость равенства (8). Прежде всего отметим, что

lim
δ→+0

T ′∫

δ

∫

∂Q

|um((1 − δ)x, t)− ϕm(x, t)|p dsdt = 0. (17)

Так как при любом δ ∈ (0, δ0]

T ′∫

δ

∫

∂Q

|u((1− δ)x, t) − ϕ(x, t)|p dsdt

≤

T ′∫

δ

∫

∂Q

|u((1− δ)x, t)− um((1− δ)x, t)|
p
dsdt +

T ′∫

δ

∫

∂Q

|ϕm − ϕ|
p
dsdt,

в силу (12), (16), (17) получаем, что

lim
δ→+0

T ′∫

δ

∫

∂Q

|u((1− δ)x, t)− ϕ(x, t)|p dsdt = 0,

т. е. функция u(x, t) стремится к граничной функции ϕ(x, t) в смысле равенства

(8).

Аналогично показывается, что функция u(x, t) стремится к начальной функ-

ции u0(x) в смысле равенства (10). Теорема доказана.

Теорема 3. Пусть функция u(x, t) в области QT является решением из

W 1,0
p,loc(Q

T ) уравнения (1) (f ∈ Lp(Q
T )) с коэффициентами, удовлетворяющими

дополнительному условию: существует такое число γ2 > 0, что для всех (x, t) ∈

QT и ξ ∈ Rn выполняется неравенство

γ2r(x)
m
≤

n∑

i,j=1

aij(x, t)ξiξj

с показателем 0 < m < 2. Если u(x, t) принадлежит классу Харди Hp, то су-

ществуют такие функции ϕ ∈ Lp(∂Q× (0, T )) и u0 ∈ Lp(Q, r), что имеют место

равенства (8) и (10).

Доказательство. Утверждение теоремы достаточно установить для од-

нородного уравнения

Lu = 0. (10)
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Действительно, если u(x, t) — решение из W 1,0
p,loc(Q

T ) уравнения (1), принад-

лежащее классу H∗p , то, обозначив через u1(x, t) решение задачи (1), (5), (7) с

равными нулю граничным и начальным значениями (такое решение существует

в силу теоремы 2), получим, что разность u2(x, t) = u(x, t)− u1(x, t) принадле-

жит классу H∗p и является обобщенным из W 1,0
p,loc(Q

T ) решением однородного

уравнения (10).

Итак, пусть u(x, t) — обобщенное из W 1,0
p,loc(Q

T ) решение уравнения (10),

принадлежащее классу H∗p . Пусть p > 2. Тогда из ограниченности функции

M(δ) следует ограниченность функции

T ′∫

δ

∫

∂Qδ
∗

|u|p dsdt +

∫

Qδ
∗

|u(x, δ)|pρ

(
x

1− δ

)
dx, δ ∈ (0, δ0],

и тем самым ограниченность функции

T ′∫

δ

∫

∂Qδ
∗

|u|2 dsdt +

∫

Qδ
∗

|u(x, δ)|2ρ

(
x

1− δ

)
dx, δ ∈ (0, δ0].

По доказанному утверждению теоремы 3 работы [22] имеем: существует такая

функция ϕ(x, t) ∈ L2(∂Q× (0, T ′)), что выполняется равенство

lim
δ→+0

T ′∫

δ

∫

∂Q

|u((1− δ)x, t) − ϕ(x, t)|2 dsdt = 0, (18)

и существует такая функция u0(x) ∈ L2(Q, r), что

lim
δ→+0

∫

Qδ
∗

|[u(x, δ)− u0(x)]|2r(x) dxdt = 0. (19)

Поскольку из принадлежности функции u(x, t) классу H∗p , следует ограни-

ченность множества

M1(δ) =

T ′∫

δ

∫

∂Q

|u(1− δ)x, t|p dsdt

с постоянной, не зависящей от δ ∈ (0, δ0], то, введя в рассмотрение функцию

µ(t) =

{
1, t ∈ (δ, T ′),

0, t ∈ (0, δ),

получим, что множество

M1(δ) =

T ′∫

0

∫

∂Q

|u(1− δ)x, t|pµ(t) dsdt
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также ограничено постоянной, не зависящей от δ ∈ (0, δ0]. Таким образом, мно-

жество {u((1 − δ)x, t)(µ(t))1/p, 0 < δ ≤ δ0} ограничено в Lp(∂Q × (0, T )) и тем

самым слабо компактно, а из слабой компактности вытекает слабая сходимость

в Lp(∂Q× (0, T )) и тем самым слабая сходимость в L2(∂Q× (0, T )), стало быть,

ϕ(x, t) ∈ Lp(∂Q× (0, T )) и функция u(x, t) слабо стремится в Lp(∂Q× (0, T )) к

функции ϕ(x, t).

Так как для любого q ∈ (2, p)

T ′∫

δ

∫

∂Q

|u((1− δ)x, t) − ϕ(x, t)|
q
dsdt

≤





T ′∫

δ

∫

∂Q

|u((1− δ)x, t)− ϕ(x, t)|2 dsdt





p−q
p−2

×





T ′∫

δ

∫

∂Q

|u((1− δ)x, t) − ϕ(x, t)|p dsdt





q−2
p−2

,

при любом q ∈ (2, p) и тем самым при любом q ∈ (1, p)

lim
δ→+0

T ′∫

δ

∫

∂Q

|u((1− δ)x, t)− ϕ(x, t)|q dsdt = 0.

Аналогично доказывается, что для любого q ∈ (1, p)

lim
δ→+0

∫

Qδ
∗

|u(x, δ)− u0(x)|qρ

(
x

1− δ

)
dx = 0.

Лемма 5. Пусть обобщенное из W 1,0
p,loc(Q

T ) решение u(x, t) уравнения (10)

принадлежит классу H∗p и для любого q ∈ (1, p)

lim
δ→+0

T ′∫

δ

∫

∂Q

|u((1− δ)x, t)− ϕ(x, t)|q dsdt = 0,

lim
δ→+0

∫

Qδ
∗

|u(x, δ)− u0(x)|qρ

(
x

1− δ

)
dx = 0,

тогда

lim
δ→+0

T ′∫

δ

∫

∂Q

|u((1− δ)x, t)− ϕ(x, t)|p dsdt = 0, (20)

lim
δ→+0

∫

Qδ
∗

|u(x, δ)− u0(x)|pρ

(
x

1− δ

)
dx = 0. (21)
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Доказательство. Обозначим через u3(x, t) решение из W 1,0
p,loc(Q

T ) задачи

(10), (5), (7). Для функции u4(x, t) = u(x, t) − u3(x, t) выполнены все условия

леммы 5 с ϕ(x, t) ≡ 0, u0(x) ≡ 0. Докажем, что

lim
δ→+0

T ′∫

δ

∫

∂Q

|u4((1 − δ)x, t)|p dsdt = 0, (22)

lim
δ→+0

∫

Qδ
∗

|u4(x, δ)|
pρ

(
x

1− δ

)
dx = 0. (23)

Записывая равенство (3) для функции u4(x, t) и полагая β = δ, получим

1

p

∫

Qδ
∗

|u4(x, T
′)|pρ

(
x

1− δ

)
dx−

1

p

∫

Qδ
∗

|u4(x, δ)|
pρ

(
x

1− δ

)
dx

+ (p− 1)

T ′∫

δ

∫

Qδ
∗

n∑

i,j=1

aiju4xi
u4xj
|u4|

p−2ρ

(
x

1− δ

)
dxdt

−

T ′∫

δ

∫

Qδ
∗

n∑

i=1

aiu4xi
|u4|

p−1ρ

(
x

1− δ

)
dxdt

−
1

p

T ′∫

δ

∫

∂Qδ
∗

n∑

i,j=1

(
aij

ρxi
ρxj

|∇ρ|

)
|u4|

p
dsdt−

1

p

T ′∫

δ

∫

Qδ
∗

n∑

i,j=1

(aijρxi
)xj
|u4|

p dxdt

−
1

p

T ′∫

δ

∫

Qδ
∗

n∑

i=1

(
aiρ

(
x

1− δ

))

xi

|u4|
p
dxdt +

T ′∫

δ

∫

Qδ
∗

a|u4|
pρ

(
x

1− δ

)
dxdt = 0. (24)

Так как W 1,0
p,loc(Q

T ) ⊂W 1,0
q,loc(Q

T ) при 1 < q < p, принадлежащая W 1,0
p,loc(Q

T )

функция u4(x, t) является также обобщенным из W 1,0
q,loc(Q

T ) решением уравне-

ния (10) и, следовательно, в силу леммы 1 можно записать равенство

1

q

∫

Qδ
∗

|u4(x, T
′)|qρ

(
x

1− δ

)
dx−

1

q

∫

Qδ
∗

|u4(x, δ)|
qρ

(
x

1− δ

)
dx

+ (q − 1)

T ′∫

δ

∫

Qδ
∗

n∑

i,j=1

aiju4xi
u4xj
|u4|

q−2ρ

(
x

1− δ

)
dxdt

−

T ′∫

δ

∫

Qδ
∗

n∑

i=1

aiu4xi
|u4|

q−1ρ

(
x

1− δ

)
dxdt

−
1

q

T ′∫

δ

δ∗∫

∂Q

n∑

i,j=1

(
aij

ρxi
ρxj

|∇ρ|

)
|u4|

q dsdt−
1

q

T ′∫

δ

∫

Qδ
∗

n∑

i,j=1

(aijρxi
)xj
|u4|

q dxdt
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−
1

q

T ′∫

δ

∫

Qδ
∗

n∑

i=1

(
aiρ

(
x

1− δ

))

xi

|u4|
q dxdt +

T ′∫

δ

∫

Qδ
∗

a|u4|
qρ

(
x

1− δ

)
dxdt = 0.

Поскольку u4(x, t) принадлежит классу H∗q , то u4(x, t) ∈ Lq(Q
T ′) и по тео-

реме 1 функция
n∑

i,j=1

aiju4xi
u4xj
|u4|

q−2ρ(x)

интегрируема по QT ′ , |u4(x, T
′)|qρ(x) интегрируема по Q. Поэтому в последнем

равенстве можно перейти к пределу при δ → +0:

1

q

∫

Q

|u4(x, T
′)|qρ(x) dx −

T ′∫

0

∫

Q

n∑

i=1

aiu4xi
|u4|

q−1ρ(x) dxdt

+ (q − 1)

T ′∫

0

∫

Q

n∑

i,j=1

aiju4xi
u4xj
|u4|

q−2ρ(x) dxdt

−
1

q

T ′∫

0

∫

Q

n∑

i,j=1

(aijρxi
)xj
|u4|

q dxdt +

∫

QT ′

a|u4|
qρ(x) dxdt

−
1

q

T ′∫

0

∫

Q

n∑

i=1

(aiρ(x))xi
|u4|

q dxdt = 0. (25)

Аналогично, переходя к пределу в равенстве (24) при δ → +0, получим

lim
δ→+0

1

p
M(δ) =

1

p

∫

Q

|u4(x, T
′)|pρ(x) dx

+ (p− 1)

T ′∫

0

∫

Q

n∑

i,j=1

aiju4xi
u4xj
|u4|

p−2ρ(x) dxdt

−

T ′∫

0

∫

Q

n∑

i=1

aiu4xi
|u4|

p−1ρ(x) dxdt −
1

p

T ′∫

0

∫

Q

n∑

i,j=1

(aijρxi
)xj
|u4|

p dxdt

−
1

p

T ′∫

0

∫

Q

n∑

i=1

(aiρ(x))xi
|u4|

p dxdt +

T ′∫

0

∫

Q

a|u4|
pρ(x) dxdt. (26)

Переходя в равенстве (25) к пределу при q → p − 0 (что можно сделать в

силу свойств функции u4(x, t) на основании теоремы Лебега), на основании (26)

получаем равенство

lim
δ→+0

M(δ) = 0,
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из которого немедленно следуют равенства (22) и (23). Лемма 5 доказана.

Из леммы 5 вытекает утверждение теоремы 3 при p ≥ 2.

Доказательство теоремы 3 при 1 < p < 2 будет приведено в следующей

части статьи.
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Abstract: The article is devoted to the study of behavior of the solution to a second-
order parabolic equation with Tricomi degeneration on the lateral boundary of a cylindri-
cal domain QT , where Q is a stellar region whose boundary ∂Q is an (n−1)-dimensional
closed surface without boundary of class C1+λ, 0 < λ < 1. We study the question of
unique solvability of the first mixed problem for the equation with the boundary and
initial functions belonging to spaces of type Lp, p > 1. This topic goes back to the clas-
sical works of Littlewood–Paley and F. Riesz devoted to the boundary values of analytic
functions. All directions of taking boundary values for uniformly elliptic equations turn
out to be equal, and the solution has a property similar to the continuity with respect
to a set of variables. In the case of degeneracy of the equation on the boundary of the
domain when the directions are not equal, the situation becomes more complicated. In
this case, the statement of the first boundary value problem is determined by the type
of degeneracy.
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Аннотация. Рассматриваются автономные дифференциальные уравнения второ-
го порядка, правые части которых являются полиномами степени n относительно
первой производной с периодическими непрерывными коэффициентами, причем
старший коэффициент и свободный член не обращаются в нуль. Такие уравнения
задают на цилиндрическом фазовом пространстве динамическую систему без осо-
бых точек и замкнутых траекторий, гомотопных нулю. Грубыми называются урав-
нения, для которых структура фазового портрета соответствующей динамической
системы не меняется при малых возмущениях в классе таких уравнений. Уравне-
ние является грубым тогда и только тогда, когда все его замкнутые траектории
являются гиперболическими. Грубые уравнения образуют открытое всюду плот-
ное множество в пространстве рассматриваемых уравнений. В работе изучаются
уравнения первой степени негрубости — негрубые уравнения, для которых топо-
логическая структура фазового портрета не меняется при переходе к достаточно
близкому негрубому уравнению. Множество уравнений первой степени негрубости
является вложенным гладким подмногообразием коразмерности один в простран-
стве всех рассматриваемых уравнений, открыто и всюду плотно в множестве негру-
бых уравнений и состоит из уравнений, имеющих единственную негиперболическую
замкнутую траекторию — двойной цикл.
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Ключевые слова: дифференциальное уравнение второго порядка, полиномиаль-
ная правая часть, цилиндрическое фазовое пространство, грубость, бифуркацион-

ное многообразие, двойной цикл.

Введение

Грубые динамические системы, задаваемые Cr-векторными полями (r ≥ 1)

на замкнутых двумерных ориентируемых многообразиях типичны — образуют

открытое и всюду плотное множество � в пространстве Xr всех таких систем с

Cr-нормой [1]. Простейшие негрубые системы — системы первой степени негру-

бости — образуют вложенное Cr−1-подмногообразие �1 коразмерности один в

X
r [2]. Для динамических систем на двумерной сфере множество �1 открыто

и всюду плотно в Xr\�. Несомненный интерес представляет получение анало-

гичных результатов для более «узких» пространств двумерных динамических

c© 2023 Ройтенберг В. Ш.
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систем. В некоторых случаях это — сложная проблема. В частности, классиче-

ская задача нахождения необходимых и достаточных условий грубости относи-

тельно пространства полиномиальных векторных полей на плоскости степени

≤ n при n ≥ 2 до сих пор не решена. Не доказано, что у грубого векторного

поля могут быть только гиперболические замкнутые траектории. Для динами-

ческих систем в цилиндрическом фазовом пространстве без особых точек, за-

данных автономными дифференциальными уравнениями второго порядка, пра-

вые части которых являются полиномами степени n относительно производной

с непрерывными периодическими коэффициентами, определение грубости было

введено в работе [3], получены необходимые и достаточные условия грубости и

доказана типичность грубых систем. В настоящей работе описываются системы

первой степени негрубости, заданные такими уравнениями.

1. Формулировка результатов

Пусть An
ω — множество дифференциальных уравнений второго порядка ви-

да

a : ẍ = an(x)ẋn + · · ·+ a1(x)ẋ + a0(x) (1)

степени n ≥ 3 с ω-периодическими непрерывными коэффициентами ak(x), x ∈

R, k = 0, 1, . . . , n. Можно считать, что такие уравнения заданы на окружно-

сти S1 := R/ωZ. Введем на множестве An
ω структуру банахова пространства,

отождествив уравнение (1) с вектор-функцией a = (a0, a1, . . . , an) : R→ Rn+1, с

нормой ‖a‖ := max
0≤i≤n

max
x∈R
|ai(x)|.

Уравнение a ∈ An
ω определяет на цилиндрическом фазовом пространстве

� := S1 × R векторное поле

~a(x, y) = y
∂

∂x
+ (an(x)yn + · · ·+ a1(x)y + a0(x))

∂

∂y
.

Его траектории называются траекториями уравнения a в фазовом простран-

стве �.

Обозначим через Aω
n открытое подмножество в An

ω , состоящее из уравне-

ний, для которых выполняется условие

∀x ∈ R an(x) 6= 0, (2)

а через An
ω — открытое подмножество в An

ω, состоящее из уравнений, удовле-

творяющих условию

∀x ∈ R a0(x) 6= 0. (3)

Условия (2) и (3) означают, что у векторного поля ~a нет соответственно бес-

конечно удаленных особых точек и особых точек в � [3, 4]. Вследствие (3)

уравнение a ∈ An
ω не имеет замкнутых траекторий, гомотопных нулю на �.
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Траектории уравнения (1) на множестве {(x, y) ∈ � : y 6= 0} являются

интегральными кривыми дифференциального уравнения

dy

dx
= an(x)yn−1 + · · ·+ a2(x)y + a1(x) +

a0(x)

y
. (4)

Пусть Y (x, u) — решение уравнения (4), удовлетворяющее начальному усло-

вию Y (0, u) = u. Множество J+ (J−) тех u ∈ (0,+∞) (u ∈ (−∞, 0)), при которых

функция Y (·, u) определена в точках отрезка [0, ω], открыто и связно. Функции

u 7→ Y (ω, u), u ∈ J+, и u 7→ Y (ω, u), u ∈ J−, являются функциями последова-

ния по траекториям соответственно векторных полей ~a и −~a. Определим также

функцию расхождения d(u) := Y (ω, u) − u, u ∈ J+ ∪ J+. Так как правая часть

уравнения (4) — аналитическая функция от y, то и функция расхождения ана-

литическая [5]. Траектория уравнения (1) является замкнутой тогда и только

тогда, когда она задается уравнением y = Y (y0, x), где функция Y (y0, ·) опре-

делена в точках отрезка [0, ω], а y0 — нуль функции расхождения. Кратность

нуля y0 называется кратностью замкнутой траектории. Если d′(y0) 6= 0,

то замкнутая траектория гиперболическая — устойчивый (неустойчивый) ги-

перболический предельный цикл при y0d
′(y0) < 0 (y0d

′(y0) > 0). Замкнутая

траектория кратности 2 называется двойным циклом.

Уравнения a и ã из An
ω называются топологически эквивалентными, если

существует гомеоморфизм h : � → �, переводящий траектории уравнения a в

траектории уравнения ã с сохранением ориентации на них.

Пусть � ⊂ An
ω. Уравнение a ∈ � называется грубым относительно �,

если существует такая его окрестность V (a) в �, что a и любое уравнение ã ∈

V (a) топологически эквивалентны. Уравнение a ∈ An
ω, грубое относительно An

ω,

будем называть просто грубым.

Уравнение a ∈ An
ω называется уравнением первой степени негрубости, если

оно является грубым относительно множества всех негрубых уравнений из An
ω,

т. е. если оно негрубое и существует такая его окрестность U(a) в An
ω, что a и

любое негрубое уравнение a∗ ∈ U(a) топологически эквивалентны.

Обозначим через �0 множество уравнений из An
ω, у которых все замкнутые

траектории являются гиперболическими, �1 — множество уравнений из An
ω,

имеющих только одну негиперболическую замкнутую траекторию — двойной

цикл.

Из условия (2) следует, что уравнения из �0 и �1 имеют конечное число

замкнутых траекторий.

В статье [3] доказано, что множество �0 открыто и всюду плотно в An
ω, а

уравнение a ∈ An
ω является грубым тогда и только тогда, когда принадлежит

�0.

Заметим, что необходимые и достаточные условия грубости относительно

множества An
ω не получены, но в работе [4] установлено, что уравнения, грубые

относительно An
ω, всюду плотны в An

ω.
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Результатом настоящей работы являются следующие утверждения.

Теорема 1. Множество �1 — вложенное C∞-подмногообразие An
ω кораз-

мерности один.

Теорема 2. Множество �1 открыто и всюду плотно в An
ω\�

0.

Теорема 3. Уравнение a ∈ An
ω является уравнением первой степени негру-

бости тогда и только тогда, когда оно принадлежит �1.

2. Доказательство теоремы 1

Будем следовать схеме из [2]. Достаточно доказать, что для любого урав-

нения a0 ∈ �1 найдутся такие его окрестность U(a0) в An
ω и невырожденная

C∞-функция f : U(a0) → R, что �1 ∩ U(a0) = {a ∈ An
ω : f(a) = 0}. Функция

A : S1 × R × An
ω → R, заданная равенством A(x, y, a) := a(x, y), непрерывна.

Кроме того, она бесконечно дифференцируема по переменным y, a. Поэтому

решение y = Y (x, u, a) уравнения (4), соответствующего уравнению a ∈ An
ω,

удовлетворяющее начальному условию Y (0, u, a) = u, является C1-функцией от

(x, u, a) и C∞-функцией от (u, a).

Пусть уравнение a0 ∈ �1. Из условия (2) следует, что существуют такие

число r > 0 и окрестность U1(a
0) уравнения a0 в An

ω, что для любого уравне-

ния a ∈ U1(a
0) соответствующее векторное поле ~a трансверсально окружностям

S1 × {y0}, |y0| ≥ r. Поэтому все замкнутые траектории уравнений a ∈ U1(a
0)

находятся в кольце S1 × (−r, r). Пусть для уравнения a0 траектория � : y =

Y (x, u0, a), x ∈ R — двойной цикл, а �k : y = Y (x, uk, a), x ∈ R, k = 1, . . . , N , —

гиперболические предельные циклы. Мы можем выбрать окрестность U1(a
0) и

число ε1 > 0 так, чтобы интервалы (uk − ε1, uk + ε1), k = 0, 1, . . . , N , между

собой не пересекались, а для a ∈ U1(a
0) и u ∈ (uk− ε1, uk + ε1) была определена

функция расхождения d(u, a) := Y (x, u, a)− u.

Так как d′u(u0, a
0) = 0, d′′uu(u0, a

0) 6= 0, а d(uk, a
0) = 0, d′u(uk, a

0) 6= 0,

k = 1, . . . , N , по теореме о неявной функции существуют число ε ∈ (0, ε1] и

окрестность U(a0) (U(a0) ⊂ U1(a
0)) уравнения a0 такие, что для любого a ∈

U(a0) уравнение d′u(u, a) = 0 имеет в интервале (u0 − ε, u0 + ε) единственное

решение u = û0(a), при этом û0(·) ∈ C∞, û0(a
0) = u0,

∀u ∈ (u0 − ε, u0 + ε)∀ a ∈ U1(a
0) d′′uu(u, a) 6= 0; (5)

уравнение d(u, a) = 0 имеет в интервале (uk − ε, uk + ε), k = 1, . . . , N , един-

ственное решение u = ûk(a), при этом d′u(ûk(a), a) 6= 0, т. е. уравнение y =

Y (x, ûk(a), a), x ∈ R, задает гиперболический цикл. Можно также считать

окрестность U(a0) столь малой, что для любого a ∈ U(a0) решения y = Y (x, u, a)

уравнения (4) при u /∈
N⋃

k=0

(uk − ε, uk + ε) задают незамкнутые траектории.
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Определим C∞-функцию f : U(a0)→ R, положив f(a) := d(û0(a), a). Обо-

значим через h уравнение ẍ = ẋ. Тогда функция

η(x) :=
d

dτ

∣∣∣∣
τ=0

Y (x, u0, a
0 + τh)

удовлетворяет уравнению η′(x) = c(x)η(x) + 1, где

c(x) =
A′y(x, p0(x), a0)

p0(x)
−

A(x, p0(x), a0)

p2
0(x)

,

и начальному условию η(0) = 0. Поэтому

d

dτ

∣∣∣∣
τ=0

d(u0, a
0 + τh) =

d

dτ

∣∣∣∣
τ=0

Y (ω, u0, a
0 + τh) =

ω∫

0

exp

ω∫

x

c(s) dsdx > 0.

Так как d′u(u0, a
0) = 0, то

d

dτ

∣∣∣∣
τ=0

f(a0 + τh) = d′u(u0, a
0) ·

d

dτ

∣∣∣∣
τ=0

û0(a
0 + τh) +

d

dτ

∣∣∣∣
τ=0

d(u0, a
0 + τh)

=
d

dτ

∣∣∣∣
τ=0

d(u0, a
0 + τh).

Следовательно,

f ′(a0)h =
d

dτ

∣∣∣∣
τ=0

f(a0 + τh) > 0

и f ′(a0) 6= 0. Считая окрестность U(a0) достаточно малой, будем иметь f ′(a) 6= 0

для любого a ∈ U(a0).

Пусть f(a) = 0. Учитывая (5), получаем, что функция d(·, a) имеет на

интервале (u0− ε, u0 + ε) единственный, причем двукратный, нуль û0(a). Урав-

нение y = Y (x, û0(a), a), x ∈ R, задает двойной цикл. Поскольку все остальные

замкнутые траектории уравнения a являются гиперболическими, то a ∈ �1.

Аналогично [6] получаем, что уравнения a и a0 топологически эквивалентны.

При d′′uu(u0, a
0) · f(a) > 0 (соответственно при d′′uu(u0, a

0) · f(a) < 0), учи-

тывая (5), получаем, что на интервале (u0 − ε, u0 + ε) функция d(·, a) не име-

ет нулей (соответственно имеет два простых нуля u−(a) и u+(a), d′u(u−(a), a) ·

d′u(u+(a), a) < 0, u±(a) → u0 при a → a0). Поэтому уравнение a имеет толь-

ко гиперболические замкнутые траектории, т. е. a ∈ �0. Таким образом,

�1 ∩ U(a0) =
{
a ∈ An

ω : f(a) = 0
}
, что и требовалось установить.

Кроме того, мы показали, что бифуркация при переходе уравнения через �1

аналогична бифуркации двойного цикла гладкого векторного поля на плоскости

[2, c. 10; 6. с. 382]: устойчивый и неустойчивый предельные циклы «сливаются»

в двойной цикл и исчезают.
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3. Доказательство теоремы 2

Открытость �1 в An
ω\�

0 следует из того, что, как показано выше, окрест-

ности U(a0) уравнения a0 ∈ �1 принадлежат только уравнения из �0 и �1.

Докажем плотность �1 в An
ω\�

0. Предположим, что уравнение a ∈ An
ω\�

0.

Зададим окрестность V (a) уравнения a в An
ω. Пусть � : y = p(x), x ∈ R, —

негиперболическая замкнутая траектория уравнения a. Сделаем в уравнении

(5) замену z = y − p(x). Получим уравнение

dz

dx
= B(x, z), (6)

где

B(x, z) = an(x)zn−1 + bn−2(x)zn−2 + · · ·+ b2(x)z2 + b1(x)z −
a0(x)z

p(x)(p(x) + z)
,

а b1(x), . . . , bn−2(x) — некоторые непрерывные ω-периодические функции. Рас-

смотрим уравнение
dz

dx
= B(x, z) + µz2. (7)

Замена y = z + p(x) преобразует уравнение (7) в уравнение

dy

dx
= ãn(x, µ)yn−1 + ãn−1(x, µ)yn−2 + · · ·+ ã2(x, µ)y + ã1(x, µ) + a0(x)/y,

где ãi(x, µ), i = 1, . . . , n, — непрерывные функции, ω-периодические по x, ãi(x, 0)

= ai(x). При достаточно малом µ > 0 для любого µ ∈ (0, µ) уравнение

aµ : ẍ = ãn(x, µ)ẋn + ãn−1(x, µ)ẋn−1 + · · ·+ ã1(x, µ)ẋ + a0(x)

принадлежит окрестности V (a) и имеет � своей замкнутой траекторией.

Из условия (2) получаем, что найдутся такие числа r > 0 и µ > 0, что

B(x, z) + µz2 6= 0 при всех x ∈ R, |z| ≥ r, |µ| < µ. Потому все замкнутые траек-

тории уравнения (7) при |µ| < µ принадлежат кольцу S1 × (−r, r). Их конечное

число и они имеют конечную кратность, так как B(x, z)+µz2 аналитически зави-

сит от z. При v и µ, достаточно близких к нулю, определено решение Z(x, v, µ),

x ∈ [0, ω], уравнения (7) с начальным условием Z(0, v, µ) = v. Производная

Z ′v(x, 0, µ) удовлетворяет уравнению в вариациях

d

dx
Z ′v(x, 0, µ) =

(
b1(x) −

a0(x)

p2(x)

)
Z ′v(x, 0, µ)

и начальному условию Z ′v(0, 0, µ) = 1. Поэтому

Z ′v(x, 0, µ) = exp

x∫

0

(
b1(s)−

a0(s)

p2(s)

)
ds

и для функции расхождения d(v, µ) := Z(ω, v, µ) − v производная d′v(0, µ) не

зависит от µ. Поскольку d′v(0, 0) = 0, то и d′v(0, µ) = 0 при всех µ, достаточно

близких к нулю.
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Вторая производная Z ′′vv(x, 0, µ) удовлетворяет уравнению в вариациях

d

dx
Z ′′vv(x, 0, µ) =

(
b1(x)−

a0(x)

p2(x)

)
Z ′′vv(x, 0, µ) + 2(b2(x) + µ)[Z ′v(x, 0, µ)]2

и начальному условию Z ′′vv(0, 0, µ) = 0. Следовательно,

d′′vv(0, µ) = Z ′′vv(ω, 0, µ) =

ω∫

0

2b2(x)Z ′v(x, 0, µ) dx + 2µ

ω∫

0

Z ′v(x, 0, µ) dx. (8)

Поскольку второе слагаемое в (8) положительное при µ > 0, выбрав достаточно

малое µ0 ∈ (0, µ), будем иметь d′′vv(0, µ) 6= 0, если µ ∈ (0, µ0). Поэтому для

любого µ ∈ (0, µ0) кривая �̃ : z = 0 — двойной цикл уравнения (7), а потому и

двойной цикл уравнения aµ.

Выберем µ1 ∈ (0, µ0). Пусть �̃k : z = ζk(x), x ∈ R, k = 1, . . . ,m, — замкну-

тые траектории уравнения (7) при µ = µ1, отличные от двойного цикла �̃ . При

значениях v, достаточно близких к ζk(0), и µ, достаточно близких к µ1, опреде-

лено решение Z(x, v, µ), x ∈ [0, ω], уравнения (7), удовлетворяющее начальному

условию Z(0, v, µ) = v и аналитически зависящее от v, µ, а также определена

функция d(v, µ) := Z(ω, v, µ) − v. Производная Z ′µ(x, ζk(0), µ1) удовлетворяет

уравнению в вариациях

d

dx
Z ′µ(x, ζk(x), µ1) = K(x)Z ′µ(x, ζk(x), µ1) + ζ2

k(x),

где K(x) = B′z(x, ζk(x)) + 2µ1ζk(x), и начальному условию Z ′µ(0, ζk(x), µ1) = 0.

Следовательно,

Z ′µ(ω, ζk(0), µ1) =

ω∫

0

ζ2
k(x) exp

ω∫

x

K(s) dsdx

и потому d′µ(ζk(0), µ1) > 0 для всех k = 1, . . . ,m. Из этого неравенства согласно

[6, с. 404, леммы 2 и 3] следует, что при µ ∈ (µ1, µ), достаточно близком к

µ1, в малой окрестности каждого цикла �̃k, k = 1, . . . ,m, имеется не более

двух замкнутых траекторий уравнения (7), причем эти траектории являются

гиперболическими предельными циклами. Аналогично [6, с. 182] доказывается,

что при µ ∈ (µ1, µ), достаточно близком к µ1, замкнутых траекторий, отличных

от �̃ и �̃k, k = 1, . . . ,m, уравнение (7) не имеет. Соответственно уравнение aµ

имеет только одну негиперболическую замкнутую траекторию — двойной цикл

� . Тем самым aµ ∈ V (a) ∩�1 и плотность �1 в An
ω\�

0 доказана.

4. Доказательство теоремы 3

Согласно п. 2 все уравнения a ∈ �1 ∩ U(a0) топологически эквивалентны

уравнению a0. Поскольку уравнения из U(a0)\�1 грубые, то a0 имеет первую

степень негрубости.
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Пусть уравнение a ∈ An
ω\�

0 имеет первую степень негрубости. Тогда суще-

ствует такая его окрестность V (a), что уравнение a и любое негрубое уравнение

из V (a) топологически эквивалентны. Так как �1 всюду плотно в An
ω\�

0, то a

топологически эквивалентно уравнению из �1 и потому имеет одну замкнутую

траекторию четной кратности 2m, а другие замкнутые траектории, если они

существуют, имеют нечетную кратность. Докажем, что a ∈ �1. Пусть это не

так, т. е. a ∈ An
ω\�

0\�1. Тогда или 1) m ≥ 2 или 2) m = 1, а одна из замкнутых

траекторий имеет кратность 2l + 1 ≥ 3.

В случае 1 пусть замкнутая траектория четной кратности задается уравне-

нием y = p(x), x ∈ R. Как и в п. 3, рассмотрим уравнения (6), (7) и aµ, а также

функцию расхождения d(v, µ). По предположению

d(0, 0) =
∂d(0, 0)

∂v
= · · · =

∂2m−1d(0, 0)

∂v2m−1
= 0,

∂2md(0, 0)

∂v2m
6= 0.

Из (8) следует, что sgn∂2d(0, µ)/∂v2 = sgnµ. Пусть v0 = 0, vi, i = 1, . . . , N , — все

нули функции d(·, 0). Выберем число ε > 0 так, чтобы интервалы (vk−ε, vk+ε),

k = 0, 1, . . . , N , попарно не пересекались. Взяв µ, достаточно близким к нулю и

удовлетворяющим условию µ∂2md(0, 0)/∂v2m < 0, получим, что функция d(·, µ)

имеет на интервале (−ε, ε) не менее трех нулей, в том числе двукратный нуль

v = 0, а на каждом интервале (vi − ε, vi + ε), i = 1, . . . , N , по крайней мере один

нуль. Поскольку общее число нулей у d(·, µ) больше, чем у d(·, 0), уравнение aµ

имеет больше замкнутых траекторий, чем уравнение a. Но это противоречит

тому, что уравнение aµ негрубое и при µ, достаточно близких к нулю, принадле-

жит окрестности V (a), а потому уравнения aµ и a топологически эквивалентны.

Следовательно, случай 1 невозможен.

В случае 2 пусть замкнутая траектория кратности 2l + 1 ≥ 3 задается

уравнением y = p(x), x ∈ R. Как и в случае 1, рассмотрим уравнения (6),

(7) и aµ, функцию расхождения d(v, µ). Пронумеруем нули vk, k = 0, 1, . . . , N ,

функции d(·, 0) так, чтобы v0 = 0, нуль v1 имел кратность два, и выберем их

попарно не пересекающиеся окрестности (vk − ε, vk + ε). При µ 6= 0, достаточно

близким к нулю, d(·, µ) имеет в интервале (−ε, ε) не менее двух нулей, в том

числе двукратный нуль v = 0, а на интервалах (vk−ε, vk +ε), k = 2, . . . , N , хотя

бы один нуль. Как и в п. 2, d′µ(v1, 0) > 0. Поэтому при µ, достаточно близких к

нулю и удовлетворяющих условию µ∂2d(v1, 0)/∂v2 < 0, функция d(·, µ) имеет на

интервале (v1− ε, v1 + ε) по крайней мере два нуля. Таким образом, существует

µ, при котором уравнение aµ негрубое, принадлежит окрестности V (a) и имеет

больше замкнутых траекторий, чем уравнение a. Как и в случае 1, получаем

противоречие. Следовательно, и случай 2 невозможен. Итак, предположение,

что уравнение первой степени негрубости a ∈ An
ω\�

0\�1, неверно, т. е. a ∈ �1.

Теорема 3 доказана.
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equations of the first degree of structural instability – structurally unstable equations
for which the topological structure of the phase portrait does not change when passing
to a sufficiently close structurally unstable equation. The set of equations of the first
degree of structural instability is an embedded smooth submanifold of codimension one
in the space of all equations under consideration; it is open and everywhere dense in
the set of structurally unstable equations and consists of equations that have a single
nonhyperbolic closed trajectory – a double cycle.
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Abstract: This work is devoted to the study of ill-posed boundary value problem for
a second-order mixed type differential equation with two degenerate lines. Boundary
value problems for mixed type equations are applicable in various fields of the natural
sciences: in problems of laser physics, in plasma modelling, and in mathematical biology.
In this paper, based on the idea of A. N. Tikhonov, the conditional correctness of the
problem, namely, uniqueness and conditional stability theorems are proved, as well as
approximate solutions that are stable on the set of correctness are constructed. In
obtaining an a priori estimate for the solution to the equation, we used the logarithmic
convexity method and results for the spectral problem considered by S. G. Pyatkov. The
regularization parameter is determined by the minimum value estimate for the norm of
the difference between exact and approximate solutions.
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1. Introduction

The theory of boundary value problems for mixed type equations is one of the

most important field of the theory of partial differential equations of mathematical

physics.

As a rule, boundary value problems for mixed type equations are well-posed

problems and their study began with the works of Tricomi [1] and Gellerstedt. They

proposed to study boundary value problems for a mixed type equation with one

degenerate line.

F. I. Frankl [2] investigated important applications of this problem. In recent

years, O. S. Ryzhov, L. D. Pilia and V. P. Fedorov, E. G. Shifrin, G. G. Cherny,

A. G. Kuzmin [3] studied different problems for the mixed type equations.

We should note that the works of F. I. Frankl, A. V. Bitsadze, and K. I. Babenko

laid a foundation for the modern theory of mixed type equations, with the research

of new boundary problems for the mixed type equations. Afterwards, these types

of boundary value problems have been studied by many authors, in particular by

V. F. Volkodavov, V. N. Vragov [4], V. I. Zhegalov, T. D. Juraev, T. Sh. Kalmenov,

c© 2023 K. S. Fayazov and Y. K. Khudayberganov
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A. I. Kozhanov, Y. M. Krikunov, O. A. Ladyzhenskaya, M. E. Lerper, V. P. Mikhai-

lov, E. I. Moiseev, A. M. Nakhushev [5], S. M. Ponomarev, S. P. Pulkin, K. B. Sabi-

tov, M. S. Salakhitdinov, M. M. Smirnov, A. P. Soldatov, L. I. Chibrikova, R. S. Khai-

rullin, B. N. Burmistrov, S. Agmon, L. Nirenberg, M. N. Protter, C. S. Morawetz,

P. Germain, R. Bader, P. O. Lax, R. P. Phillips, M. Schneider, G. D. Karatoprakliev,

N. I. Polivanov, G. D. Dachev and others.

Boundary value problems for the mixed type equations with two degenerate lines

can be found in the works of M. M. Zainulabidov, V. F. Volkodavov, V. V. Azovsky,

O. I. Marichev, A. M. Ezhov, N. I. Popivanov, T. B. Lomonosov, Khe Kan Cher,

S. I. Makarov, S. S. Ismukhamedov, J. Oramov, M. S. Salakhitdinov, K. B. Sabitov

[6], B. Islomov and other authors.

Well-posed and ill-posed boundary value problems for parabolic type equations

were studied by many authors, including E. M. Landis, S. P. Shishatsky, and prob-

lems of elliptic type equations were investigated by M. M. Lavrent’ev [7], Landis,

John, Hermander and others. We should cite the works of S. G. Krein [8], H. A. Le-

vine [9], and others, where boundary value problems for abstract differential-operator

equations were studied. A characteristic feature of these works is determined with

the fact that the proof of the uniqueness of a solution and obtaining estimates

characterizing the conditional stability of these problems were provided in these

works. Correct boundary value problems for various non-classical equations were

investigated in the works of A. V. Bitsadze, S. A. Tersenov, V. N. Vragov, A. M. Na-

khushev [5] and other authors. The problems for these types of equations were the

subject of researches conducted by N. Kislov, S. G. Pyatkov [10, 11], A. I. Kozhanov

[12], K. B. Sabitov [6], A. A. Gimaltdinova [13] and others. Ill-posed boundary value

problems were studied by a number of accomplished authors, including A. L. Bukh-

geim [14], V. Isakov, M. Klibanov, K. S. Fayazov. The works of K. S. Fayazov

[15], K. S. Fayazov and I. O. Khajiev [16, 17], I. O. Khajiev [18], K. S. Fayazov

and Y. K. Khudayberganov [19], were dedicated to the construction of approximate

solutions for non-classical equations.

This work is dedicated to the study of an ill-posed boundary-value problem for

a second-order mixed hyperbolic-elliptic type partial differential equation with two

degenerate lines.

Consider the equation

utt(x, y, t) + sign(x)uxx(x, y, t) + sign(y)uyy(x, y, t) = 0 (1)

in the domain � = �0 ×Q, where �0 = {(x, y) : (−1; 1)2, x 6= 0, y 6= 0}, Q = {0 <

t < T , T <∞}.

Statement of the problem. Find a solution of equation (1) in the domain �

so that the initial

∂iu(x, y, t)

∂ti

∣∣∣∣
t=0

= ϕi(x, y), (x, y) ∈ [−1; 1]
2, i = 0, 1, (2)
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boundary

u(x, y, t)|x=±1 = 0, (y, t) ∈ [−1; 1]×Q,

u(x, y, t)|y=±1 = 0, (x, t) ∈ [−1; 1]×Q,
(3)

and gluing

∂iu(x, y, t)

∂xi

∣∣∣∣
x=−0

=
∂iu(x, y, t)

∂xi

∣∣∣∣
x=+0

, (y, t) ∈ [−1; 1]×Q,

∂iu(x, y, t)

∂yi

∣∣∣∣
y=−0

=
∂iu(x, y, t)

∂yi

∣∣∣∣
y=+0

, (x, t) ∈ [−1; 1]×Q,

(4)

conditions are satisfied, where i = 0, 1 and ϕi(x, y) are given sufficiently smooth

functions and satisfied wherein ϕi(x, y)|∂�0 = 0.

In this paper, problem (1)–(4) is investigated for conditional correctness, name-

ly, uniqueness and conditional stability theorems are proved. Moreover, approximate

solutions, which are stable on the correctness set, are constructed.

2. Spectral problem

Find such values of λ for which the following problem has a nontrivial solution:

sign(x)ϑxx(x, y) + sign(y)ϑyy(x, y) + λϑ(x, y) = 0, (x, y) ∈ �0, (5)

ϑ(x, y)|x=−1, x=+1 = 0, y ∈ [−1; 1], ϑ(x, y)|y=−1, y=+1 = 0, x ∈ [−1; 1],

∂iϑ(x, y)

∂xi

∣∣∣∣
x=−0

=
∂iϑ(x, y)

∂xi

∣∣∣∣
x=+0

, y ∈ [−1; 1],

∂iϑ(x, y)

∂yi

∣∣∣∣
y=−0

=
∂iϑ(x, y)

∂yi

∣∣∣∣
y=+0

, x ∈ [−1; 1], i = 0, 1.

(6)

Using the methods of S. G. Pyatkov [11], we can prove that problem (5), (6)

has a non-decreasing sequence
{
λ

(1)
k,l

}∞
k,l=1

,
{
−λ

(2)
k,l

}∞
k,l=1

,
{
λ

(3)
k,l

}∞
k,l=1

,
{
−λ

(4)
k,l

}∞
k,l=1

of eigenvalues and the corresponding eigenfunctions
{
ϑ

(j)
k,l(x, y)

}∞
k,l=1

, j = 1, 4. The

eigenvalues

λ
(1)
k,l = µ2

k + σ2
l , λ

(2)
k,l = µ2

k − σ2
l ,

λ
(3)
k,l = −µ2

k + σ2
l , λ

(4)
k,l = −µ2

k − σ2
l ,

thus correspond to the eigenfunctions

ϑ
(1)
k,l (x, y) = X

(1)
k (x) × Y

(1)
l (y), ϑ

(2)
k,l (x, y) = X

(1)
k (x)× Y

(2)
l (y),

ϑ
(3)
k,l (x, y) = X

(2)
k (x)× Y

(1)
l (y), ϑ

(4)
k,l (x, y) = X

(2)
k (x)× Y

(2)
l (y), k, l ∈ N,

where

X
(1)
k (x) =

{
sinµk(x− 1)/ cosµk, 0 ≤ x ≤ 1,

shµk(x + 1)/ chµk, −1 ≤ x ≤ 0,
k ∈ N,

Y
(1)
l (y) =

{
sinσl(y − 1)/ cosσl, 0 ≤ y ≤ 1,

shσl(y + 1)/ chσl, −1 ≤ y ≤ 0,
l ∈ N,
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X
(2)
k (x) =

{
shµk(x− 1)/ chµk, 0 ≤ x ≤ 1,

sinµk(x + 1)/ cosµk, −1 ≤ x ≤ 0,
k ∈ N,

Y
(2)
l (y) =

{
shσl(y − 1)/ chσl, 0 ≤ y ≤ 1,

sinσl(y + 1)/ cosσl, −1 ≤ y ≤ 0,
l ∈ N,

µ2
k, σ

2
l are eigenvalues corresponding to eigenfunctions X

(i)
k , Y

(i)
l (i = 1, 2), respec-

tively.

In both cases, µk, σl, k, l ∈ N , are the positive roots of the transcendental

equation tanα = − tanhα. Let ‖u‖2 = (u, u) where the inner product is

(u, υ) =

1∫

−1

1∫

−1

uυ dxdy.

Moreover,

(
sign(x) sign(y)ϑ

(p)
k,l (x, y), ϑ

(q)
i,j (x, y)

)
= 0, p 6= q, p, q = 1, 4, ∀k, l, i, j,

(
sign(x) sign(y)ϑ

(m)
k,l (x, y), ϑ

(m)
i,j (x, y)

)
=

{
1, k = i ∧ l = j,

0, k 6= i ∧ l 6= j,
m = 1, 4,

(
sign(x) sign(y)ϑ

(m)
k,l (x, y), ϑ

(m)
i,j (x, y)

)
=

{
−1, k = i ∧ l = j

0, k 6= i ∧ l 6= j,
m = 2, 3,

where k, l, i, j ∈ N.

Then, according to S. G. Pyatkov [10],

‖u(x, y, t)‖20 =

∞∑

k,l=1

{∣∣(sign(x) sign(y)u(x, y, t), ϑ
(1)
k,l (x, y)

)∣∣2

+
∣∣(sign(x) sign(y)u(x, y, t), ϑ

(2)
k,l (x, y)

)∣∣2 +
∣∣(sign(x) sign(y)u(x, y, t), ϑ

(3)
k,l (x, y)

)∣∣2

+
∣∣(sign(x) sign(y)u(x, y, t), ϑ

(4)
k,l (x, y))

∣∣2}. (7)

According to the results of S. G. Pyatkov [11], the eigenfunctions of problem (5), (6)

form a Riesz basis in H0 and the norm in the space L2(−1, 1)2, which is defined by

equality (5), (6), is equivalent to the original one.

3. A priori estimate

A generalized solution to problem (1)–(4) is such a function u(x, y, t) ∈ C(Q;

L2(−1, 1)2) that for any arbitrary function V (x, y, t) ∈ W 2
2 (�), V (x, y, T ) = 0,

Vt(x, y, T ) = 0, V (−1, y, t) = 0, V (+1, y, t) = 0, V (x,−1, t) = 0, V (x,+1, t) = 0,
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satisfies the following integral identity:

T∫

0

1∫

−1

1∫

−1

u(x, y, t)(sign(x) sign(y)Vtt + sign(y)Vxx + sign(x)Vyy) dxdydt

=

1∫

−1

1∫

−1

sign(x) sign(y)V (x, y, 0)ϕ1(x, y) dxdy

−

1∫

−1

1∫

−1

sign(x) sign(y)Vt(x, y, 0)ϕ0(x, y) dxdy. (8)

There the following lemma occurs:

Lemma 1 (see [7, p. 825, 826]). Let ν(t) be a solution to the equation

ν′′(t)− λν(t) = 0

and satisfy the conditions ν(0) = p1 and ν′(0) = p2. Then the following inequality

is valid:

ν2(t) ≤ e2t(T−t)(ν2(0) + |α|)1−
t
T (ν2(T ) + |α|)

t
T − |α|, t ∈ Q,

where λ is a certain constant and α = 1
2

(
λν2(0)− ν2

t (0)
)
.

By M we denote

M = {u(x, y, t) : ‖u(x, y, T )‖0 ≤ m, m <∞}.

Theorem 1. Let u(x, y, t) be a solution of the equation

utt(x, y, t) + sign(x)uxx(x, y, t) + sign(y)uyy(x, y, t) = 0,

and satisfy conditions (2)–(4). Then, for a solution to this equation for t ∈ Q, we

obtain the inequality

‖u(x, y, t)‖20 ≤ 4e2t(T−t)
(
‖u(x, y, 0)‖20 + α

)1− t
T
(
‖u(x, y, T )‖20 + α

) t
T − α, (9)

where α = 1
2

(
‖ϕ0‖

2
1 + ‖ϕ1‖

2
0

)
.

Proof. If a solution exists and belongs to M , then it has the form

u(x, y, t) =

∞∑

k=1

∞∑

l=1

(
u

(1)
k,l (t)ϑ

(1)
k,l (x, y) + u

(2)
k,l (t)ϑ

(2)
k,l (x, y)

)

+

∞∑

k=1

∞∑

l=1

(
u

(3)
k,l (t)ϑ

(3)
k,l (x, y) + u

(4)
k,l (t)ϑ

(4)
k,l (x, y)

)
,

where
{
ϑ

(j)
k,l (x, y)

}∞
k,l=1

, j = 1, 4, the eigenfunctions of the spectral problem (5), (6)

and

u
(j)
k,l (t) = (sign(x) sign(y)u(x, y, t), ϑ

(j)
k,l (x, y)), j = 1, 4,



56 K. S. Fayazov and Y. K. Khudayberganov

u
(j)
k,l(t) = −

(
sign(x) sign(y)u(x, y, t), ϑ

(j)
k,l (x, y)

)
, j = 2, 3, k, l ∈ N,

ϕ
(j)
ik,l =

(
sign(x) sign(y)ϕi(x, y), ϑ

(j)
k,l (x, y)

)
, j = 1, 4,

ϕ
(j)
ik,l = −

(
sign(x) sign(y)ϕi(x, y), ϑ

(j)
k,l (x, y)

)
, j = 2, 3, i = 0, 1, k, l ∈ N.

In (8), let

V (x, y, t) = ωk,l(t)ϑ
(j)
k,l (x, y), j = 1, 4,

where ωk,l(T ) = ω′k,l(T ) = 0, ωk,l(t) ∈W 2
2 (Q). Then

T∫

0

1∫

−1

1∫

−1

u(x, y, t)
(
sign(x) sign(y)ω′′k,l(t)ϑ

(j)
k,l (x, y)

− sign(x) sign(y)ωk,l(t)λ
(j)
k,lϑ

(j)
k,l (x, y)

)
dxdydt

= ωk,l(0)

1∫

−1

1∫

−1

sign(x) sign(y)ϑ
(j)
k,l (x, y)ϕ1(x, y) dxdy

− ω′k,l(0)

1∫

−1

1∫

−1

sign(x) sign(y)ϑ
(j)
k,l (x, y)ϕ0(x, y) dxdy. (10)

From (10), we have

T∫

0

u
(j)
k,l (t)

(
ω′′k,l(t)− λ

(j)
k,lωk,l(t)

)
dt = ωk,l(0)ϕ

(j)
1k,l − ω′k,l(0)ϕ

(j)
0k,l, k, l ∈ N.

Thus, for u
(j)
k,l(t) ∈W 2

2 (Q), j = 1, 4, we have the following sequence of solutions:

(
u

(j)
k,l(t)

)
tt

= λ
(j)
k,lu

(j)
k,l(t), (11)

u
(j)
k,l(0) = ϕ

(j)
0k,l,

(
u

(j)
k,l (0)

)
t
= ϕ

(j)
1k,l, k, l ∈ N. (12)

It is easy to see that

u
(j)
k,l(t) =





ϕ
(j)
0k,l ch

√
λ

(j)
k,l t +

ϕ
(j)
1k,l

sh

√

λ
(j)
k,l

t
√

λ
(j)
k,l

, λ
(j)
k,l > 0, j = 1, 3,

ϕ
(j)
1k,lt + ϕ

(j)
0k,l, λ

(j)
k,l = 0, j = 2, 3,

ϕ
(j)
0k,l cos

√
−λ

(j)
k,l t +

ϕ
(j)
1k,l

sin

√

−λ
(j)
k,l

t
√

−λ
(j)

k,l

, λ
(j)
k,l < 0, k, l ∈ N, j = 2, 4.

According to (7), we have

‖u(x, y, t)‖20 =

∞∑

k=1

∞∑

l=1

((
u

(1)
k,l (t)

)2
+
(
u

(2)
k,l (t)

)2)
+

∞∑

k=1

∞∑

l=1

((
u

(3)
k,l (t)

)2
+
(
u

(4)
k,l (t)

)2)
,

where u
(j)
k,l(t), j = 1, 4, are solutions (11), (12), respectively.
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We introduce the norm

‖ϕ0‖
2
1 =

∞∑

k=1

∞∑

l=1

(
λ

(1)
k,l

(
ϕ

(1)
0k,l

)2
+
∣∣λ(2)

k,l

∣∣(ϕ(2)
0k,l

)2
+
∣∣λ(3)

k,l

∣∣(ϕ(3)
0k,l

)2
+
∣∣λ(4)

k,l

∣∣(ϕ(4)
0k,l

)2)
.

According to Lemma 1, for solutions (11), (12), for each fixed k, l, k, l ∈ N ,the

following inequality is valid

(
u

(j)
k,l(t)

)2
≤ e2t(T−t)

((
u

(j)
k,l (0)

)2
+ α

(j)
k,l

)1− t
T
((
u

(j)
k,l(T )

)2
+ α

(j)
k,l

) t
T − α

(j)
k,l , (13)

t ∈ Q, j = 1, 4,

where

α(j)
k,l

=
1

2

(
λ

(j)
k,l

(
u

(j)
k,l (0)

)2
−
(
u

(j)
tk,l(0)

)2)
, j = 1, 4. (14)

After an elementary transformation from (14), we can write

α(j)
k,l
≤

1

2

(∣∣λ(j)
k,l

∣∣(u(j)
k,l(0)

)2
+
(
u

(j)
tk,l(0)

)2)
, j = 1, 4.

We sum up inequalities (13) with respect to k, l, k, l ∈ N , and, taking into account

the Hölder inequality, we obtain

∞∑

k=1

∞∑

l=1

((
u

(1)
k,l (t)

)2
+
(
u

(2)
k,l (t)

)2
+
(
u

(3)
k,l (t)

)2
+
(
u

(4)
k,l (t)

)2)

≤ 4e2t(T−t)

(
∞∑

k=1

∞∑

l=1

((
u

(1)
k,l (0)

)2
+
(
u

(2)
k,l (0)

)2
+
(
u

(3)
k,l (0)

)2
+
(
u

(4)
k,l (0)

)2
)

+

∞∑

k=1

∞∑

l=1

(∣∣α(1)
k,l

∣∣+
∣∣α(2)

k,l

∣∣+
∣∣α(3)

k,l

∣∣+
∣∣α(4)

k,l

∣∣))1− t
T

×

(
∞∑

k=1

∞∑

l=1

((
u

(1)
k,l (T )

)2
+
(
u

(2)
k,l (T )

)2
+
(
u

(3)
k,l (T )

)2
+
(
u

(4)
k,l (T )

)2)

+

∞∑

k=1

∞∑

l=1

(∣∣α(1)
k,l

∣∣+
∣∣α(2)

k,l

∣∣+
∣∣α(3)

k,l

∣∣+
∣∣α(4)

k,l

∣∣)
) t

T

−

∞∑

k=1

∞∑

l=1

(∣∣α(1)
k,l

∣∣+
∣∣α(2)

k,l

∣∣+
∣∣α(3)

k,l

∣∣+
∣∣α(4)

k,l

∣∣),

and, summing up the above inequality, we finally get

‖u(x, y, t)‖20 ≤ 4e2t(T−t)
(
‖u(x, y, 0)‖20 + α

)1− t
T
(
‖u(x, y, T )‖20 + α

) t
T − α,

where α = 1
2

(
‖ϕ0‖

2
1 + ‖ϕ1‖

2
0

)
. The theorem is proved.
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4. Uniqueness and conditional stability

Theorem 2. If the solution of the problem (1)–(4) exists then it is unique.

Proof. Let u1(x, y, t) and u2(x, y, t) be solutions to problem (1)–(4). Then the

difference u(x, y, t) = u1(x, y, t)− u2(x, y, t) becomes a solution to the homogeneous

problem (1)–(4). Applying the estimates of Theorem 1, we find that ‖u(x, y, t)‖0 = 0,

and it follows that u(x, y, t) = 0 for any (x, y, t) ∈ �, or for ∀ (x, y, t) ∈ �, we have

u1(x, y, t) = u2(x, y, t). The theorem is proved.

Theorem 3. Let a solution u(x, y, t) of the problem (1)–(4) exist and u(x, y, t) ∈

M . Let ‖ϕ0 − ϕ0ε‖1 ≤ ε and ‖ϕ1 − ϕ1ε‖0 ≤ ε. Then for solutions of the problem

(1)–(4) the estimate

‖u(x, y, t)‖20 ≤ 4e2t(T−t)(2ε2)
1− t

T (2m2 + ε2)
t
T − ε2,

is valid for t ∈ Q .

Proof. Let u1(x, y, t) be a solution to (1)–(4) with exact data and u2(x, y, t)

be a solution to that problem with approximate data. Then u(x, y, t) = u1(x, y, t)−

u2(x, y, t) is a solution to equation (1) satisfying the boundary and the gluing condi-

tions (3) and (4) with the initial data u(x, y, 0) = ϕ0(x, y)− ϕ0ε(x, y), ut(x, y, 0) =

ϕ1(x, y)−ϕ1ε(x, y), and ‖ϕ0 − ϕ0ε‖1 ≤ ε, ‖ϕ1 − ϕ1ε‖0 < ε. Then using the estimates

of Theorem 1 and elementary transformations for the norm of the function u(x, y, t)

we have

‖u(x, y, t)‖20 ≤ 4e2t(T−t)(2ε2)
1− t

T (2m2 + ε2)
t
T − ε2.

The theorem is proved.

5. Approximate solution

Let ϕ0(x, y) 6= 0 and ϕ1(x, y) = 0 in (1)–(4). Then we can represent the solution

u(x, y, t) in the form

u(x, y, t) =

∞∑

k=1

∞∑

l=1

(ϕ
(1)
0k,l ch

√
λ

(1)
k,l tϑ

(1)
k,l (x, y) + ϕ

(4)
0k,l cos

√
−λ

(4)
k,l tϑ

(4)
k,l (x, y)

)

+

∞∑

k=1

k∑

l=1

ϕ
(2)
0k,l ch

√
λ

(2)
k,l tϑ

(2)
k,l (x, y) +

∞∑

k=1

∞∑

l=k+1,

ϕ
(2)
0k,l cos

√
−λ

(2)
k,l tϑ

(2)
k,l (x, y)

+

∞∑

k=1

∞∑

l=k+1

ϕ
(3)
0k,l ch

√
λ

(3)
k,l tϑ

(3)
k,l (x, y) +

∞∑

k=1

k∑

l=1

ϕ
(3)
0k,l cos

√
−λ

(3)
k,l tϑ

(3)
k,l (x, y),

where

ϕ
(j)
0k,l =

(
sign(x) sign(y)ϕ0(x, y), ϑ

(j)
k,l (x, y)

)
, j = 1, 4,

ϕ
(j)
0k,l = −

(
sign(x) sign(y)ϕ0(x, y), ϑ

(j)
k,l (x, y)

)
, j = 2, 3, k, l ∈ N.

Then an approximate solution of the problem with exact data has the form

uN(x, y, t) =

N∑

k=1

N∑

l=1

ϕ
(1)
0k,l ch

√
λ

(1)
k,l tϑ

(1)
k,l (x, y) +

N∑

k=1

N∑

l=1

ϕ
(4)
0k,l cos

√
−λ

(4)
k,l tϑ

(4)
k,l (x, y)
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+

N∑

k=1

k∑

l=1

ϕ
(2)
0k,l ch

√
λ

(2)
k,l tϑ

(2)
k,l (x, y) +

N−1∑

k=1

N∑

l=k+1,

ϕ
(2)
0k,l cos

√
−λ

(2)
k,l tϑ

(2)
k,l (x, y)

+

N∑

k=1

k∑

l=1

ϕ
(3)
0k,l cos

√
−λ

(3)
k,l tϑ

(3)
k,l (x, y) +

N−1∑

k=1

N∑

l=k+1

ϕ
(3)
0k,l ch

√
λ

(3)
k,l tϑ

(3)
k,l (x, y),

where N is (N integer number) regularization parameter.

The approximate solution with approximate data has the form

uN
ε (x, y, t) =

N∑

k=1

N∑

l=1

(
ϕ

(1)
0εk,l ch

√
λ

(1)
k,l tϑ

(1)
k,l (x, y) + ϕ

(4)
0εk,l cos

√
−λ

(4)
k,l tϑ

(4)
k,l (x, y)

)

+

N∑

k=1

k∑

l=1

ϕ
(2)
0εk,l ch

√
λ

(2)
k,l tϑ

(2)
k,l (x, y) +

N−1∑

k=1

N∑

l=k+1,

ϕ
(2)
0εk,l cos

√
−λ

(2)
k,l tϑ

(2)
k,l (x, y)

+

N∑

k=1

k∑

l=1

ϕ
(3)
0εk,l cos

√
−λ

(3)
k,l tϑ

(3)
k,l (x, y) +

N−1∑

k=1

N∑

l=k+1

ϕ
(3)
0εk,l ch

√
λ

(3)
k,l tϑ

(3)
k,l (x, y),

where

ϕ
(j)
0εk,l =

(
sign(x) sign(y)ϕ0ε(x, y), ϑ

(j)
k,l (x, y)

)
, j = 1, 4,

ϕ
(j)
0εk,l = −

(
sign(x) sign(y)ϕ0ε(x, y), ϑ

(j)
k,l (x, y)

)
, j = 2, 3, k, l ∈ N.

Let ‖ϕ0(x, y)− ϕ0ε(x, y)‖0 ≤ ε and u(x, y, t) ∈M. Then, for the norm of the differ-

ence between the exact and approximate solutions, the inequality is as follows:
∥∥u(x, y, t)− uN

ε (x, y, t)
∥∥

0

≤ ‖u(x, y, t)− uN (x, y, t)‖0 +
∥∥uN(x, y, t)− uN

ε (x, y, t)
∥∥

0
. (15)

Let us estimate the second term on the right-hand side of (15), while we made

some elementary transformations, and the conditions for estimating the norm of the

difference between exact and approximate data are as follows:
∥∥uN(x, y, t)− uN

ε (x, y, t)
∥∥2

0

=

N∑

k=1

N∑

l=1

((
ϕ

(1)
0k,l − ϕ

(1)
0εk,l

)2
ch2

√
λ

(1)
k,l t +

(
ϕ

(4)
0k,l − ϕ

(4)
0εk,l

)2
cos2

√
−λ

(4)
k,l t
)

+

N∑

k=1

k∑

l=1

((
ϕ

(2)
0k,l − ϕ

(2)
0εk,l

)2
ch2

√
λ

(2)
k,l t +

(
ϕ

(3)
0k,l − ϕ

(3)
0εk,l

)2
cos2

√
−λ

(3)
k,l t
)

+

N−1∑

k=1

N∑

l=k+1

((
ϕ

(3)
0k,l − ϕ

(3)
0εk,l

)2
ch2
√
λ

(3)
k,l t +

(
ϕ

(2)
0k,l − ϕ

(2)
0εk,l

)2
cos2

√
−λ

(2)
k,l t
)

≤ ch2
√
λ

(1)
N,N t

N∑

k=1

N∑

l=1

((
ϕ

(1)
0k,l − ϕ

(1)
0εk,l

)2
+
(
ϕ

(4)
0k,l − ϕ

(4)
0εk,l

)2)

+ ch2
√

λ
(2)
N,1t

N∑

k=1

k∑

l=1

((
ϕ

(2)
0k,l − ϕ

(2)
0εk,l

)2
+
(
ϕ

(3)
0k,l − ϕ

(3)
0εk,l

)2)
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+ ch2
√
λ

(3)
1,N t

N−1∑

k=1

N∑

l=k+1

((
ϕ

(3)
0k,l − ϕ

(3)
0εk,l

)2
+
(
ϕ

(2)
0k,l − ϕ

(2)
0εk,l

)2)

≤ ch2
√
λ

(1)
N,N t

N∑

k=1

N∑

l=1

((
ϕ

(1)
0k,l − ϕ

(1)
0εk,l

)2
+
(
ϕ

(2)
0k,l − ϕ

(2)
0εk,l

)2

+
(
ϕ

(3)
0k,l − ϕ

(3)
0εk,l

)2
+
(
ϕ

(4)
0k,l − ϕ

(4)
0εk,l

)2)
≤ C0ε

2e
2

√

λ
(1)
N,N ,

or
∥∥uN (x, y, t)− uN

ε (x, y, t)
∥∥2

0
≤ C0e

2

√

λ
(1)
N,N

t
ε2,

here C0− is a positive constant.

Next, we estimate the first term on the right-hand side of inequality (15) pro-

vided that, u(x, y, t) and uN (x, y, t) ∈M

‖u(x, y, t)− uN (x, y, t)‖20 =

N∑

k=1

∞∑

l=N+1

((
ϕ

(1)
0k,l ch

√
λ

(1)
k,l t
)2

+
(
ϕ

(4)
0k,l cos

√
−λ

(4)
k,l t
)2)

+

∞∑

k=N+1

∞∑

l=1

((
ϕ

(1)
0k,l ch

√
λ

(1)
k,l t
)2

+
(
ϕ

(4)
0k,l cos

√
−λ

(4)
k,l t
)2)

+

∞∑

k=N+1

k−1∑

l=1

((
ϕ

(2)
0k,l ch

√
λ

(2)
k,l t
)2

+
(
ϕ

(3)
0k,l cos

√
−λ

(3)
k,l t
)2)

+

N∑

k=1

∞∑

l=N+1

((
ϕ

(3)
0k,l ch

√
λ

(3)
k,l t)

2 +
(
ϕ

(2)
0k,l cos

√
−λ

(2)
k,l t
)2)

+

∞∑

k=N+1

∞∑

l=k

((
ϕ

(3)
0k,l ch

√
λ

(3)
k,l t
)2

+
(
ϕ

(2)
0k,l cos

√
−λ

(2)
k,l t
)2)

.

We estimate the expression

N∑

k=1

∞∑

l=N+1

(
ϕ

(1)
0k,l ch

√
λ

(1)
k,l t
)2

+

∞∑

k=N+1

∞∑

l=1

(
ϕ

(1)
0k,l ch

√
λ

(1)
k,l t
)2

+

∞∑

k=N+1

k−1∑

l=1

(
ϕ

(2)
0k,l ch

√
λ

(2)
k,l t
)2

+

N∑

k=1

∞∑

l=N+1

(
ϕ

(3)
0k,l ch

√
λ

(3)
k,l t
)2

+

∞∑

k=N+1

∞∑

l=k

(
ϕ

(3)
0k,l ch

√
λ

(3)
k,l t
)2
, (16)

according to the condition

∞∑

k=1

∞∑

l=1

(
ϕ

(1)
0k,l ch

√
λ

(1)
k,lT

)2
+

∞∑

k=N+1

k−1∑

l=1

(
ϕ

(2)
0k,l ch

√
λ

(2)
k,lT )2

+

N∑

k=1

∞∑

l=N+1

(
ϕ

(3)
0k,l ch

√
λ

(3)
k,lT

)2
+

∞∑

k=N+1

∞∑

l=k

(
ϕ

(3)
0k,l ch

√
λ

(3)
k,lT )2 ≤ m2. (17)
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We estimate (16) under the condition (17) by the method of Lagrange multipliers.

As a result, we get

N∑

k=1

∞∑

l=N+1

(
ϕ

(1)
0k,l ch

√
λ

(1)
k,l t
)2

+

∞∑

k=N+1

∞∑

l=1

(
ϕ

(1)
0k,l ch

√
λ

(1)
k,l t
)2

+

∞∑

k=N+1

k−1∑

l=1

(
ϕ

(2)
0k,l ch

√
λ

(2)
k,l t
)2

+

N∑

k=1

∞∑

l=N+1

(
ϕ

(3)
0k,l ch

√
λ

(3)
k,l t
)2

+

∞∑

k=N+1

∞∑

l=k

(
ϕ

(3)
0k,l ch

√
λ

(3)
k,l t
)2
≤ C1m

2
(
2e

2

√

λ
(1)
1,N+1

(
t−T
)

+ 2e
2

√

λ
(2)
N+1,1

(
t−T
)

+ 1
)

where C1 is a positive constant.

Assume the series
∞∑
k=1

∞∑
l=1

((
ϕ

(1)
0k,l

)2
+
(
ϕ

(2)
0k,l

)2
+
(
ϕ

(3)
0k,l

)2
+
(
ϕ

(4)
0k,l

)2)
to be con-

verging. Let

N∑

k=1

∞∑

l=N+1

(
ϕ

(4)
0k,l

)2
+

∞∑

k=N+1

∞∑

l=1

(
ϕ

(4)
0k,l

)2
+

∞∑

k=N+1

k−1∑

l=1

(
ϕ

(3)
0k,l

)2

+

N∑

k=1

∞∑

l=N+1

(
ϕ

(2)
0k,l

)2
+

∞∑

k=N+1

∞∑

l=k

(
ϕ

(2)
0k,l

)2
= γ(N),

where γ(N)→ 0 at N →∞. Thus,

‖u(x, y, t)− uN(x, y, t)‖20 ≤ C1m
2
(
2e

2

√

λ
(1)
1,N+1(t−T )

+ 2e
2

√

λ
(2)
N+1,1(t−T )

+ 1
)

+ γ(N).

Summing up the estimates, we have

0.5
∥∥u(x, y, t)− uN

ε (x, y, t)
∥∥2

0

≤ C1m
2
(
2e

2

√

λ
(1)
1,N+1

(t−T )
+ 2e

2

√

λ
(2)
N+1,1

(t−T )
+ 1
)

+ C0e
2

√

λ
(1)
N,N

t
ε2 + γ(N).

Minimizing evaluation at the right side of ε > 0, we obtain a formula for the regu-

larization parameter N . Here m is chosen arbitrarily and usually it is determined

depending on the specific model.

Conclusion. An ill-posed boundary-value problem for a second-order mixed

hyperbolic-elliptic type partial differential equation was investigated for conditional

correctness. The ill-posed boundary value is expressed in the absence of continuous

dependence of the solution on the data. The main result of the paper is the proof

of the conditional stability theorem for the solution of the problem. Using this,

a sequence of approximate solutions which is stable on the defined set of correctness

with respect to the accuracy of the initial data was constructed.
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Abstract: The article contains a review of recent results on solving the direct and
inverse problems related to a singularly perturbed system of ordinary differential equa-
tions which describe a process in chemical kinetics. We also extend the class of problems
under study by considering polynomials of arbitrary degree as the right-hand parts of the
differential equations in the case ε 6= 0. Moreover, an iteration algorithm is proposed
of finding an approximate solution to the inverse problem in the nondegenerate case
(ε 6= 0) for arbitrary degree. The theorem is proven on the convergence of the algorithm
suggested. The proof is based on the contraction mapping principle (the Banach fixed-
point theorem).
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Introduction

In Sections 1–4, we review the available results on the direct and inverse prob-

lems related to a singularly perturbed system of ordinary differential equations with

small parameter which describe a process in chemical kinetics. In Sections 5 and

6, we continue the study started in [1] and [2] which is devoted to formalization of

the notion of problem and solution of the inverse problem of chemical kinetics. In

particular, we extend the class of problems under study by considering polynomials

of arbitrary degree as the right-hand part of the differential equations in the case

ε 6= 0.

In Section 1, the Goldstein—Sobolev theorem [3] is stated on the existence and

uniqueness of a solution to the direct problem for system (1) with small parameter

described below.

Section 2 is devoted to solution of the inverse problem for (1) in the case ε = 0,

p = 1, where p is the degree of the polynomial f in the right-hand part of (1); see

[2, 4].

In Section 3, we present the theorem on the existence and uniqueness of a

solution to the inverse problem in the case ε = 0 for arbitrary polynomial degree;

see [5].

The work was carried out in the framework of the State Task to the Sobolev Institute of
Mathematics (Project FWNF–2022–0005).

c© 2023 L. I. Kononenko
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In Section 4, an algorithm is considered that makes it possible to employ the

Banach theorem for proving the existence and uniqueness of a solution of the inverse

problem in the case ε 6= 0, p = 1; see [6].

Section 5 is devoted to the generalization of the previous result to the case of

arbitrary degree p of the polynomial.

1. Direct problem

We start with the formal definitions of problem, solution, inverse problem, and

composition of problems. By a problem we mean an arbitrary correspondence be-

tween the elements of two sets, i.e., a triple P = (A,B,C), where A and B are any

sets and C ⊆ A × B. The sets A, B, and C are denoted by DomP , ImP , and

GrP and called the domain of data, the domain of unknowns, and the condition

of the problem P . The containment (a, b) ∈ GrP is written as P (a, b). A so-

lution to a problem P for a data instance a ∈ DomP is an arbitrary unknown

b ∈ ImP which meets the condition P (a, b). The set of solutions to P for a is de-

noted by P [a]. A problem P is solvable for a ∈ DomP whenever P [a] 6= ∅, and

uniquely solvable if P [a] = {b} for some b ∈ ImP , with the corresponding solu-

tion b denoted by P s(a). The inverse problem to P is the inverse correspondence

P−1 := (ImP,DomP, (GrP )−1), where (GrP )−1 = {(b, a) : (a, b) ∈ GrP}. The

composition of problems P and Q is the composition of the correspondences, which

is the problem Q ◦ P := (DomP, ImQ,GrQ ◦ GrP ) with condition GrQ ◦ GrP =

{(a, c) ∈ DomP × ImQ : (∃ b ∈ ImP ∩DomQ) P (a, b) & Q(b, c)}.

Suppose that n,m ∈ N, 0 < ε0 ∈ R, X := Rm, Y is a domain in Rn, T := R,

E := {ε ∈ R : 0 ≤ ε ≤ ε0}, F := C(X × Y × T × E, Rm), G := C(X × Y ×

T × E, Rn). Consider the problem P with domain of data DomP = F × G × E,

domain of unknowns ImP = C1(T,X) × C1(T, Y ), and the following condition

P ((f, g, ε), (x, y)): {
ẋ(t) = f(x(t), y(t), t, ε),

ε ẏ(t) = g(x(t), y(t), t, ε)
(1)

for all t ∈ T , where f ∈ F , g ∈ G, ε ∈ E, x ∈ C1(T,X), y ∈ C1(T, Y ); see [1, 2].

The problem P is referred to as the direct problem: given expressions f , g of the

right-hand parts and a parameter ε, find x and y subject to the system.

Under certain conditions presented below, the problem P occurs to be uniquely

solvable. The solution is based on the method of integral manifolds, a convenient tool

for studying multidimensional singularly perturbed systems of differential equations

which makes it possible to lower the dimension of the system under study (see [3, 7–

10]). Solution of P in a sense reduces to solving the so called degenerate system which

is obtained from (1) by putting the parameter ε equal to zero. This is justified by

the results of A. N. Tikhonov (see, for instance, [11]) on passing to a solution to the

degenerate problem as a small parameter tends to zero.

The method of integral manifolds employs the so called slow surface that is

determined by the equation g(x, y, t, 0) = 0. Each sheet of the slow integral manifold

is the exact form of the sheet of the slow surface, with account taken of the small
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parameter ε, and is obtained by means of the asymptotic decomposition in powers

of ε:

h(x, t, ε) = h0(x, t) + εh1(x, t) + · · ·+ εkhk(x, t) + · · · ; lim
ε→0

h(x, t, ε) = h0(x, t),

where h0(x, t) is the sheet of the slow surface.

Suppose that system (1) meets the following conditions:

(a) The equation g(x, y, t, 0) = 0 has an isolated solution y = h0(x, t) for t ∈ R,

x ∈ Rm.

(b) In the domain {(x, y, t, ε) : x ∈ Rm, ‖y− h0(x, t)‖ < ρ, t ∈ R, 0 ≤ ε ≤ ε0},

the functions f , g, and h0 are uniformly continuous and bounded together with the

partial derivatives up to the order at least 2.

(c) There is a number γ > 0 such that the eigenvalues λi(x, t) (i = 1, . . . , n) of

the matrix ∂g
∂y (x, h0(x, t), t, 0) meet the inequality Reλi(x, t) ≤ −γ < 0.

Theorem 1 [3]. Assume that conditions (a)–(c) are satisfied. Then there is

an ε1 (0 < ε1 ≤ ε0) such that, for every ε ∈ (0, ε1], system (1) has an integral

manifold of slow motions y = h(x, t, ε) along which the motion is described by the

equation ẋ = f(x, h(x, t, ε), t, ε).

Two models in chemical kinetics were considered as examples of the direct prob-

lem: a mathematical model of ideal mixing reactor and a mathematical model of

catalytic carbon monoxide oxidation over iridium; see [10].

2. Inverse problem (ε = 0, p = 1)

If a problem P models a real physical process, consideration of the inverse

problem P−1 is motivated by the search of a relatively simple formal law which

describes the process with adequate accuracy. The data of the inverse problem are

experimentally measurable characteristics of the process, while the unknowns are,

for instance, the coefficients of a differential equation describing the process under

observation. Inverse problems for various systems of differential equations were

considered, for instance, in [12–16].

The inverse problem to P consists in finding the unknown functions in the

right-hand part of the system, given some data on the solution to the direct problem

P . As soon as the direct problem P is based on a functional equation, the formal

data of the inverse problem P−1 are functions of the corresponding class, while,

in practice, the role of data of the inverse problem is not played by the functions

themselves but rather by some of their characteristics which can be measured, i. e.,

by certain finite sets of numbers. The inverse problem can be suitably corrected by

means of the composition of the problem P−1 and a simple auxiliary problem which

represents the relation between functions and their characteristics being measured.

An example of such a correction was considered in [1, 2] and is represented below.

Relying on the close connection of the initial problem with the degenerate sys-

tem, we consider the case ε = 0 and additionally assume that the slow surface

defined by the equation g(x, y, t, 0) = 0 consists of a single sheet (with respect to the



66 L. I. Kononenko

dependence of y on x). Since the right-hand parts of equations in chemical kinetics

often occur polynomial, the corresponding restriction on f seems to be natural.

For demonstration purposes, we consider the partial case of the problem P in

which m = n = 1, E = {0}, the functions f ∈ F are polynomials of degree one,

and g ∈ G meet the condition of the implicit function theorem, which fact allows us

to replace the equation g(x(t), y(t), t, 0) = 0 by the equivalent equation of the form

y(t) = h(x(t), t). We also assume that the slow surface consists of a single sheet.

Let h ∈ C1(R2), a, b > 0. Consider the problem Q with domain of data

DomQ = R3; domain of unknowns ImQ equal to the set

W := {(x, y) ∈ C1(R) : 0 ≤ x(t) ≤ a, 0 ≤ y(t) ≤ b, x(t) + y(t) ≤ 1 for all t ∈ R};

(2)

and condition

Q(f, (x, y)) ⇔

{
ẋ(t) = f1 + f2x(t) + f3y(t),

y(t) = h(x(t), t)
for all t ∈ R,

where f = (f1, f2, f3) ∈ R
3, (x, y) ∈W .

The formal inverse problem Q−1, which has pairs of functions (x, y) ∈ C1(R)2

as data, is very simple and impractical. Finite collections of values of functions or

their derivatives as data are more adequate than everywhere defined functions. The

corresponding correction of the inverse problem is realized by the composition of the

problem Q−1 and the auxiliary problem R with domain of data DomR = (R3)3,

domain of unknowns ImR = W , and condition

R((t, α, β), (x, y)) ⇔

{
x(t1) = α1, x(t2) = α2, x(t3) = α3,

ẋ(t1) = β1, ẋ(t2) = β2, ẋ(t3) = β3,

where t, α, β ∈ R3, (x, y) ∈ W .

As compared to the formal inverse Q−1, the composition Q−1 ◦R is more prac-

tical and amounts to the following problem: Given τ, α, β ∈ R3, find the coefficients

f ∈ R3 for which there exist (x, y) ∈ W subject to the condition




x(t1) = α1, x(t2) = α2, x(t3) = α3,

ẋ(t1) = β1, ẋ(t2) = β2, ẋ(t3) = β3,

ẋ(t) = f1 + f2x(t) + f3y(t) for all t ∈ R,

y(t) = h(x(t), t) for all t ∈ R.

The following result was obtained in [1, 4].

Theorem 2. If t, α ∈ R3 meet the condition

� :=

∣∣∣∣∣∣

1 α1 h(α1, t1)
1 α2 h(α2, t2)
1 α3 h(α3, t3)

∣∣∣∣∣∣
6= 0

then, given arbitrary β ∈ R3, the problem Q−1 ◦ R is uniquely solvable for the

data (t, α, β), and its solution (f1, f2, f3) = (Q−1 ◦R)s(t, α, β) is determined by the

equalities fi = �i/�, with �i the determinant of the matrix formed from the above

matrix by replacing the i th column by β = (β1, β2, β3).
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3. Inverse problem (ε = 0, p is arbitrary)

We now consider the partial case of the problem P in which m = n = 1,

E = {0}, and the functions f ∈ F are polynomials in two variables of degree at

most p ∈ N:

f(x, y, t, ε) =
∑

(i,j)∈K(p)

γijx
iyj,

where γij ∈ R, (i, j) ∈ K(p),

K(p) := {(i, j) : 0 ≤ i, j ∈ Z, i + j ≤ p}.

Introduce the notation

κ(p) :=
(p + 1)(p + 2)

2

for the number of elements of the set K(p) and fix an arbitrary enumeration

K(p) = {(i1, j1), (i2, j2), . . . , (iκ(p), jκ(p))}.

Therefore, the expression
∑κ(p)

k=1 γkx
ikyjk is the general form of a polynomial in two

variables x, y of degree at most p.

As a result of the above agreements, we arrive at the problem Q with domain

of data DomQ = Rκ(p), domain of unknowns ImQ = C1(R)2, and condition

Q(γ, (x, y)) ⇔ ẋ(t) =

κ(p)∑

k=1

γkx(t)iky(t)jk , y(t) = h(x(t), t) for all t ∈ R,

where γ1, γ2, . . . , γκ(p) ∈ R, x, y ∈ C1(R), h ∈ C1(R2).

Proceeding in a similar way to the case of the previous section, we correct

the inverse problem Q−1 by considering the composition of Q−1 and the auxiliary

problem R with domain of data DomR = (Rκ(p))3, domain of unknowns ImR =

C1(R)2, and condition

R((τ, α, β), (x, y)) ⇔

{
x(τ1) = α1, x(τ2) = α2, . . . , x(τκ(p)) = ακ(p),

ẋ(τ1) = β1, ẋ(τ2) = β2, . . . , ẋ(τκ(p)) = βκ(p),

where τ, α, β ∈ Rκ(p), x, y ∈ C1(R).

The resultant problem Q−1 ◦ R is as follows: Given τ, α, β ∈ Rκ(p), find the

coefficients γ ∈ Rκ(p) for which there exist functions x, y ∈ C1(R) subject to the

condition

x(τ1) = α1, x(τ2) = α2, . . . , x(τκ(p)) = ακ(p),

ẋ(τ1) = β1, ẋ(τ2) = β2, . . . , ẋ(τκ(p)) = βκ(p),

ẋ(t) =

κ(p)∑

k=1

γkx(t)iky(t)jk for all t ∈ R,

y(t) = h(x(t), t) for all t ∈ R.

The following assertion can be proven for arbitrary p ∈ N in the same way as

the case p = 1 which is considered in [5].
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Theorem 3. If τ, α ∈ Rκ(p) meet the condition

�(τ, α) :=

∣∣∣∣∣∣∣∣∣

α
i1
1 h(α1,τ1)

j1 α
i2
1 h(α1,τ1)

j2 ... α
iκ(p)
1 h(α1,τ1)

jκ(p)

α
i1
2 h(α2,τ2)

j1 α
i2
2 h(α2,τ2)

j2 ... α
iκ(p)
2 h(α2,τ2)

jκ(p)

... ... ... ...

α
i1
κ(p)

h(ακ(p),τκ(p))
j1 α

i2
κ(p)

h(ακ(p),τκ(p))
j2 ... α

iκ(p)

κ(p)
h(ακ(p),τκ(p))

jκ(p)

∣∣∣∣∣∣∣∣∣
6= 0,

then, given arbitrary β ∈ Rκ(p), the problem Q−1 ◦ R is uniquely solvable for the

data (τ, α, β), and its solution (γ1, γ2, . . . , γκ(p)) = (Q−1 ◦R)s(τ, α, β), where

γk =
�k(τ, α, β)

�(τ, α)
, k = 1, 2, . . . , κ(p),

�k(τ, α, β) is the determinant of the matrix formed from the above matrix by replac-

ing the kth column
(
αik

1 h(α1, τ1)
jk , αik

2 h(α2, τ2)
jk , . . . , αik

κ(p)h(ακ(p), τκ(p))
jk
)

with

β = (β1, β2, . . . , βκ(p)).

The following criterion clarifies the case in which there exist numbers τ1, . . . , τκ(p)

satisfying the hypothesis of Theorem 3.

Theorem 4 [5]. Let n ∈ N, let T be an arbitrary set, and let ϕi : T → R,

i = 1, . . . , n. The family of functions ϕ1, . . . , ϕn is linearly independent in the vector

space RT if and only if there are points t1, . . . , tn ∈ T satisfying the condition

∣∣∣∣∣∣∣

ϕ1(t1) ϕ2(t1) . . . ϕn(t1)
ϕ1(t2) ϕ2(t2) . . . ϕn(t2)
. . . . . . . . . . . .

ϕ1(tn) ϕ2(tn) . . . ϕn(tn)

∣∣∣∣∣∣∣
6= 0.

Theorems 3 and 4 directly imply the following condition for unique solvability

of the corrected inverse problem Q−1 ◦R.

Theorem 5. Let x ∈ C1(R), h ∈ C1(R2). If the family of functions

t 7→ x(t)ikh(x(t), t)jk , k = 1, 2, . . . , κ(p),

is linearly independent in the vector space RR then there exist τ1, . . . , τκ(p) ∈ R such

that, for all β1, . . . , βκ(p) ∈ R, the problem Q−1 ◦R is uniquely solvable for the data

τ1, . . . , τκ(p), x(τ1), . . . , x(τκ(p)), β1, . . . , βκ(p).

4. Inverse problem (ε 6= 0, p = 1)

In this section, we extend the class of problems under study by considering the

nondegenerate case ε 6= 0 and assuming that the function f in the right-hand part

of (1) is a polynomial of degree p = 1.

An iterative algorithm is proposed in [6] for calculating an approximate solution

to the corresponding inverse problem. The algorithm consists in combining, at each

iteration step, the solution of the inverse problem for the case of ε = 0 and the

solution of the direct problem, which is reduced to the proof of the existence and

uniqueness of the solution in the case of ε 6= 0. We will outline the algorithm.
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Step 0. By using the initial data t0i , x0(t0i ) = α0
i , ẋ0(t0i ) = β0

i , i = 1, 2, 3,

calculate the coefficients f0
i , i = 1, 2, 3, in the right-hand part of the system according

to Theorem 2 for the degenerate case ε = 0. After obtaining the right-hand part

of (1), use the solvability of the nondegenerate direct problem on the sheet of the

integral manifold (Theorem 1) and denote the solution by x1(t), y1(t), where y1(t) =

h(x1(t), t).

Step 1. Take the solution found at the points ti, i = 1, 2, 3 (we keep ti = t0i
unchanged) as the initial data. We have

x1(ti) = α1
i =

ti∫

0

[
f1
1 + f1

2x
0(t) + f1

3h(x0(t), t)
]
dt, y1(ti) = h(x1(ti), ti).

Find f1
i , i = 1, 2, 3, according to Theorem 2, use again the solvability of the di-

rect problem (Theorem 1), and denote the solution by x2(t), y2(t), where y2(t) =

h(x2(t), t).

Step m. Considering xm(t), ym(t) as the initial data, we obtain

xm+1(ti) = αm+1
i =

ti∫

0

[fm
1 + fm

2 xm(t) + fm
3 h(xm(t), t)] dt,

ym+1(ti) = h(xm+1(ti), ti), i = 1, 2, 3.

(3)

The convergence of the proposed algorithm is proven in [6] by means of the

Banach fixed-point theorem.

Theorem 6 [6]. Suppose that X = Y = R; the functions f ∈ F are polynomials

of degree one; g ∈ G meets the condition of the implicit function theorem, which fact

allows us to replace the equation g(x(t), y(t), t, 0) = 0 by the equivalent equation of

the form y(t) = h(x(t), t); and the domain of unknowns (x, y) is the set W defined in

(2). Assume also that the slow surface consists of a single sheet. Let cα, cβ , cf , ch ∈ R

and t0, α0, β0 ∈ R3 be such that the following hold:

0 ≤ cα, ch, cf (1 + ch) < 1;

0 ≤ αm
i ≤ cα, 0 ≤ βm

i ≤ cβ , 0 ≤ fm
i ≤ cf , 0 ≤ h(αm

i , t0i ) ≤ ch for all i = 1, 2, 3;

m = 0, 1, 2, . . . ; ∣∣∣∣∣∣

1 α0
1 h(α0

1, t
0
1)

1 α0
2 h(α0

2, t
0
2)

1 α0
3 h(α0

3, t
0
3)

∣∣∣∣∣∣
6= 0.

Then the inverse problem for system (1) with ε 6= 0 has a unique solution.

5. Inverse problem (ε 6= 0, p is arbitrary)

Consider now the case ε 6= 0; suppose that the main conditions of Theorem 6

hold; but assume that the function f in the right-hand part of (1) is a polynomial

of arbitrary degree at most p.
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Then the assertion very similar to Theorem 6 can be proven along the same

lines as in [6]. The main difference consists in replacing (3) with the following more

complex expressions:

xm+1(ti) = αm+1
i =

ti∫

0

κ(p)∑

k=1

γkx(t)iky(t)jk dt,

ym+1(ti) = h(xm+1(ti), ti), i = 1, 2, . . . , κ(p),

where κ(p), ik, and jk are defined in Section 3.

Note that the domain of unknowns W defined in (2) ensures the inequalities

0 ≤ xik ≤ 1 and 0 ≤ yjk ≤ 1, which fact simplifies the verification of the conditions

listed in Theorem 6.

The author is indebted to A. E. Gutman and V. N. Potapov for their help in

this work.
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ЧИСЛЕННОЕ ИССЛЕДОВАНИЕ

ДИССОЦИАЦИИ ГИДРАТА ПРИРОДНОГО

ГАЗА В ЛАБОРАТОРНОМ ОБРАЗЦЕ

ПЕСЧАНИКА ПРИ ДЕПРЕССИОННОМ РЕЖИМЕ

В. А. Иванов, И. И. Рожин

Аннотация. Работа посвящена математическому моделированию процесса диссо-
циации (разложения) гидрата природного газа Средневилюйского газоконденсат-
ного месторождения в лабораторном образце природного песчаника. В начальный
момент времени пористая среда заполнена природным газом, водой и гидратом и
находится в термобарических условиях, соответствующих стабильному состоянию
газогидрата. Затем с одной из сторон цилиндрического образца гидрата стравли-
вается давление, что вызывает его разложение. Математическая модель процесса
разложения учитывает двухфазную фильтрацию газа и воды, эффект дроссели-
рования, конвективный теплообмен, поглощение тепла при диссоциации гидрата,
кинетику этого процесса. Разработанная модель и ее алгоритм численной реализа-
ции проверены на адекватность путем сравнения с результатами известной экспе-
риментальной работы. В результате вычислительного эксперимента получены рас-
пределения давления и температуры газа, гидрато- и водонасыщенности. Также
проведена оценка продолжительности процесса диссоциации гидрата при варьиро-
вании некоторых исходных данных.

DOI: 10.25587/SVFU.2023.59.65.006

Ключевые слова: газовый гидрат, диссоциация, депрессионный режим, природ-

ный газ, пористая среда, лабораторный образец, вычислительный эксперимент.

В последние годы идет интенсивное развитие науки о газовых гидратах во

всем мире, что подтверждается увеличением количества публикаций и научных

конференций, посвященных теоретическим и практическим аспектам исследо-

ваний газогидратов. Среди возможных технологических применений газогидра-

тов являются хранение и транспортировка природного газа, разделение газовых

смесей, утилизация парниковых газов с одновременным получением природного

газа, опреснение воды, холодильное хранение и др. Многими промышленно раз-

витыми странами (в первую очередь странами, не обладающими собственными

ресурсами углеводородов) разработаны и приняты к осуществлению националь-

ные программы научно-практического изучения газовых гидратов. Прежде все-

го, широкий научный интерес к газовым гидратам связан с рассмотрением их

Работа выполнена в рамках госзадания Минобразования РФ (Рег. № 122011100157-5,
научная тема FWRS-2021-0003).

c© 2023 Иванов В. А., Рожин И. И.
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в качестве перспективного нетрадиционного источника углеводородного сырья,

а также внутренней логикой развития газогидратной проблематики. В частно-

сти, особое внимание уделяется фундаментальным исследованиям свойств этих

соединений-включений и условий их образования/разложения в каналах и по-

ристых структурах. Перед исследователями, изучающими особенности образо-

вания/разложения газогидратов методами математического моделирования и

лабораторного эксперимента, возникают новые задачи, соответствующие более

глубокому физическому описанию этих процессов.

В статье Г. Г. Цыпкина [1] выведено автомодельное решение одномерной

задачи разложения гидрата метана в пористом коллекторе при снижении дав-

ления на добывающей скважине. Для упрощения аналитического решения рас-

смотрены два случая. В первом случае продуктивный пласт с гидратом счи-

тается достаточно тонким, тогда процесс диссоциации гидрата можно рассмат-

ривать как изотермический. Во втором случае толщина пласта значительная

и необходимо учитывать уравнение баланса тепла и зависимость давления дис-

социации гидрата от температуры. В работе В. И. Васильева и др. [2] зада-

ча разложения гидрата метана при добыче газа из пористого коллектора так-

же решена аналитическим методом. При условии достаточно малого перепа-

да давления на скважине для решения основных уравнений газовой динамики

в пористой среде применяется метод линеаризации. Это позволяет получить

систему однородных параболических уравнений для температуры, давления и

водонасыщенности. Полученная задача имеет автомодельное решение, которое

позволяет рассмотреть широкий диапазон параметров при меньших затратах,

и, таким образом, лучше понять качественные особенности рассматриваемого

физического процесса.

В отличие от вышеописанных работ, в которых рассматривается фронто-

вой режим диссоциации гидрата, в [3] процесс диссоциации гидрата в пористой

среде моделируется в объемном режиме с учетом кинетики процесса. Одномер-

ная модель построена с учетом уравнения состояния Пенга — Робинсона для

метана, массовых соотношений компонентов при диссоциации гидрата метана,

кинетики разложения гидрата по модели Ким и др. [4], уравнения равновесного

давления гидрата по Слоан [5], закона Дарси без учета гравитации, кривых от-

носительных фазовых проницаемостей по модели из [6], уравнения абсолютной

проницаемости гидратонасыщенной пористой среды по Масуда и др. [7], урав-

нения капиллярного давления в порах, а также уравнения изменения энтальпии

из [8]. В [9] одномерная модель модифицирована до трехмерной, а также учи-

тываются возможность наличия солей и массоперенос посредством диффузии.

В работе [10] с помощью аналогичной модели рассмотрены различные сценарии

снижения давления в лабораторном образце и их эффект на характер извлече-

ния газа. При этом проверка адекватности численной модели проведена путем

сравнения с результатами эксперимента из [7].

Работы Н. Г. Мусакаева с соавторами [11, 12] посвящены численному иссле-

дованию процесса образования/диссоциации газового гидрата (гидрата метана)
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при разработке газогидратных залежей. Построены математические модели в

плоскорадиальном приближении и разработаны алгоритмы их численной реа-

лизации, позволяющие определить основные параметры (динамики полей тем-

пературы, давления и гидратонасыщенности) при неизотермическом фильтра-

ционном потоке в гидратонасыщенном пласте с учетом разложения гидрата ме-

тана на газ и воду (лед). С использованием авторской схемы расчета гидратона-

сыщенности показано, что для рассмотренных параметров пласта характерным

является фронтальный режим фазовых переходов. В статье [13] предложен и

теоретически описан способ разработки газогидратной залежи в циклическом

режиме. При данном способе диссоциация гидрата происходит за счет геотер-

мальной теплоты самого пласта, а также теплоты окружающих горных пород.

Математическая модель процесса строится в предположении, что темп диссоци-

ации гидрата намного ниже скорости пробега волн давления в пористой среде.

В таком случае законы сохранения масс газа и гидрата записываются в инте-

гральной форме для всего пласта в целом, что позволяет значительно упростить

расчеты.

В лаборатории техногенных газовых гидратов ИПНГ СО РАН проводятся

экспериментальные исследования по изучению образования и разложения гид-

ратов природного газа в свободном объеме [14–16] и в пористой среде [17, 18] с

учетом состава и минерализации пластовых вод.

Численное моделирование является эффективным и действенным методом

анализа динамической реакции залежей гидратов природного газа и добычи

флюидов (воды и газа) из них. Вычислительный эксперимент позволяет по-

лучить достаточно достоверные данные о физических процессах, изучение ко-

торых в лабораторных или натурных условиях очень сложно, а иногда просто

невозможно, и всегда требует значительных затрат средств и времени. В ре-

альных лабораторных экспериментах не всегда возможно определить распре-

деление давления, температуры, водонасыщенности и гидратонасыщенности по

всему объему образца в различные моменты времени. Тем самым целью работы

являются выбор и верификация математической модели диссоциации гидрата

природного газа в лабораторном образце песчаника при понижении давления

(или при разгерметизации). Полученные результаты могут быть использованы

для разработки методики проведения лабораторных экспериментов по изуче-

нию процесса образования/разложения газогидратов.

1. Математическая модель

и алгоритм численного решения

Объектом исследования является лабораторный образец песчаника, запол-

ненный природным газом Средневилюйского газоконденсатного месторождения

и его гидратом. Длина образца составляет 30 см, диаметр — 4 см. Темпе-

ратура и давление соответствуют равновесным условиям гидратообразования.

В начальный момент времени с левой торцевой границы образца стравливается

давление и запускается процесс диссоциации гидрата в пористой среде депрес-
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сионным воздействием.

Для описания процесса предложена одномерная математическая модель,

которая учитывает кинетику разложения гидрата и позволяет описать не толь-

ко фронтовой режим диссоциации, но и объемный, характерный для пористых

сред с высокой проницаемостью. В математической модели процесса включены

уравнения, которые выводятся на основе фундаментальных законов сохранения

массы и энергии. Роль уравнений движения играет закон фильтрации Дарси.

Для замыкания системы уравнений добавляются: уравнение состояния газа,

условие термодинамического равновесия «гидрат — газ + вода», выражение

массовой скорости выделения газа при диссоциации гидрата, массовые соотно-

шения компонентов при диссоциации гидрата, уравнение капиллярного давле-

ния, соотношения для относительных фазовых проницаемостей и зависимость

абсолютной проницаемости от гидратонасыщенности. Эти уравнения получены

при следующих допущениях: пористая среда однородна и несжимаема, газ не

растворяется в воде, при диссоциации гидрата не образуется лед.

Уравнения сохранения массы при фильтрации газа и воды через пористую

среду в дифференциальной форме имеют вид

∂

∂t
(φρgSg) +

∂

∂x
(ρgvg) = ṁg, (1)

∂

∂t
(φρwSw) +

∂

∂x
(ρwvw) = ṁw, (2)

где t — время; x — пространственная координата, отсчитанная от левого края

образца; φ — пористость; ρg, ρw — плотности газа и воды соответственно; Sg —

газонасыщенность; Sw — водонасыщенность; vg, vw — скорости фильтрации

газа и воды соответственно; ṁg, ṁw — скорости изменения масс газа и воды

при разложении гидрата.

Уравнение сохранения массы гидрата при его диссоциации записывается

следующим образом:
∂

∂t
(φρhSh) = ṁh, (3)

где ρh — плотность гидрата; Sh — гидратонасыщенность; ṁh — скорость изме-

нения массы гидрата при его разложении. Газ, вода и гидрат занимают все по-

ровое пространство, так что сумма насыщенностей пор фазами Sg+Sw+Sh = 1.

Уравнения сохранения дополняются уравнением состояния идеального газа

pg = ρgRMT, (4)

где RM = R/Mg — газовая постоянная; R — универсальная газовая постоянная;

Mg — молярная масса газа; p — давление; T — температура.

При диссоциации газового гидрата, описываемого уравнением

M ·NHH2O↔M + NHH2O

(M обозначает молекулу-гостя одного или нескольких видов газа), массы газа,

гидрата и воды соотносятся так:

ṁh = −ṁg
NHMw + Mg

Mg
, (5)



76 В. А. Иванов, И. И. Рожин

ṁw = ṁg
NHMw

Mg
, (6)

где NH — гидратное число, т. е. число молекул воды, приходящихся на одну

молекулу-гостя; Mw — молярная массы воды.

Скорость выделения газа и соответственно кинетика диссоциации гидрата

определяется по модели [4]. При этом в данной работе летучесть газа f аппрок-

симируется давлением p. Тогда

ṁg = kdMgAs(fe − f) ≈ kdMgAs(pe − p), (7)

kd = k0 exp

(
−
�Ea

RT

)
, (8)

где As — удельная площадь внутренней поверхности порового пространства;

fe — равновесная летучесть газа; pe — равновесное давление гидратообразова-

ния; k0 — кинетический коэффициент диссоциации гидрата; �Ea — энергия

активации.

Равновесное давление pe зависит от температуры и вычисляется по форму-

ле из [5] с эмпирическими коэффициентами Aw и Bw, зависящими от состава

газа:

pe = 1.15 exp

(
Aw +

Bw

T

)
. (9)

Межфазная граница между гидратом и флюидами в поровом пространстве

As находится по соотношению из [10]. В этой работе формула из [19], выве-

денная на основе модели параллельных цилиндров, дополняется множителем,

зависящим от насыщенностей поровых флюидов и гидрата:

As =

√
(1 − Sh)3φ3

2Ke
(SgSwSh)2/3. (10)

Здесь эффективная проницаемость утрамбованного песка Ke существенно за-

висит от гидратонасыщенности Sh и определяется по формуле Масуда [7]:

Ke = K(1− Sh)N , (11)

где K — абсолютная проницаемость пористой среды; N — показатель степени.

Скорости фильтрации газа и воды в уравнениях (1), (2) определяются по

закону Дарси для многофазного потока [20]:

vg = −
Kekrg
µg

∂pg
∂x

, (12)

vw = −
Kekrw
µw

∂pw
∂x

. (13)

Здесь µg, µw — динамические вязкости газа и воды; krg, krw — относительные

фазовые проницаемости газа и воды, которые рассчитываются по степенной

зависимости из [6]:

krg =

( Sg

Sw+Sg
− Sgr

1− Swr − Sgr

)ng

, (14)
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krw =

( Sw

Sw+Sg
− Swr

1− Swr − Sgr

)nw

, (15)

где Sgr, Swr — остаточные газо- и водонасыщенности; ng, nw — эмпирические

показатели степени.

Вязкость воды µw считается постоянной, а вязкость газа µg рассчитыва-

ется по формуле для вязкости метана из [8] как функция от температуры и

плотности:

µg = (2.5404 · 10−3 + 2.8764 · 10−5 · T + 3.279 · 10−9 · T 2

− 3.7838 · 10−12 · T 3 + 2.0891 · 10−5 · ρg + 2.5127 · 10−7 · ρ2
g

− 5.822 · 10−10 · ρ3
g + 1.8378 · 10−13 · ρ4

g) · 10−3, (16)

где размерность температуры в К, плотности газа — кг/м3, динамической вяз-

кости газа — Па·с.

Давление воды отличается от давления газа в той же точке порового про-

странства на величину капиллярного давления

pg − pw = pc = pec

( Sw

Sw+Sg
− Swr

1− Swr

)−nc

, (17)

где pec — пороговое давление; nc — эмпирический показатель степени.

Подставляя уравнения Дарси (12) и (13) в уравнения сохранения масс газа

и воды (1) и (2), получаем следующие выражения:

∂

∂t
(φρgSg)−

∂

∂x

(
ρg

Kekrg
µg

∂pg
∂x

)
= ṁg, (18)

∂

∂t
(φρwSw)−

∂

∂x

(
ρw

Kekrw
µw

∂pw
∂x

)
= ṁw. (19)

Уравнение сохранения энергии пористой среды при фильтрации газа и воды

в дифференциальной форме, выраженное с помощью удельной энтальпии H и

температуры, имеет вид

∂

∂t
[φ(ρgSgHg + ρwSwHw + ρhShHh) + (1− φ)ρsHs]

−
∂

∂x
(ρgvgHg + ρwvwHw) =

∂

∂x

(
λ
∂T

∂x

)
, (20)

где λ — теплопроводность пористой среды, вычисленная с учетом ее компонент-

ного состава; индексы g, w, h, s обозначают газ, воду, гидрат и скелет пористой

среды соответственно. Нужно отметить, что уравнение (20) не учитывает по-

ток тепла извне, т. е. боковая поверхность цилиндрического образца считается

теплоизолированной. Из уравнения (20) с учетом уравнений сохранения масс

(1) и (2) получаем

(1− φ)ρs
∂Hs

∂t
+ φ

(
ρgSg

∂Hg

∂t
+ ρwSw

∂Hw

∂t
+ ρhSh

∂Hh

∂t

)

− ρgvg
∂Hg

∂x
+ ρwvw

∂Hw

∂x
=

∂

∂x

(
λ
∂T

∂x

)
+ ṁh�HD. (21)
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Здесь составляющая ṁh�HD = ṁgHg +ṁwHw +ṁhHh представляет собой теп-

ловой поток при диссоциации единицы объема гидрата, где изменение удельной

энтальпии определяется по уравнению из работы [8]:

�HD = 446.12 · 103 − 132.638 · T при 273 K < T < 298 K. (22)

Дифференциал удельной энтальпии H как функция от температуры и дав-

ления записывается в виде

dH =

(
∂H

∂T

)

p

dT +

(
∂H

∂p

)

T

dp = cpdT + σdp, (23)

где cp — удельная теплоемкость при постоянном давлении; σ — коэффициент

дросселирования. Таким образом, уравнение сохранения энергии принимает

следующий вид:

[φρgSgcpg + φρwSwcpw + φρhShcph + (1 − φ)ρsSscps]
∂T

∂t
=

∂

∂x

(
λ
∂T

∂x

)

− (ρgvgcpg + ρwvwcpw)
∂T

∂x
− φρgSgσg

∂pg
∂t
− ρgvgσg

∂pg
∂x

+ ṁh�HD, (24)

где cpg, cpw, cph, cps — удельные изобарные теплоемкости газа, воды, гидрата

и скелета пористой среды соответственно; σg — коэффициент дросселирования

газа.

Описанные дифференциальные уравнения решаются относительно плотно-

сти газа ρg, температуры T , водонасыщенности Sw и гидратонасыщенности Sh.

На каждом временном шаге эти неизвестные параметры находятся последова-

тельно. Сначала совместно вычисляются плотность газа и температура, затем

отдельно определяются водонасыщенность и гидратонасыщенность. Плотность

газа и температура находятся по следующим уравнениям, выведенным из (18)

и (24) с учетом (4) и (12):

φ(1 − S−w − S−h )
∂ρg
∂t
−

RM

µg

∂

∂x

(
ρgKekrg

(
∂ρg
∂x

T + ρg
∂T

∂x

))
= ṁ−g ,

(ρcp)
− ∂T

∂t
=

∂

∂x

(
λ−

∂T

∂x

)
+ ρgcpg

K−e k−rgRM

µg

(
∂ρg
∂x

T + ρg
∂T

∂x

)
∂T

∂x

−ρwv
−
w cpw

∂T

∂x
− φρg(1 − S−w − S−h )σg

∂pg
∂t

+ρgσg

K−e k−rgR
2
M

µg

(
∂ρg
∂x

T + ρg
∂T

∂x

)2

+ ṁ−h�HD,

(25)

где верхний индекс − означает, что значение параметра берется с предыдущего

временного слоя; ρcp — объемная теплоемкость пористой среды, насыщенной

газом, водой и гидратом.

Далее вычисляется водонасыщенность по явной схеме согласно уравнению

(19), где производная по времени аппроксимирована разностью ∂Sw

∂t ≈
Sw−S−w

τ ,

τ — шаг по времени. При этом значения относительной фазовой проницаемо-

сти воды и капиллярного давления рассчитываются с использованием значения
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водонасыщенности от нижнего временного слоя S−w по уравнениям (15) и (17),

тогда

Sw = S−w +
τ

φρw

[
ρw
µw

∂

∂x

(
K−e krw(S−w )

∂pw(S−w )

∂x

)
+ ṁw

]
. (26)

Затем определяется гидратонасыщенность также по явной схеме согласно

уравнению (3), где производная по времени аппроксимируется разностью ∂Sh

∂t ≈
Sh−S−

h

τ :

Sh = S−h +
τṁh

φρh
. (27)

Уравнения (25)–(27) дополняются следующими начальными и граничными

условиями, при этом на левой границе (x = 0) задается условие I-го рода, а на

правой границе (x = L) — условие II-го рода:

ρg = ρ0
g, T = T 0, Sw = S0

w, Sh = S0
h при t = 0; (28)

ρg = ρg0, T = T0 при x = 0; (29)

∂ρg
∂x

= 0,
∂T

∂x
= 0 при x = L. (30)

2. Численная реализация и тестирование модели

Построенная модель диссоциации гидрата в пористой среде описывает про-

цессы, сильно отличающиеся друг от друга по скорости протекания. С одной

стороны, относительно быстро изменяется давление в образце, которое после

открытия клапана на торце выравнивается с внешним давлением за несколько

минут. С той же скоростью протекает конвективный теплообмен. С другой сто-

роны, разложение гидрата в цилиндрическом образце с теплоизолированными

боковыми стенками может занять время порядка нескольких суток. Поэтому

уравнения для температуры и плотности газа целесообразно решить как единую

взаимозависимую систему, а уравнения для гидратонасыщенности и водонасы-

щенности — решить отдельно.

Уравнения для температуры и плотности газа (25) представляют собой па-

раболические уравнения с переменными коэффициентами. В построенной чис-

ленной модели эти коэффициенты пересчитываются через определенные шаги

по времени, а в каждом временном шаге решаются параболические уравнения с

фиксированными коэффициентами. Также на каждом шаге по времени вычис-

ляются гидратонасыщенность и водонасыщенность по уравнениям (26) и (27).

Шаг по времени τ вначале принимается равным 0.1 сек, затем по мере стабили-

зации давления в образце постепенно доводится до 60 сек. Расчетный отрезок

разбивается на 50 интервалов по длине. Программный код реализован в пакете

прикладных программ Matlab.

Верификация численной модели проведена путем сравнения с эксперимен-

тальными данными работы [21], в которой исследована диссоциация гидрата
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метана в образце песчаника Berea при относительно небольшом снижении дав-

ления с 3.17 МПа до 2.495 МПа и при поддержании температуры термостати-

ческой рубашки 273.7 К (табл. 1). Во время эксперимента фиксировался объем

газа, выделяемого из образца. Этот параметр использован для сравнения ре-

зультатов численного моделирования и лабораторного эксперимента, что пока-

зало достаточно хорошее совпадение (рис. 1).

Таблица 1. Параметры лабораторного эксперимента
по диссоциации гидрата в пористой среде [21]

Длина образца 15 см

Площадь сечения образца 11.4 см2

Пористость 18.8%

Начальное давление 3.17МПа

Начальная температура 273.7К

Конечное давление 2.495 МПа

Температура окружающей среды 273.7К

Начальная гидратонасыщенность 42.76%

Начальная водонасыщенность 17%

0 50 100 150 200 250
0

500

1000

1500
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Рис. 1. Объем газа, выделяемого при диссоциации гидрата, в зависимости от вре-
мени по данным лабораторного эксперимента и согласно разработанной численной
модели.

3. Результаты вычислительного эксперимента

В вычислительном эксперименте исследована динамика процесса разложе-

ния гидрата, а также характер поведения изучаемого объекта при варьировании

некоторых исходных данных — конечного давления и начальной гидратонасы-

щенности.
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Таблица 2. Параметры модели
диссоциации гидрата в пористой среде

Геометрия, начальные и граничные условия

Длина образца 0.3м
Диаметр образца 0.04м
Начальная температура 10◦ С
Начальное давление 8МПа
Конечное давление 2МПа
Наружная температура 10◦ С

Физические свойства

Плотность гидрата 920 кг/м3

Плотность скелета пористой среды 2650 кг/м3

Плотность воды 1000 кг/м3

Удельная теплоемкость газа при постоянном давлении 2093 Дж/(кг·К)
Удельная теплоемкость гидрата 3210 Дж/(кг·К)
Удельная теплоемкость скелета пористой среды 700Дж/(кг·К)
Удельная теплоемкость воды 4200 Дж/(кг·К)
Коэффициент теплопроводности газа 0.0307 Вт/(м·К)
Коэффициент теплопроводности гидрата 1.88Вт/(м·К)
Коэффициент теплопроводности скелета пористой среды 2.0Вт/(м·К)
Коэффициент теплопроводности воды 0.58Вт/(м·К)
Газовая постоянная 480.76 Дж/(кг·К)
Коэффициент дросселирования газа −1.5 · 10−4 Дж/(кг·Па)

Петрофизические свойства

Пористость 0.188
Коэффициент проницаемости 100мД
Остаточная водонасыщенность 0.2
Динамическая вязкость газа 1.3·10−5 Па·с
Динамическая вязкость воды 1.8 · 10−3 Па·с
Начальная гидратонасыщенность 0.5
Показатель степени N в уравнении (11) 15
Начальная водонасыщенность 0.3
Остаточная газонасыщенность 0
Пороговое капиллярное давление 4000 Па
Показатель степени ng в уравнении (14) 2
Показатель степени nw в уравнении (15) 4
Показатель степени nc в уравнении (17) 0.65

Параметры гидрата

Молярная масса воды 18.01528 г/моль
Молярная масса газа 17.293 г/моль
Гидратное число 7.169
Коэффициент Aw в уравнении (9) 49.3185
Коэффициент Bw в уравнении (9) −9459 K
Кинетический коэффициент диссоциации гидрата k0 в (8) 3.6 · 104 моль/(м2·Па·с)
�Ea/R в уравнении (8) 9752.73 К

В табл. 2 представлены исходные данные численного расчета разложения

гидрата в пористой среде. Использованы параметры, характерные для природ-

ного газа Средневилюйского меторождения и для песчаника Berea, известного

из литературных источников.

При исходных данных (табл. 2) разложение гидрата в образце песчаника
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завершается через 27.5 часов. При этом выделяется 5000 см3 газа. На рис. 2

представлены распределения давления и температуры газа в пористой среде

цилиндрического образца после начала стравливания газа с его левого торца,

а на рис. 3 представлены распределения водо- и гидратонасыщенности. Кри-

вые соответствуют шести моментам времени: 1 мин, 5 мин, 20 мин, 3 ч, 10 ч и

27.5 ч. Из этих графиков видна следующая картина процесса. Выделение газа

из порового пространства вызывает понижение давления (рис. 2а), что, в свою

очередь, дестабилизирует находящийся в порах гидрат. Гидрат начинает разла-

гаться с довольно высокой скоростью (рис. 3а), что сопровождается уменьшени-

ем температуры (рис. 2б) и выделением воды в поровом пространстве (рис. 3б).

В дальнейшем, когда температура образца достигает равновесного значения

для конечного давления, диссоциация гидрата резко замедляется. Далее остав-

шийся гидрат разлагается под воздействием притока тепла с левого торца и,

таким образом, процесс диссоциации переходит из депрессионного режима в

тепловой [22]. Такой же эффект описан в работах [10, 13]. В данном случае

конечному давлению 2 МПа соответствует равновесная температура 2.4◦C. На

графике (рис. 2б) приближение температуры образца к этому значению говорит

об окончании депрессионного режима.

Количество разложившегося гидрата при депрессионном режиме зависит

от величины внутренней энергии системы, которая поглощается при диссоциа-

ции гидрата. Следовательно, чем больше эффективная теплоемкость пористой

среды, тем больше гидрата разлагается в начальный период.

На рис. 4а построены графики изменения объема извлеченного из образ-

ца газа по времени при варьировании величины конечного давления от 1 МПа

до 6 МПа и при фиксированных значениях прочих исходных параметров, а на

рис. 4б представлены те же кривые в начальный период, когда имеет место де-

прессионный режим. Видно, что чем меньше конечное давление, тем быстрее

происходит разложение гидрата. Эта зависимость продолжительности диссоци-

ации от конечного давления показана на рис. 5а. При этом продолжительность

начального депрессионного режима нелинейно зависит от конечного давления

(рис. 5б). Кривая имеет минимум при конечном давлении 3МПа. Вероятно,

рост продолжительности депрессионного режима при снижении конечного дав-

ления с 3 МПа до 1 МПа связан с тем, что здесь равновесная температура ниже и

поэтому большая масса гидрата должна диссоциироваться, чтобы температура

образца достигала равновесного значения. А при больших значениях конеч-

ного давления кинетика процесса оказывается замедленной из-за небольшого

перепада давления.

На рис. 6 представлены результаты моделирования при варьировании на-

чальной гидратонасыщенности от 10% до 50%. Из графиков следует, что при

значениях начальной гидратонасыщенности 40% и 50% присутствует продолжи-

тельный тепловой режим диссоциации (рис. 6а), а при малых значениях 10%,

20% и 30% весь гидрат разлагается во время интенсивного депрессионного ре-

жима в течение нескольких или нескольких десятков минут (рис. 6б). Следова-
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Рис. 2. Распределение по длине образца в различные моменты времени после

начала стравливания газа: (а) давления газа; (б) температуры газа.
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Рис. 3. Распределение по длине образца в различные моменты времени после
начала стравливания газа: (а) гидратонасыщенности; (б) водонасыщенности.
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Рис. 4. Зависимость объема извлеченного из образца газа от времени при различ-
ных значениях конечного давления: (а) за весь период диссоциации гидрата; (б) в
начальный период.
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Рис. 5. Зависимость продолжительности от конечного давления: (а) диссоциации

гидрата; (б) начального периода депрессионного режима.
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Рис. 6. Зависимость объема извлеченного из образца газа от времени при различ-
ных значениях начальной гидратонасыщенности: (а) за весь период диссоциации
гидрата; (б) в начальный период диссоциации гидрата.

тельно, величина гидратонасыщенности пористого образца играет критическую

роль в характере исследуемого процесса и нелинейно влияет на продолжитель-

ность эксперимента.

4. Заключение

Разработана численная модель диссоциации гидрата природного газа в ла-

бораторном образце песчаника, которая учитывает кинетику процесса и поз-

воляет описать объемный режим диссоциации. Выявлено, что вначале гидрат

разлагается в депрессионном режиме, после которого, в зависимости от исход-

ных данных, процесс может перейти в тепловой режим. Показано, что дина-

мика разложения гидрата существенно зависит от параметров эксперимента и

от свойств образца пористой среды, таких как конечное давление и началь-
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ная гидратонасыщенность. При этом продолжительность эксперимента может

различаться на порядок — от нескольких минут до нескольких суток. Для бо-

лее точного описания физического процесса необходимо рассмотреть двух- или

трехмерную постановку задачи, а также использовать соответствующие имею-

щимся условиям уравнение состояния реального газа и более точные входные

параметры вычислительного эксперимента.
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NUMERICAL STUDY OF NATURAL GAS HYDRATE

DISSOCIATION IN A LABORATORY SANDSTONE

SAMPLE UNDER A DEPRESSION REGIME
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Abstract: The present work covers mathematical modeling of the process of dissociation
(decomposition) of natural gas hydrate of the Sredneviluysky gas condensate field in
a laboratory sample of natural sandstone. Initially, the porous medium, filled with
natural gas, water, and hydrate, is in thermobaric conditions meeting the stable state of
the gas hydrate. Then, the pressure is released from one side of the cylindrical hydrate
sample, which causes its decomposition. The mathematical model of the decomposition
process takes into account the two-phase filtration of gas and water, the throttling
effect, convective heat exchange, heat absorption during hydrate dissociation, and the
kinetics of this process. The developed model and its implementation algorithm are
tested against the results of a known experimental work. As a result of the computational
experiment, distributions of gas pressure and temperature, hydrate and water saturation
are obtained. Furthermore, the duration of the hydrate dissociation process is estimated
with varying some initial parameters.
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ЧИСЛЕННОЕ МОДЕЛИРОВАНИЕ

РАСПРОСТРАНЕНИЯ В ПОРИСТОЙ

СРЕДЕ СЕЙСМИЧЕСКИХ ВОЛН

ОТ СИНГУЛЯРНЫХ ИСТОЧНИКОВ

Х. Х Имомназаров, А. А. Михайлов,

А. Т. Омонов, С. Тордье

Аннотация. В работе численно решается система пороупругости в бездиссипатив-

ном двумерном случае. Исходная система записывается в виде гиперболической
системы первого порядка в терминах скоростей матрицы, скорости насыщающей
жидкости, тензора напряжений и давления жидкости. Для численного решения за-
дачи используется совмещенный метод аналитического преобразования и конечно-
разностного метода. Предлагаемый алгоритм можно рассматривать как аналог
известного спектрального метода на основе Фурье-преобразования. Однако, в отли-
чие от него, применение спектрального метода Лагерра позволяет свести исходную
задачу к решению системы уравнений, в которой параметр Лагерра присутствует
только в правой части уравнений и имеет рекуррентный характер. Показано, что
данный алгоритм решения эффективен при моделировании волновых процессов в
средах с резко-контрастными границами типа земля — вода — атмосфера.

DOI: 10.25587/SVFU.2023.92.13.007

Ключевые слова: преобразование Лагерра, пористая среда, численное модели-
рование, волновое поле, разностная схема.

Введение

Исследования процессов конвективного тепло- и массопереноса в насыщен-

ных пористых средах традиционно занимают одно из центральных мест среди

современных проблем теоретической теплофизики. Это обусловлено прежде

всего актуальностью изучения внутренних механизмов переноса массы и энер-

гии в пористой среде, включая прогнозы и оценку эффективности применения

пористых материалов в различных областях техники и технологии. Пористые

среды очень широко распространены и отличаются большим разнообразием как

в естественных, так и в искусственных материалах. Поэтому изучение процес-

сов фильтрации занимает важное место в биологии, гидрологии, гидродинами-

ке, а также в машиностроении, производстве композиционных материалов [1–5]

и др.
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Первой публикацией, в которой была сформулирована проблема изучения

особенностей макроскопического переноса массы в насыщенной жидкостью по-

ристой среде, был отчет об экспериментальных исследованиях выпускника По-

литехнической школы, французского инженера Дарси, изданный в Париже в

середине XIX в. [6]. Годом позже Дарси опубликовал теоретическую работу с

анализом экспериментальных данных и выводом известного соотношения меж-

ду скоростью насыщающей жидкости и градиентом давления (или напора) в

пористой среде, названного впоследствии его именем [7]. Фундаментальность

подхода и подробный анализ поставленных вопросов в этих работах создали

прочный базис для нового раздела гидродинамики — теории фильтрации жид-

костей и газов в капиллярно-пористой среде.

При моделировании распространения сейсмических волн в пористой среде

часто используется модель Френкеля — Био [8, 9]. Позднее [10] была предложе-

на термодинамически согласованная нелинейная математический модель для

описания упругодеформируемых процессов в пористой среде на основе общих

первых физических принципов. Особенностью этих моделей является суще-

ствование трех типов звуковых колебаний: поперечные и два типа продольных.

В отличие от моделей типа Френкеля — Био в линеаризованной модели [10] сре-

да описывается тремя упругими параметрами [11, 12]. Эти упругие параметры

взаимно однозначно выражаются тремя скоростями упругих колебаний. Это об-

стоятельство важно для численного моделирования распространения упругих

волн в пористых средах, когда известны распределения скоростей акустических

волн и физических плотностей матрицы, насыщающей жидкости и пористости.

Исследованию прямых и обратных динамических задач теории пороупруго-

сти посвящено много работ (см. [13–33] и указанную там литературу). В данной

работе численно решается система пороупругости из [12, 13] в бездиссипативном

двумерном случае. Исходная система записывается в виде гиперболической си-

стемы первого порядка в терминах скоростей матрицы, скорости насыщающей

жидкости, тензора напряжений и давления жидкости. Для численного реше-

ния задачи используется совмещенный метод аналитического преобразования

и конечно-разностного метода. Предлагаемый алгоритм можно рассматривать

как аналог известного спектрального метода на основе Фурье-преобразования.

Однако в отличие от него применение спектрального метода Лагерра позволя-

ет свести исходную задачу к решению системы уравнений, в которой параметр

Лагерра присутствует только в правой части уравнений и имеет рекуррентный

характер. Показано, что данный алгоритм решения эффективен при модели-

ровании волновых процессов в средах с резко-контрастными границами типа

земля — вода — атмосфера.

Постановка задачи

Рассмотрим постановку динамической задачи распространения сейсмиче-

ских волн от сингулярных источников в средах, состоящих из упругих и по-

ристых слоев. В этом случае распространение сейсмических волн в пористой
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среде, насыщенной жидкостью, при отсутствии потери энергии описывается для

декартовой системы координат в полуплоскости следующей начально-краевой

задачей [11, 12, 34]:
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где u = (u1, u2) и v = (v1, v2) — векторы скорости упругого пористого тела с пар-

циальной плотностью ρs и жидкости с парциальной плотностью ρl соответствен-

но, p — поровое давление, σik — тензор напряжений, ρ = ρl +ρs, ρs = ρfs (1−d0),

ρl = ρfl d0, ρ
f
s , и ρfl — физические плотности упругого пористого тела и жидко-

сти соответственно, d0 — пористость, δik — символ Кронекера, K = λ + 2µ/3,

λ > 0, µ > 0, — коэффициенты Ламе, α = ρα3 + K/ρ2, ρ3α3 > 0 — модуль

объемного сжатия жидкой компоненты гетерофазной среды, F = (F1, F2) —

вектор массовых сил, f(t) — моделируемый временной сигнал в источнике, F1 и

F2 — компоненты вектора силы, описывающей действие локализованного в про-

странстве источника. Значения этих компонент зависят от типа моделируемого

источника:

(1) для источника типа «вертикальная сила»

F1 = 0, F2 = δ(x1 − x0)δ(x2 − z0);

(2) для источника типа «центра давления»

F1 = δ(x2 − z0)
∂δ(x1 − x0)

∂x1
, F2 = δ(x1 − x0)

∂δ(x2 − z0)

∂x2
;

(3) для источника типа «диполь без момента»

F1 = 0, F2 = δ(x1 − x0)
∂δ(x2 − z0)

∂x2
.

Здесь x0, z0 — пространственные координаты источника.

Упругие модули K, µ, α3 выражаются через скорость распространения по-

перечной волны cs и две скорости продольных волн cp1 , cp2 следующими фор-

мулами [35, 36]:

µ = ρsc
2
s,

K =
ρ

2

ρs
ρl

(
c2p1

+ c2p2
−

8

3

ρl
ρ
c2s −

√(
c2p1
− c2p2

)2
−

64

9

ρlρs
ρ2

c4s

)
,

α3 =
1

2ρ2

(
c2p1

+ c2p2
−

8

3

ρs
ρ
c2s +

√(
c2p1
− c2p2

)2
−

64

9

ρlρs
ρ2

c4s

)
.
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Алгоритм решения

Для решения поставленной задачи (1)–(3) применим интегральное преоб-

разование Лагерра по времени [37, 38]

−→
Wm(x1, x2) =

∞∫

0

−→
W (x1, x2, t)(ht)

−
α
2 lαm(ht) d(ht) (1)

с формулами обращения

−→
W (x1, x2, t) = (ht)

α
2

∞∑

m=0

m!

(m + α)!

−→
Wm(x1, x2)l

α
m(ht), (2)

где lαm(ht) — функции Лагерра. В результате данного преобразования исход-

ная задача (1)–(3) сводится к двумерной пространственной дифференциальной

задаче в спектральной области:

h

2
um
i +

1

ρs

∂σm
ik

∂xk
+

1

ρ

∂Pm

∂xi
= Fm

i (x1, x2)− h
m−1∑

n=0

un
i ,

h

2
vmi +

1

ρ

∂Pm

∂xi
= Fm

i (x1, x2)− h
m−1∑

n=0

vni ,

h

2
σm
ik + µ

(
∂um

k

∂xi
+

∂um
i

∂xk

)
+

(
λ−

ρs
ρ
K

)
δik div um

−
ρs
ρ
Kδik div vm = −h

m−1∑

n=0

σn
ik, (3)

h

2
Pm − (K − αρρs) div um + αρρl div vm = −h

m−1∑

n=0

Pn,

σm
22 + Pm

∣∣
x2=0

= σm
12

∣∣
x2=0

=
ρl
ρ
Pm
∣∣∣
x2=0

= 0.

(4)

Для решения приведенной задачи воспользуемся конечно-разностной ап-

проксимацией производных по пространственным координатам на сдвинутых

сетках с четвертым порядком точности [39]. Для этого в расчетной области

введем в направлении координаты z = x1 сетки ωz1 и ωz1/2 с шагом дискрети-

зации �z, сдвинутые относительно друг друга на �z/2:

ωz1 = (x, j�z, t), ωz1/2 =

(
x, j�z +

�z

2
, t

)
, j = 0, . . . ,M.

Аналогично введем в направлении координаты x = x2 сетки ωx1 и ωx1/2 с

шагом дискретизации �x, сдвинутые относительно друг друга на �x/2:

ωx1 = (i�x, z, t), ωx1/2 =

(
i�x +

�x

2
, z, t

)
, i = 0, . . . , N.
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На данных сетках введем операторы дифференцирования Dx и Dz, аппрок-

симирующие производные ∂
∂x и ∂

∂z с четвертым порядком точности по коорди-

натам z = x1 и x = x2:

um
1 (x, z), νm1 (x, z) ∈ ωx1 × ωz1,

um
2 (x, z), νm2 (x, z) ∈ ωx1/2 × ωz1/2,

σm
11(x, z), σm

22(x, z), Pm(x, z) ∈ ωx1/2 × ωz1,

σm
12(x, z) ∈ ωx1 × ωz1/2.

Определим искомые компоненты вектора решения в следующих узлах се-

ток:

um
1 (x, z), νm1 (x, z) ∈ ωx1 × ωz1, um

2 (x, z), νm2 (x, z) ∈ ωx1/2 × ωz1/2,

σm
11(x, z), σ

m
22(x, z), P

m(x, z) ∈ ωx1/2 × ωz1, σm
12(x, z) ∈ ωx1 × ωz1/2.

В результате конечно-разностной аппроксимации задачи (6) получим систе-

му линейных алгебраических уравнений. Представим искомый вектор решения

W в следующем виде:

W(m) = (V0(m),V1(m), . . . ,VM+N (m))T ,

Vi+j =
(
ui,j

1 , u
i+1/2,j+1/2
2 , νi,j1 , ν

i+1/2,j+1/2
2 , σ

i+1/2,j
11 , σ

i+1/2,j
22 , σ

i,j+1/2
12 , P i+1/2,j

)T
.

Данная система линейных алгебраических уравнений в векторной форме может

быть записана так: (
A +

h

2
E

)
W(m) = F(m− 1).

Матрица системы сведенной задачи имеет хорошую обусловленность, что

позволяет использовать быстрые методы решения систем линейных алгебраи-

ческих уравнений на основе итерационных методов типа сопряженных градиен-

тов, сходящиеся к искомому решению с требуемой точностью всего за несколько

итераций.

Численные результаты

В данной статье представлены численные результаты моделирования сей-

смических волновых полей для тестовой модели среды. Заданная модель среды

состоит из двух изотропных слоев: верхний слой — вода, нижний — пористая

среда. Физические характеристики слоев были заданы следующими парамет-

рами:

1) верхний слой — ρ = 1 г/см3, cp = 1.5 км/с, cs = 0;

2) нижний слой — ρfs = 1.5 г/см3, ρfl = 1 г/см3, cp1 = 2.1 км/с, cp2 = 0.6 км/с,

cs = 1.3 км/с, d = 0.2.
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Рис. 1. Мгновенные снимки волнового поля скорости смещений в момент времени
T = 1 с: левый — для ux(x, z)-компоненты, правый — для uz(x, z)-компоненты.

Рис. 2. Мгновенные снимки волнового поля скорости смещений в момент вре-
мени T = 1.8 секунда: левый — для ux(x, z)-компоненты, правый — для uz(x, z)-
компоненты.

Волновое поле моделировалось от точечного источника типа диполь без

момента с координатами x0 = 3 км, z0 = 1.5 км, который расположен в верх-

нем водном слое. Временной сигнал в источнике задавался в виде импульса

Пузырева с несущей в виде

f(t) = exp

(
−

2πfo(t− t0)
2

γ2

)
sin(2πf0(t− t0)),

где γ = 4, f0 = 10 Гц, t0 = 0.15 с.

Результаты численных расчетов волнового поля для заданной модели сре-

ды представлены на рис. 1, 2. На данных рисунках изображены мгновенные
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снимки волнового поля для ux- и uz-компонент скорости смещения в фиксиро-

ванные моменты времени. На рис. 1 для T = 1 с, а на рис. 2 для T = 1.8 с.

Граница раздела слоев изображена на рисунках сплошной линией.

На рисунках видно, что при падении продольной волны, излучаемой источ-

ником заданного типа, на границу раздела слоев в заданной среде образуются

соответствующие типы волн. В водном слое возникают отраженные от границ

продольные волны, а в нижнем пористом слое возникают два типа продольных

волн P1 и P2 и поперечная волна S.
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NUMERICAL MODELING OF THE SEISMIC

WAVES PROPAGATION IN A POROUS

MEDIUM FROM SINGULAR SOURCES
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Abstract: A linear two-dimensional problem in the form of dynamic equations of porous
media for the components of velocities, stresses and pressure is considered. The dynamic
equations are based on conservation laws and consistent with the thermodynamics con-
ditions. The medium is considered to be ideal (there is no energy loss in the system)
isotropic and two-dimensional inhomogeneous with respect to space. For the numerical
solution of the problem posed, the method of integrating the integral Laguerre transform
with respect to time with finite-difference approximation in spatial coordinates is used.
The solution algorithm employed makes it possible to efficiently carry out simulations
in a complex porous medium and to study the wave effects arising in such media.
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ПРИМЕНЕНИЕ СВЕРТОЧНЫХ НЕЙРОННЫХ

СЕТЕЙ ДЛЯ ПОИСКА И ОПРЕДЕЛЕНИЯ

ФИЗИЧЕСКИХ ХАРАКТЕРИСТИК

НЕОДНОРОДНОСТЕЙ В ГЕОЛОГИЧЕСКОЙ

СРЕДЕ ПО СЕЙСМИЧЕСКИМ ДАННЫМ
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Д. И. Петров, И. Б. Петров

Аннотация. В работе с применением сверточных нейронных сетей решаются об-
ратные задачи сейсморазведки определения пространственного положения и физи-
ческих характеристик, таких как доля слипшейся поверхности и характер насыще-
ния, геологических трещин. Обучающая и валидационная выборки формируются с
использованием численного моделирования с применением сеточно-характеристи-
ческого метода на неструктурированных сетках в двумерном случае. Используются
определяющие уравнения механики сплошных сред, трещины задаются в области
интегрирования дискретно — такой подход позволяет получить наиболее детальные
картины волновых откликов.

DOI: 10.25587/SVFU.2023.87.50.008

Ключевые слова: обратные задачи сейморазведки, трещиноватые среды, свер-
точные нейронные сети, машинное обучение, математическое моделирование, се-
точно-характеристический метод, дискретные модели трещин, бесконечно тонкая
трещина.

Сейсморазведка — один из наиболее распространенных на практике подхо-

дов для определения структуры грунта без глубокого бурения. Искусственно

возбужденные сейсмические колебания отражаются от областей неоднородно-

стей, образуя волновой отклик, который фиксируется на сейсмограммах. Пра-

вильная интерпретация полученных данных, т. е. определение структуры геоло-

гического разреза по характеру волнового отклика, является основной задачей

сейсморазведки.

Важный вклад в развитие методологии решения обратных задач сейсмо-

разведки был сделан Клаербо [1]. Развитие высокопроизводительных вычисли-

тельных систем позволило их использовать для решения практических задач

интерпретации сейсмических данных [2, 3]. Особый интерес представляет эф-

фективное решение обратных задач. Наиболее распространенным подходом в

Работа выполнена при поддержке РФФИ, грант № 20-01-00572.
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описании вмещающих сред является использование акустической модели, суще-

ственным недостатком которого является игнорирование значительного объема

информации, который несут с собой поперечные волны. Данного недостатка

лишена методология с применением численного моделирования геологических

сред с применением упругих двухкомпонентных моделей [4].

Данное исследование является продолжением работ [5, 6]. Для решения

обратных задач сейсморазведки используется подход с применением методов

машинного обучения. В работе использовались глубокие нейронные сети. В по-

следнее десятилетие они хорошо зарекомендовали себя в таких прикладных об-

ластях, как машинный перевод, компьютерное распознавание и генерация речи,

анализ текстов, машинное зрение. Во всех перечисленных задачах приходит-

ся обрабатывать значительные объемы данных и выявлять связи внутри них.

Это также является отличительной особенностью задач сейсморазведки, поэто-

му сверточные нейронные сети стали использовать и в этой области. Например,

при помощи глубокой сверточной нейронной сети решалась двумерная задача

поиска разлома [7]. Решению аналогичной задачи в трех измерениях посвяще-

на работа [8]. Примечательно, что при таком подходе практически отсутствует

этап специальной обработки входных сейсмических данных, что упрощает его

применение по сравнению со стандартными методами. Гибкость и относитель-

ная простота делает такие методы эффективными для решения практических

задач. Так, в работе [9] глубокие нейросети используются для обнаружения

выбросов CO2, а в [10] данные методы применяются для обнаружения и клас-

сификации дефектов в композитных материалах.

Данная работа посвящена разработке методики интерпретации сейсмиче-

ских данных с целью выявления областей неоднородностей, в том числе трещин,

с использованием сверточных нейронных сетей. Трещиноватые коллекторы по-

тенциально могут содержать запасы углеводородов, поэтому их поиск является

важной задачей.

Обратная задача сейсморазведки трещиноватого пласта решалась с исполь-

зованием сверточных нейронных сетей. Обучение нейронной сети проводилось

на выборках, сформированных с применением математического моделирования

для прямых задач сейсморазведки.

1. Математическая модель среды и численный метод

Рассматриваемая в ходе решения прямой задачи геологическая среда пред-

ставлена моделью линейно-упругой среды, определяющая система уравнений

которой в � ⊂ R2 может быть представлена в следующем виде [11, 12]:

ρ
∂vi
∂t

=
∑

j

∂Tji

∂xj
,

∂Tij

∂t
= λ

(∑

k

∂vk
∂xk

)
Iij + µ

(
∂vi
∂xj

+
∂vj
∂xi

)
, (1)

где vi — компонентs скорости v = v(x, y), Tji — компонентs тензора напряже-

ний T = T (x, y), ρ — плотность среды, λ и µ — коэффициенты Ламе, Iij —
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компонентs единичного тензора. Согласно [13] данная система является гипер-

болической.

В двумерном случае данная система примет вид

ρ
∂vx
∂t

=
∂Txx

∂x
+

∂Txy

∂y
,

ρ
∂vy
∂t

=
∂Tyx

∂x
+

∂Tyy

∂y
,

∂Txx

∂t
= (λ + 2µ)

∂vx
∂x

+ λ
∂vy
∂y

,

∂Tyy

∂t
= (λ + 2µ)

∂vy
∂x

+ λ
∂vx
∂y

,

∂Txy

∂t
= µ

(
∂vx
∂y

+
∂vy
∂x

)
.

Вводя вектор u = {vx, vy, Txx, Tyy, Txy}, систему (1) приводим к виду

∂~u

∂t
+
∑

i=1,2

Ai
∂~u

∂ξi
= 0. (2)

Матрицы Ai представляются в следующем виде:

A1 =




0 0 −1/ρ 0 0

0 0 0 0 −1/ρ
−λ− 2µ 0 0 0 0

0 −λ− 2µ 0 0 0

0 −µ 0 0 0


 ,

A2 =




0 0 0 0 −1/ρ
0 0 0 −1/ρ 0

0 −λ 0 0 0

−λ 0 0 0 0

−µ 0 0 0 0




Численное решение (2) находится с применением сеточно-характеристического

метода [13, 14]. Проводим покоординатное расщепление и заменой переменных

сводим систему к системе независимых скалярных уравнений переноса в инва-

риантах Римана:
∂ ~w

∂t
+ �i

∂ ~w

∂ξ′i
= 0. (3)

Для каждого уравнения переноса (3) производится обход всех узлов расчетной

сетки, и для каждого узла опускаются характеристики. С временного слоя n

соответствующая компонента вектора переносится на временной слой n + 1 по

формуле

wn+1
k (ξ′i) = wn

k (ξ′i − ωkτ) (4)

где τ — шаг по времени.

После того, как все значения перенесены, идет обратный переход к вектору

искомых значений ~u.



104 М. В. Муратов, Д. С. Конов, Д. И. Петров, И. Б. Петров

Рассмотрена интерполяция на неструктурированных треугольных сетках.

Значения в каждой точке находятся с использованием значений в опорных точ-

ках сетки ~w(~rijkl) и весов этих точек pijkl(~r) по формуле

~w(~r) =
∑

i,j,k,l

pijkl(~r)~w(~rijkl). (5)

Сеточно-характеристический метод позволяет применять наиболее коррект-

ные алгоритмы на границах и контактных границах области интегрирования

[15, 16].

Граничное условие можно записать в общем виде так:

D~u(ξ1, ξ2, t + τ) = ~d, (6)

где D — некоторая матрица размера 9× 3 для трехмерного случая (5× 2 — для

двумерного), ~d — вектор, ~u(ξ1, ξ2, t+ τ) — значение искомых значений скорости

и компонент тензора напряжений в граничной точке на следующем временном

шаге.

В рассматриваемых в данной работе задачах граничные условия задают

отражение от верха области интегрирования и поглощение на других ее грани-

цах.

2. Механико-математические модели трещин

Во встречаемых на практике задачах сейсморазведки приходится иметь

дело c разнородностью характера взаимодействия сейсмических волн с обла-

стью трещины. Трещина представляет собой сложную неоднородную структуру

[17, 18]. Местами створки трещины находятся на некотором отдалении и разде-

лены насыщающим веществом [18], местами наблюдается слипание, когда под

действием сил давления стенки вплотную прилегают друг к другу [19]. Кроме

того, трещины можно классифицировать по характеру их насыщения: флюид

или газ [18, 19].

В рассматриваемых задачах использовались дискретные модели трещин,

основанные на концепции бесконечно-тонкой трещины — трещина задавалась в

виде границы или контактной границы с определенным граничным условием.

Рассмотрим подробно условия, использованные в данной работе.

(а) Условие газонасыщения трещины. Модель газонасыщенной тре-

щины хорошо моделирует поведение трещин, заполненных воздухом или газом

на небольшой глубине до 100–150 м [19]. При больших глубинах под действием

давления трещины с воздухом закрываются, а газ приобретает свойства жид-

кости.

Трещина задается в виде граничного условия свободного отражения на

створках трещины:

T~n = 0. (7)

(б) Условие флюидонасыщения трещины. В большинстве решаемых

на практике задач трещины заполнены флюидом: водой, нефтью, сжиженным
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газом и т. д. [18, 19] Поэтому целесообразно было разработать модель, позволя-

ющую описывать такую ситуацию.

Флюидонасыщенная трещина задается в виде контактной границы с усло-

вием свободного скольжения [18]:

~va · ~n = ~vb · ~n, ~fa
n = −~f b

n,
~fa
τ = ~f b

τ .

Такая контактная граница полностью пропускает продольные волны без отра-

жения и отражает поперечные. Такая картина соответствует реальной ситу-

ации: значения скоростей распространения продольных волн в жидкостях и

плотностей сопоставимы со значениями скоростей и плотностей геологических

сред, в то время как скорости поперечных колебаний в жидкостях близки к

нулю.

(в) Условие слипания на трещине. На большой глубине под действием

давления бывает, что створки трещин соприкасаются так, что упругие волны

почти полностью проходят сквозь трещину. В таком случае оптимально будет

использовать контактное условие полного слипания [19]:

~va = ~vb, ~fa = −~f b, (8)

где ~v — скорости соприкасающихся граничных точек, ~f — действующая на гра-

ницу сила, a — первая, b — вторая створки трещины.

(г) Условие частичного слипания трещины (модель частично-

слипшейся трещины). В реальной сейсморазведке имеют место быть ча-

стично слипшиеся трещины [19], в которых часть поверхности створок является

слипшейся, а часть разделена флюидом или газом. Такие трещины показывают

частичное пропускание фронта упругих волн, что сказывается на амплитудах

волн отклика на сейсмограммах.

Была разработана модель трещины, где в разных точках створок случай-

ным образом задавались условия газонасыщения (флюидонасыщения) и полно-

го слипания. Количество тех или иных точек регулировалось весовым коэффи-

циентом — коэффициентом слипания. Такая модель позволила задать газона-

сыщенные и флюидонасыщенные трещины с процентом слипшихся точек от 0

до 100%.

На основе данной механико-математичекой модели был разработан про-

граммный комплекс, с помощью которого проводилось решение прямых задач

сейсморазведки для формирования обучающих и валидационных выборок для

обучения нейронных сетей. Рассмотренный подход был верифицирован с помо-

щью данных, полученных в ходе физического моделироваания [20, 21].

3. Формулировка прямой задачи

Обучающая выборка формировалась решениями прямой задачи. Рассмат-

ривалась прямоугольная область интегрирования размеров области геологиче-

ской среды, рассматриваемой в конкретной задаче. Начальное состояние за-

давалось в виде плоской волны, распространяющейся с дневной поверхности



106 М. В. Муратов, Д. С. Конов, Д. И. Петров, И. Б. Петров

(верхняя граница области интегрирования) вертикально вниз. На верхней гра-

нице области интегрирования задавалось условие отражения, на боковых и на

нижней границах были заданы поглощающие условия. Геометрия трещин за-

давалась случайным образом согласно постановке рассматриваемой задачи.

4. Решение обратной задачи сейсморазведки

Для реализации сверточных нейронных сетей в работе использовалась биб-

лиотека PyTorch [22–24]. Наиболее популярными в среде исследователей явля-

ются библиотеки PyTorch и TensorFlow. PyTorch обеспечивает лучшую про-

изводительность без необходимости ручной оптимизации, предполагает более

простую отладку, быстрее работает с объемными данными — поэтому был сде-

лан выбор в пользу этой библиотеки. Использование аппаратного ускорения с

помощью CUDA позволяет ускорить расчеты.

В качестве входных данных использовались две сейсмограммы (вертикаль-

ной и горизонтальной компонент отклика), которые формируют образец разме-

ром 2×1500×101. Финальный вектор особенностей, используемый в обучающих

и валидационных выборках, представлял собой тензор 9× 1500× 101, который

включает данные двух сейсмограмм, модуля скорости на сейсмограммах и дан-

ные их Фурье-преобразований (действительная и мнимая части).

Для решения задачи предложена сверточная нейронная сеть, состоящая из

пяти сверточных слоев и двух полносвязных. В начале идет сверточный слой

размера (9, 512, 3) (9 — число входных каналов, 512 — число выходных каналов,

3 × 3-kernel size), затем MaxPooling (размер окна 2 × 2), функция активации

ReLU и нормализация. Второй сверточный слой имеет размер (512, 1024, 3, 2)

(512 — число входных каналов, 1024 — число выходных каналов, 3 × 3-kernel

size, stride = 2). После него идет MaxPooling-слой (размер окна 2 × 2), также

используется функция активации ReLU и выполняется нормализация. Третий

слой имеет размер (1024, 512, 2) (1024 число входных каналов, 512 число вы-

ходных каналов, 2 × 2-kernel size). Далее идет полносвязный слой с размероv

входных и выходных данных 45 и 256 соответственно. После него следует свер-

точный слой с 512 входными каналами и одним выходным каналом, с размером

ядра 1 и с функцией активации ReLU. После этого следует финальный пол-

носвязный слой, который преобразует вектор из 256 компонент в 4 (6 или 8 в

зависимости от задачи) искомых характеристик трещины. В качестве оптими-

затора нейронной сети был выбран алгоритм Adam с коэффициентом скорости

обучения, равным 0.003.

Для каждой задачи обучающая выборка была представлена набором из

6000 решений прямых задач. После обучения нейронной сети проводилась ее

проверка с использованием валидационной выборки, полученной таким же об-

разом. Проверка проводилась измерением функции потерь (loss-функция), в

качестве которой использовалась величина Mean Squared Error (MSE, средняя

квадратичная ошибка). В ходе обучения отслеживалась также метрика Mean

Absolute Error (MAE, средняя ошибка по модулю). Данные метрики можно
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Рис. 1. Зависимость значения метрики MSE от эпохи обучения.

Рис. 2. Графики MSE для обучающей и валидационный выборок в задаче опре-
деления пространственного положения двух трещин.

использовать как для одномерной величины, так и для многомерных векторов:

MAE =
1

N

N∑

i=1

|yi − ŷ|, MSE =
1

N

N∑

i=1

(yi − ŷ)2.

Цель — получить сходимость к нулю последовательности значений этих

метрик при возрастании эпохи обучения.

5. Результаты распознавания пространственного

положения одиночной трещины

Сначала была рассмотрена модель геологической среды, содержащей оди-

ночную трещину. Рассматривалась однородная упругая среда с размером рас-
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четной области 2 км×2 км, где скорость продольных волн 4500 м/с, скорость

поперечных 2500 м/с, плотность вмещающей среды 2500 кг/м3. Трещина пола-

галась субвертикальной с углом наклона — 15◦. Положение варьировалось по

обеим координатам в пределах 1 км. Размер трещины изменялся от 50 до 200 м.

Сейсмические приемники общим числом 65 единиц располагались равномер-

но на поверхности, где производилось возбуждение зондирующего импульса.

Приемники фиксировали вертикальную и горизонтальную компоненты скоро-

сти волн, отразившихся в среде.

Результат изменения функции потерь по метрике MSE для валидацион-

ной выборки в задаче обнаружения одиночной трещины представлен на рис. 1.

Наблюдается уменьшение значения функционала при увеличении номера эпо-

хи. Таким образом, можно с уверенностью говорить о применимости данного

подхода для исследуемых задач.

6. Результаты распознавания

пространственного положения двух трещин

Вторая модель представляла собой область интегрирования размером

6000 × 1440 м и включала две случайным образом расположенные трещины в

области размером 4000 × 800 м. Размер каждой из трещин составлял от 60 до

120 м. Трещины задаются случайно таким образом, что расстояние между ними

вдоль обоих осей не меньше 200 м.

На рис. 2 приведены графики MSE для обучающей и валидационный выбо-

рок. Наблюдается уменьшение значения функционала при увеличении номера

эпохи. На рис. 3 приведены качественные картины сравнения реального про-

странственного положения (обозначены на рисунках «квадратиком») двух тре-

щин в контрольных образцах (а, б, в) и положения, полученного в результате

решения обратной задачи (обозначены «кружком»).

7. Результаты распознавания

пространственного положения одиночной

трещины и характера ее насыщения

В третьей модели рассматривалась среда с одиночной трещиной, у которой

варьировались, как и в первой модели, ее пространственное положение, высота

и угол наклона. Также в модели задавался разный характер насыщения: газо-

насыщенная и флюидонасыщенная трещины, и коэффициент слипания — доля

слипшейся поверхности створок трещины (частично-слипшаяся трещина).

Наблюдается хорошее схождение функционала MSE для обучающей и ва-

лидационной выборок (рис. 4). Результаты решения обратных задач для пяти

контрольных образцов приведены в табл. 1. В скобках для каждого значения

указана его реальная величина с целью сопоставления.

8. Заключение

Результаты проведенного исследования свидетельствуют о хорошей при-
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Рис. 3. Сравнение реального пространственного положения («квадратик») двух
трещин в трех контрольных образцах (а, б, в) и положения, полученного в резуль-
тате решения обратной задачи («кружок»).

Рис. 4. Графики MSE для обучающей и валидационной выборок в задаче опре-
деления физических характеристик трещины.
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Таблица 1. Экземпляры тестовой выборки и результаты
предсказания (в скобках). Характер насыщения (Нас.):

г — газонасыщенная, ф — флюидонасыщенная

№ x z Угол h Слипание Нас.

1 −254 (−674) 1107 (1073) 94.8 (98.4) 54.0 (78.05) 48.6 (50.0) ф (ф)

2 −1464(−1800) 1210 (1290) 85.9 (84.7) 161.74 (160.6) 54.44 (78.0) г (г)

3 −421 (−1258) 1348 (1323) 78.9 (76.6) 119.85 (80.51) 35.1 (32.0) ф (ф)

4 1761 (1881) 1055 (1219) 88.9 (86.9) 130.72 (153.03) 37.82 (56.0) ф (ф)

5 −899 (−777) 1270 (1330) 79.9 (89.4) 134.63 (126.8) 69.07 (90.0) г (г)

менимости методов машинного обучения в обратных задачах сейсморазведки

трещин для поиска их пространственного положения и определения физиче-

ских характеристик, таких как доля слипшейся поверхности и характер насы-

щения. Было рассмотрено использование сверточных нейронных сетей, кото-

рые обучались на решениях прямых задач с использованием математического

моделирования с применением сеточно-характеристического метода на неструк-

турированных расчетных сетках. Разработанный подход к решению обратных

задач сейсморазведки с применением машинного обучения дает большую гиб-

кость в постановках рассматриваемых задач, ограниченную только мощностью

используемых вычислительных ресурсов.
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Межгородской научно-исследовательский семинар

«Неклассические задачи математической физики»

4 февраля 2023 г.

Семинар был посвящен памяти академика Е. И. Моисеева.

С докладами о научной деятельности Е. И. Моисеева выступили А. И. Ко-

жанов, А. П. Солдатов.

С воспоминаниями о Е. И. Моисееве выступили Н. Попиванов, Ш. А. Али-

мов, А. И. Кожанов, М. С. Садыбеков и др.

18 февраля 2023 г.

«О свойствах решений псевдогиперболических уравнений».

Докладчик: Л. Н. Бондарь (Институт математики им. С. Л. Соболева СО

РАН, г. Новосибирск, Россия).

В докладе рассматривался класс линейных псевдогиперболических уравне-

ний и систем. Этот класс содержит уравнение Гальперна, уравнение Власова,

уравнение Рэлея — Бишопа, систему уравнений изгибно-крутильных колебаний

и др. Псевдогиперболические уравнения и системы являются уравнениями и си-

стемами, не разрешенными относительно старшей производной. В литературе

они часто называются уравнениями и системами соболевского типа. Приведе-

ны результаты о разрешимости для задачи Коши и смешанных краевых задач

в четверти пространства и обсуждены возникающие особенности.

4 марта 2023 г.

«Обратная задача определения переменного показателя производной в урав-

нении дробной диффузии».

Докладчик: А. Н. Артюшин (Институт математики им. С. Л. Соболева СО

РАН, Новосибирск, Россия).

В ограниченной многомерной области рассматривается уравнение дробной

диффузии с переменным показателем производной, зависящим от простран-

ственной переменной. Начальные данные однородные, а на правую часть и ее

производную по времени накладываются условия типа монотонности. Для об-

ратной задачи с финальным переопределением установлены следующие резуль-

таты: единственность решения, н.и.д. условия разрешимости задачи в терми-

нах некоторого конструктивного оператора. Кроме этого указано одно простое

достаточное условие разрешимости обратной задачи. В основе рассуждений

лежит теорема Биркгофа — Тарского.

18 марта 2023 г.

«Прямые и обратные задачи тепломассопереноса в слоистых средах».

Докладчик: В. А. Белоногов (Югорский государственный университет,

Ханты-Мансийск, Россия).

Изложены исследования регулярной разрешимости в пространствах Собо-

лева задач сопряжения с условиями сопряжения типа неидеального контакта,

а также вопросов корректности обратных задач по определению коэффициента

теплообмена на границе раздела сред, входящего в условие сопряжения. Ос-

новное внимание уделено системам уравнений тепломассопереноса, т. е. пара-

болическим системам второго порядка, возникающим при описании процессов
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диффузии, фильтрации, тепло- и массопереноса и в самых разных других об-

ластях.

Получены теоремы существования и единственности, а также оценки устой-

чивости решений задачи сопряжения с условиями сопряжения типа неидеально-

го контакта для параболических и эллиптических систем уравнений в классах

Соболева. Также доказана корректность обратных задач определения коэффи-

циента теплообмена на границе раздела сред, входящего в условие сопряжения

типа неидеального контакта.

«Определение точечных источников в задачах тепломассопереноса».

Докладчик: Л. В. Неустроева (Югорский государственный университет,

Ханты-Мансийск, Россия).

Изложены исследования обратных задач об определении точечных источ-

ников в математических моделях тепломассопереноса с использованием точеч-

ных условий переопределения. Основное внимание уделено моделям, основан-

ным на параболических уравнениях второго порядка, возникающим при описа-

нии процессов конвекции — диффузии, фильтрации, тепло- и массопереноса и

в самых разных других областях.

Основные результаты работы связаны с вопросом об определении вместе с

решением правой части специального вида. Получены теоремы существования,

исследованы вопросы единственности решений.
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информатики. Статьи, опубликованные ранее, а также направленные в другие
издания, редакцией не рассматриваются. Редакционный совет вправе воздер-
жаться от принятия статьи к рассмотрению, если она не соответствует профилю
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2. Направляя статью в редакцию журнала, автор (соавторы) на безвоз-
мездной основе передает(ют) издателю на срок действия авторского права по
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3. Для рассмотрения статьи на предмет ее публикации в журнале в ре-
дакцию представляются текст статьи объемом не более 1,5 авторских листов
(18 страниц журнального текста), написанной на русском или, по согласованию
с редакцией, на английском языке, а также сопроводительное письмо, в кото-
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вождается аннотацией объемом не менее 100 слов, желательно без формул, и
списком ключевых слов. Аннотация и список должны быть представлены на
русском и английском языках.

6. Список литературы печатается в конце текста. Ссылки на литературу
в тексте нумеруются в порядке их появления и даются в квадратных скобках.
Ссылки на неопубликованные работы нежелательны. Оформление литературы
должно соответствовать требованиям стандартов (примеры библиографических
описаний см. в последних номерах журнала).

7. Издание осуществляет рецензирование всех поступающих в редакцию
материалов, соответствующих ее тематике, с целью их экспертной оценки. Все
рецензенты являются признанными специалистами по тематике рецензируемых
материалов и имеют в течение последних 3 лет публикации по тематике рецен-
зируемой статьи. Рецензии хранятся в редакции издания в течение 5 лет.
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8. Принятая к рассмотрению статья направляется на анонимное рецензи-
рование. На основании рецензии редсовет принимает решение о возможности
публикации статьи, которое сообщается автору. Автор вправе сообщить свои
замечания и возражения к рецензии. Повторное решение редсовета по статье
является окончательным.

9. Редакция издания направляет авторам представленных материалов ко-
пии рецензий или мотивированный отказ, а также обязуется направлять копии
рецензий в Министерство науки и высшего образования Российской Федерации
при поступлении в редакцию издания соответствующего запроса.

10. После редакционной подготовки непосредственно перед публикацией
автору высылается корректура. По возможности в наиболее короткие сроки
необходимо ее прочесть, внести исправления (правка против авторского ориги-
нала нежелательна) и направить в редакцию. Статья выходит в свет только
после получения от автора (коллектива авторов) авторской корректуры, под-
писанной автором (всеми соавторами) в печать.

11. В соответствии с международными законами об авторском праве Ре-
дакция уведомляет авторов журнала об их ответственности за получение ими в
случае необходимости письменного разрешения на использование охраняемых
авторским правом материалов, таких, как цитаты, воспроизведение данных, ил-
люстраций и любых иных материалов, которые могут быть использованы в их
публикациях, а также о том, что вытекающая отсюда ответственность за на-
рушение таких авторских прав лежит на авторах. Плата за опубликование с
авторов или учреждений, где работают авторы, не взимается, и опубликованные
статьи не оплачиваются.

12. Права авторов на использование материалов статей и переводов статей

из журнала «Математические заметки СВФУ» в иных публикациях определя-

ются общими международными и российскими законами об авторских правах.
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