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УДК 517.95

НЕЛОКАЛЬНАЯ ЗАДАЧА ДЛЯ ОДНОГО

КЛАССА УРАВНЕНИЙ ТРЕТЬЕГО ПОРЯДКА

М. О. Абулов

Аннотация. Рассматривается нелокальная задача в цилиндрической области для

уравнения третьего порядка смешанно-составного типа вида

uttt − µ(x1)
∂

∂x1
�u− a(x, t)�u = f(x, t),

где x1µ(x1) > 0 при x1 6= 0, µ(0) = 0, x = (x1, x2, . . . , xn) ∈ Rn. С помощью
метода Галеркина доказывается, что нелокальная краевая задача при некоторых
условиях на коэффициенты и правую часть этого уравнения имеет единственное
решение в пространствах Соболева. Доказательство основано на методе Галерки-
на с выбором специального базиса и априорных оценок. Доказаны также новые
теоремы существования и единственности решения нелокальной краевой задачи,
которые позволяют расширить круг решаемых проблем в теории краевых задач

для неклассических уравнений математической физики.

DOI: 10.25587/SVFU.2023.45.27.001

Ключевые слова: нелокальная задача, цилиндрическая область, смешанно-сос-
тавной тип, обобщенное решение, уравнение третьего порядка.

Введение

Работы [1, 2] положили начало целому направлению в исследовании по-

становок корректных задач для уравнений смешанно-составного типа третьего

порядка. В них предложен и исследован ряд задач для модельного уравнения

смешанно-составного типа. В. Н. Врагов [3] поставил и исследовал ряд задач

для уравнения смешанно-составного типа третьего порядка

(
− ∂

∂x
+ α(x, y)

)
(k(x, y)uxx + uyy + a(x, y)ux + b(x, y)uy + c(x, y)u) = f(x, y).

В дальнейшем в работах М. С. Салахитдинова [4], Т. Д. Джураева, У. О. Рах-

манова [5], Л. А. Бобылова, М. М. Смирнова [6], С. Г. Пяткова [7], автора

данной статьи [8] и других были поставлены и исследованы краевые задачи

для уравнения смешанно-составного и составного типа. Отметим, что в работе

И. Е. Егорова, В. Е. Федорова [9] исследованы краевые задачи для широких

классов неклассических уравнений математической физики высокого порядка,

в частности, для уравнения смешанно-составного типа.

c© 2023 Абулов М. О.



4 М. О. Абулов

Нелокальные задачи в настоящее время являются интенсивно развиваю-

щимся разделом теории дифференциальных уравнений. Интерес к нелокаль-

ной задаче (кроме теоретического значения) вызван возможностью ее физиче-

ской интерпретации: если дифференциальное уравнение описывает некоторый

физической процесс, то нелокальные краевые условия являются некоторыми

алгебраическими выражениями, связывающими искомое решение и его произ-

водные в двух и более точках наблюдения физического процесса. Проблемы

современной науки и техники выдвинули более реальные практические задачи,

связанные с исследованием разнообразных классов математических моделей.

Известно, что математическое моделирование многих биологических и техно-

логических процессов приводит к изучению нелокальных краевых задач для

различных классов дифференциальных уравнений. Поэтому изучение нело-

кальных задач для различных классов дифференциальных уравнений привле-

кало внимание многих математиков. Библиографию вопроса можно найти, на-

пример, в монографиях [10, 11]. Среды работ по этой задаче можно отметить

[12–19].

В области

Q = {(x, t) : −1 ≤ x1 ≤ 1, (x2, x3, . . . , xn) ∈ D, 0 ≤ t ≤ T }
= [−1, 1]×D × [0, T ] = �× [0, T ]

рассмотрим уравнение

Lu ≡ uttt − µ(x1)
∂

∂x1
�u− a(x, t)�u = f(x, t), (1)

где x1µ(x1) > 0 при x1 6= 0, µ(0) = 0, и будем предполагать, что µ(x1) ∈
C3[−1, 1], a(x, t) ∈ C3(Q̄), D — ограниченная область в Rn−1 с гладкой (для

простоты бесконечно дифференцируемой) границей � , x = (x1, x2, . . . , xn).

1. Нелокальная задача. Найти в области Q решение уравнения (1),

удовлетворяющее следующим условиям:

u|t=0 = γu|t=T , ut|t=0 = γut|t=T , utt|t=0 = γutt|t=T , (2)

u|∂� = 0, (3)

где γ = e
λT
2 , λ > 0.

Определение 1. Обозначим через H(Q) пространство функций, получен-

ное замыканием множества функций в C3(Q), удовлетворяющих условиям (2),

(3), по норме

‖u‖2H(Q) =

∫

Q

(
u2
ttt + µ2(�ux1)

2
+ u2

tt

+

n∑

i=1

u2
xixi

+

n∑

i=1

u2
txi

+

n∑

i=1

u2
xi

+ u2
t + u2

)
dQ. (4)

Определение 2. Функцию u ∈ H(Q) будем называть обобщенным реше-

нием задачи (1)–(3), если она удовлетворяет уравнению (1) п.в. в Q.
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Теорема. Пусть выполнены условия

a(x, 0) = a(x, T ), at(x, 0) = at(x, T ), (5)

a(x, t) − 3

2
|µx1 | ≥ δ > 0, (6)

f(x, 0) = γf(x, T ). (7)

Тогда для любой функции f(x, t) такой, что f, ft ∈ L2(Q), существует един-

ственное решение задачи (1)–(3) из H(Q).

Доказательство. Решение задачи (1)–(3) будем искать методом Галер-

кина:

um(x, t) =

m∑

i=1

gi(t)ϕi(x),

где функции ϕi(x) являются решениями задачи

−�ϕi = λiϕi (i = 1, 2, . . . ), ϕi = 0 на ∂�, (8)

а коэффициенты gi(t) находятся из решения системы обыкновенных дифферен-

циальных уравнений

(umttt, ϕi)0 − (µ�umx1 , ϕi)0 − (a�um, ϕi)0 = (fm, ϕi), (9)

gi(0) = γgi(T ), git(0) = γgit(T ), gitt(0) = γgitt(T ), i = 1, 2, . . . ,m. (10)

Теоремы существования для систем обыкновенных дифференциальных урав-

нений гарантируют разрешимость задачи (9), (10). По предположению граница

области � = [−1, 1]×D достаточно гладкая, так что ϕi(x) ∈ W 3
2 (�). Получим

равномерные по m оценки для галеркинских приближений. Через C, C1, C2 и

C3 будем обозначать различные положительные постоянные, не зависящие от

m.

Лемма 1. Пусть выполнены условия теоремы. Тогда для решения задачи

(9), (10) верна оценка∫

Q

(
u2
mt + u2

mx + u2
m

)
dQ ≤ C

∫

Q

f2 dQ. (11)

Доказательство. Умножая уравнение (9) на eλtum и интегрируя по об-

ласти Q, с учетом условий (2), (3) и неравенства Коши получим
∫

Q

eλt
[
3λ

2
u2
mt +

(
a− 3

2
µx1

)
u2
mx1

+

(
a− 1

2
µx1

)
u2
mx2

+ . . .

+

(
a− 1

2
µx1

)
u2
mxn

]
dQ ≤ C1

∫

Q

f2 dQ+ C2

∫

Q

u2
m dQ. (12)

В силу граничных условий (3) нетрудно видеть, что для решения верная оценка∫

Q

u2
m dQ ≤ C

∫

Q

u2
mx dQ. (13)

Из (12) ввиду (13) и условий теоремы для решения задачи (9), (10) следует, что

верна оценка (11). Лемма 1 доказана.
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Лемма 2. Пусть выполнены условия теоремы. Тогда для решения задачи

(9), (10) верна оценка
∫

Q

(u2
mxt + (�um)

2
) dQ ≤ C

∫

Q

f2 dQ. (14)

Доказательство. Умножая уравнение (9) на −eλt�um и интегрируя по

области Q, в силу условий (2), (3) и неравенства Коши получим

∫

Q

eλt
[
3λ

2
u2
mxt +

(
a− 1

2
µx1

)
(�um)

2

]
dQ

≤ C1

∫

Q

f2 dQ+ C2

∫

Q

(�um)
2
dQ+ C3

∫

Q

(
u2
mt + u2

mx

)
dQ.

Отсюда в силу условий теоремы и леммы 1 для решения задачи (9), (10) по-

лучим оценку (14), где, например, C2 = δ
2 . Тогда коэффициент (△um)2 будет

строго положительным, так что
(
a− 1

2µx1 − C2

)
> 0. Лемма 2 доказана.

Из (11), (14) вытекает, что

um ∈ W 2,1
2 (Q). (15)

Лемма 3. Пусть выполнены условия теоремы. Тогда для решения задачи

(9), (10) верна оценка
∫

Q

(
u2
mtt + u2

mxt

)
dQ ≤ C

∫

Q

f2 dQ. (16)

Доказательство. Умножая уравнение (9) на −eλtumtt и интегрируя по

области Q, в силу условий (2), (3) и неравенства Коши получим

∫

Q

eλt
[
λ

2
u2
mtt +

(
a− 3

2
µx1

)
u2
mtx1

+

(
a− 1

2
µx1

)
u2
mtx2

+ . . .+

(
a− 1

2
µx1

)
u2
mtxn

]
dQ

≤ C1

∫

Q

f2 dQ+ C2

∫

Q

(
u2
mx1x + u2

mxt

)
dQ+C3

∫

Q

(
u2
mx + u2

mt

)
dQ.

Отсюда в силу условия теоремы и (11), (14) для решения задачи (9), (10) полу-

чим оценку (16).

В силу условий на коэффициенты и правую часть уравнения (1) из этого

уравнения следует, что

uttt|t=0 = γuttt|t=T . (17)
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Лемма 4. Пусть выполнены условия теоремы. Тогда для решения задачи

(9), (10) верна оценка
∫

Q

(
u2
mxtt + (�ut)

2)
dQ ≤ C

∫

Q

(
f2 + f2

t

)
dQ. (18)

Доказательство. Дифференцируя уравнения (9) по t, умножая получен-

ное уравнение на −eλt�umt и интегрируя по области Q, в силу условий (2), (3),

(17) и неравенства Коши получим

∫

Q

eλt
[
3λ

2
u2
mxtt +

(
a− 1

2
µ′
)

(�umt)
2

]
dQ

≤ C1

∫

Q

f2
t dQ+ C2

∫

Q

(�umt)
2 dQ+ C3

∫

Q

(�um)2 dQ.

Отсюда в силу условий теоремы и (16) для решения задачи (9), (10) получим

оценку (18). где, например, C2 = δ
2 , т. е. C2 < δ. Лемма 4 доказана.

Лемма 5. Пусть выполнены условия теоремы. Тогда для решения задачи

(9), (10) верна оценка
∫

Q

(
u2
mttt + u2

mxtt

)
dQ ≤ C

∫

Q

(
f2 + f2

t

)
dQ (19)

Доказательство. Дифференцируя уравнения (9) по t, умножая получен-

ное уравнение на −eλtumttt и интегрируя по области Q, в силу условий (2), (3),

(17) и неравенства Коши получим

∫

Q

eλt
[
λ

2
u2
mttt +

(
a− 3

2
µx1

)
u2
mx1tt

+

(
a− 1

2
µx1

)
u2
mx2tt + . . .+

(
a− 1

2
µx1

)
u2
mxntt

]
dQ

≤ C1

∫

Q

f2
t dQ+ C2

∫

Q

(
u2
mxt + u2

mxx + u2
mt + u2

mx

)
dQ.

Отсюда в силу условий теоремы и (11), (14), (16), (18) для решения задачи (9),

(10) получим оценку (19).

В силу условий теоремы и (14), (16), (18), (19) из уравнения (9) следует,

что

µ(x1)�umx1 ∈ L2(Q). (20)

Из оценок (11), (14), (16), (18), (19) и (20) следует ограниченность после-

довательности приближенных решений {um(x, t)} в пространстве H(Q). Из

этих оценок следует, что задача (9), (10) разрешима. Из последовательностей



8 М. О. Абулов

{um(x, t)} можно выбрать подпоследовательность {umk
(x, t)} и перейти к пре-

делу по mk →∞ в системе (9). Покажем, что предельная функция u удовлетво-

ряет уравнению (1), т. е. Lu = f. Действительно, так как последовательность

{um(x, t)} слабо сходится в пространстве H(Q), а оператор L линейный, по-

следовательность функций {Lum(x, t)} слабо сходится в пространстве L2(Q) к

функции Lu.

Из принадлежности решения задача (1)–(3) пространству H(Q) и теорем

вложения [20] следует, что условия (2), (3) имеют смысл.

Докажем, что решение задачи (1)–(3) единственно.

Если u, v — два решения задачи (1)–(3), то w = u − v удовлетворяет урав-

нению

wttt − µ(x1)wxxx − a(x, t)wxx = 0

и условиям (2), (3). Аналогично, как в лемме 1, для w(x, t) получим

∫

Q

(
w2
t + w2

x + w2
)
dQ ≤ 0.

Отcюда следует, что w = 0 в Q.

Теорема доказана.

В данной работе доказаны новые теоремы существования и единственно-

сти решения нелокальной задачи (1)–(3), которые позволяют расширить круг

решаемых проблем в теории краевых задач для неклассических уравнений ма-

тематической физики.
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НЕЛОКАЛЬНЫЕ ЗАДАЧИ

С ИНТЕГРАЛЬНЫМИ УСЛОВИЯМИ

ДЛЯ ГИПЕРБОЛИЧЕСКИХ УРАВНЕНИЙ

С ДВУМЯ ВРЕМЕННЫМИ ПЕРЕМЕННЫМИ

Г. А. Варламова, А. И. Кожанов

Аннотация. Работа посвящена исследованию разрешимости краевых задач с нело-
кальными условиями интегрального вида для дифференциальных уравнений

uxt − auxx + c(x, t)u = f(x, t),

в которых x ∈ � = (0, 1), t ∈ (0, T ), 0 < T < +∞, a ∈ R, c(x, t) и f(x, t) — известные
функции. Особенностью таких уравнений является то, что в них как переменная t,
так и переменная x могут считаться временной переменной, и в соответствии с этим
для них могут быть предложены постановки краевых задач с разными носителями
граничных условий. Для изучаемых задач в работе доказываются теоремы суще-
ствования и единственности регулярных решений, а именно решений, имеющих все
обобщенные по С. Л. Соболеву производные, входящие в уравнение.

DOI: 10.25587/SVFU.2023.99.74.002

Ключевые слова: гиперболические уравнения, нелокальные задачи, интеграль-
ные условия, регулярные решения, существование, единственность.

Памяти Николая Андреевича Ларькина

Введение

В работе изучаются нелокальные краевые задачи с интегральными услови-

ями для нестационарных дифференциальных уравнений с двумя временными

переменными, а именно для уравнений

uxt − auxx + c(x, t)u = f(x, t), (∗)

в которых a — заданное действительное число, c(x, t) и f(x, t) — заданные функ-

ции. Подобные уравнения можно назвать линейными аналогами уравнений Ли-

ня – Рейскера – Цзяня [1] (см. также [2–6]); различные локальные краевые и

начально-краевые задачи для уравнений (∗) представляются хорошо изученны-

ми).

С другой стороны, нелокальные краевые задачи с интегральными услови-

ями для уравнений (∗) ранее не изучались.

c© 2023 Варламова Г. А., Кожанов А. И.
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Задачи с интегральными условиями ранее активно изучались для класси-

ческих уравнений второго порядка (см. [7–11]), для уравнений составного и

соболевского типов [10, 12–17], для уравнений с кратными характеристиками

[18, 19]. Как отмечено выше, задачи с интегральными условиями для уравне-

ний (∗) ранее не изучались.

Характерной особенностью уравнений (∗) является то, что в них перемен-

ная t и переменная x могут играть роль временной переменной. Как показано

в работах [2–4], наличие двух временных переменных позволяет изучать для

уравнений (∗) краевые задачи с принципиально различными носителями гра-

ничных условий. Применительно к задачам с интегральными условиями ска-

занное означает, что и интегральные условия могут задаваться по-разному в

зависимости от того, какая из переменных x или t играет ведущую роль.

Уточним, что целью работы будет доказательство существования и един-

ственности регулярных решений изучаемых задач — решений, имеющих все

обобщенные по С. Л. Соболеву производные, входящие в уравнение. Необходи-

мые по ходу работы сведения о свойствах функций с обобщенными производ-

ными можно найти в монографиях [20–22].

1. Постановка задач

Пусть Q — прямоугольник �× (0, T ) переменных x и t, � = (0, 1), 0 < T <

+∞. Далее пусть c(x, t), f(x, t), N(x) и M(x) — заданные функции, определен-

ные при x ∈ �, t ∈ [0, T ], a — заданное действительное число, L — дифференци-

альный оператор, действие которого на заданной функции v(x, t) определяется

равенством

Lv = vxt − avxx + c(x, t)v.

Нелокальная задача I. Найти функцию u(x, t), являющуюся в прямо-

угольнике Q решением уравнения

Lu = f(x, t) (1)

и такую, что для нее выполняются условия

u(x, 0) = 0, x ∈ �, (2)

u(0, t) =

∫

�

N(y)u(y, t) dy, t ∈ (0, T ), (3)

ux(0, t) =

∫

�

M(y)u(y, t) dy, t ∈ (0, T ). (4)

Нелокальная задача II. Найти функцию u(x, t), являющуюся в прямо-

угольнике Q решением уравнения (1) и такую, что для нее выполняются усло-

вия (2) и (3), а также условие

ux(1, t) =

∫

�

M(y)u(y, t) dy, t ∈ (0, T ). (5)
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Нелокальная задача I в случае N(x) ≡ 0, M(x) ≡ 0 является краевой за-

дачей, предложенной и изученной в работах [2, 3]. Соответственно нелокальная

задача II в случае N(x) ≡ 0, M(x) ≡ 0 будет краевой задачей, предложенной и

изученной в [4]. Если же N(x) и M(x) не тождественно нулевые функции, то

нелокальные задачи I и II представляют собой новые не изученные ранее задачи

с интегральными условиями.

Уравнения (1) имеют модельный вид. О более общих уравнениях и о других

задачах для таких уравнений будет сказано в конце работы.

2. Разрешимость нелокальной задачи I

Существование и единственность регулярных решений нелокальной зада-

чи I будет установлена с помощью априорных оценок, метода регуляризации и

метода продолжения по параметру.

Положим

N1 =

∫

�

N(x) dx.

Лемма 1. Пусть выполняются условия

a < 0,

c(x, t) ∈ C(Q), N(x) ∈ L2(�), M(x) ∈ L2(�),

‖N‖L2(�) < 1.

Тогда для регулярных решений выполняется оценка

∫

�

u2
x(x, t) dx+

t∫

0

u2
x(1, τ) dτ ≤ R1

∫

Q

f2 dxdt, (7)

в которой t ∈ (0, T ], R1 — число, определяемое лишь функциями c(x, t), N(x) и

M(x), а также числами a и T .

Доказательство. Пусть A — число из интервала (1,+∞) такое, что для

него выполняется неравенство

A‖N‖L2(�) < 1 (8)

(существование такого числа A вытекает из свойств действительных чисел).

Умножим уравнение (1) с временной переменной τ на функцию (A−x)ux(x, τ) и

проинтегрируем по прямоугольнику�×(0, t). После несложных преобразований

получим равенство

1

2

∫

�

(A− x)u2
x(x, t) dx +

|a|
2

t∫

0

∫

�

u2
x(x, τ) dxdτ +

|a|(A− 1)

2

t∫

0

u2
x(1, τ) dτ

=

t∫

0

∫

�

(A− x)f(x, τ)ux(x, τ) dxdτ −
t∫

0

∫

�

(A− x)c(x, τ)u(x, τ)ux(x, τ) dxdτ
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+
|a|A

2

t∫

0

(∫

�

M(x)u(x, τ) dx

)2

dτ. (9)

Определим функцию Ñ(x) как решение задачи

dÑ(x)

dx
= N(x), Ñ(1) = 0.

Имеют место равенства

u(0, τ) =

∫

�

Ñ ′(x)u(x, τ) dx = −
∫

�

Ñ(x)ux(x, τ) dx − Ñ(0)u(0, τ)

= −
∫

�

Ñ(x)ux(x, τ) dx +

∫

�

N(x) dx · u(0, τ).

Отсюда

u(0, τ) = − 1

1−N1

∫

�

Ñ(x)ux(x, τ) dx (10)

(поскольку |N1| < 1, это равенство корректно). Далее, представление

u(x, τ) =

x∫

0

uy(y, τ) dy + u(0, τ)

и равенство (10) дают оценки

t∫

0

u2(0, τ) dτ ≤ K1

t∫

0

∫

�

u2
x(x, τ) dxdτ, (11)

t∫

0

∫

�

u2(x, τ) dxdτ ≤ K2

t∫

0

∫

�

u2
x(x, τ) dxdτ, (12)

постоянные K1 и K2 в которых определяются лишь функцией N(x).

Используя оценки (11) и (12), применяя неравенства Юнга и Гёльдера,

учитывая неравенство (8) и, наконец, используя лемму Гронуолла, получим,

что следствием равенства (9) будет априорная оценка

t∫

0

∫

�

u2
x(x, τ) dxdτ +

t∫

0

u2
x(1, τ) dτ ≤ R1‖f‖2L2(Q),

в которой t ∈ (0, T ], R1 — число, определяемое лишь функциями c(x, t), N(x),

M(x) и числами a, T .

Лемма доказана.

Определим линейное пространство V :

V =
{
v(x, t) : v(x, t) ∈ L2

(
0, T ;W 2

2 (�)
)
, vxt(x, t) ∈ L2(Q), vx(1, t) ∈W 1

2 ([0, T ])
}
.

Будем считать, что это пространство снабжено нормой

‖v‖V =
(
‖v‖2L2(0,T ;W 2

2 (�)) + ‖vxt‖2L2(Q) + ‖vx(1, t)‖2W 1
2 ([0,T ])

) 1
2 .

Очевидно, что таким образом нормированное пространство V банахово.
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Теорема 1. Пусть выполняются условия леммы 1. Тогда нелокальная

задача I не может иметь в пространстве V более одного решения.

Доказательство. Для решений u(x, t) нелокальной задачи из простран-

ства V выполняется оценка (7). Эта оценка и означает, что нелокальная задача I

в случае f(x, t) ≡ 0 имеет лишь тривиальное решение.

Теорема доказана.

Существование решений нелокальной задачи I будет доказано с помощью

метода регуляризации.

Теорема 2. Пусть выполняются условия леммы 1, а также условие

c(x, t) ∈ C1(Q).

Тогда для любой функции f(x, t) такой, что f(x, t) ∈ W 1
2 (Q), нелокальная за-

дача I имеет в пространстве V решение u(x, t).

Доказательство. Пусть ε и ρ— положительные числа. Рассмотрим крае-

вую задачу: найти функцию v(x, t), являющуюся в прямоугольникеQ решением

уравнения

Lv + ρvx − εvxtt = g(x, t) (13)

и такую, что для нее выполняются условия (2)–(5), а также условие

vt(x, T ) = 0, x ∈ � (14)

(g(x, t) — заданная функция).

Покажем прежде всего, что при фиксированном ε и при принадлежности

функции g(x, t) пространству L2(Q) можно указать число ρ0 такое, что при

ρ > ρ0 краевая задача (13), (2)–(5), (14) будет иметь решение v(x, t), принадле-

жащее пространству V и такое, что vxtt(x, t) ∈ L2(Q). Воспользуемся методом

продолжения по параметру.

Пусть λ — число из отрезка [0, 1]. Рассмотрим задачу: найти функцию

v(x, t), являющуюся в прямоугольнике Q решением уравнения (13) и такую,

что для нее выполняются условия (2), (3) и (14), а также условия

v(0, t) = λ

∫

�

N(x)v(x, t) dx, t ∈ (0, T ), (15)

vx(0, t) = λ

∫

�

M(x)v(x, t) dx, t ∈ (0, T ). (16)

Уравнение (13) является «псевдогиперболическим» [23–28] уравнением с вре-

менной переменной x. В случае λ = 0 задача с условиями (2), (3), (14)–(16)

представляет собой начально-краевую задачу со смешанными по переменной

t условиями (переменная t в данном случае является пространственной пере-

менной); существование регулярных решений такой задачи доказано в работах

[23–28]. Для того чтобы показать существование регулярных решений данной
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задачи при всех λ, достаточно показать, что для всевозможных регулярных ре-

шений задачи (13), (2), (3), (14)–(16) при ρ > ρ0 имеет место равномерная по λ

априорная оценка

‖v‖2V + ‖vxtt‖2L2(Q) ≤ R0‖g‖2L2(Q) (17)

с постоянной R0, определяемой лишь функциями c(x, t), N(x), M(x), а также

числами a, T и, быть может, ε (см. [26, гл. III, § 14]).

Заметим прежде всего, что, повторяя доказательство леммы 1, но вместо

леммы Гронуолла используя возможность выбора числа ρ большим, нетрудно

установить справедливость для регулярных решений u(x, t) краевой задачи (13),

(2), (3), (14)–(16) априорной оценки

∫

�

v2
x(x, T ) dx+

∫

Q

v2
x(x, t) dxdt +

T∫

0

v2
x(1, t) dt+ ε

∫

Q

v2
xt(x, t) dxdt ≤ R̃1‖g‖2L2(Q),

(18)

постоянная R̃1 в которой определяется лишь функциями c(x, t), N(x), M(x), а

также числами a и T .

Умножим уравнение (13) на функцию −(A− x)vxtt(x, t) и проинтегрируем

по прямоугольнику Q. Повторяя рассуждения, которые привели к оценке (7),

нетрудно получить, что для регулярных решений v(x, t) краевой задачи (13),

(2), (3), (14)–(16) выполняется вторая априорная оценка

∫

�

v2
xt(x, 0) dx +

∫

Q

v2
xt(x, t) dxdt +

T∫

0

v2
xt(1, t) dt

+ ε

∫

Q

v2
xtt(x, t) dxdt ≤ R̃2‖g‖2L2(Q) (19)

с постоянной R̃2, определяемой лишь функциями c(x, t), N(x), M(x), числами

a, T и ε.

Из оценок (18) и (19) очевидным образом вытекает, что для регулярных ре-

шений v(x, t) краевой задачи (13), (2), (3), (14)–(16) выполняется третья апри-

орная оценка ∫

Q

v2
xx(x, t) dxdt ≤ R̃3‖g‖2L2(Q) (20)

с постоянной R̃3, определяемой лишь функциями c(x, t), N(x), M(x), а также

числами a, T и ε.

Полученные оценки (18)–(20) означают, что для функции v(x, t) выполняет-

ся требуемая оценка (17). Следовательно, краевая задача (13), (2), (3), (14)–(16)

имеет регулярное решение при всех λ из отрезка [0, 1].

Покажем теперь, что для регулярных решений краевой задачи (13), (2),

(3), (14)–(16) имеет место априорная оценка, которая позволит построить по-

следовательность, сходящуюся к регулярному решению нелокальной задачи I.
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Вновь умножим уравнение (13) на функцию −(A − x)vxtt(x, t) и проинте-

грируем по прямоугольнику Q. Используя формулу интегрирования по частям

по переменной t по отношению к функции g(x, t) и повторяя все остальные

выкладки, которые привели к оценке (19), получим, что существует число ρ0

такое, что при ρ > ρ0 для регулярных решений v(x, t) краевой задачи (13), (2),

(3), (14)–(16) будет выполняться равномерная по ε априорная оценка

∫

�

v2
xt(x, 0) dx +

∫

Q

v2
xt(x, t) dxdt +

T∫

0

v2
xt(1, t) dt

+ ε

∫

Q

v2
xtt(x, t) dxdt ≤ R̃4

(
‖g‖2L2(Q) + ‖gt‖2L2(Q)

)
, (21)

постоянная R̃4 в которой определяется лишь функциями c(x, t), N(x), M(x),

числами a и T .

Из оценки (21) вытекает равномерная по ε априорная оценка в пространстве

L2(Q) производной vxx(x, t).

Суммируя, получим, что для регулярных решений v(x, t) краевой зада-

чи (13), (2), (3), (14)–(16) выполняется оценка

‖v‖2V + ε

∫

Q

v2
xtt(x, t) dxdt ≤ R0

(
‖g‖2L2(Q) + ‖gt‖2L2(Q)

)
, (22)

постоянная R0 в которой определяется лишь функциями c(x, t), N(x), M(x),

числами a и T .

Оценка (22), свойство рефлексивности гильбертова пространства и стан-

дартные рассуждения о возможности выбора слабо сходящейся последователь-

ности из ограниченного в гильбертовом пространстве семейства означают, что

при наличии включений g(x, t) ∈ L2(Q), gt(x, t) ∈ L2(Q) существуют после-

довательности {εk}∞k=1 положительных чисел и решений {vk(x, t)}∞k=1 краевой

задачи (13), (2), (3), (14)–(16) с ε = εk, λ = 1 такие, что при k →∞ имеют место

сходимости

εk → 0,

vk(x, t)→ v(x, t) слабо в пространстве V,

εvkxtt(x, t)→ 0 слабо в пространстве L2(Q).

Очевидно, что предельная функция v(x, t) будет решением из пространства V

уравнения

vxt − avxx + ρvx + c(x, t)v = g(x, t)

(здесь ρ — фиксированное число из промежутка (ρ0,+∞)). По изначально за-

данной функции f(x, t) определим функцию g(x, t): g(x, t) = e−ρtf(x, t). Далее,

положим u(x, t) = eρtv(x, t). Функция u(x, t) и будет требуемым решением нело-

кальной задачи I, причем единственным.

Теорема доказана.
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3. Разрешимость нелокальной задачи II

Исследование разрешимости нелокальной задачи II будет проведено с по-

мощью метода, предложенного в работах [7, 8].

Выполним вначале некоторые вспомогательные построения.

Положим

N2 =

∫

�

xN(x) dx, M1 =

∫

�

M(x) dx, M2 =

∫

�

xM(x) dx,

R(x, y) = xM(y) +N(y), d = (1−N1)(1−M2)−M1N2

(напомним, что число N1 определено при доказательстве разрешимости нело-

кальной задачи I). По заданной функции v(x, t) определим функцию w(x, t):

w(x, t) = v(x, t) −
∫

�

R(x, y)v(y, t) dy,

где

R1(x, y) = [x(1−N1)+N2]M(y)+[xM1 +1−M2]N(y), r1 =

(∫

�

R
2
1x(x, y) dy

) 1
2

.

Теорема 3. Пусть выполняются условия

a > 0,

c(x, t) ∈ C(Q), ct(x, t) ∈ C(Q),

N(x) ∈ L2(�), M(x) ∈ L2(�),

|d| − 2r1 > 0.

Тогда для любой функции f(x, t) такой, что f(x, t) ∈ L2(Q), ft(x, t) ∈ L2(Q),

f(x, 0) = 0 при x ∈ �, нелокальная задача II имеет решение u(x, t), принадле-

жащее пространству V , и притом ровно одно.

Доказательство. Пусть ε — положительное число. Рассмотрим задачу:

найти функцию w(x, t), являющуюся в прямоугольнике Q решением уравнения

wxt − awxx + c(x, t)w − εwxxt = f(x, t)− 1

d

∫

�

R1x(x, y)wt(y, t) dy (23)

и такую, что для нее выполняются условия

w(x, 0) = 0, x ∈ �, (24)

w(0, t) = wx(1, t) = 0, t ∈ (0, T ). (25)

Разрешимость этой задачи в классе регулярных решений при фиксированном ε

при выполнении условий теоремы и при принадлежности функции f(x, t) про-

странству L2(Q) установлена в работе [4]. Покажем, что для этих решений



20 Г. А. Варламова, А. И. Кожанов

имеют место априорные оценки, которые позволят организовать процедуру пре-

дельного перехода.

Умножим уравнение (23) с временной переменной τ на функцию

(A−x)wτ (x, τ) с числом A из промежутка (1,+∞) и проинтегрируем по прямо-

угольнику �× (0, 1).

После несложных преобразований с использованием условий (24) и (25)

получим равенство

1

2

t∫

0

∫

�

w2
τ (x, τ) dxdτ +

A− 1− ε
2

t∫

0

w2
τ (1, τ) dτ +

a

2

∫

�

(A− x)w2
x(x, t) dx

+ ε

t∫

0

∫

�

(A− x)w2
xτ (x, τ) dxdτ = a

t∫

0

∫

�

wx(x, τ)wτ (x, τ) dxdτ

+

t∫

0

∫

�

(A− x)f(x, τ)wτ (x, τ) dxdτ

− 1

d

t∫

0

∫

�

(∫

�

R1x(x, y)wτ (y, τ) dy

)
(A− x)wτ (x, τ) dxdτ

−
t∫

0

∫

�

(A− x)c(x, τ)w(x, τ)wτ (x, τ) dxdτ. (26)

Заметим, что число ε можно изначально считать настолько малым, что будет

выполняться неравенство A−1−ε > 0. Учитывая этот факт, применяя в правой

части (26) неравенства Гёльдера и Юнга, используя неравенство |d|−2r1 > 0 и,

наконец, применяя лемму Гронуолла, получим, что для решений w(x, t) краевой

задачи (23)–(25) выполняется оценка

t∫

0

∫

�

w2
τ (x, τ) dxdτ +

t∫

0

w2
τ (1, τ) dτ +

∫

�

w2
x(x, t) dx + ε

t∫

0

∫

�

w2
xτ (x, τ) dxdτ

≤ R̃5

∫

Q

f2 dxdt (27)

с постоянной R̃5, определяемой лишь функциями c(x, t), N(x) и M(x), а также

числами a и T .

На следующем шаге умножим уравнение (23) с временной переменной τ на

функцию −wxxτ (x, τ) и проинтегрируем по прямоугольнику �× (0, t). Интегри-

руя по частям, в том числе и в интеграле с функцией f(x, τ), используя краевые

условия, оценку (27) и применяя лемму Гронуолла, получим, что для решений
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w(x, t) краевой задачи (23)–(25) выполняется вторая априорная оценка

∫

�

w2
xx(x, t) dx+

t∫

0

w2
xτ (0, τ) dτ + ε

t∫

0

∫

�

w2
xxτ (x, τ) dxdτ ≤ R̃6

∫

Q

(
f2 + f2

t

)
dxdt,

(28)

постоянная R̃6 в которой определяется лишь функциями c(x, t), N(x), M(x) и

числами a, T .

Последняя оценка

t∫

0

∫

�

w2
xτ (x, τ) dxdτ ≤ R̃7

∫

Q

(
f2 + f2

t

)
dxdt (29)

с постоянной R̃7, определяемой вновь лишь функциями c(x, t), N(x) и M(x) и

числами a, T , очевидным образом вытекает из оценок (27) и (28).

Оценок (27)–(29) вполне достаточно для организации процесса перехода к

пределу. Собственно этот процесс основан на свойстве рефлексивности гиль-

бертова пространства, а именно на возможности выбора из семейства функций

{wε(x, t)} последовательности, слабо сходящейся в пространстве V к такой, что

последнее слагаемое сходится в пространстве L2(Q) к нулевой функции.

Итак, из всего сказанного выше следует, что существует функция w(x, t),

принадлежащая пространству V и являющаяся решением краевой задачи (23)–

(25) при ε = 0. Определим по этой функции w(x, t) функцию u(x, t):

u(x, t) = w(x, t) +
1

d

∫

�

R1(x, y)w(y, t) dy.

Эта функция и будет искомым решением нелокальной задачи II.

Единственность решений нелокальной задачи II очевидна (вытекает, напри-

мер, из оценки (27), справедливой и при ε = 0).

Теорема доказана.

Замечание. Из оценки (28) следует, что для решения u(x, t) нелокальной

задачи II имеет место дополнительное включение u(x, t) ∈ L∞
(
0, T ;W 2

2 (�)
)
.

4. Заключение

В работе представлены новые результаты о разрешимости в классе регу-

лярных решений нелокальных краевых задач с интегральными условиями для

гиперболических уравнений с двумя временными переменными. Полученные

результаты легко переносятся на более общие уравнения — уравнения с пере-

менными коэффициентами в старшей части, уравнения с дополнительными сла-

гаемыми, в том числе и интегродифференциальными. Функции N(x) и M(x) в

нелокальных условиях задач I и II могут зависеть и от переменной t, условие (5)

нелокальной задачи II можно заменить условием

ux(1, t) + γ(t)u(1, t) =

∫

�

M(x)u(x, t) dx



22 Г. А. Варламова, А. И. Кожанов

(γ(t) — заданная функция) и т. д. Суть представленных в статье результатов

не изменится, добавятся лишь некоторые условия и выкладки.
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ТОЧКОЙ НА ЭКВАТОРЕ ПУАНКАРЕ
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Аннотация. Исследовано глобальное поведение траекторий полиномиальной си-
стемы ẋ = x−x2y+pxy2 +y3, ẏ = y+py3, p ∈ R. Данное исследование примыкает
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Ключевые слова: полиномиальные системы, особые точки, экватор Пуанкаре,
фазовые портреты, рациональные интегралы.

Введение

Рассмотрим плоскую систему обыкновенных дифференциальных уравне-

ний

ẋ = x+ Pn(x, y), ẏ = y +Qn(x, y), (1)

где Pn(x, y), Qn(x, y) — однородные многочлены n-й степени. Будем называть

такую систему системой типа Дарбу.

Системы вида (1) рассматривались различными авторами (см. [1–6] и про-

цитированную там литературу). В этих работах изучались традиционные для

качественной теории дифференциальных уравнений вопросы такие, как инте-

грируемость, наличие или отсутствие предельных циклов, локальные и глобаль-

ные фазовые портреты и т. д.

В [6] исследовались общие свойства систем вида (1) и в качестве приме-

ра применения полученных результатов были рассмотрены кубические систе-

мы типа Дарбу. Для них авторы получили полный по их мнению список гло-

бальных фазовых портретов (с точностью до топологической эквивалентности).

Однако вопреки утверждению авторов этот список не является полным. Для

оправдания этого утверждения рассмотрим однопараметрическое семейство ку-

бических систем типа Дарбу вида

ẋ = x− x2y + pxy2 + y3, ẏ = y + py3, p ∈ R, (2)

и предъявим фазовые портреты систем этого семейства, не содержащиеся в

списке, полученном в [6].

Работа выполнена в рамках государственного задания ИМ СО РАН (проект FWNF-2022-
0005).

c© 2023 Волокитин Е. П.
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Одной из причин допущенной авторами [6] ошибки является тот факт, что

они не учли возможности существования у систем вида (1) неэлементарной осо-

бой точки на экваторе Пуанкаре с равной нулю матрицей линейного прибли-

жения («линейный нуль»). В этом случае возможно строение окрестности этой

точки, которое имеет более сложную структуру по сравнению с традиционно

возникающими и учтенными в [6] негиперболическими точками типа узел и

седло-узел. Сходные ситуации рассматривались в [5, 7]. В настоящей работе

проведем соответствующее исследование с помощью более прозрачного и про-

стого метода, применяя алгебраическое раздутие без использования трансцен-

дентных уравнений. Кроме того, найдем интеграл системы (2) и обсудим его

свойства.

Основная часть

Рассмотрим систему

ẋ = x− x2y + pxy2 + y3, ẏ = y + py3, p ∈ R. (3)

Теорема 1. 1. Фазовые портреты системы (2) приведены на рис. 3 (см.

ниже).

2. Если p 6= 0, то система (2) имеет интеграл

H(x, y) = (x− y)p(x+ y)−p(1 + py2),

который рационален, если p ∈ Q \ {0}.
3. Если p = 0, то система (2) имеет интеграл

H(x, y) =
x− y
x+ y

ey
2

.

Если p = 0, то система (2) не имеет рационального интеграла.

Доказательство. Для изучения системы (2) применим более прозрачные

и простые по сравнению с [5, 7] методы исследования. Для разрешения особен-

ностей будем использовать алгебраическое раздутие, что позволяет не исполь-

зовать трансцендентные функции. Кроме того, это дает возможность оценить

асимптотику траекторий. К тому же в дополнение к [5] найдем интегралы си-

стемы (2) и укажем их интересные на наш взгляд свойства.

Система (1) детально исследовалась в [1, 4, 6]. В частности, там получе-

но, что поведение в целом траекторий системы (2) определяется поведением ее

траекторий вблизи экватора Пуанкаре.

Экватор Пуанкаре отвечает оси {z = 0} системы

u̇ = Q3(1, u)− uP3(1, u), ż = −z(z2 + P3(1, u)), (3)

которая является результатом компактификации Пуанкаре системы (2) и полу-

чается из нее с использованием замены

u =
y

x
, z =

1

x
.
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Подробнее см. [8, 9].

В нашем случае компактификация системы (2) дает систему

u̇ = u2(1− u2), ż = −z(z2 − u+ pu2 + u3). (4)

Система (4) имеет на экваторе три особые точки O0(0, 0), O1(1, 0), O2(−1, 0).

Матрицы линейного приближения в этих точках суть

J0 =

(
0 0

0 0

)
, J1 =

(
−2 0

0 −p

)
, J2 =

(
2 0

0 −p

)
. (5)

Видно, что начало координат u = 0, z = 0 является неэлементарной осо-

бой точкой: матрица линейной части нулевая. Такие точки были упущены из

рассмотрения в [6].

Для изучения особой точки O0(0, 0) сделаем замену координат (раздутие)

[10, 11]

u = u, w =

{
z√
u
, u > 0,

z√
−u , u < 0.

(6)

После применения раздутия получим

u̇ = u2(1 − u2), ẇ =
1

2
uw − uw3 − pu2w − 1

2
u3w, u > 0, (7)

u̇ = u2(1 − u2), ẇ =
1

2
uw + uw3 − pu2w − 1

2
u3w, u < 0. (8)

Введем новое время dτ = u dt. Получим системы с теми же траекториями:

u̇ = u(1− u2), ẇ =
1

2
w − w3 − puw − 1

2
u2w, u > 0, (9)

u̇ = u(1− u2), ẇ =
1

2
w + w3 − puw − 1

2
u2w, u < 0. (10)

Дифференцирование по новой переменной по-прежнему обозначено точкой.

Система (9) имеет на оси {u = 0} три гиперболические особые точкиO0(0, 0),

O1(0, 1/
√

2), O2(0,−1/
√

2), у которых матрицы линейной части имеют вид

J0 =

(
1 0

0 1/2

)
, J1 =

(
1 0

−p/
√

2 −1

)
, J2 =

(
1 0

p/
√

2 −1

)
.

Точка O0(0, 0) будет неустойчивым узлом, оставшиеся две — седлами.

Система (10) имеет на оси {u = 0} единственную особую точку — гипербо-

лический устойчивый узел.

На рис. 1 изображены траектории систем (7), (8) в окрестности оси {u = 0}.
Обратная замена координат (сжатие) позволяет изобразить поведение тра-

екторий системы (4) в окрестности неэлементарной особой точки O0(0, 0). Эта

окрестность содержит два узловых и два седловых сектора (рис. 2).

Особые точки O1(1, 0), O2(−1, 0) системы (4) имеют следующий характер

(см. (5)):
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u

w

O

Рис. 1. Траектории систем (7), (8) в окрестности оси {u = 0}.

u

z

O
u

z

O

p ≥  0 p <  0

Рис. 2. Бесконечно удаленные особые точки системы.

p > 0, O1(1, 0) — гиперболический устойчивый узел, O2(−1, 0) — гипербо-

лическое седло;

p < 0, O1(1, 0) — гиперболическое седло, O2(−1, 0) — гиперболический

неустойчивый узел.

В случае p = 0 точки O1(1, 0), O2(−1, 0) будут элементарными полугипербо-

лическими точками. Применяя разработанные для таких точек методы иссле-

дования, предложенные в [8, 9], получаем, что O1(1, 0) будет устойчивым узлом,

O2(−1, 0) — седлом.

На рис. 2 изображены варианты поведения траекторий системы (4) в

окрестности оси {z = 0}, отвечающей экватору Пуанкаре, в зависимости от

значений параметра p. Системы с таким поведением траекторий в окрестности

экватора не попали в поле зрения авторов [6].

Охарактеризуем поведение траекторий системы (2) в конечной части плос-

кости. Будем опираться на результаты [4, 6].

Система имеет три инвариантные кривые y = 0, y = x, y = −x.
Напомним, что стационары системы (2) могут располагаться только на ин-

вариантных прямых.
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Вдоль прямой y = 0 (2) принимает вид

ẋ = x, ẏ = y,

и видно, что точки покоя, отличающиеся от начала координат, на этой прямой

отсутствуют.

Вдоль прямой y = x (2) принимает вид

ẋ = x+ px3, ẏ = x+ px3.

Ecли p ≥ 0, на прямой отсутствуют точки покоя, отличающиеся от начала

координат. Ecли p < 0, на прямой имеются две точки покоя (±1/
√−p,±1/

√−p),
которые являются устойчивыми гиперболическими узлами.

Вдоль прямой y = −x (2) принимает вид

ẋ = x+ px3, ẏ = −x− px3.

Как и в предыдущем случае, еcли p ≥ 0, то на прямой отсутствуют точки покоя,

отличающиеся от начала координат. Ecли p < 0, то на прямой имеются две точ-

ки покоя (±1/
√−p,∓1/

√−p), которые являются гиперболическими седлами.

Предельные циклы в системе (2), очевидно, отсутствуют.

Суммируя полученную информацию, строим фазовые портреты системы

(2) на диске Пуанкаре (рис. 3).

p≥ 0 p< 0

Рис. 3. Фазовые портреты системы (4).

Как уже отмечалось, такие фазовые портреты не могли быть обнаружены

в процессе исследования в [6]1)

П. 1 теоремы доказан.

Используя метод Дарбу интегрирования систем ОДУ с помощью инвари-

антов (см. например, [12]), можно найти интеграл (2).

Функция L(x, y) называется инвариантом системы

ẋ = P (x, y), ẏ = Q(x, y),

если она удовлетворяет условию

DL ≡ ∂L(x, y)

∂x
P (x, y) +

∂L(x, y)

∂y
Q(x, y) = k(x, y)L(x, y),

1)В [5] приведены также другие варианты глобальных фазовых портретов кубических
систем типа Дарбу, которых нет в [6].
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где k(x, y) — многочлен от переменных x, y, который называется кофактором

инварианта L(x, y).

Если система имеет инварианты L1, L2, . . . , Ls с кофакторами k1, k2, . . . , ks и

α1k1+α2k2+· · ·+αsks = 0, то функция H = Lα1
1 Lα2

2 . . . Lαs
s является интегралом

системы.

Система (2) имеет инвариантами многочлены L1 = y, L2 = x−y, L3 = x+y,

L4 = 1 + py2 и экспоненциальный множитель L5 = ey
2

с кофакторами k1 =

1+py2, k2 = 1−xy−y2 +py2, k3 = 1−xy+y2 +py2, k4 = 2py2, k5 = 2y2(1+py2).

Имеем pk2 − pk3 + k4 = 0. В таком случае

H(x, y) = Lp2L
−p
3 L4 = (x− y)p(x + y)−p(1 + py2), p 6= 0, (11)

является первым интегралом системы (2).

Очевидно, что при рациональных значениях p 6= 0 интеграл (11) рациона-

лен и h1 = 0, h2 =∞ будут его замечательными значениями.

П. 2 теоремы доказан.

Если p = 0, то H(x, y) ≡ 1. При p = 0 имеем k2 − k3 + k5 = 0 и

H0(x, y) =
x− y
x+ y

ey
2

(12)

является первым интегралом системы (2), когда p = 0:

ẋ = x− x2y + y3, ẏ = y. (13)

Интеграл (12), очевидно, не является рациональным. Более того, можно пока-

зать, что система (13) вообще не имеет рационального интеграла.

Чтобы убедиться в этом, рассмотрим кривую, которая является линией

уровня H0(x, y) = 1:

� =

{
(x, y) ∈ R :

x− y
x+ y

ey
2

= 1, y > 0

}
.

Кривая � — сепаратриса бесконечно удаленной неэлементарной особой точки,

лежащей на конце оси Ox (рис. 4).

Пусть � является ветвью алгебраической кривой F (x, y) = 0 степени n.

Следуя Эйлеру [13], запишем эту кривую в виде

F (x, y) ≡ P (x, y) +Q(x, y) +R(x, y) + · · · = 0, (14)

где P — высший член, содержащий в себе все члены степени n, Q — второй

член, содержащим члены степени n− 1, и т. д.

Кривая F (x, y) = 0 является инвариантной кривой системы (13). Согласно

п. 1 теоремы 1 неограниченные ветви могут иметь асимптотами только прямые

y = 0, x− y = 0, x+ y = 0. В таком случае согласно Эйлеру [13]

P (x, y) = yk(x− y)l(x+ y)mPr(x, y), k + l +m+ r = n,

где многочлен

Pr(x, y) ≡ αxr + βxr−1y + · · ·+ γyr
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Рис. 4. Кривая � = {(x, y) ∈ R : H0(x, y) = 1, y > 0}.

не имеет линейных множителей. Иными словами, уравнение Pr(1, s) = 0 не

имеет действительных корней. В частности,

Pr(1,−1) ≡ α− β + · · ·+ γ 6= 0. (15)

Вдоль � имеем

x =
ey

2

+ 1

ey2 − 1
y.

Обозначим z = ey
2

. Тогда вдоль �

x =
z + 1

z − 1
y,

x

y
=
z + 1

z − 1
. (16)

Подстановка (16) в (14) после очевидных преобразований приводит к равенству

вида

F (y, z) = P(y, z) + Q(y, z) + · · · = 0. (17)

Здесь F (y, z), P(y, z), Q(y, z) — многочлены, при этом

P = yk(x− y)l(x+ y)m(αxr + βxr−1y + . . . γyr)

= yn
((

x

y
− 1

)l(
x

y
+ 1

)(
α

(
x

y

)r
+ β

(
x

y

)r−1

+ · · ·+ γ

))

= yn
((

2

z − 1

)l(
2z

z − 1

)m(
α

(
z + 1

z − 1

)r
+ β

(
z + 1

z − 1

)r−1

+ · · ·+ γ

))
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= 2l+mynzm
α(z + 1)r + β(z + 1)r−1(z − 1) + · · ·+ γ(z − 1)r

(z − 1)l+m+r
,

P = 2l+mynzm(α(z + 1)r + β(z + 1)r−1(z − 1) + · · ·+ γ(z − 1)r)(z − 1)n−l−m−r,

Q = yn−1q(z), . . . .

Коэффициент pnm при мономе ynzm в многочлене P имеет вид

pnm = (−1)n−l−m−r2l+m(α− β + · · · − γ). (18)

В силу (15) pnm 6= 0, поэтому многочлен F не является тождественно нуле-

вым. В таком случае равенство (17) означает, что система функций {yresy2}r,s∈Z
линейно зависима на промежутке y > 0, что, очевидно, неверно.

Итак, кривая � не алгебраическая. В таком случае система (13) не имеет

рационального интеграла, поскольку при наличии рационального интеграла все

траектории системы должны быть алгебраическими кривыми.

П. 3 теоремы доказан. �

Отметим, что рациональный интеграл

H(x, y) =
(x− y)(1 + y2)

x+ y
,

полученный из (11) при p = 1, и интеграл

H(x, y) =
(x− y)ey2

x+ y

из (12), не являющийся рациональным, отвечают топологически эквивалентным

фазовым портретам соответствующих систем.
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13. Euler L., Introduction to Infinitesimal Analysis [in Russian], vol. II, Fizmatgiz, Moscow
(1961).

Submitted June 13, 2023

Revised June 13, 2023

Accepted September 4, 2023

Evgenii P. Volokitin
Sobolev Institute of Mathematics,
4 Koptyug Avenue, 630090 Novosibirsk, Russia
volok@math.nsc.ru



Математические заметки СВФУ
Июль—сентябрь, 2023. Том 30, № 3

УДК 539.375

ОПТИМАЛЬНОЕ УПРАВЛЕНИЕ УГЛОМ МЕЖДУ

ДВУМЯ ТОНКИМИ ЖЕСТКИМИ ВКЛЮЧЕНИЯМИ

В ДВУМЕРНОМ НЕОДНОРОДНОМ ТЕЛЕ

Н. П. Лазарев, Н. А. Романова

Аннотация. Исследована нелинейная математическая модель о равновесии дву-
мерного упругого тела с двумя тонкими жесткими включениями. Предполагается,
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связь между двумя включениями в данной точке характеризуется положительным
параметром повреждаемости. Прямолинейные включения расположены под задан-
ным углом к друг другу в исходном состоянии. На части внешней границы зада-
ются нелинейные условия Синьорини, описывающие контакт с препятствием, на
другой части — однородные условия Дирихле. Сформулирована задача оптималь-
ного управления параметром, задающим угол между включениями. Функционал
качества задается с помощью произвольного непрерывного функционала, опреде-
ленного на пространстве Соболева. Доказана разрешимость задачи оптимального
управления. Установлена непрерывная зависимость решений от угла между вклю-
чениями.
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Ключевые слова: вариационная задача, жесткие включения, непроникание, оп-
тимальное управление.

1. Введение

Изучение нелинейных моделей, описывающих деформирование неоднород-

ных тел с включениями, представляет собой активно развивающееся направле-

ние прикладной математики. В ряде моделей нелинейность обусловлена гра-

ничными условиями типа Синьорини, описывающими непроникание контакти-

рующих поверхностей. Исследование подобных математических моделей пред-

полагает применение методов вариационного исчисления. Широкий класс задач

со свободными границами, продиктованных инженерными, физическими и ма-

тематическими вопросами, привлекает внимание многих ученых с 1960-х гг. в

силу ясной физической интерпретации налагаемых граничных условий (см. [1–

7] и др.). Задачи для моделей упругих тел с включениями исследованы в ряде

работ (например, см. [8–13]). Для таких моделей зависимость от изменения

формы объектов (в том числе структурных элементов) изучалась в [14–19], за-

висимость от физических параметров исследована в [20–23], численные методы

Работа выполнена при поддержке Минобрнауки РФ в рамках государственного задания
проект No. FSRG-2023-0025.

c© 2023 Лазарев Н. П., Романова Н. А.
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решений представлены в работах [24–26]. Для задачи о равновесии двумерного

изотропного упругого тела с прямолинейным жестким включением, рассмот-

ренной в [27], получено асимптотическое разложение функции перемещений в

окрестности вершины. При этом были рассмотрены случаи как с отслоением,

т. е. при наличии трещины, так и без отслоения. В [28] анализируется влияние

на поле деформаций взаимного расположения двух жестких прямолинейных

включений, встроенных в двумерную упругую матрицу. В этой работе про-

ведено сравнение с экспериментальными данными в соответствии с методами

фотоупругости. В качестве выводов было получено, что значения деформаций

вблизи вершины включений уменьшаются в случае параллельного расположе-

ния включений; в случае коллинеарного расположения включений взаимодей-

ствие локально усиливает поле деформации; радиальная конфигурация также

усиливает поле деформации, причем величина усиления зависит от взаимной

угловой ориентации включений. Метод исследования взаимодействия системы

трещин и включений на основе интегральных уравнений предложен в [29]. За-

дача оптимального управления формой включения для эллиптической системы

уравнений, описывающей равновесие пластины Кирхгофа — Лява с отслоив-

шимся тонким жестким включением, исследована в [30]. При этом предпо-

лагалось, что включение одно и его форма описывается достаточно гладкой

функцией класса H3(0, 1). В статье [31] рассматривается обратная задача о

расположении тонкого упругого включения в упругом теле.

В работе исследована зависимость модели о равновесии двумерного упру-

гого тела с двумя тонкими жесткими включениями от изменения геометрии

объектов. А именно, проведен анализ соответствующей задачи о равновесии

при варьировании угла между включениями, которые имеют одну общую точку

соединения. Семейство вариационных задач зависит от параметра, задающего

угол между включениями. Множество допустимых перемещений определяется

в подходящем пространстве Соболева с учетом нелинейного условия непрони-

кания Синьорини, однородного условия Дирихле и условий на перемещения в

точках обоих включений. Для этого семейства задач формулируется задача

оптимального управления параметром, задающим угол между включениями.

Функционал качества задается с помощью произвольного непрерывного функ-

ционала, определенного на пространстве Соболева. Доказана разрешимость

задачи оптимального управления. Установлена непрерывная зависимость ре-

шений от изменения угла между включениями в пространстве искомых реше-

ний.

1. Вариационная задача о равновесии двумерного тела

Рассмотрим область � ⊂ R2 с липшицевой границей � , которая состоит из

двух кривых � = �0 ∪ �1, meas(�0) > 0. Рассмотрим две кривые, состоящие из

внутренних точек прямолинейных отрезков:

γ = {(x1, x2) | −1 < x1 < 1, x2 = 0},
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βα = {(x1, x2) | x1 = t cosα, x2 = t sinα, −1 < t < 1},
где α ∈ [a, b], 0 < a < b < π

2 . Предположим, что γ, βα содержатся строго внутри

области �, т. е. γ ⊂ �, βα ⊂ � для любых α ∈ [a, b]. Для того чтобы описать

дополнительные свойства геометрических объектов задачи введем следующие

множества:

ωψϕ =

α=ψ⋃

α=ϕ

βα, a ≤ ϕ < ψ ≤ b.

Предположим, что при фиксированных значениях ϕ, ψ таких, что a ≤ ϕ <

ψ ≤ b, продолжением кривых γ, βψ с обеих концов можно разбить область

�\(γ ∪ βψ ∪ ωψϕ) для любых a ≤ ϕ < ψ ≤ b на четыре подобласти �i, i = 1, 4, с

липшицевыми границами ∂�i, i = 1, 4. Для определенности положим, что �1

ограничена частью кривой γ с неотрицательной абсциссой и ее продолжением, а

также частью кривой βψ с неотрицательной ординатой и ее продолжением. Об-

ласть �2 ограничена частью кривой γ с неотрицательной абсциссой и ее продол-

жением, а также частью кривой βψ с неположительной ординатой. Область �3

ограничена частью кривой γ с неположительной абсциссой и ее продолжением,

границей области ωψϕ , а также частью кривой βψ с неположительной ординатой.

Наконец, �4 = �\(�1 ∪ �2 ∪ �3).

Рис. 1. Геометрические объекты задачи.

Введем следующие обозначения для пространств Соболева:

H1,0
�0

(�) = {v ∈ H1(�) | v = 0 на �0}, H(�) = H1,0
�0

(�)2.

Обозначим через W = (w1, w2) вектор перемещений. Введем обозначения для

тензоров, описывающих соотношения теории упругости [5]:

εij(W ) =
1

2
(wi,j + wj,i), i, j = 1, 2,

σij(W ) = cijklεij(W ), i, j = 1, 2,

где нижние индексы после запятой обозначают дифференцирование по соот-

ветствующей координате, cijkl — заданный тензор коэффициентов упругости,

обладающий свойствами симметрии и положительной определенности:

cijkl = cklij = cjikl , i, j, k, l = 1, 2, cijkl = const,
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cijklξijξkl ≥ c0|ξ|2 ∀ξ, ξij = ξji, i, j = 1, 2, c0 = const, c0 > 0.

Предположения, сделанные относительно возможности разбиения негладкой об-

ласти �, позволяют применять следующее неравенство Корна:
∫

�

σij(W )εij(W ) dx ≥ c‖W‖2H(�) ∀W ∈ H(�) (1)

с постоянной c > 0, не зависящей от W [6].

Замечание 1. Неравенство (1) обеспечивает эквивалентность стандарт-

ной нормы в пространстве H(�) и полунормы, заданной левой частью неравен-

ства (1).

Для произвольного подмножества O области � определим следующее про-

странство инфинитезимальных жестких перемещений [9]:

R(O) = {ρ(x1, x2) = (ρ1(x2), ρ2(x1)) |
ρ(x1, x2) = b(x2,−x1) + (c1, c2); b, c1, c2 ∈ R, (x1, x2) ∈ O}.

Для того чтобы задать тонкие жесткие включения, соответствующие γ, βα,

следуя подходу [9], потребуем специальную структуру перемещений на этих

кривых так, чтобы W |γ = ρ̂, где ρ̂ ∈ R(γ), W |βα
= ρ, где ρ ∈ R(βα). Отметим,

что поскольку кривые γ и βα пересекаются в одной точке (0, 0), значения для

постоянных, входящих в представления аффинных функций ρ = b(x2,−x1) +

(c1, c2) и ρ̂ = b̂(x2,−x1) + (ĉ1, ĉ2), связаны соотношениями

ĉ1 = c1, ĉ2 = c2.

Поскольку, вообще говоря, b̂ 6= b, можно интерпретировать характер связи

включений как шарнирное соединение (см., например, [32, 33]).

Условие непроникания, описывающее контакт c жестким препятствием,

имеет вид

Wν ≤ 0 на �s,

где ν = (ν1, ν2) — единичная нормаль к � , а кривая �s — некоторая часть

кривой �1 [34]. Отметим, что условия закрепления на границе �0 заданы в

виде однородных граничных условий Дирихле, их выполнение гарантируется

принадлежностью искомых функций пространству H(�). Введем функционал

энергии

�(W ) =
1

2

∫

�

σij(W )εij(W ) dx −
∫

�

FW dx+
1

2G
(ρ̂2,1(0)− ρ̃2,1(0))2, (2)

где F = (f1, f2) ∈ L2(�)2 — заданный вектор внешних сил, ρ̃ = (ρ̃1, ρ̃2) — продол-

жение на � аффинным образом функции ρ ∈ R(βα), параметр повреждаемости

G > 0 характеризует связь между включениями βα и γ в точке пересечения.

В [22] применяется похожий подход при описании связи между жестким и упру-

гим включениями с помощью аналогичного слагаемого в функционале энергии,

зависящего от параметра повреждаемости.
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Семейство задач о равновесии композитных тел с жесткими тонкими вклю-

чениями, зависящих от параметра α ∈ [a, b], сформулируем в вариационном

виде:

найти Uα ∈ Kα такое, что �(Uα) = inf
W∈Kα

�(W ), (3)

где множество допустимых перемещений

Kα = {W ∈ H(�) |Wν ≤ 0 на �s, W |γ = ρ, где ρ ∈ R(γ),

W |βα
= ρ̂, где ρ̂ ∈ R(βα)}.

Следуя подходу из [10] для задачи о равновесии упругого тела с жестким вклю-

чением, методами вариационного исчисления [6, 34] можно показать, что задача

(3) имеет единственное решение Uα ∈ Kα, которое удовлетворяет вариационно-

му неравенству

Uα ∈ Kα,

∫

�

σij(Uα)εij(W − Uα) dx ≥
∫

�

F (W − Uα) dx

− 1

G
(ρ̂α2,1(0)− ρ̃α2,1(0))((ρ̂2,1(0)− ρ̃2,1(0))− (ρ̂α2,1(0)− ρ̃α2,1(0))) ∀W ∈ Kα,

(4)

где ρ̂α2, ρ̃α2 — компоненты аффинных функций ρ̂α = (ρ̂α1, ρ̂α2), ρ̃α = (ρ̃α1, ρ̃α2),

определяющих структуру Uα на γ и βα соответственно; так же ρ̂2, ρ̃2 — вторые

компоненты аффинных функций ρ̂, ρ̃, определяющих структуру W на γ и βα
соответственно.

Цель дальнейших рассуждений состоит в выявлении свойств решений зада-

чи (3), характеризующих зависимость от изменения параметра α ∈ [a, b]. С фи-

зической точки зрения проводится исследование свойств математической моде-

ли при варьировании угла между тонкими жесткими включениями.

2. Задача оптимального управления

Определим функционал качества J : [a, b]→ R задачи оптимального управ-

ления с помощью равенства

J(α) = G(Uα),

где Uα — решение задачи (3) и G : H(�) → R — произвольный непрерывный

функционал.

В качестве примеров функционалов, мотивированных физическим смыс-

лом, можно привести функционал G1(W ) = ‖W −W0‖H(�), характеризующий

отклонение вектора перемещений от заданной функции W0 ∈ H(�). Сформу-

лируем следующую задачу оптимального управления:

найти α∗ ∈ [a, b] такое, что J(α∗) = sup
α∈[a,b]

J(α). (5)

Это означает, что ищется оптимальный угол между двумя тонкими жесткими

включениями, который доставляет максимальное значение для функционала

качества J .
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Теорема 1. Существует решение задачи оптимального управления (5).

Доказательство. Пусть {αn} — максимизирующая последовательность.

Ограниченность замкнутого интервала [a, b] позволяет выделить сходящуюся

подпоследовательность {αnk
} ⊂ {αn} такую, что

αnk
→ α∗ при k →∞, α∗ ∈ [a, b].

Можно считать, не нарушая общности, что αnk
6= α∗ для достаточно больших k.

В противном случае найдется последовательность {αnl
}, удовлетворяющая ра-

венству αnl
≡ α∗. Очевидно, что в таком случае α∗ будет доставлять решение

задачи (5). Поэтому рассмотрим случай, когда {αnk
} удовлетворяет соотноше-

нию αnk
6= α∗ для всех достаточно больших k. Используя утверждение дока-

занной ниже леммы 2, последовательность решений {Uk} задач (3), соответ-

ствующих значениям αnk
, сходится к решению Uα∗ сильно в H(�) при k →∞.

Отсюда в силу непрерывности функционала нетрудно установить следующую

сходимость:

J(αnk
)→ J(α∗).

Это влечет, что

J(α∗) = sup
α∈[a,b]

J(α).

Теорема доказана.

3. Вспомогательные леммы

В этом разделе установлены вспомогательные результаты, использованные

при доказательстве теоремы 1. Для удобства они формулируются в виде двух

лемм.

Лемма 1. Пусть α∗ ∈ [a, b] — произвольное фиксированное число и {αn} ⊂
[a, b] — последовательность вещественных чисел, сходящаяся к α∗ при n → ∞.

Тогда для любой функции W ∈ Kα∗ найдутся подпоследовательность {αk} =

{αnk
} ⊂ {αn} и последовательность функций {Wk} такие, что Wk ∈ Kαk

, k ∈ N,

и Wk →W сильно в H(�) при k →∞.

Доказательство. Сначала заметим, что если найдется подпоследователь-

ность {αnk
} такая, что αnk

= α∗, то утверждение леммы будет выполнено для

последовательности {Wk}, удовлетворяющей равенству Wk ≡ W , k ∈ N. Не

нарушая общности, предположим, что {αn} является строго монотонно убыва-

ющей последовательностью такой, что

α∗ = lim
n→∞

αn.

Обозначим через ρ∗ = (b∗x2 + c∗1,−b∗x1 + c∗2) аффинную функцию, описыва-

ющую инфинитезимальные жесткие перемещения W на βα∗ , т. е. ρ∗ = W на

βα∗ , а также через ργ = (bγx2 + cγ1,−bγx1 + cγ2) — функцию, описывающую
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перемещения W на γ. Доопределим функцию ρ∗ на всей области � с помощью

равенства

ρ∗ = (b∗x2 + c∗1,−b∗x1 + c∗2), x = (x1, x2) ∈ �.
В соответствии с предположениями существует число δ > 0 такое, что для всех

α ∈ [a, b] ∩ (α∗, α∗ + δ) множество ωαα∗ имеет липшицеву границу. Зафиксируем

параметр α ∈ [a, b] ∩ (α∗, α∗ + δ) и рассмотрим следующее семейство вспомога-

тельных задач:

найти Qα ∈ K ′α такое, что p(Qα) = inf
χ∈K′α

p(χ), (6)

где

p(χ) =

∫

�

σij(χ−W )εij(χ−W ) dx,

K ′α = {χ ∈ H(�) | χ = W на � , χ|γ = ργ , χ|ωα
α∗

= ρ∗}.
Легко заметить, что функционал p(χ) является коэрцитивным и слабо полуне-

прерывным снизу на пространстве H(�). Кроме того, очевидно, что множество

K ′α является выпуклым и замкнутым в рефлексивном пространстве H(�). Ука-

занные свойства p(χ) и K ′α обеспечивают существование решения задачи (6) [6].

Кроме того, задача (6) эквивалентна вариационному неравенству

Qα ∈ K ′α,
∫

�

σij(Qα −W )εij(χ−Qα) dx ≥ 0 ∀χ ∈ K ′α. (7)

Единственность решения Qα вариационного неравенства (7) следует стандарт-

ными рассуждениями [6]. Таким образом, семейству вариационных неравенств

(7), зависящих от параметра α ∈ [a, b] ∩ (α∗, α∗ + δ), соответствует семейство

решений {Qα}. Заметим, что {Qα} ∈ Kα для всех α ∈ [α∗, α∗ + δ). Для того

чтобы установить ограниченность {Qα}, используем (7) с подходящей тестовой

функцией χ̂, которая принадлежит K ′α для всех α ∈ [a, b] ∩ [α∗, α∗ + δ). Такую

функцию χ̂ ∈ H(�) можно построить применением оператора поднятия (см.

[6]) для четырех липшицевых областей �i, i = 1, 4, со следующими значениями

на границах областей:

для �1: χ̂ = ρ∗ на ∂ωba, χ̂ = W на ∂
(
�1\ωba

)
, χ̂ = W на ∂�2,

для �3: χ̂ = ρ∗ на ∂ωba, χ̂ = W на ∂
(
�3\ωba

)
, χ̂ = W на ∂�4.

Построенная указанным образом функция χ̂ принадлежит множествам допу-

стимых перемещений K ′α для всех α ∈ [a, b] ∩ (α∗, α∗ + δ) и поэтому ее можно

подставлять в качестве тестовой функции в (7). В результате имеем
∫

�

σij(Qα−W )εij(χ̂) dx+

∫

�

σij(W )εij(Qα) dx ≥
∫

�

σij(Qα)εij(Qα) dx ∀α ∈ [a, b].

Отсюда, используя неравенство Корна, получаем следующую равномерную оцен-

ку сверху:

‖Qα‖ ≤ c ∀α ∈ [a, b] ∩ (α∗, α∗ + δ).
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Благодаря этой оценке можем извлечь из последовательности {Qαn
} слабо схо-

дящуюся в H(�) к W̃ подпоследовательность {Ql}, l ∈ N (здесь и далее для

удобства будем использовать следующее обозначение для элементов подпосле-

довательностей: αl = αnl
, Ql = Qαnl

). Покажем, что W̃ = W . В самом де-

ле, поскольку (Ql −W ) ∈ H1
0 (�\(γ ∪ βα∗))2, в силу замкнутости пространства

H1
0 (�\(γ ∪ βα∗))2 выявляем, что (W̃ −W ) ∈ H1

0 (�\(γ ∪ βα∗))2. Рассмотрим те-

стовые функции вида χ±l = Ql±ζ, где ζ — гладкая функция, которая построена

продолжением нулем в � произвольной функции ζ̃ ∈ C∞0 (�\(γ ∪ βα∗))2. Заме-

тим, что для достаточно больших l справедливо включение χ±l ∈ K ′αl
. Подстав-

ляя последовательно обе функции χ+
l и χ−l в качестве пробных в (7), находим,

что

Ql ∈ K ′αl
,

∫

�

σij(Ql −W )εij(ζ) dx = 0. (8)

Далее зафиксируем функцию ζ и перейдем к пределу в (8) при l → ∞. В ре-

зультате получим
∫

�

σij(W̃−W )εij(ζ) dx =

∫

�\βα∗

σij(W̃−W )εij(ζ) dx = 0 ∀α ∈ C∞0 (�\(γ ∪ βα∗))2.

Это означает ввиду плотности C∞0 (�\(γ ∪ βα∗)) в H1
0 (�\(γ ∪ βα∗)), что выпол-

нено тождество W̃ − W = 0 в H1
0 (�\(γ ∪ βα∗))2. Таким образом, W̃ = W в

H(�). Тем самым установлено существование последовательности {Ql} такой,

что Ql ∈ K ′αl
, l ∈ N, и Ql →W слабо в H(�) при l→∞.

Целью дальнейших рассуждений является построение на основе {Ql} силь-

но сходящейся последовательности. По теореме Мазура существуют функция

N : N → N и последовательность множеств вещественных чисел {z(n)i | i =

n, . . . , N(n)}, удовлетворяющая z(n)i ≥ 0 и
N(n)∑
i=n

z(n)i = 1, такие, что последова-

тельность {Q̂n}, определенная выпуклой комбинацией

Q̂n =

N(n)∑

i=n

z(n)iQi,

сходится сильно к W в пространстве H(�). Поэтому искомую последователь-

ность {Wnk
} можем определить с помощью равенств

Wn1 = Q̂N(1), Wn2 = Q̂N(N(1)), . . . ,Wnk
= Q̂Nk(1), . . . .

Как нетрудно проверить, элементы построенной последовательности функций

Wnk
, k = 1, 2, . . . , принадлежат подходящим множествамKα

Nk(1)
с параметрами

αNk(1), которые являются элементами подпоследовательности {αl} ⊂ {αn}.
Возвращаясь к исходным предположениям, сделанным относительно {αn}

в начале рассуждений настоящего доказательства, заметим следующее. В том

случае, если сделанное предположение не выполняется, а именно, если после-

довательность {αn} строго монотонно возрастающая, то выкладки проводятся
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относительно множеств K ′α, которые определены с помощью множеств вида

ωα
∗

α , где α ∈ [a, b] ∩ (α∗ − δ, α∗). Лемма доказана.

С помощью леммы 1 доказывается следующее утверждение, использован-

ное при доказательстве теоремы.

Лемма 2. Пусть α∗ ∈ [a, b] — фиксированное число, α ∈ [a, b]. Тогда

Uα → Uα∗ сильно H(�) при α → α∗, где Uα, Uα∗ являются решениями задачи

(3), соответствующими параметрам α ∈ [a, b], α∗ ∈ [a, b].

Доказательство. Проведем рассуждения от противного, т. е. предпо-

ложим, что существуют ǫ0 > 0 и последовательность {αn} ⊂ [a, b] такие, что

αn → α∗, ‖Un − Uα∗‖ ≥ ǫ0, где Un = Uαn
, n ∈ N, являются решениями (3),

соответствующими параметрам αn, n ∈ N.

Ввиду включения W 0 ≡ 0 ∈ Kα для всех α ∈ [a, b] можно подставить

W = W 0 в (4) для фиксированных α ∈ [a, b]. Это дает

Uα ∈ Kα,

∫

�

σij(Uα)εij(Uα) dx ≤
∫

�

FUα dx−
1

G
(ρ̂α2,1(0)−ρ̃α2,1(0))2 ∀α ∈ [a, b].

Отсюда вытекает, что для всех α ∈ [a, b] имеет место равномерная оценка

‖Uα‖ ≤ c (9)

с некоторой постоянной c > 0, не зависящей от α. Поэтому, заменяя {Un},
если нужно, ее подпоследовательностью, считаем, что Un сходится к некоторой

функции U̇ слабо в H(�).

Установим, что U̇ ∈ Kα∗ . В соответствии с теоремами вложения Соболева

[6] имеют место сходимости

Un|βα∗
→ U̇ |βα∗

сильно в L2(βα∗)
2 при n→∞, (10)

Un|� → U̇ |� сильно в L2(� )2 при n→∞. (11)

Следы на βα∗ и βαn
связаны соотношениями

v

(
x1

cosαn
cosα∗

, x2
sinαn
sinα∗

)∣∣∣∣
βα∗

= v

(
x1

cosαn
cosα∗

, x1
sinαn
cosα∗

)∣∣∣∣
βα∗

= v(y1, y2)|βαn
,

(y1, y2) =

(
x1

cosαn
cosα∗

, x1
sinαn
cosα∗

)
, (y1, y2) ∈ βαn

, (x1, x2) ∈ βα∗ .

При необходимости осуществляя замену на полярные координаты, можно по-

казать, что для произвольной функции v из H1(�) справедлива следующая

оценка, выражающая свойство непрерывности следов (см. [35, свойство 3 на

с. 141]):

∥∥∥∥v(x1, x2)|βα∗
− v

(
x1

cosαn
cosα∗

, x1
sinαn
cosα∗

)∣∣∣∣
βα∗

∥∥∥∥
L2(βα∗ )

≤ C1

√
|αn − α∗|‖v‖H1(�),

(12)
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где постоянная C1 > 0 не зависит от v. На основе неравенства (12) и оценки (9)

имеем оценку
∥∥∥∥∥Un|βα∗

− Un
(
x1

cosαn
cosα∗

, x1
sinαn
cosα∗

)∣∣∣∣
βα∗

∥∥∥∥∥
L2(βα∗)2

≤ C1

√
|αn − α∗|‖Un‖H1(�)2 ≤ C2

√
|αn − α∗| (13)

с постоянной C2 > 0, не зависящей от Un. Поскольку по построению

Un

(
x1

cosαn
cosα∗

, x1
sinαn
cosα∗

)∣∣∣∣
βα∗

= Un|βαn
= ρn ∈ R(βαn

),

Un

(
x1

cosαn
cosα∗

, x1
sinαn
cosα∗

)∣∣∣∣
βα∗

=

(
bn

(
x1

sinαn
cosα∗

)
+ cn1 ,−bn

(
x1

cosαn
cosα∗

)
+ cn2

)∣∣∣∣
βα∗

,

переходя к пределу в (13), с учетом равенства x2 = t sinα∗ для (x1, x2) ∈ βα∗ и

t ∈ (−1, 1), сходимости (10) и соотношений αn → α∗, при n→∞ получаем, что

lim
n→∞

Un = lim
n→∞

(
bnx2 + cn1 ,−bnx1 + cn2

)
= U̇ п.в. на βα∗ .

Это, в свою очередь, влечет, что последовательности {bn}, {cn1}, {cn2}, задающие

ρn, cходятся соответственно к некоторым числам ḃ, ċ1, ċ2. Значит, найдется

аффинная функция ρ̇ ∈ R(βα∗) такая, что U̇ = ρ̇ = (ḃx2 + ċ1,−ḃx1 + ċ2) п.в. на

βα∗ . Аналогично можно установить существование ̂̇ρ ∈ R(γ), U̇ = ̂̇ρ п.в. на γ.

Покажем, что имеет место неравенство U̇ν ≤ 0 на �s. Сходимость (11) поз-

воляет выделить подпоследовательность (с прежним обозначением), для кото-

рой Un|�s → U̇ |�s п.в. на �s. Этот факт обеспечивает возможность предельного

перехода при n→∞ в неравенстве

Unν ≤ 0 на �s.

В результате получаем требуемое соотношение U̇ν ≤ 0 на �s. Поэтому заклю-

чаем, что U̇ принадлежит множеству Kα∗ .

Покажем выполнение тождества U̇ ≡ Uα∗ и установим существование по-

следовательности решений {Un}, Un = Uαn
, n = 1, 2 . . . , сходящейся к Uα∗ в

H(�). Для этого рассмотрим вариационные неравенства (4), соответствующие

разным параметрам αn, n = 1, 2, . . . , а также предельный случай при n → ∞.

По утверждению леммы 1 для любого W ∈ Kα∗ найдутся подпоследователь-

ность {αk} = {αnk
} ⊂ {αn} и последовательность функций {Wk} такие, что

Wk ∈ Kαk
и Wk →W сильно в H(�) при k →∞.

Свойства сходящихся последовательностей {Wk} и {Un} обеспечивают воз-

можность осуществления предельного перехода при k →∞ в следующих нера-

венствах, полученных из (4) для значений α = αk и тестовых функций Wk:
∫

�

σij(Unk
)εij(Wnk

− Unk
) dx ≥

∫

�

F (Wnk
− Unk

) dx

− 1

G
(ρ̂αk2,1(0)− ρ̃αk2,1(0))((ρ̂nk2,1(0)− ρ̃nk2,1(0))− (ρ̂αk2,1(0)− ρ̃αk2,1(0))).
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В результате имеем
∫

�

σij(U̇)εij(W − U̇) dx ≥
∫

�

F (W − U̇) dx

− 1

G
(̂̇ρ2,1(0)− ˜̇ρ2,1(0))((ρ̂2,1(0)− ρ̃2,1(0))− (̂̇ρ2,1(0)− ˜̇ρ2,1(0))) ∀W ∈ Kα∗ .

Произвольность W ∈ Kα∗ означает, что последнее неравенство является ва-

риационным. Поэтому в силу его однозначной разрешимости заключаем, что

U̇ = Uα∗ .

Остается установить сильную сходимость Un → Uα∗ . Подставив W = 2Uα
и W = 0 в вариационные неравенства (4) при α ∈ [a, b], находим

Uα ∈ Kα,

∫

�

σij(Uα)εij(Uα) dx =

∫

�

FUα dx−
1

G
(ρ̂α2,1(0)−ρ̃α2,1(0))2 ∀α ∈ [a, b].

(14)

Равенства (14) вместе со слабой сходимостью Un → Uα∗ в H(�) при n → ∞
влекут

lim
n→∞

∫

�

σij(Un)εij(Un) dx = lim
n→∞

∫

�

FUn dx−
1

G
(ρ̂αn2,1(0)− ρ̃αn2,1(0))2

=

∫

�

FUα∗ dx−
1

G
(ρ̂α∗2,1(0)− ρ̃α∗2,1(0))2 =

∫

�

σij(Uα∗)εij(Uα∗) dx.

Вспоминая эквивалентность норм (см. замечание 1), выявляем, что Un → Uα∗

сильно в H(�) при n → ∞. Таким образом, получено противоречие. Лемма

доказана.

Замечание 2. Заметим, что в том случае, когда имеет место жесткая

связь обоих тонких включений, в постановке задачи необходимо задавать усло-

вия таким образом, чтобы линейные аффинные функции на γ, βα зависели

от одних и тех же постоянных, или же потребовать структуру перемещений

ρ ∈ R(γ ∪ βα) на объединении γ ∪ βα. В этом случае функционал энергии � не

будет иметь последнего слагаемого. Кроме того, для этого более легкого слу-

чая можно доказать аналогичным способом разрешимость задачи оптимального

управления параметром, задающим угол между включениями.

4. Задача оптимального

управления в случае, когда a = 0

В случае, когда a = 0, получаем, что βα в точности совпадает с γ, при

этом окажется, что соответствующая задача будет описывать модель с одним

жестким включением. Это приводит к тому, что функционал энергии будет

задаваться другим выражением, без слагаемого, учитывающего взаимодействие

включений:

�0(W ) =
1

2

∫

�

σij(W )εij(W ) dx−
∫

�

FW dx. (15)
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Можно заметить, что формально функционал (2) переходит в функционал (15)

в том случае, когда мы считаем, что для одного жесткого включения функции

инфинитезимальных жестких перемещений совпадают и как следствие имеет

место равенство ρ̂2,1(0) = ρ̃2,1(0).

Для формулировки задачи оптимального управления наряду с задачей ми-

нимизации (3) требуется рассмотреть задачу

найти U0 ∈ K0 такое, что �0(U0) = inf
W∈K0

�0(W ), (16)

где множество допустимых перемещений задается множеством

K0 = {W ∈ H(�) |Wν ≤ 0 на �s, W |γ = ρ, где ρ ∈ R(γ)}.

Задача (16) имеет единственное решение U0 ∈ Kα, которое удовлетворяет вари-

ационному неравенству [10]

U0 ∈ K0,

∫

�

σij(U0)εij(W − U0) dx ≥
∫

�

F (W − U0) dx. (17)

Определим, как и ранее, функционал качества J : [0, b] → R задачи опти-

мального управления с помощью равенства

J(α) = G(Uα),

где Uα — решение задачи (3) при α 6= 0 и U0 — решение задачи (16), как и

прежде, G : H(�)→ R — произвольный непрерывный функционал.

Задача оптимального управления примет вид

найти α∗ ∈ [0, b] такое, что J(α∗) = sup
α∈[0,b]

J(α). (18)

Это означает, что ищется оптимальный ненулевой угол между двумя тонки-

ми жесткими включениями либо оптимальное решение будет соответствовать

одному включению γ, что соответствует нулевому углу между включениями.

При доказательстве разрешимости задачи (18), очевидно, нас будет интере-

совать тот случай, когда максимизирующая последовательность {αn} стремится

к нулю, в противном случае доказательство разрешимости задачи оптимального

управления сводится к уже рассмотренному случаю. Далее докажем, что име-

ют место утверждения, аналогичные леммам 1 и 2, для случая сходимости {αn}
к нулю. Это факт позволяет применить доказательство теоремы 1 без измене-

ний. Приступим к обоснованию вспомогательных лемм, аналогичных леммам 1

и 2.

Лемма 3. Пусть {αn} ⊂ [0, b] — последовательность чисел, сходящаяся к 0

при n → ∞. Тогда для любой функции W ∈ K0 найдутся подпоследователь-

ность {αk} = {αnk
} ⊂ {αn} и последовательность функций {Wk} такие, что

Wk ∈ Kαk
, k ∈ N, и Wk →W сильно в H(�) при k →∞.

Доказательство леммы 3 во многом повторяет доказательство леммы 1,

поэтому приведем лишь некоторые базовые отличия. Обозначим через ργ =
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(bγx2 + cγ1,−bγx1 + cγ2) функцию, описывающую перемещения W на γ. До-

определим функцию ργ на всей области � с помощью равенства

ργ = (bγx2 + cγ1,−bγx1 + cγ2), x = (x1, x2) ∈ �.

В соответствии с предположениями существует число δ > 0 такое, что для

всех α ∈ [0, b] ∩ (0, δ) множество ωα0 имеет липшицеву границу. Зафиксируем

параметр α ∈ [0, b]∩ (0, δ) и рассмотрим следующее семейство вспомогательных

задач:

найти Qα ∈ K ′α такое что p(Qα) = inf
χ∈K′α

p(χ), (19)

где

p(χ) =

∫

�

σij(χ−W )εij(χ−W ) dx,

K ′α = {χ ∈ H(�) | χ = W на � , χ|ωα
0

= ργ}.

Далее рассуждения следуют схеме доказательства леммы 1. Следующая лем-

ма 4 аналогична лемме 2.

Лемма 4. Имеет место сильная сходимостьUα → U0 вH(�) при α→ 0, где

Uα являются решениями задачи (3), соответствующими параметрам α ∈ (0, b],

U0 — решение (16).

Доказательство. Проведем рассуждения от противного, т. е. предпо-

ложим, что существуют ǫ0 > 0 и последовательность {αn} ⊂ [0, b] такие, что

αn → 0, ‖Un − U0‖ ≥ ǫ0, где Un = Uαn
, n ∈ N, являются решениями (3), соот-

ветствующими параметрам αn.

Тем же способом, который был применен в доказательстве леммы 2, полу-

чим равномерную оценку

‖Uα‖ ≤ c (20)

с некоторой постоянной c > 0, не зависящей от α. Поэтому, заменяя {Un},
если нужно, ее подпоследовательностью, считаем, что Un сходится к некоторой

функции U̇ слабо в H(�).

Установим, что U̇ ∈ K0. В соответствии с теоремами вложения Соболева

[6] имеют место сходимости

Un|γ → U̇ |γ сильно в L2(γ)2 при n→∞,
Un|� → U̇ |� сильно в L2(� )2 при n→∞.

(21)

Заметим, что поскольку (t cosαn, t sinαn) при t ∈ (−1, 1) задает βαn
, а γ =

{(t, 0) : t ∈ (−1, 1)}, имеем

v(x1cosαn, x1sinαn)|γ = v(y1, y2)|βαn
.

При необходимости осуществляя замену на полярные координаты, можно по-

казать, что для произвольной функции v из H1(�) справедлива следующая
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оценка, выражающая свойство непрерывности следов (см. [35, свойство 3 на

с. 141]):

‖v(x1, x2)|γ − v(x1cosαn, x1sinαn)|βα∗
‖L2(βα∗) ≤ C1

√
αn‖v‖H1(�), (22)

где постоянная C1 > 0 не зависит от v. На основе неравенства (22) и оценки

(20) имеем оценку

‖Un|γ − Un(x1cosαn, x1sinαn)|γ‖L2(γ)2 ≤ C1
√
αn ‖Un‖H1(�)2 ≤ C2

√
αn (23)

с постоянной C2 > 0, не зависящей от Un. Поскольку по построению

Un(x1cosαn, x1sinαn
)
|γ = Un|βαn

= ρn ∈ R(βαn
),

Un(x1cosαn, x1sinαn)|γ =
(
bn(x1sinαn) + cn1 ,−bn

(
x1cosαn

)
+ cn2

)∣∣
γ
,

переходя к пределу в (23), с учетом sin 0 = x2 = 0, (21) и соотношений αn → 0

при n→∞ получаем, что

lim
n→∞

Un = lim
n→∞

(
bn(x1sinαn) + cn1 ,−bn(x1cosαn) + cn2

)
= U̇ п.в. на γ.

Это, в свою очередь, влечет, что последовательности {bn}, {cn1}, {cn2}, задающие

ρn, cходятся соответственно к некоторым числам ḃ, ċ1, ċ2. Значит, U̇ = (ḃx2 +

ċ1,−ḃx1 + ċ2) п.в. на γ. Следовательно, U̇ ∈ R(γ). Отметим соотношение

bn → ḃ, (24)

где bn — число-коэффициент, участвующий в описании аффинной функции на

βαn
, а ḃ — число, участвующее в выражении для функции ρ̇ ∈ R(γ).

Доказательство того, что U̇ν ≤ 0 на �s, проводится дословным повторени-

ем ранее приведенных рассуждений. Поэтому заключаем, что U̇ принадлежит

множеству K0. Покажем выполнение тождества U̇ ≡ U0 и установим сильную

сходимость последовательности {Un} к U0 в H(�). По утверждению леммы 3

для любого W ∈ K0 найдутся подпоследовательность {αk} = {αnk
} ⊂ {αn} и

последовательность функций {Wk} такие, что Wk ∈ Kαk
и Wk → W сильно в

H(�) при k →∞.

Свойства сходящихся последовательностей {Wk} и {Un} обеспечивают воз-

можность осуществления предельного перехода при k →∞ в следующих нера-

венствах, полученных из (4) для значений α = αk и тестовых функций Wk:

∫

�

σij(Unk
)εij(Wnk

− Unk
) dx ≥

∫

�

F (Wnk
− Unk

) dx+
1

G
(ρ̂αk2,1(0)− ρ̃αk2,1(0))2.

(25)

Заметим, что при выводе (25) использовано равенство ρ̂nk2,1(0) − ρ̃nk2,1(0) = 0

для Wk, k = 1, 2, . . . . В результате предельного перехода получаем, что
∫

�

σij(U̇)εij(W − U̇) dx ≥
∫

�

F (W − U̇) dx ∀W ∈ K0.
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Произвольность W ∈ K0 означает, что последнее неравенство вариационное.

Поэтому в силу его однозначной разрешимости заключаем, что U̇ = U0.

Перейдем к доказательству сильной сходимости. Подставив W = 2U0 и

W = 0 в вариационные неравенства (4) при α ∈ (0, b], находим

Uα ∈ Kα,

∫

�

σij(Uα)εij(Uα) dx =

∫

�

FUα dx−
1

G
(ρ̂α2,1(0)− ρ̃α2,1(0))2 ∀α ∈ (0, b].

(26)

Сначала заметим, что в силу (24)

lim
n→∞

1

G
(ρ̂αn2,1(0)− ρ̃αn2,1(0))2 = 0.

Как следствие, переходя к пределу в равенствах вида (26) для αn, n = 1, 2, . . . ,

с учетом слабой сходимости Un → U0 в H(�) получим

lim
n→∞

∫

�

σij(Un)εij(Un) dx = lim
n→∞

∫

�

FUn dx−
1

G
(ρ̂αn2,1(0)− ρ̃αn2,1(0))2

=

∫

�

FU0 dx =

∫

�

σij(U0)εij(U0) dx.

Вспоминая здесь эквивалентность норм (см. замечание 1), выявляем, что Un →
U0 сильно в H(�) при n→∞. Таким образом, получено противоречие. Лемма

доказана.

Замечание 3. Можно заметить, что доказательства вспомогательных

лемм 1 и 3 использует один и тот же метод, однако в лемме 1 строятся та-

кие пробные функции, которые учитывают две функции инфинитезимальных

жестких перемещений, тогда как в лемме 3 — одну. Поэтому, несмотря на один

и тот же метод доказательства, в доказательстве леммы 3 привносятся неко-

торые отличающиеся технические детали. Некоторые отличия есть также в

доказательстве лемм 2 и 4. Указанные обстоятельства приводят к необходимо-

сти раздельного рассмотрения двух задач оптимального управления, т. е. (5)

для случая, когда a > 0, и (18) при a = 0.
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Аннотация. Исследуется разрешимость обратных задач определения вместе с ре-
шением u(x, t) псевдопараболического уравнения также неизвестной функции ис-
точника. Подобные задачи рассматриваются при изучении волновых процессов,
фильтрации в пористых средах, процессов теплопередачи. Доказывается теорема
существования регулярного решения. Обратные задачи для псевдопараболическо-
го уравнения с неизвестным внешним воздействием, зависящим от x, и финальным
переопределением ранее не рассматривались.

DOI: 10.25587/SVFU.2023.85.20.006

Ключевые слова: обратная задача, псевдопараболическое уравнение, финальное
переопределение, существование.

Введение

Задачи, в которых вместе с решением того или иного дифференциально-

го уравнения требуется определить также коэффициент (коэффициенты) само-

го уравнения или правую часть уравнения, в математике и в математическом

моделировании называют обратными задачами. Теория обратных задач для

дифференциальных уравнений представляет собой активно развивающееся на-

правление современной математики.

В данной статье рассматривается обратная задача для псевдопараболиче-

ского уравнения

ut − α�ut + β�2u = f(x, t) + q(x)h(x, t), (1)

где неизвестными являются решение u(x, t) и функция q(x). Для однозначной

разрешимости подобных задач требуется дополнительное условие. В работе до-

полнительное условие, называемое условием переопределения, будем задавать

на временном слое t = T . Обратную задачу с таким условием переопределения

принято называть задачей с финальным переопределением.

Математическое моделирование процессов теплопереноса, фильтрации в

пористых средах, волновых процессов, квазистационарных процессов в кристал-

лических полупроводниках приводит к исследованию разрешимости краевых

задач для псевдопараболических уравнений

(u+ L1u)t + L2u = f (2)

c© 2023 Николаев О. Ю.
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с дифференциальными операторами L1 и L2 четного порядка по пространствен-

ным переменным. Подробный обзор литературы по моделированию указанных

процессов дан в [1].

Нужно отметить, что исследование обратных задач для псевдопараболи-

ческих уравнений началось в 1980-х гг. Полученный Ранделлом [2] результат

относится к обратным задачам идентификации неизвестной функции источника

в уравнении (1) с линейными операторами L1, L2, L1 = L2. Ранделл рассмот-

рел задачи определения функции источника, зависящей только от x или от t.

В нашем случае L1 6= L2.

В работах [3–5] оператор L1 был оператором второго порядка, а оператор

L2 имел вид k(x)L1, где коэффициент k(x) считался неизвестным. Отметим

также работы [6, 7], в которых рассматривались коэффициентные обратные за-

дачи для уравнения (2). Вместе с тем заметим, что обратные задачи для псев-

допараболического уравнения вида (1) с неизвестным внешним воздействием,

зависящим от x, и финальным переопределением ранее не рассматривались.

В настоящей работе исследуется разрешимость обратной задачи нахожде-

ния вместе с решением также неизвестной правой части. Будут получены до-

статочные условия существования решения.

1. Постановка задачи

Пусть � — ограниченная область из пространства Rn с гладкой границей

� , 0 < T < +∞, Q — цилиндр �× (0, T ), S = ∂�× (0, T ) — боковая граница Q.

Функции f(x.t), h(x, t) известны, α, β — заданные положительные постоянные.

Обратная задача. Найти функции u(x, t), q(x), связанные в области Q

уравнением

ut − α�ut + β�2u = f(x, t) + q(x)h(x, t), (3)

при выполнении для функции u(x, t) условий

u(x, 0) = 0, x ∈ �, (4)

u(x, t)|S = 0, �u(x, t)|S = 0, (5)

u(x, T ) = 0, x ∈ �. (6)

В этой задаче условия (4), (5) суть условия первой начально-краевой задачи

для параболического уравнения, а (6) — условие переопределения, необходимое

для нахождения неизвестной функции q(x).

2. Разрешимость обратной задачи

Пусть функция ψ(x) принадлежит пространству W 1
2 (�) и обращается в

нуль на границе �. Тогда имеет место неравенство

∫

�

ψ2(x) dx ≤ d0

n∑

i=1

∫

�

ψ2
xi

(x) dx, (7)
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в котором число d0 определяется лишь областью � (см. [8, 9]. Это неравенство

и само число d0 будут использоваться ниже.

Обозначим

f1(x, t) = f(x, t)− h(x, t)

h(x, T )
f(x, T ),

h1(x, t) =
h(x, t)

h(x, T )
, h0 = max

Q
|h1t(x, t)|,

V =
{
u(x, t) : u(x, t) ∈ L2

(
0, T ;W 4

2 (�)
)
, ut(x, t) ∈ L2

(
0, T ;W 2

2 (�)
)}
.

Теорема. Пусть выполняются условия

f(x, t) ∈ L2(Q), ft(x, t) ∈ L2(Q),

h(x, t) ∈ C1(Q), h(x, T ) 6= 0, x ∈ �,

α > 0, β > 0,

1− h2
1(x, 0) ≥ k > 0, x ∈ �,

h2
0T (d0 + α)2 < 2β

(
1− h2

1(x, 0)
)
, x ∈ �.

Тогда обратная задача (3)–(6) имеет решение u(x, t) ∈ V , q(x) ∈ L2(�).

Доказательство. Рассмотрим следующую задачу относительно вспомо-

гательной функции v(x, t): найти функцию v(x, t), являющуюся в области Q

решением уравнения

vt(x, t) − α�vt(x, t) + β�2v(x, t) = f1t(x, t) + h1t(x, t)[v(x, T ) − α�v(x, T )], (8)

с условиями

v(x, 0)− α�v(x, 0) = f1(x, 0) + h1(x, 0)[v(x, T )− α�v(x, T )], (9)

v(x, t)‖S = 0, (10)

�v(x, t)|S = 0. (11)

Разрешимость данной краевой задачи докажем, используя метод продолжения

по параметру. Далее с помощью решения данной краевой задачи будет постро-

ено решение исходной обратной задачи.

Пусть λ — число из отрезка [0, 1]. Рассмотрим следующую краевую задачу:

найти функцию v(x, t), являющуюся в области Q решением уравнения

vt(x, t)− α�vt(x, t) + β�2v(x, t) = f1t(x, t) + λh1t(x, t)[v(x, T )− α�v(x, T )] (12)

и удовлетворяющую условиям

v(x, 0)− α�v(x, 0) = f1(x, 0) + λh1(x, 0)[v(x, T )− α�v(x, T )], (13)

v(x, t)|S = 0, (14)

�v(x, t)|S = 0. (15)
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При λ = 0 данная задача есть начально-краевая задача для линейного псевдо-

параболического уравнения. Разрешимость ее в пространстве V известна (см.

[10]). Для того чтобы получить разрешимость задачи (11)–(14) при всех λ, в том

числе и при λ = 1, достаточно получить равномерную по λ априорную оценку

возможных решений этой задачи в пространстве V .

Обозначим w(x, t) = v(x, t)− α�v(x, t). Уравнение (11) перепишем в виде

wt(x, t) + β�2v(x, t) = f1t(x, t) + λh1t(x, t)w(x, T ).

Умножим уравнение на w(x, t) и проинтегрируем по области Q:
∫

Q

wt(x, t)w(x, t) dxdt + β

∫

Q

�2v(x, t)w(x, t) dxdt

=

∫

Q

f1t(x, t)w(x, t) dxdt + λ

∫

Q

h1t(x, t)w(x, T )w(x, t) dxdt.

Используя начальные данные, получим
∫

Q

wt(x, t)w(x, t) dxdt =
1

2

∫

Q

(w2(x, T )− w2(x, 0)) dx

=
1

2

∫

Q

(
1− h2

1(x, 0)
)
w2(x, T ) dx.

Это следует из условия (8), в котором, не теряя общности, можно считать

f1(x, 0) = 0. Имеем

β

∫

Q

�2v(x, t)w(x, t) dxdt = β

∫

Q

�2v(x, t)[v(x, t) − α�v(x, t)] dxdt

= β

∫

Q

�2v(x, t)v(x, t) dxdt − αβ
∫

Q

�2v(x, t)�v(x, t) dxdt

= β

∫

Q

(�v(x, t))2 dxdt + αβ
n∑

i=1

∫

Q

(�vxi
(x, t))2 dxdt,

∣∣∣∣
∫

Q

f1t(x, t)w(x, t) dxdt

∣∣∣∣ ≤
δ21
2

∫

Q

(w(x, t))2 dxdt +
1

2δ21

∫

Q

f2
1t(x, t) dxdt,

λ

∣∣∣∣
∫

Q

h1t(x, t)w(x, T )w(x, t) dxdt

∣∣∣∣ ≤
δ22
2

∫

Q

w2(x, t) dxdt +
h2

0T

2δ22

∫

�

w2(x, T ) dx.

Проведем следующие рассуждения:

w(x, t) = v(x, t) − α�v(x, t),

w2(x, t) = v2(x, t) − 2α v(x, t)�v(x, t) + α2(�v(x, t))2,



62 О. Ю. Николаев

∫

Q

w2(x, t) dxdt ≤
∫

Q

[v2(x, t) − 2α v(x, t)�v(x, t) + α2(�v(x, t))2] dxdt.

Имеем следующие оценки:

∫

�

v2(x, t) dx ≤ d0

n∑

i=1

∫

�

v2
xi

(x, t) dx

(см. [8]), а также

n∑

i=1

∫

�

v2
xi

(x, t) dx = −
∫

�

�v(x, t)v(x, t) dx ≤
∣∣∣∣
∫

�

�v(x, t)v(x, t) dx

∣∣∣∣

≤
(∫

�

v2(x, t) dx

) 1
2
(∫

�

(�v(x, t))2 dx

) 1
2

≤ d
1
2
0

(
n∑

i=1

∫

�

v2
xi

(x, t) dx

) 1
2(∫

�

(�v(x, t))2 dx

) 1
2

.

Тогда
n∑

i=1

∫

�

v2
xi

(x, t) dx ≤ d0

∫

�

(�v(x, t))2 dx,

−2α

∫

�

v(x, t)�v(x, t) dx = 2α
n∑

i=1

∫

�

v2
xi

(x, t) dx ≤ 2αd0

∫

�

(�v(x, t))2 dx,

∫

�

v(x, t)2 dx ≤ d0

n∑

i=1

∫

�

v2
xi

(x, t) dx ≤ d2
0

∫

�

(�v(x, t))2 dx,

∫

Q

w2(x, t) dxdt ≤ l(d2
0 + 2αcQ + α2

) ∫

Q

(�x(x, t))2 dxdt.

Непосредственно из этого следует, что

1

2

[
1− h2

1(x, 0)− h2
0T

δ22

]∫

�

w2(x, T ) dxdt+ αβ
n∑

i=1

∫

Q

(�vxi
(x, t))2 dxdt

+

[
β − 1

2
(d0 + α)2

(
δ21 + δ22

)] ∫

Q

(�v(x, t))2 dxdt ≤ 1

2δ21

∫

Q

f2
1t(x, t) dxdt.

Постоянную δ1 всегда можно выбрать настолько малой, чтобы она не влияла на

положительность множителя β− 1
2 (d0 +α)2

(
δ21 +δ22

)
. Постоянную δ22 выберем из

интервала
( h2

0T
1−h2

1(x,0)
, 2β

(d0+α)2

)
. Из условий теоремы все множители интегралов

в левой части неотрицательны и можно получить первую априорную оценку:

∫

�

w2(x, T ) dx+

n∑

i=1

∫

Q

(�vxi
(x, t))2 dxdt+

∫

Q

(�v(x, t))2 dxdt ≤ C1, (16)
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где

C1 =
1

2C

∫

Q

f2
1t(x, t) dxdt,

C = min

{
1

2

(
1− h2

1(x, 0)− h2
0T

δ22

)
, αβ, β − 1

2
(d0 + α)2δ22

}
.

Умножим уравнение (11) на vt(x, t) и проинтегрируем по области Q:

∫

Q

v2
t (x, t) dxdt − α

∫

Q

�vt(x, t)vt(x, t) dxdt + β

∫

Q

�2v(x, t)vt(x, t) dxdt

=

∫

Q

f1t(x, t)vt(x, t) dxdt + λ

∫

Q

h1t(x, t)w(x, T )vt(x, t) dxdt.

Применяя интегрирование по частям и неравенство Юнга, можно записать

∫

Q

v2
t (x, t) dxdt+ α

n∑

i=1

∫

Q

(�vxit(x, t))
2 dxdt+

β

2

∫

�

[(�v(x, T ))2 − (�v(x, 0))2] dx

≤ δ23
2

∫

Q

v2
t (x, t) dxdt +

1

2δ23

∫

Q

f2
1t(x, t) dxdt

+
h2

0T

2δ24

∫

�

w2(x, T ) dx+
δ24
2

∫

Q

vt(x, t)
2 dxdt,

(
1 +

δ23
2

+
δ24
2

)∫

Q

v2
t (x, t) dxdt + α

n∑

i=1

∫

Q

(�vxit(x, t))
2 dxdt

≤ 1

2δ23

∫

Q

f2
1t(x, t) dxdt+

h2
0T

2δ24

∫

�

w2(x, T ) dx+
β

2

∫

�

[(�v(x, 0))2− (�v(x, T ))2] dx.

Используя оценку (15), получим вторую априорную оценку:

∫

Q

v2
t (x, t) dxdt +

n∑

i=1

∫

Q

(�vxit(x, t))
2 ≤ C2, (17)

где C2 явно выражается через C1.

Умножим уравнение (11) на �2v(x, t) и проинтегрируем по области Q:

∫

Q

vt(x, t)�
2v(x, t) dxdt − α

∫

Q

�vt(x, t)�
2v(x, t) dxdt + β

∫

Q

(�2v(x, t))2 dxdt

=

∫

Q

f1t(x, t)�
2v(x, t) dxdt + λ

∫

Q

h1t(x, t)(v(x, T ) − α�v(x, T ))�2v(x, t) dxdt.
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Используя оценки (15), (16), можно получить оценку

∫

Q

(�2v(x, t))2 dxdt ≤ C3, (18)

где C3 явно выражается через C1.

Наличие оценок (15)–(17) доказывает существование равномерной по λ апри-

орной оценки решений задачи (11)–(14). Следовательно, задача (11)–(14) имеет

при λ = 1 решение v(x, t) ∈ V задачи (7)–(10).

Рассмотрим функцию ut(x, t) = v(x, t), u(x, 0) = 0. Выполнив интегрирова-

ние уравнения (7) по временной переменной от 0 до текущей точки и используя

следующее представление для функции q(x):

q(x) =
1

h(x, T )
[ut(x, T )− α�ut(x, T )− f(x, T )], (19)

получим

ut(x, t) − α�ut(x, t) + β�2u(x, t) = f(x, t) + q(x)h(x, t). (20)

Следовательно, функции u(x, t), q(x) связаны в области Q уравнением (3).

Условие (5) выполняется в силу условий (9), (10).

Проинтегрируем уравнение (7) по временной переменной от 0 до T . После

несложных преобразований получим β�2u(x, T ) = 0, x ∈ �, что влечет за собой

выполнение условия (6): u(x, T ) = 0, x ∈ �.

Учитывая выполнение для функции u(x, t) условий (4)–(6) и принадлеж-

ность функций u(x, t), q(x) пространствам V, L2(Q) соответственно, получим,

что функции u(x, t), q(x) представляют собой требуемое решение обратной за-

дачи (3)–(6).
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Аннотация. Рассматриваются двупараметрические семейства векторных полей на
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ричные петли сепаратрис этого седла. Седловая величина — след матрицы ли-
нейной части векторного поля в точке O — предполагается равной нулю. В работе
описана бифуркационная диаграмма типичного семейства — разбиение окрестности
нуля на плоскости параметров по классам топологической эквивалентности дина-
мических систем, задаваемых этими векторными полями в фиксированной окрест-
ности U полицикла, образованного петлями сепаратрис. В частности, для каждо-
го элемента разбиения указаны число и тип предельных циклов, принадлежащих
окрестности U .
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Введение

Поскольку динамические системы на плоскости, обладающие центральной

симметрией, естественным образом появляются при математическом моделиро-

вании ряда процессов, представляет интерес изучение бифуркаций в типичных

конечно-параметрических семействах таких систем. Описание нелокальных би-

фуркаций в однопараметрических семействах получается как следствие извест-

ного описания бифуркаций в типичных одно- и двупараметрических семействах

динамических систем без симметрии [1, 2]. В частности, бифуркационную диа-

грамму для типичного однопараметрического семейства систем с центральной

симметрией в окрестности полицикла «гомоклиническая восьмерка», образован-

ного двумя петлями сепаратрис грубого седла с ненулевой седловой величиной,

можно получить из бифуркационной диаграммы типичного двупараметриче-

ского семейства систем без симметрии [2, гл. 13]. Изучить аналогичным спосо-

бом типичные двупараметрические бифуркации систем с центральной симмет-

рией в окрестностях полициклов уже нельзя из-за отсутствия полного описания

бифуркаций полициклов в k-параметрических семействах систем без симметрии
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при k > 2. Здесь исследованы бифуркации системы с центральной симметрией

в окрестности гомоклинической восьмерки седла с нулевой седловой величи-

ной. Первая сепаратрисная величина для петель предполагается отрицатель-

ной, вследствие чего полицикл является аттрактором. В пространстве всех

систем с центральной симметрией такие системы образуют подмногообразие ко-

размерности два и потому рассматриваются их типичные двупараметрические

деформации.

Отметим, что бифуркации в окрестности петли сепаратрисы седла с нуле-

вой седловой величиной впервые были рассмотрены Е. А. Леонтович [3]. Ее

результаты частично повторены Руссари в [4]. В случае петли с нулевой сед-

ловой величиной и ненулевой первой сепаратрисной величиной бифуркацион-

ная диаграмма для двупараметрического семейства общего положения описана

В. П. Ноздрачевой [5].

В работе [6] описаны бифуркации аттрактора из петель сепаратрис про-

стейшего негрубого седла системы с центральной симметрией. При нулевых

значениях параметров динамические системы в окрестностях аттракторов, рас-

сматриваемых в настоящей работе и в [6], топологически эквивалентны, но их

бифуркации принципиально различны, поскольку в [6] бифурцирует и негрубое

седло.

1. Постановка задачи. Формулировка результатов

Рассмотрим семейство векторных полейXε(z) = P1(z, ε)∂/∂z1+P2(z, ε)∂/∂z2
на плоскости, зависящее от двумерного параметра ε ∈ R2. Будем считать, что

P1, P2 ∈ Cr (r ≥ 3), векторные поля Xε инвариантны относительно преобразо-

вания S : z 7→ −z, т. е. Xε(−z) = −Xε(z), и удовлетворяют сформулированным

ниже условиям У1–У4.

У1. Точка O = (0, 0) является грубым седлом поляX0 с седловой величиной

(P1)
′
z1(0, 0) + (P2)

′
z2(0, 0) = 0.

У2. Выходящая сепаратриса L+
0 седла O (пусть она задается уравнением

z = ζ(t), t ∈ R) совпадает с входящей сепаратрисой L−0 , образуя петлю �+
0 :=

L+
0 ∪ {O} = L−0 ∪ {O}. Соответственно совпадают и сепаратрисы SL+

0 и SL−0 ,

образуя петлю �−0 = S�+
0 .

У3. Первая сепаратрисная величина

s1 =

+∞∫

−∞

((P1)
′
z1(ζ(t), 0) + (P2)

′
z2(ζ(t), 0)) dt < 0.

При всех ε, достаточно близких к нулю, точка O является седлом для поля

Xε, а собственные значения матрицы линейной части поля в точке O, λ1(ε) > 0 и

λ2(ε) < 0 — Cr−1-функции от ε. Обозначим через σ(ε) := λ1(ε)+λ2(ε) седловую

величину, λ(ε) := −λ2(ε)/λ1(ε) — седловой индекс. Поскольку σ(0) = 0, то

λ(0) = 1.



Бифуркация полицикла 69

Пусть η : (−1, 1)→ R2 — такое C∞-отображение, что η(0) = ζ(0), η′(s) 6= 0

∀s ∈ (−1, 1), а репер (η′(0), ζ′(0)) = (η′(0), X0(ζ(0))) положительно ориентиро-

ван. Так как инвариантные многообразия седла Cr−1-гладко зависят от пара-

метра, то при ε, достаточно близких к нулю, седло O имеет выходящую (входя-

щую) сепаратрису L+
ε (L−ε ), трансверсально пересекающую дугу η(−1, 1) в точке

η(u+(ε)) (η(u−(ε))), где u±(·) ∈ Cr−1, u±(0) = 0. Положим u(ε) := u+(ε)−u−(ε).

У4. Производные λ′(0) : R2 → R и u′(0) : R2 → R линейно независимы.

Условие У4 не зависит от выбора параметризации сепаратрисы L+
0 и отоб-

ражения η.

При выполнении условий У1–У4 в окрестности нуля на плоскости парамет-

ров можно ввести Cr−1-координаты (ε1, ε2) так, что

λ(ε) = 1− ε1, u(ε) = ε2. (1)

Далее будем отождествлять параметр ε с его координатной строкой: ε = (ε1, ε2).

Опишем траектории векторных полей Xε в окрестности полицикла �0 :=

�+
0 ∪ �−0 , гомеоморфного «восьмерке».

Теорема 1. Пусть векторное полеX0 удовлетворяет условиям У1–У3. То-

гда существуют окрестность U полицикла �0 с границей ∂U , состоящей из

трех непересекающихся между собой гладких простых замкнутых кривых γ+
int,

γ−int = Sγ+
int и γext = Sγext, в точках которых поле X0 направлено внутрь U , а

все траектории поля X0, начинающиеся в кольцевой области между γ+
int и �+

0 ,

γ−int и �−0 , γext и �0, ω-предельны соответственно к �+
0 , �−0 , �0 и выходят из U

при убывании времени соответственно в точках γ+
int, γ

−
int, γext (рис. 1).

Рис. 1. Траектории поля X0 в окрестности полицикла.

Теорема 2. Пусть семейство векторных полей Xε удовлетворяет условиям

У1–У4. Тогда окрестность U полицикла �0, о которой идет речь в теореме 1, и

число δ > 0 можно выбрать так, что имеют место следующие утверждения.

В точках ∂U векторные поля Xε, ε ∈ (−δ, δ)2, направлены внутрь U .

Область параметров (−δ, δ)2 разбивается на множества B0 = {(0, 0)}, Ei,

Bi, i = 1, 2, 3, 4, где (рис. 2)

B1 = {ε : ε1 = β1(ε2)}, β1 : (−δ, 0)→ (0, δ), β1 ∈ C1, β1(−0) = β′1(−0) = 0,
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Ei — связная компонента (−δ, δ)2\
4⋃
k=0

Bk, в границу которой входят Bi и

Bi+1 (здесь B6 = B1),

со следующими свойствами:

(1) векторные поля Xε при ε ∈ Ei (i = 1, 2, 3, 4) грубые в U ;

(2) векторные поля Xε при ε ∈ Bi (i = 1, 2, 3, 4) первой степени негрубости

в U ;

(3) векторные поля Xε|U имеют следующие замкнутые траектории и петли

сепаратрис:

при ε ∈ B1 — двойной цикл, гомотопный γext, и по устойчивому циклу,

гомотопному соответственно γ+
int и γ−int;

при ε ∈ E1 — два цикла, устойчивый и неустойчивый, гомотопные γext, и

по устойчивому циклу, гомотопному соответственно γ+
int и γ−int;

при ε ∈ B2 — устойчивый цикл, гомотопный γext, полицикл из двух петель

сепаратрис и по устойчивому циклу, гомотопному соответственно γ+
int и γ−int;

при ε ∈ E2 — устойчивый цикл, гомотопный γext, и по два цикла, устойчи-

вому и неустойчивому, гомотопных соответственно γ+
int и γ−int;

при ε ∈ B3 — устойчивый цикл, гомотопный γext, и по двойному циклу,

гомотопному соответственно γ+
int и γ−int;

при ε ∈ E3 — единственный цикл, он устойчив и гомотопен γext;

при ε ∈ B4 — устойчивый полицикл из двух петель сепаратрис;

при ε ∈ E4 — по устойчивому циклу, гомотопному соответственно γ+
int и γ−int.

Траектории векторных полей Xε|U для ε ∈ Ei и ε ∈ Bi (i = 1, 2, 3, 4) схема-

тически изображены на рис. 2.

Рис. 2. Бифуркационная диаграмма.



Бифуркация полицикла 71

Доказательства теорем 1 и 2 приведены в разд. 2, 3.

2. Функции соответствия, функции

последования и функции расхождения

Согласно теореме 2.17 из [7] в некоторой окрестности V (O) точки O при

достаточно малых ε существует замена координат

x = g1(z1, z2, ε), y = g2(z1, z2, ε),

где функции gi принадлежат классу Cr−1 по переменным z1, z2, а gi и (gi)
′
zj —

классу Cr−2 по переменным z1, z2, ε, такая, что в координатах x, y полеXε имеет

вид

Xε = x(λ1(ε) + p(x, y, ε))∂/∂x+ y(λ2(ε) + q(x, y, ε))∂/∂y, (2)

где функции p и q являются Cr−1-гладкими относительно x, y и Cr−2-гладкими

относительно x, y, ε,

p(0, y, ε) = p(x, 0, ε) = q(0, y, ε) = q(x, 0, ε) = 0. (3)

Из доказательства указанной теоремы видно, что при условииXε(−z) = −Xε(z)

имеем g1(−z, ε) = −g1(z, ε), g2(−z, ε) = −g2(z, ε), т. е. симметричные точки z и

−z имеют противоположные координаты (x, y) и (−x,−y). Поэтому

p(−x,−y, ε) ≡ p(x, y, ε), q(−x,−y, ε) ≡ q(x, y, ε).

При фиксированном ε будем отождествлять точку z ∈ V (O) с ее координатной

строкой (x, y). Без ограничения общности можно считать, что при ε = 0 дуги

y = 0, x > 0 и x = 0, y > 0 принадлежат соответственно сепаратрисам L+
0 и

SL−0 . При достаточно малых d > 0 и δ1 > 0 определены отображения (x, d) 7→
(d, ϕ+(x, ε)) и (x,−d) 7→ (d, ϕ−(x, ε)), x ∈ (0, d), ε ∈ (−δ1, δ1)2, по траекториям

поля Xε|V (O), где ϕ±(x, ε) и (ϕ±)′x(x, ε) — Cr−2-функции (рис. 3). Из (1)–(3),

лемм 13.1, 13.5 и замечаний к ним в [2] следует, что существуют такие числа

x ∈ (0, d), δ2 ∈ (0, δ1], что при всех x ∈ (0, x], ε ∈ (−δ2, δ2)2

ϕ±(x, ε) = ±d1−λ(ε)xλ(ε) + r±(x, ε)) = ±dε1x1−ε1 + r±(x, ε), (4)

где

∣∣∂i+jr±(x, ε)/∂xi∂εjk
∣∣ ≤ x1,5−ε1−i, 0 ≤ i+ j ≤ 2, 0 ≤ j ≤ 1, k = 1, 2. (5)

При достаточно малых u > 0, y > 0 и δ3 ∈ (0, δ1) определены отображе-

ние по траекториям поля Xε, ε ∈ [−δ3, δ3]2, переводящее точку η(u−(ε) + u) с

u ∈ [−u, u] в точку (ψ(u, ε),−d), где ψ(u, ε) ∈ (−x, x), ψ(0, ε) = 0, ψ ∈ Cr−2 и

ψ′u(u, ε) < 0, и отображение по траекториям поля Xε, ε ∈ [−δ3, δ3]2, переводящее

точку (d, y) с y ∈ (−y, y) в точку η(u−(ε) + χ(y, ε)), где χ ∈ Cr−2, χ′y(y, ε) > 0,

χ(0, ε) = u+(ε) − u−(ε) = ε2 (см. рис. 3). Траекторию поля Xε, проходящую

через точку η(u−(ε) + u), u ∈ [−u, u], будем обозначать через Lε(u).
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Рис. 3. Отображения соответствия по траекториям.

Пусть далее числа x и y фиксированы. При достаточно малых u и δ3 для

любого ε ∈ (−δ3, δ3)2 определены функции (см. рис. 3)

f−ε (u) := χ(ϕ−(ψ(u, ε), ε), ε), u ∈ [−u, 0),

f+
ε (u) := χ(ϕ+(−ψ(u, ε), ε), ε), u ∈ (0, u].

Введем также функции расхождения �±(u, ε) := f±ε (u)− u и функции fε(u) :=

f+
ε (f+

ε (u)).

Функция f−ε является функцией последования по траекториям поля Xε

на дуге η(u−(ε) − u, u−(ε)). Поэтому Lε(u∗), u∗ ∈ [−u, 0), — замкнутая тра-

ектория поля тогда и только тогда, когда u∗ — неподвижная точка f−ε (нуль

функции �−(·, ε)). Эта траектория — устойчивый (неустойчивый) грубый пре-

дельный цикл, если (�−)′u(u∗, ε) < 0 ((�−)′u(u∗, ε) > 0), и двойной цикл, если

(�−)′u(u∗, ε) = 0, (�−)′′uu(u∗, ε) 6= 0.

Учитывая симметрию поля Xε, получаем, что положительная полутра-

ектория поля, начинающаяся в точке η(u−(ε) + u) (Sη(u−(ε) + u)) при u ∈
(0, u], пересекает дугу Sη(−1, 1) (η(−1, 1)) в точке Sη(u−(ε)+ f+

ε (u)) ( η(u−(ε)+

f+
ε (u))). Поэтому fε — функция последования по траекториям поля. Траек-

тория Lε(u∗), u∗ ∈ (0, u], замкнута тогда и только тогда, когда она проходит и

через точку Sη(u−(ε) + u∗), при этом u∗ — неподвижная точка как для fε, так

и для f+
ε , и нуль для �+(·, ε). Так как (fε)

′(u∗) = [(f+
ε )′(u∗)]2, то Lε(u∗) —

устойчивый (неустойчивый) грубый предельный цикл, если (f+
ε )′(u∗) < 1 (> 1),

т. е. (�+)′u(u∗, ε) < 0 (> 0). Если Lε(u∗) — негрубая замкнутая траектория,

то (f+
ε )′(u∗) = 1, (fε)

′′(u∗) = 2(f+
ε )′′(u∗). Поэтому Lε(u∗) — двойной цикл, если

(�+)′u(u∗, ε) = 0, (�+)′′uu(u∗, ε) 6= 0.

Из (4), (5) и свойств функций ψ и χ получаем, что существует такое число

D > 0, что для любого ε ∈ [−δ3, δ3]2

f+
ε (u) = ε2 + c(ε)u1−ε1 +R+(u, ε) при u ∈ (0, u], (6)

f−ε (u) = ε2 − c(ε)(−u)1−ε1 +R−(u, ε) при u ∈ [−u, 0), (7)

где c(ε) > 0, c(·) ∈ C1,
∣∣∂i+jR±(u, ε)/∂ui∂εjk

∣∣ ≤ D|u|1,5−ε1−i, 0 ≤ i+ j ≤ 2, 0 ≤ j ≤ 1, k = 1, 2. (8)
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При ε = 0 из (7), (8) находим c(0) = (f−0 )′(−0). Как известно [2, п. 13.1; 5],

для петли с нулевой седловой величиной производная функции последования

(f−0 )′(+0) = es1 . Из условия У3 и (6) получаем

(f+
0 )′(+0) = c(0) = (f−0 )′(−0) < 1. (9)

Поэтому можно считать u столь малым, что

�+(u, 0) < 0, (�+)′u(u, 0) < 0 при всех u ∈ (0, u], (10)

�−(u, 0) > 0 при всех u ∈ [−u, 0). (11)

Из (6), (8)–(10) следует, что u0 ∈ (0, u) и δ4 ∈ (0, δ3) можно выбрать так, что

�+(u0, ε) < 0, (�+)′u(u0, ε) < 0 при всех ε ∈ [−δ4, δ4]2, (12)

(�+)′u(u, ε) < 0 при всех u ∈ (0, u0], ε ∈ [−δ4, 0]× [−δ4, δ4], (13)

(�+)′′uu(u, ε) < 0 при всех u ∈ (0, u0], ε ∈ (0, δ4]× [−δ4, δ4], (14)

(�+)′ε2(u, ε) > 1/2 при всех u ∈ (0, u0], ε ∈ [−δ4, δ4]2, (15)

sgn�+(+0, ε) = sgn ε2 при всех ε ∈ [−δ4, δ4]2. (16)

Пусть ε ∈ (0, δ4] × [−δ4, δ4]. Из (6) и (8) получаем (�+)′u(+0, ε) = +∞.

Отсюда, из (12) и (14) следует, что существует такая Cr−2-функция m : (0, δ4]×
[−δ4, δ4]→ (0, u0), что

sgn(�+)′u(u, ε) = sgn(m(ε)− u) при u ∈ (0, u0]. (17)

Выберем число q, c(0) < q < 1. Из (8) следует, что u0 и δ4 можно считать

столь малыми, что при рассматриваемых ε справедливы неравенства

c(ε) < q, 0 < c(ε)(1 − ε1)/(1− (R+)′u(m(ε), ε)) < q.

Из (6) и (17) получаем m(ε) = (c(ε)(1 − ε1)/(1− (R+)′u(m(ε), ε))1/ε1 и потому

m(ε) ≤ q1/ε1 . (18)

Обозначим M(ε) := �+(m(ε), ε). Из (6), (8) и (18)

M(ε1,−ε1) ≤ −ε1 + q1/ε1 +Dq(1,5−ε1)/ε1 .

Поэтому найдется такое δ ∈ (0, δ4), что M(ε1,−ε1) < 0 при всех ε1 ∈ (0, δ).

Поскольку �+(+0, ε)|ε2=0 = 0, из (17) получаем M(ε1, 0) > 0. Из этих двух

неравенств и (15) следует, что для любого ε1 ∈ (0, δ) существует такое число

β1(ε1) ∈ (−ε1, 0), что

∀ε ∈ (0, δ)× (−δ, 0) sgnM(ε) = sgn(ε2 − β1(ε1)). (19)

Из (15) и (19) по теореме о неявной функции получаем β1(·) ∈ C1. Ясно, что

β1(+0) = 0. Учитывая (17), имеем

β′1(ε1) = −M
′
ε1(ε)

M ′
ε2(ε)

∣∣∣∣
ε2=β1(ε1)

= − (�+)′ε1(m(ε), ε)

(�+)′ε2(m(ε), ε)

∣∣∣∣
ε2=β1(ε1)

. (20)

Из (6) и (8) получаем, что существует такое число K > 0, что |(�+)′ε1(u, ε)| ≤
Ku1−ε1| lnu| при u ∈ (0, u0), ε ∈ (0, δ)× (−δ, 0). Из этой оценки, из (15), (18) и

(20) следует, что β′1(+0) = 0.
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3. Окрестность U . Перестройки

фазовых портретов в U

Из (10) и (11) согласно [8, п. 3.14] следует, что через точку η(f+
0 (u0)) (со-

ответственно η(f−0 (−u0))) можно провести гладкую замкнутую трансверсаль

γext = Sγext (соответственно γ+
int) к полю X0, в точках z которой вектор X0(z)

направлен внутрь ее отрицательной (положительной) полуокрестности. Обо-

значим через U окрестность полицикла �0, граница которой состоит из кривых

γext, γ
+
int и γ−int = Sγ+

int. Вследствие (10), (11) любая траектория поля X0, начи-

нающаяся в U и не принадлежащая �0, ω-предельна к �0 и выходит из U при

убывании времени. Отсюда следуют утверждения теоремы 1.

Считая δ выбранным достаточно малым, для любого ε ∈ (−δ, δ)2 будем

иметь поле Xε направленным внутрь U в точках ∂U и не имеющим в U особых

точек, кроме O. Тогда любая траектория в U , отличная от седла O, пересекает

одну из дуг η(u−(ε)− u0, u−(ε) + u0) или Sη(u−(ε)− u0, u−(ε) + u0). Обозначим

T+
ε := η(u−(ε), u−(ε) + u0), T

−
ε := η(u−(ε)− u0, u−(ε)).

Ясно, что при ε ∈ (−δ, δ)2 входящие и выходящие сепаратрисы седла O

совпадают тогда и только тогда, когда ε2 = 0.

Из (12), (13), (16), (17) и (19) получаем следующие утверждения.

При ε2 = β1(ε1) �+(·, ε) имеет единственный (двукратный) нуль m(ε),

а двойной цикл Lε(m(ε)) — единственная замкнутая траектория, пересекаю-

щая дугу T+
ε . При ε ∈ (0, δ) × (−δ, 0), ε2 > β1(ε1) �+(·, ε) имеет ровно два

простых нуля 0 < u2(ε) < u1(ε) < u0, а поле Xε имеет грубые замкнутые траек-

тории, пересекающие T+
ε , устойчивую Lε(u1(ε)) и неустойчивую Lε(u2(ε)). При

ε ∈ (0, δ)× [0, δ) и ε ∈ (−δ, 0]×(0, δ) �+(·, ε) имеет на (0, u0] единственный нуль

u1(ε) < u0, причем (�+)′u(u1(ε), ε) < 0, а поле Xε имеет единственную замкну-

тую траекторию, пересекающую дугу T+
ε , — устойчивый грубый предельный

цикл Lε(u1(ε)). При ε ∈ (−δ, 0] × (−δ, 0] и ε ∈ (0, δ) × (−δ, 0), ε2 < β1(ε1) име-

ем �+(u, ε) < 0 ∀u ∈ (0, u0] и потому все траектории, пересекающие дугу T+
ε ,

незамкнутые.

Из (7), (8) следует, что если на дуге η(−1, 1) параметр u заменить на −u, а

ε2 заменить на −ε2, то отображение по траекториям, задаваемое функцией f−ε ,

будет иметь вид (6) с той же оценкой добавочного члена, что и в (8). Поэтому,

как и выше, получаем следующие утверждения.

При ε ∈ (0, δ) × (0, δ), ε2 = β2(ε1), где β2 : (0, δ) → (0, δ), β2 ∈ C1,

β2(+0) = β′2(+0) = 0, поле Xε имеет единственную замкнутую траекторию, пе-

ресекающую дугу T−ε (ST−ε ), — двойной цикл. При ε ∈ (0, δ)× (0, δ), ε2 < β2(ε1)

поле Xε имеет две грубые замкнутые траектории, пересекающие T−ε (ST−ε ),

устойчивую и неустойчивую. При ε ∈ (0, δ)×(−δ, 0] и ε ∈ (−δ, 0]×(−δ, 0) полеXε

имеет единственную замкнутую траекторию, пересекающую дугу T−ε (ST−ε ), —

устойчивый грубый предельный цикл. При ε ∈ (−δ, 0]× [0, δ) и ε ∈ (0, δ)× (0, δ),

ε2 > β2(ε1) все траектории, пересекающие дугу T−ε (ST−ε ), незамкнутые.

Определив теперь множества Ei, Bi, i = 1, 2, 3, 4, так, как это сделано в
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формулировке теоремы 2, получим все утверждения теоремы о существовании

петель сепаратрис и замкнутых траекторий. Отсюда и из выбора окрестности U

следует, что поведение траекторий, отличных от замкнутых, такое, как указано

на рис. 2.

Грубость векторных полей Xε при ε ∈ Ei и первая степень негрубости при

ε ∈ Bi (i = 1, 2, 3, 4) следует из достаточных условий грубости и первой степени

негрубости [9].

Теорема 2 доказана.
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at the origin O and two symmetric loops of the separatrices of this saddle. The saddle
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Nevanlinna type classes in the unit disk. We also provide parametric representation of
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1. Introduction, basic definitions and history of problems

Assuming that D = {z ∈ C| : |z| < 1} is the unit disk of the finite complex

plane C, T is the boundary of D, T = {z ∈ C : |z| = 1} and H(D) is the space of

all functions holomorphic in D we introduce the following classes of functions

N∞α (D) = {f ∈ H(D) : T (τ, f) ≤ Cf (1− τ)−α, 0 ≤ τ < 1, α ≥ 0},

where T (τ, f) is the classical Nevanlinna characteristic defined by

T (τ, f) =
1

2π

∫

T

log+ |f(τξ| dξ,

where a+ = max{0, a}, a ∈ R, (see [1]). It is obvious that if α = 0 then N∞0 (D) =

N(D), where N(D) is the well known classical Nevanlinna class (see [2–4]).

Let f ∈ H(D), then we define

Mp(f, r) =
1

2π

(∫

T

|f(rξ)|p dm(ξ)

) 1
p

, r ∈ (0, 1), p ∈ (0,∞),

where by m(ξ) we denote the normalized Lebesgue measure on T. Also, by m2(ξ)

we denote standard normalized Lebesques area measure.

O. Mihić is supported by MNTR Serbia (Project 174017).

c© 2023 R. Shamoyan, O. Mihić
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Everywhere below by nf (t) = n(t) we denote the quantity of zeros of an analytic

function f in the unit disk |z| ≤ t < 1 and by Z(X) the zero set of an analytic class

X, X ⊂ H(D). By let {zk}∞k=1 be a sequence of numbers from D below we mean

that {zk}∞k=1 is an arbitrary sequence from unit disk enumerated by it is growth

(|zk| ≤ |zk+1| ≤ . . . ) according to it is multiplicity.

By nk we denote n(1 − 2−k), i.e. nk = n(1 − 2−k), k = 1, 2, . . . , where n is a

number of zeros in the appropriate disk (see definitions above) (see [2]).

In all our assertions below we assume in advance that our functions are not

identically zero or infinity.

The following statement holds by Nevanlinna’s classical result on the parametric

representation of N(D) (see [2–4]). N(D) class coincides with the set of functions

representable in the form

f(z) = Cλz
λB(z, {zk}) exp




π∫

−π

dµ(θ)

1− ze−iθ


 , z ∈ D,

where Cλ is a complex number, λ is a nonnegative integer, B(z, {zk}) is the classical

Blaschke product with zeros {zk}∞k=1 ⊂ D enumerated according to their multipli-

cities and satisfying the condition
∞∑
k=1

(1 − |zk|) < ∞, and µ(θ) is a function of

bounded variation in [−π, π].

In [2, 3] the following proposition is established (see also [1]) for sequences

{zk}∞k=1 ⊂ D satisfying the greater density condition

∞∑

k=1

(1− |zk|)t+2 <∞, t > −1. (1)

Proposition A (see [2]). Let {zk}nk=1 be a sequence in the unit disc satisfying

the density condition (1) for some t > −1. Then the Djrbashian infinite product

�t(z, {zk}) =

∞∏

k=1

(
1− z

zk

)
exp

(−(t+ 1)

π

∫

D

(1 − |ξ|2)t ln
∣∣1− ξ

zk

∣∣
(1− ξz)t+2

dm2(ξ)

)
, z ∈ D,

(2)

converges absolutely and uniformly inside D, where it presents an analytic function

with zeros {zk}∞k=1.

After the appearance of the classical Nevanlinna’s parametric representation in

Hayman’s book (see [1]) which we mentioned above various new results of the same

type appeared during past decades where Blaschke products were substituted by

more general so called Djrbashian �α(z, {zk}) products (see [3]) and we will mention

them partially below in Theorem A and Theorem B. In [5] it was shown that these

�α(z, {zk}) products can be in their turn replaced by other infinite Bα(z, {zk})
products and some aspects of this last development will stand as one of the topics

of this paper.

We denote by Bp,qα (T), 0 < p <∞, 0 < q ≤ ∞, α > 0, the classical Besov space

on the unit circle T (see [6]).
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Theorem A (see [5]). Let α > 0 and β > α − 1. Then the class N∞α (D)

coincides with the set of functions representable in the form

f(z) = Cλz
λ�β(z, {zk}) exp




π∫

−π

ψ(eiθ)dθ

(1− ze−iθ)β+2


 , z ∈ D, (3)

where Cλ is a complex number, λ is a nonnegative integer, �β(z, {zk}) is the Djr-

bashian infinite product (2), {zk}∞k=1 ⊂ D is a sequence satisfying the condition

n(τ) ≤ c

(1− τ)α+1
,

where c > 0 is a positive constant and ψ(eiθ) is a real function of B1,∞
β−α+1(T).

We also give below a theorem which is established in [7] and in a sense is similar

to Theorem A.

Let Spα(D) be the class of analytic functions defined by

Spα(D) = {f ∈ H(D) : ‖f‖p
Sp
α

=

1∫

0

(1 − τ)αT p(τ, f)dτ <∞, 0 < p <∞, α > −1}.

Theorem B (see [7]). For p ≥ 0, β > α+1
p , we have f ∈ Spα(D) if and only if

f(z) admits representation

f(z) = Cλz
λ�β(z, {zk}) exp




π∫

−π

ψ(eiθ) dθ

(1 − ze−iθ)β+1


 , z ∈ D,

where Cλ is a complex number, λ is a nonnegative integer, {zk}∞k=1 ⊂ D is a sequence

for which
1∫

0

(1 − τ)α+p[n(τ)]pdτ <∞

and ψ ∈ B1,p
s (T), where s = β − α+1

p .

Note that complete analogues of Theorem A and Theorem B were given also for

Np
α,β and N∞,pα,β . Np

p,γ,β area Nevanlinna spaces in the disk (see [8–10] and definitions

below).

One can easily see that Theorem A gives the parametric representations of

the spaces N∞α (D) while Theorem B gives the parametric representations of Spα(D)

analytic area Nevanlinna type spaces in the unit disk via same Djrbashian�t(z, {zk})
infinite product.

The main goal of this paper is to obtain new parametric representations of the

larger spaces via completely other infinite product.

Let further

Np
α,β(D) =



f ∈ H(D) :

1∫

0

( ∫

|z|≤R

(ln+ |f(z)|)(1−|z|)α dm2(z)

)p
(1−R)β dR <∞



;
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N∞,pα,β1
(D) =



f ∈ H(D) :

sup
0≤R<1




R∫

0

(∫

T

ln+ |f(z)| dξ
)p

(1− |z|)αd|z|


 (1−R)β1 <∞



,

where it is assumed that α > −1, β > −1, β1 ≥ 0 and 0 < p <∞, and let

Np,γ,β(D) =



f ∈ H(D) :

1∫

0

(1− |z|)β( sup
0<τ<|z|

T (τ, f)(1− τ)γ)p d|z| <∞



 ,

where γ ≥ 0, β > −1.

We refer for basic properties of these new large are Nevanlinna spaces to [10, 11].

We note in these papers various results on zero sets and parametric representations

can also be seen. Note that similar, but less general results can be seen in various

papers of various authors, we refer, for example, to [2, 3, 5, 7].

Note that various properties of N∞,pα,0 (D) are studied in [7]. In particular, the

works [2, 7] give complete descriptions of zero sets and parametric representations of

N∞,pα,0 (D) (in [2] for p = 1). Thus it is natural to consider the problem of extension

of these important results to all N∞,pα,β1
(D) analytic classes.

We remark that these analytic classes of area Nevanlinna type in the unit disk

was considered by us in our recent paper (see [9–11]).

It is not difficult to verify that all the above mentioned area Nevanlinna analytic

classes are topological vector spaces with complete invariant metric. We note that

the mentioned problem of parametric representation have various applications and

are important in function theory (see [2, 3, 12]).

Solution of many problems for example the existence of radial limits is based also

on parametric representations. Parametric representations are used also in spectral

theory of linear operators (see [3, 12]).

The next section will be devoted to study of certain infinite Blashcke type

products Bα(z, {zk}) in new analytic area Nevanlinna classes we introduced above,

then partially based on these results we will turn to the main topic of paper we

mentioned above and we will provide some new parametric representations via these

infinite Blaschke type products Bα(z, {zk}).
The main idea to get new results on infinite Bα products and parametric repre-

sentations via such products in our large new Nevanlinna type spaces to use a group

of new embeddings relating them to known Nevanlinna type spaces for which such

results were provided by other authors, then apply these known results.

For this we use a simple idea. Namely, we analyze various known embeddings

between mixed norm and Bergman spaces and then simply replace in these estimates

|f |p by (log+ |f |)p, since both are subharmonic functions for p ≥ 1, and since the

already known proof is based only on this fact.
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Throughout the paper we write C (sometimes with indexes) to denote a positive

constant which might be different at each occurrence (even in a chain of inequalities)

but is independent of the functions or variables discussed.

The notation A ≍ B means that there is a positive constant C, such that
B
C ≤ A ≤ CB. We will write for two expressions A . B if there is a positive

constant C such that A < CB.

We formulated certian assertions below on Nevanlinna spaces after careful ana-

lysis of some already known proofs for mixed norm spaces, their proofs will be given

below in a sketchy form, since new proofs are almost the same. We leave some

arguments in proofs below to readers since they are easy to recover.

2. On some new theorems on canonical infinite

products of Blaschke type in N
p
α,β, N

∞,p
α,β

and Np,γ,β(D) classes in the unit disk

First we introduce a new Blaschke type canonical product and list some of it

is properties, then based on these properties we will find conditions on {zk}∞k=1

sequence from D such that our product belongs to mentioned above new analytic

Nevanlinna classes in the unit disk. We remark that the �t(z, {zk}) defined above

and the product we are going to consider act as same kind of substitution for Blaschke

product in classes with log+ . The problem of finding conditions on {zk}∞k=1 sequences

so that the classical Blaschke product belongs to analytic Bergman or Hardy or other

spaces is well known and studied by many authors before (see, for example, [2, 3, 13]

and the references there).

We would like to note that our results can be considered as analogues of

mentioned assertions concerning Blaschke products. Note that similar results for

�t(z, {zk}) products are well known (see [2, 3, 7]).

We give one such type example.

Theorem C (see [2]). Let {zk}∞k=1 be a sequence from unit disk D. Then if

∞∑

k=1

(1− |zk|)α+2 <∞, α > −1,

then �t(z, {zk}) ∈ S1
α(D) for t > α that is
∫

D

log+ |�t(z, {zk})|(1− |z|)αdm2(z) <∞,

and the reverse is also true. Let (1) holds, then �α(z, {zk}) ∈ S1
t (D) if α > t, where

n(r) sequence was defined above.

We introduce now another infinite product which is the main object of this note.

It is known that (see [3]) the following assertion is true. The infinite Blaschke type

product Bα(z, {zk}), α > −1

Bα(z, {zk}) =

∞∏

k=1

(
1− z

zk

)
exp (−Wα(z, zk)) ,
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and

Wα(z, ξ) =

∞∑

k=1

� (α+ k + 2)

� (α+ 2)� (k + 1)

×


(ξz)k

1∫

|ξ|

(1− x)αdx
xk+1

−
(
z

ξ

)k |ξ|∫

0

(1− x)αxk−1 dx


 , z, ξ ∈ D,

is converges uniformly within D if and only if

∞∑

k=1

(1− |zk|)α+1 <∞.

Moreover it represents an analytic function in D.

Remark 1. An interesting generalization of this product can be found in [12].

Our intention is to find conditions on {zk}∞k=1 of this product, so thatBα(z, {zk}) ∈
Np
α,β(D) or N∞,pα,β1

(D) or Np,γ,β(D). We mention that the following result were

given before. It puts in particular direct condition on {zk}∞k=1 sequences so that

Bα(z, {zk}) ∈ S1
α(D).

Let � be a set of positive on (0, 1) measurable functions w such that mw ≤
w(λx)
w(r) ≤ Mw, for all x ∈ (0, 1), λ ∈ [qw, 1] and some fixed Mw, mw, qw such that

mw, qw ∈ (0, 1), Mw > 0, (see [2]).

We define general Spω area Nevanlinna spaces similarly as Spα spaces by replacing

(1− r)α by w(r).

Theorem D (see [5]). Let {λk}∞k=1 be a sequence from unit disk D. Let w ∈ �,

αw = lnmw

ln qw
, βw =

1
lnMw

ln 1
qw

, 0 < βw < 1 and one of the following two conditions holds:

0 < p ≤ 1, p >
αw + βw

2
,

αw + 1

p
< α <

1− βw
p

+ 2,

or

1 < p <∞, p > αw + βw − 1,
αw
p

+ 1 ≤ α < 1− βw
p

+ 2.

Then if
1∫

0

w(1 − r)np(r)(1 − r)p dr <∞,

then Bα(rξ, {λk}) uniformly converges within D and belongs to Spω that is

1∫

0

(∫

T

log+ |Bα(rξ, {λk})| dm(ξ)

)p
w(1 − r) dr <∞.
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Corollary 1. Let 0 < p < ∞, α > −1, {zk}∞k=1 ∈ D, 0 < |zk| ≤ |zk+1|,
k = 1, 2, . . . , and

1∫

0

(1− r)α+pnp(r) dr <∞.

Then Bβ(z, {zk}) ∈ Spα that is

1∫

0

(∫

T

log+ |Bβ(rξ, {zk})| dm(ξ)

)p
(1− r)αdr <∞,

if 0 < p ≤ 1, α+1
p < β < 2 + α+1

p

if 1 < p <∞, 1 + α
p ≤ β < 2 + α+1

p .

We formulate below in Theorems 1 and 2 new results of such type on Bα infinite

products in our new large area Nevanlinna type spaces.

Theorem 1. Let α > −1, β > −1 and p ∈ (0,∞). Let {λk}∞k=1 be a sequence

of complex numbers in the unit disk such that

1∫

0

(1− r)α+pnp(r) dr <∞. (4)

Then there is an interval (t0, t1) for t0, t1 ∈ R ∪ {∞} and for p ≤ 1 and for p ≥ 1

for which the canonical product Bt(z, {λk}), t ∈ (t0, t1) converges absolutely and

uniformly within D and belongs to Np
α,β(D) class.

Theorem 2. Let α > −1, β > −1 and p ∈ (0,∞). Let {λk}∞k=1 be a sequence

of complex numbers in the unit disk such that

1∫

0

(1− r)α+pnp(r) dr <∞. (5)

Then there is an interval (t′0, t
′
1) for t′0, t

′
1 ∈ R ∪ {∞} and for p ≤ 1 and for p ≥ 1

for which the canonical product Bt(z, {λk}), t ∈ (t′0, t
′
1) converges absolutely and

uniformly within D and belongs to N∞,pα,β (D) class.

Remark 2. It is not difficult to extend the statements and the proofs of The-

orems 1 and 2 to more general, slowly varying weights w(1 − τ) from S class (see

[2]).

The very similar result is also valid for Np,γ,v area Nevanlinna type spaces, with

some restrictions on parameters.

The proof of Theorems 1 and 2 will be given below.

The goal of this section to provide ways to get some new parametric represen-

tations for Np
α,β(D), N∞,pα,β (D) and Np,γ,β(D) classes in the unit disk via Bα(zk, z)

products. The following theorem provides complete parametric representations for

Np
α,β(D) spaces via Djrbashian products from theorems A and B, (see [8, 14]).
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Theorem E (see [8, 14]). If 0 < p < ∞, α > −1 and β > −1, then the class

Np
α,β coincides with the set of functions representable for z ∈ D as

f(z) = Cλz
λ
∞∏

k=1

(
1− z

zk

)

× exp




t+ 1

π

1∫

0

π∫

−π

(1 − ρ2) ln
∣∣1− ρeiϕ

zk

∣∣
(1− ρe−iϕz)t+2

ρ dρdϕ



 exp{h(z)},

where t > max{(α+ β/p) + max{1, 1/p}, (α+ 1)}, Cλ is a complex number, λ ≥ 0,
∞∑

k=1

npk
2k(β+1+2p+αp)

<∞,

and h ∈ H(D) is a function satisfying the condition

1∫

0




R∫

0




π∫

−π

|h(τeiϕ)|dϕ


(1− τ)αdτ



p

(1−R)βdR <∞.

Similar results hold for N∞,pα,β (D) and Np,γ,β(D) classes (see [11]).

To obtain parametric representations of Np
α,β(D), N∞,pα,β (D) and Np,γ,β(D)

classes via Bα(z, {zk}) infinite Blaschke type products we can use some embed-

dings and known parametric representations for analytic classes of area Nevanlinna

type with quazinorms

1∫

0

(∫

T

log+ |f(|z|ξ)| dξ
)p

(1− |z|)α dm2(z) <∞,

for certain 0 < p <∞, α > −1, that were obtained earlier by other authors.

First we formulate a result that will be used by us via Bt product.

Theorem F. Let 0 < p < ∞, α > 0. Then Spα(D) coincides with the class of

functions f such that

f(z) = eiα+mKβzmBβ(z, {ak})

× exp


 1

2π

π∫

−π

(
2

(1 − e−iϕz)β+1
− 1

)
ψ(eiϕ) dϕ


 , z ∈ D,

{ak}∞k=1 and 0 < |ak| ≤ |ak+1|, k = 1, 2, . . . , is an arbitrary sequence of points from

D, such that
1∫

0

np(r, f)(1− r)α+pdr <∞,

where β ∈
(
α+1
p , α+1

p + 2
)
, ψ ∈ B1,p

s (T), s = β − α+1
p ,

ψ(eiθ) = lim
r→1−0

1

� (β)

r∫

0

(r − t)β−1 ln |f(teiϕ)| dt
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and

Kβ = β
∞∑

k=1

1

k(k + β)
.

Now it is clear that to obtain parametric representations of classes we study in

this paper via Bt(z, {zk}) all we have to do is to show, for example, that if f ∈ X ,

X = Np
α,β(D) or X = N∞,pα,β (D) or X = Np,γ,β(D), then f ∈ S1

τ (D) for some big

enough τ > 0, then apply Theorem F we just formulated above. To do that we

formulate the following propositions.

Note that we collect several such propositions below and they can be interesting

also as separate statements and relate various analytic area Nevanlinna type spaces

to each other.

Proposition 1. Let f ∈ H(D). Let β > −1, γ ≥ 0, 0 < q <∞. Then




1∫

0

(1− τ)β+(γ+1)q

(∫

T

log+ |f(τξ)| dm(ξ)

)q
dτ




1
q

≤ c1




1∫

0

(1− τ)β
( ∫

|z|<τ

log+ |f(z)|(1− |z|)γ dm2(z)

)q
dτ




1
q

.

Even more general result is valid with the same proof (see Proposition 2 below).

We will consider for simplicity only this case. Similar estimate can be proved for

N∞,pα,β (D).

Let now

L(Ap,qγ )(D) =



f ∈ H(D) : ‖f‖L(Ap,q

γ )

=

1∫

0




π∫

−π

(
ln+ |f(reiϕ)|

)p
dϕ



q/p

(1− r)γ dr <∞



,

where 0 < p <∞, 0 < q <∞, γ > −1 and

L(F p,qγ )(D) =



f ∈ H(D) : ‖f‖L(Fp,q

γ )

=

π∫

−π




1∫

0

(ln+ |f(reiϕ)|)q(1− r)γdr



p/q

dϕ <∞



,

where 0 < p <∞, 0 < q <∞, γ > −1.

Proofs of Proposition 2 and Proposition 3, as follows from [14] and [15], are

based on arguments from [14] and [15] and their are valid for subharmonic function

(log+ |f(z)|)s for any s ≥ 1.

Note that Proposition 2 extends Proposition 1 and Proposition 3.
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Proposition 2. Let p ≥ 1, q ∈ (0,∞), α > −1, β > −1, and τ = β+ q
p (α+1).

Then
1∫

0

( ∫

|z|<R

(log+ |f(z)|)p(1− |z|)αdm2(z)

)q/p
(1−R)β dR <∞

if and only if

1∫

0

(∫

T

(log+ |f(rξ)|)p dm(ξ)

)q/p
(1 − |z|)τ dr <∞.

Proposition 3. Let 1 ≤ min(p, q) ≤ s and γ > −1. Then

(∫

D

(log+ |f(w)|)s(1− |w|)s(γ+1)/q+s/p−2 dm2(w)

)1/s

≤ c3‖f‖L(Ap,q
γ ), f ∈ L(Ap,qγ )(D), (6)

(∫

D

(log+ |f(w)|)s(1− |w|)s(γ+1)/q+s/p−2 dm2(w)

)1/s

≤ c4‖f‖L(Fp,q
γ ), f ∈ L(F p,qγ )(D). (7)

Proposition 4. Let q ≥ 1 and p ≤ s. Then




1∫

0

T sq (r, f)(1 − |z|)α d|z|



p/s

≤ c5
1∫

0

(1 − r)τ ( sup
0<ρ<r

Tq(ρ, f)(1− |ρ|)γ)p dr,

for the following values of indexes: α > −1, p, q, s ∈ (0,∞), γ ≥ 0, τ = (α+1)(p/s)−
γp− 1.

The easy proof of Proposition 4 immediately follows from dyadic decomposition

of the unit interval and growing of Tq(r, f).

We show only particular case of estimate in Proposition 4, the general case is

the same.

Let τn = 1− 1
2n , n ∈ N, p ≤ 1, f̃(z) = log+ |f(z)|. Then due to basic properties

of Nevanlinna characteristics and dyadic decomposition of the unit interval we have

(∫

D

f̃(z)(1− |z|)αdm2(z)

)p
.

∞∑

k=1

2−kp(α+2)(M1(τk, f̃))p

.

∞∑

k=1

2−kp(α+1) sup
0<ρ≤τk

(M1(ρ, f̃)(1 − ρ)γ)p2kγp

.

∞∑

k=1

1−2−k−3∫

1−2−k−2

(1− |z|)(α+1)p−γp−1 sup
0<ρ≤|z|

(M1(ρ, f̃)(1 − ρ)γ)p d|z|
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≤ C
1∫

0

(1− |z|)(α+1)p−γp−1( sup
0<ρ≤|z|

T (τ, f)(1− τ)γ)p d|z|.

Let us show assertions in Proposition 1:
1∫

0

(1 − r)β+(γ+1)q

(∫

T

f̃(rξ) dm(ξ)

)q
dτ

.

∞∑

k=1

2−k(β+(γ+1)q+1)(M1(τk, f̃))q

.

∞∑

k=1

( ∫

τk<|z|<τk+1

f̃(z)(1− |z|)γ dm2(z)

)q
2−k(β+1)

.

∞∑

k=1

τk+2∫

τk+1

(1 − τ)β
( ∫

|z|<τ

f̃(z)(1− |z|)γ dm2(z)

)q
dτ

.

1∫

0

(1− τ)β
( ∫

|z|<τ

f̃(z)(1− |z|)γ dm2(z)

)q
dτ.

Remark 3. Classes of analytic functions of area Nevanlinna type with quasi-

norms that can be seen in the first part of Proposition 4 studied in [10]. There

complete descriptions od zeros and parametric representations via other �t(z, {zk})
infinite products are given.

Note, for example, obviously Bt(z, zk) belongs to spaces with quasinorms
1∫

0

( ∫

|z|≤R

ln+ |f(z)|(1− |z|)α dm2(z)

)q
sup
R

(1−R)β dR

by Proposition 2, 0 < p <∞, τ = β + q
p (α+ 1) and Theorem D for some values of t

parameter.

Note that to use Theorem F we have to apply reverse embedding in Propo-

sition 2. Estimates of Proposition 1 and Proposition 2 give many new results on

parametric representation via Bt(z, zk) product we give such examples below.

To get immediately new assertions of type Bt(z, zk) ∈ X, where X is a certain

new large area Nevanlinna type space we simply will use the following elementar

embeddings:

(A) (1 −R)β

R∫

0

(∫

T

ln+ |f(|z|ξ)| dm(ξ)

)p
(1− |z|)α d|z|

≤ C1

1∫

0

(∫

T

ln+ |f(|z|ξ)| dm(ξ)

)p
(1− |z|)α d|z| = ‖f‖Sp

α
,

0 < p <∞, α > −1, β ≥ 0;
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(B)

1∫

0

( ∫

|z|≤R

ln+ |f(z)|(1− |z|)α dm2(z)

)p
(1−R)β dR ≤ C2‖f‖S1

α
,

0 < p <∞, α > −1, β > −1;

(C) ‖f‖NAp,γ,ν
≤ C3‖f‖S1

γ−1
, 0 < p <∞, γ > 0, ν > −1.

Indeed area Nevanlinna type spaces with quasinorms on the right side were

studied and assertions of the following type Bt ∈ Spα were given by us above. It

remains to apply (A)–(C).

We have the following result from Corollary 1 and (A)–(C).

Theorem 3. Let α > −1, p ∈ (0,∞) and {zk}∞k=1 be a sequences of complex

numbers in the unit disk D such that 0 < |zk| ≤ 1, k = 1, . . . .

1)
1∫
0

(1 − r)α+pnp(r) dr <∞ then we have Bt(z, {zk}) ∈ N∞,pα,β , α > −1, β ≥ 0;

if 0 < p ≤ 1, α+1
p < t < 2 + α+1

p

if 1 < p <∞, 1 + α
p < t < 2 + α+1

p .

2)
1∫
0

(1− r)α+1n(r) dr <∞ then we have Bt(z, {zk}) ∈ Np
α,β, α > −1, β > −1,

t ∈ (α+ 1, α+ 3);

3)
1∫
0

(1 − r)γn(r) dr < ∞ then we have Bt(z, {zk}) ∈ Np,γ,ν , ν > −1, γ > 0,

t ∈ (γ, γ + 2).

In our next theorem we provide new interesting parametric representations of

our large Nα,β,γ, N
p
α,β , N

∞,p
α,β area Nevanlinna type spaces in the unit disk via

Bt(z, zk) infinite products based on Theorem А and embeddings in Propositions 1–4.

Theorem 4. 1. Let f ∈ Np,γ,τ , α > 0, p < 1, α > γ− 1, τ = (α+1)p− γp− 1.

Then assertions of Theorem F (parametric representations) are valid for p = 1.

2. Let f ∈ Np
γ,β, γ ≥ 0, 0 < p <∞, β > −1. Then assertions of Theorem F are

valid for α = β + (γ + 1)p > 0.

Various other assertions similar to those in our last two theorems can be proven

also based on estimates above which relate many area Nevanlinna spaces in the unit

disk with each other.
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ЧИСЛЕННЫЙ МЕТОД РЕШЕНИЯ

УРАВНЕНИЙ МЕЛКОЙ ВОДЫ

ПОВЫШЕННОЙ ТОЧНОСТИ НА ОСНОВЕ

МОДИФИЦИРОВАННОЙ СХЕМЫ КАБАРЕ

Д. Г. Асфандияров, О. С. Сороковикова

Аннотация. Представлен численный метод на основе балансно-характеристической
схемы КАБАРЕ для моделирования в приближении мелкой воды нестационарного
течения жидкости на произвольной топографии. Разработанный метод позволяет
рассчитывать различные режимы течения, включая транскритические. Для моде-
лирования транскритических переходов используется гибридный подход на основе
решения локальной задачи Римана, как это делается в схемах по типу Годунова.
Представленный численный метод обладает условием хорошей сбалансированности
(well-balance) — выполнение условия гидростатического равновесия или условия
покоящейся жидкости на неровном рельефе дна. Помимо этого учитывается воз-
можность сквозного расчета динамических границ, разделяющих жидкость и сухое
дно, обусловленных процессами затопления и обмеления, а также ряда физических
процессов (трение о дно, осадки). Апробация метода проводится на серии вери-
фикационных тестов, допускающих точное решение, и классическом эксперименте,
имитирующем разрушении плотины.

DOI: 10.25587/SVFU.2023.33.65.009

Ключевые слова: уравнения мелкой воды, балансно-характеристический подход,
схема КАБАРЕ, границы раздела вода/сухое дно, сложная топография дна и бере-
говой линии.

1. Введение

В мировой практике для моделирования различных гидрологических про-

цессов в поймах и руслах рек, каналах, водоемах проточного типа, а также

в прибрежных зонах широко используется приближение мелкой воды. Дан-

ные уравнения гиперболического типа описывают законы сохранения массы и

импульса и определяют связь между полем течения и изменением глубины во-

ды с учетом гидравлического трения и неровностей рельефа. Особым случаем

является рассмотрение прорывных течений на гидротехнических сооружени-

ях, паводковые процессы. К численным схемам должны предъявляться особые

высокие требования к надежности и точности моделирования разрывных реше-

ний и решений с большими градиентами моделируемых величин. Необходимо

отсутствие при этом появления нефизических осцилляций (фазовых ошибок)

и амплитудных искажений, приводящих к сглаживанию параметров течений

(особенно важно при наличии гидравлических скачков).

c© 2023 Асфандияров Д. Г., Сороковикова О. С.
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В настоящее время предложен целый ряд методов для численного реше-

ния системы уравнений теории мелкой воды [1]. В частности, широкое распро-

странение получили методы сквозного счета, принадлежащие классу схем по

типу Годунова [1, 2]. Данные разностные схемы, первоначально созданные для

решения уравнений газовой динамики, связаны с использованием в качестве

составного элемента точного или приближенного решения задачи Римана.

При построении численных методов на основе уравнений мелкой воды для

решения прикладных задач важным является учет ряда свойств. В частности,

к таким свойствам относится хорошая сбалансированность схем (well-balance).

Условия хорошей сбалансированности описаны в различных статьях, напри-

мер в [2, 3], и требуют от вычислительного алгоритма, чтобы решение задачи

с начальными условиями покоящейся жидкости не зависело от времени, т. е.

в изначально покоящейся жидкости не должны возникать возмущения, обу-

словленные неровностями дна. Проблема заключается в том, что при дискре-

тизации исходных уравнений для потока импульса требуется дополнительный

баланс между членом, играющим роль градиента давления, и источниковым

членом, обусловленным неровностью рельефа дна [2]. Помимо этого необходи-

мо учитывать возможность сквозного расчета динамических границ, разделяю-

щих жидкость и сухое дно. Это условие существенно при решении прикладных

нестационарных задач, особенно в прибрежных зонах, где граница, разделя-

ющая область жидкости и сухого дна, постоянно меняется. Дополнительным

требованием является возможность проводить такое моделирование на неодно-

родном рельефе дна.

Учитывая широкое распространение приближения мелкой воды для моде-

лирования многих процессов, имеющих практическое значение, и существен-

ные трудности при создании эффективных высокоточных численных методик

для решения этих уравнений гиперболического типа международным научным

сообществом создаются специальные наборы тестов для проверки точности и

качества моделирования разрабатываемых методик, например [4, 5]. В них со-

браны известные и новые найденные аналитические решения уравнений мелкой

воды (одномерные и двумерные) с учетом реализации различных режимов тече-

ния, в том числе с обострениями. Имеются задачи для каналов принципиально

разной длины, а также тесты с учетом набегания потока на сухое дно, учтено

влияние различных физических процессов, например, трение о дно, осадки.

В данной работе для расчета подобного рода задач используется идеология

балансно-характеристической схемы КАБАРЕ [6–9]. Ранние работы по моде-

лированию в рамках классического приближения уравнений мелкой воды по

схеме КАБАРЕ [8, 9] ограничивались в основном расчетом одномерных тестов

без учета практической составляющей, в том числе наличия границы раздела

вода/сухое дно на неоднородном рельефе дна, что не позволяло решать большой

класс задач (набегание прибрежный волн, наводнения, в том числе паводковые

процессы, и т. д.). Данная работа призвана восполнить этот пробел.

В работе приводится обобщение методики КАБАРЕ с учетом требований
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применимости к широкому диапазону режимов течения, наличия уреза воды,

а также ряда физических процессов (трение о дно, осадки). Под различными

режимами течения подразумевается возможность расчета как докритических

и сверхкритических течений (аналог дозвукового и сверхзвукового течений в

газовой динамике), а также транскритических переходов между этими двумя

состояниями. С транскритическими переходами связана так называемая про-

блема звуковых точек (по аналогии с газовой динамикой). Для схемы КАБАРЕ

разработан ряд алгоритмов учета звуковых точек, ограничивающихся частны-

ми случаями, например [9, 10]. В данной работе используется более общий отно-

сительно класса решаемых задач гибридный подход обработки звуковых точек

на основе решения локальной задачи Римана, как это делается в схемах по типу

Годунова [1, 2].

Апробация метода проводится на серии задач, имеющих аналитическое ре-

шение. Данные задачи рекомендованы и широко используются для верифика-

ции гидрологических моделей в международной практике. Также рассматри-

вается классическая валидационная задача о разрушении двумерной плотины

[11].

2. Математическая модель

Нестационарная система уравнений теории мелкой воды, описывающая дву-

мерные в плане движения жидкости, имеет вид

∂h

∂t
+
∂hu

∂x
+
∂hv

∂y
= R(x, y, t),

∂hu

∂t
+
∂hu2

∂x
+
∂huv

∂y
+

1

2

∂gh2

∂x
+ gh

∂b

∂x
= fx,

∂hv

∂t
+
∂hvu

∂x
+
∂hv2

∂y
+

1

2

∂gh2

∂y
+ gh

∂b

∂y
= fy.

(1)

Здесь h = h(t, x, y) — глубина жидкости — расстояние от свободной поверхно-

сти до дна, м; t — время, с; (x, y) — декартовы координаты на горизонтальной

плоскости, м; (u, v) — осредненные по глубине компоненты скорости в направ-

лении x и y соответственно, м/с; R(x, y, t) ≥ 0 — интенсивность осадков, м/с;

b = b(x, y) — отметка рельефа дна относительно произвольного горизонтально-

го уровня, м; (fx, fy) — недифференциальные члены, определяющие действие

силы трения в направлении x и y соответственно, м2/c2 Данные уравнения опи-

сывают законы сохранения массы жидкости и сохранения (изменения) ее им-

пульса при условии постоянства плотности жидкости с учетом внешних сил.

Сила трения задается формулой Маннинга — Штриклера [4]:

~f = [fx, fy]
T

= −1

2
λV|V|, V = [u, v]

T
, λ = 2gn2h−1/3 , (2)

где λ — коэффициент гидравлического трения, n — коэффициент шероховато-

сти дна по Маннингу, м−1/3с.
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Для учета свойства хорошей сбалансированности перепишем систему (1),

сделав замену h = H − b, где H — уровень свободной поверхности, в последних

двух членах второго и третьего уравнения. После преобразования получим

∂h

∂t
+
∂hu

∂x
+
∂hv

∂y
= 0,

∂hu

∂t
+
∂hu2

∂x
+
∂huv

∂y
+
g

2

∂H2

∂x
− gb∂H

∂x
= fx,

∂hv

∂t
+
∂hvu

∂x
+
hv2

∂y
+
g

2

∂H2

∂y
− gb∂H

∂y
= fy.

(3)

Здесь мы не вводим каких-либо дополнительных переменных для моделирова-

ния, обозначение для уровня свободной поверхности H = h + b представлено

для наглядности преобразования. При выборе такой формы записи исходной

системы уравнений для моделирования условия гидростатического равновесия

выполняются автоматически и не требуют наложения дополнительных условий

при аппроксимации рельефа дна [10].

Для построения численного алгоритма на основе балансно-характеристиче-

ского подхода используется также характеристическая форма записи линеари-

зованной исходной системы уравнений (1) [7], которая имеет вид

∂~Ix

∂t
+ �x

∂~Ix

∂x
= ~Gx,

∂~Iy

∂t
+ �y

∂~Iy

∂y
= ~Gy. (4)

Входящие в левую часть уравнений величины определяют квази-инварианты

Римана (определенные вдоль соответствующих направлений) и соответствую-

щие им характеристические скорости:

~Ix =



u+ 2c
u− 2c
v


 , ~λx =



λx1
λx2
λx3


 =



u+ c
u− c
u


 , �x =



λx1 0 0

0 λx2 0

0 0 λx3


 ,

~Iy =



v + 2c
v − 2c
u


 , ~λy =



λy1
λy2
λy3


 =



v + c
v − c
v


 , �y =



λy1 0 0

0 λy2 0

0 0 λy3


 ,

c =
√
gh.

(5)

В теории мелкой воды функция c описывает скорость распространения малых

возмущений (является аналогом скорости звука в газовой динамике). Правые

части уравнений в (4) определяются следующим образом:

~Gx = �x

(
~d−Ay

∂~φ

∂y

)
, ~Gy = �y

(
~d−Ax

∂~φ

∂x

)
,

~φ =



h
u
v


 , Ax =



u h 0

g u 0

0 0 u


 , Ay =



v 0 h
0 v 0

g 0 v


 ,

~d =




R
−g∂b/∂x− fx/h− uR/h
−g∂b/∂y − fy/h− vR/h


 .

(6)
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Уравнения, входящие в систему (4), можно трактовать как неоднородные ло-

кально-одномерные уравнения переноса в направлениях x и y.

3. Численный алгоритм

3.1. Схема КАБАРЕ. Численный алгоритм строится на основе схемы

КАБАРЕ. Схема КАБАРЕ оперирует двумя типами переменных: консерва-

тивными, относящимися к центрам ячеек, и потоковыми, которые относятся к

центрам граней. Для расчета по схеме КАБАРЕ применяется так называемый

балансно-характеристический подход, в рамках которого для вычисления кон-

сервативных переменных используются уравнения движения в консервативной

форме, а для вычисления потоковых величин — в характеристической [6].

Введем в прямоугольнике [X1, X2]×[Y1, Y2] неравномерную расчетную сетку

с координатами узлов

(xi, yi) :

{
x1 = X1, x1 < x2 < · · · < xNx+1 = X2, �xi+1/2 = xi+1 − xi,
y1 = Y1, y1 < y2 < · · · < yNy+1 = Y2, �yj+1/2 = yj+1 − yj .

(7)

Данный набор узлов порождает Nx ×Ny расчетных ячеек, Nx × (Ny + 1) про-

дольных и (Nx + 1) × Ny поперечных граней. Центрам ячеек соответству-

ют консервативные переменные, обозначаемые двумя полуцелыми индексами

(i+ 1/2, j+ 1/2), центрам горизонтальных и вертикальных граней соответству-

ют потоковые переменные, обозначаемые индексами (i + 1/2, j) и (i, j + 1/2)

соответственно. Схема оперирует тремя временными слоями: начальным n,

полуцелым n + 1/2 и новым n + 1. Для шага по времени введем обозначение

τn+1/2 = tn+1 − tn.
Схема КАБАРЕ для численного решения уравнений движения (3) (без уче-

та силы трения) на конечно-разностной сетке, неоднородной по пространству и

по времени, записывается следующим образом:

Un+1
i+1/2,j+1/2 −Un

i+1/2,j+1/2

τn+1/2
+

Gi+1,j+1/2 −Gi,j+1/2

�xi+1/2
+

Hi+1/2,j+1 −Hi+1/2,j

�yj+1/2
= 0,

(8)

U = [h, uh, vh]
T, G = [hu, hu2 + g(H2 − 2bH)/2, hvu]

T
,

H = [hv, huv, hv2 + g(H2 − 2bH)/2]
T
.

где U — вектор консервативных величин, G и H — векторы потоков, относящие-

ся к поперечным и продольным граням соответственно. Верхний индекс обозна-

чает номер временного слоя, а нижний — пространственное положение. Чертой

сверху обозначается осреднение по двум временным слоям η = (ηn+1 + ηn)/2.

Разностная схема (8) обладает вторым порядком аппроксимации как по време-

ни, так и по пространству на неравномерных расчетных сетках [6, 7, 12].

Один временной шаг схемы КАБАРЕ состоит из трех фаз. На первой фа-

зе алгоритма вычисляются значения консервативных переменных на n + 1/2

временном слое. Во второй фазе с использованием значений промежуточных
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консервативных величин и характеристической формы записи исходных диф-

ференциальных уравнений вычисляются значения потоковых переменных на

n + 1 временном слое. В третьей фазе по найденным на предыдущих шагах

значениям консервативных и потоковых величин вычисляются значения кон-

сервативных переменных на n + 1 временном слое. При заданных начальных

и граничных условиях по известным значениям консервативных и потоковых

переменных на временном слое n однозначно определяются значения всех кон-

сервативных и потоковых переменных на слое n+1, после чего цикл, состоящий

из трех описанных фаз, повторяется. Шаг по времени определяется из условия

устойчивости Куранта — Фридрихса — Леви:

τn+1/2 = CFLmin
i,j

(
�xi+1/2/

(∣∣uni+1/2,j+1/2

∣∣+ cni+1/2,j+1/2

)
,

�yj+1/2/
(∣∣vni+1/2,j+1/2

∣∣+ cni+1/2,j+1/2

)
)

(9)

Все расчеты в работе приводятся при числе Куранта CFL = 0.3.

Рассмотрим алгоритм более подробно. Дискретизация уравнений (3) без

учета силы трения в первой фазе (шаг предиктор) алгоритма имеет вид

U
n+1/2
i+1/2,j+1/2 −Un

i+1/2,j+1/2

τn+1/2/2

+
Gn
i+1,j+1/2 −Gn

i,j+1/2

�xi+1/2
+

Hn
i+1/2,j+1 −Hn

i+1/2,j

�yj+1/2
= 0. (10)

Из выражения (10) получаются значения консервативных величин на полуце-

лом временном слое.

Во второй фазе используется характеристическая форма записи (4) исход-

ных уравнений (1). Рассмотрим алгоритм нахождения потоковых переменных

на новом временном слое по одному из направлений (вдоль оси x). Вдоль друго-

го направления алгоритм является полностью симметричным. Локальные ин-

варианты Римана определяются как для потоковых, так и консервативных пе-

ременных. Будем использовать гидростатическую реконструкцию для глубины

потока [13] при записи инвариантов для обеспечения свойства хорошей сбалан-

сированности. В этом случае инварианты на используемом сеточном шаблоне

(рис. 1) определяются так:

(
Ix1
)n
q

= unq + 2

√
g
(
h̃nq
)
,
(
Ix2
)n
q

= unq − 2

√
g
(
h̃nq
)
,
(
Ix3
)n
q

= vnq ,

(
Ix1
)n+1/2

m
= un+1/2

m + 2

√
g
(
h̃
n+1/2
m

)
,
(
Ix2
)n+1/2

m
= un+1/2

m − 2

√
g
(
h̃
n+1/2
m

)
,

(
Ix3
)n+1/2

m
= vn+1/2

m , h̃nq = hnq − (b0 − bq), q = −2,−1, 0, 1, 2, m = −1, 1.
(11)

Здесь индексы q иm определяют пространственное распределение вычисляемых

величин на сеточном шаблоне согласно рис. 1.

Далее производится линейная экстраполяция инвариантов на новый вре-

менной слой. Экстраполяция проводится из обеих ячеек, прилегающих к грани:

(
Ixk
)n+1

0− = 2
(
Ixk
)n+1/2

−1
−
(
Ixk
)n
−2
,
(
Ixk
)n+1

0+
= 2
(
Ixk
)n+1/2

1
−
(
Ixk
)n
2
, k = 1, 2, 3. (12)
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n+1

n

n+1/2
L R

(2)
i-1/2 i i+1/2 i+1i-1

(-2) (-1) (0) (1)

Рис. 1. Сеточный шаблон для вычисления потоковых переменных.

Нижние индексы определяют пространственное распределение вычисляемых

величин. Добавочные индексы + и − говорят о том, с какой стороны приходят

соответствующие инварианты, в данном случае справа и слева соответственно

(см. рис. 1). Затем производится нелинейная коррекция вычисленных инвари-

антов по принципу максимума:

m− ≤
(
Ixk
)n+1

0− ≤M−, m+ ≤
(
Ixk
)n+1

0+
≤M+, k = 1, 2, 3, (13)

где максимальные и минимальные значения определяются так:

m− = min
{(
Ixk
)n
−2
,
(
Ixk
)n
−1
,
(
Ixk
)n
0−
}

+ τn+1/2G−k ,

M− = max
{(
Ixk
)n
−2
,
(
Ixk
)n
−1
,
(
Ixk
)n
0−
}

+ τn+1/2G−k ,

m+ = min
{(
Ixk
)n
2
,
(
Ixk
)n
1
,
(
Ixk
)n
0+

}
+ τn+1/2G+

k ,

M+ = max
{(
Ixk
)n
2
,
(
Ixk
)n
1
,
(
Ixk
)n
0+

}
+ τn+1/2G+

k ,

k = 1, 2, 3.

(14)

Здесь Gk, k = 1, 2, 3, — правые части уравнений в (4). Верхние индексы +

и − обозначают, из какой ячейки берутся данные величины — из правой или

левой (согласно сеточному шаблону на рис. 1). Для их оценки используется

следующая разностная аппроксимация:

〈
G−k
〉n+1/2

−1
=

(
Ixk
)n+1/2

−1
−
(
Ixk
)n
−1

τn+1/2/2
+
(
λxk
)n+1/2

−1

(
Ixk
)n
0− −

(
Ixk
)n
−2

�x−1
,

〈
G+
k

〉n+1/2

1
=

(
Ixk
)n+1/2

1
−
(
Ixk
)n
1

τn+1/2/2
+
(
λxk
)n+1/2

1

(
Ixk
)n
2
−
(
Ixk
)n
0+

�x1
.

(15)

Здесь нижние индексы также определяют пространственное распределение вы-

числяемых величин согласно сеточному шаблону (см. рис. 1).

Локальные инварианты Римана на новом временном слое определяются

следующим образом:

если [λxk]
n+1/2
−1 + [λxk ]

n+1/2
1 > 0, то

(
Ixk
)n+1

0
=
(
Ixk
)n+1

0− ,

иначе
(
Ixk
)n+1

0
=
(
Ixk
)n+1

0+
, k = 1, 2, 3. (16)
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Потоковые значения глубины и скорости на новом временном слое нахо-

дятся из полученных инвариантов:

hn+1
0 =

1

g

(
1

4

((
Ix1
)n+1

0
−
(
Ix2
)n+1

0

))2

,

un+1
0 =

1

2

((
Ix1
)n+1

0
+
(
Ix2
)n+1

0

)
, vn+1

0 =
(
Ix3
)n+1

0
.

(17)

В области транскритического перехода (случай так называемых звуковых

точек) выполняется [λx1 ]
n+1/2
−1 · [λx1 ]

n+1/2
1 < 0 или [λx2 ]

n+1/2
−1 · [λx2 ]

n+1/2
1 < 0, т. е.

собственные значения справа и слева имеют разные знаки. В данном случае

используется гибридный подход — значения потоковых переменных на новом

временном слое находятся из решения задачи о распаде разрыва аналогично

тому, как это делается в методах типа Годунова [1]. Начальные данные для

задачи распада разрыва глубины и скорости потока U = [u, h]
T

слева и справа

от грани (индексы − и + соответственно) находятся из линейной реконструк-

ции глубины и скорости потока в ячейках слева и справа с использованием

реконструкции-ограничителя minmod [1]:

Uni,− = Uni−1/2 + 0.5q−�xi−1/2,

Uni,+ = Uni+1/2 − 0.5q+�xi+1/2,

q− = 0.5 · (sign(a) + sign(b)) ·min(|a|, |b|),
a = (Ui+1/2 − Ui−1/2)/(0.5 · (�xi+1/2 +�xi−1/2)),

b = (Ui−1/2 − Ui−3/2)/(0.5 · (�xi−1/2 +�xi−3/2)),

q+ = 0.5 · (sign(c) + sign(d)) ·min(|c|, |d|),
c = (Ui+3/2 − Ui+1/2)/(0.5 · (�xi+3/2 +�xi+1/2)),

d = (Ui+1/2 − Ui−1/2)/(0.5 · (�xi+1/2 +�xi−1/2)).

(18)

Направление распространения инварианта Ix3 определяется по знаку про-

дольной компоненты скорости u, полученной в ходе решения задачи Римана на

данной границе.

Третья фаза (шаг корректор) аналогична первой, по вычисленным на преды-

дущих этапах значениям консервативных и потоковых величин определяются

значения консервативных переменных на (n+ 1)-м временном слое:

Un+1
i+1/2,j+1/2 −U

n+1/2
i+1/2,j+1/2

τn+1/2/2
+

Gn+1
i+1,j+1/2 −Gn+1

i,j+1/2

�xi+1/2

+
Hn+1
i+1/2,j+1 −Hn+1

i+1/2,j

�yj+1/2
= 0. (19)

3.2. Учет трения о дно. Методом расщепления по процессам скор-

ректированные значения консервативных переменных с учетом силы трения

вычисляются так:

Un+1 =

[
hn+1,

(hu)
n+1

1 + τs
,
(hv)n+1

1 + τs

]T
, s = gn2(hn+1)

−4/3
√

(un+1)
2
+ (vn+1)

2
.

(20)
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3.3. Граничные условия. Схема допускает задание ряда физически зна-

чимых граничных условий таких, как вход, выход, стенка с проскальзывани-

ем, стенка с прилипанием, периодические граничные условия. Реализация всех

типов граничных условий в рамках схемы КАБАРЕ объединена общим подхо-

дом — дополнением приграничных граней недостающими значениями инвари-

антов с дальнейшим вычислением потоковых величин по общему алгоритму во

второй фазе. Отличие всех граничных условий сводится к способу дополнения

недостающих значений инвариантов [7, с. 196–202].

3.4. Алгоритм учета динамических границ вода/сухое дно. Во

многих практических задачах важным является определение уреза воды — ли-

нии пересечения водной поверхности бассейна реки или водоема с поверхностью

суши. Данная граница может резко меняться во времени, например, при на-

воднении, в частности при паводковых процессах. Таким образом, значимым

дополнением вычислительного метода является учет динамических границ во-

да/сухое дно. В работе за основу взят робастный алгоритм, подробно описан-

ный в [2]. Критерий минимальной глубины применяется для классификации

следующих четырех типов граней:

(1) «сухая» грань — в соседних ячейках выполняется условие hL ≤ ε, hR ≤ ε

(рис. 2(а));

(2) «водная» грань — hL > ε, hR > ε (рис. 2(б));

(3) «частично смоченная» грань без потока, например, hL > ε, hR ≤ ε, HL ≤
HR (рис. 2(в));

(4) «частично смоченная» грань c потоком, например hL > ε, hR ≤ ε, HL > HR

(рис. 2(г)).

Исходя из данных типов граней, ячейки делятся на три типа:

(1) «водная» ячейка — грани ячейки принадлежат типу 2 или 4;

(2) «сухая» ячейка — грани ячейки принадлежат типу 1 или 3;

(3) «частично смоченная» ячейка — все остальные случаи.

«Сухие» ячейки исключаются из расчета, «водные» рассчитываются по ба-

зовому алгоритму, в «частично смоченных» ячейках учитывается только поток

массы. В численных расчетах, представленных в данной работе, параметр ε

выбирается равным 10−6 м.

3.5. Выводы. В данном разделе был представлен вычислительный ал-

горитм для моделирования различных задач на основе уравнений мелкой во-

ды. Основой численной методики является балансно-характеристическая схема

КАБАРЕ. Алгоритм позволяет рассчитывать как докритические, так и сверх-

критические режимы течения, равно как и транскритические переходы. Для

решения проблемы звуковых точек (транскритических переходов) используется

гибридный подход на основе решения локальной задачи Римана. Существен-

ным дополнением вычислительного алгоритма является возможность учета ди-

намических границ вода/сухое дно на неоднородном рельефе дна, что является

определяющим для многих практически значимых задач. Добавлен алгоритм
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Рис. 2. Схематическое изображение границ раздела вода/сухое дно.

учета трения о дно. Представлен вариант учета условия хорошей сбалансиро-

ванности схемы.

В следующем разделе проводится апробация вычислительного алгоритма

на различных верификационных тестах, а также валидационной задаче о раз-

рушении плотины.

4. Результаты моделирования

Для верификации предложенного численного метода рассматривается ряд

тестов, имеющих точное решение. Данные тесты включены в набор задач по

аналитическим решениям [4] для верификации численных методик, основанных

на приближении мелкой воды. Во всех тестах для оценки точности получаемых

численных решений для невязки используется сеточный аналог нормы в L2:

‖r‖L2 =

(
N∑
i=1

r2i�x

)1/2

.

4.1. Вода в состоянии покоя на неровном рельефе дна. В дан-

ном тесте проверяется свойство хорошей сбалансированности схемы. Хоро-

шо сбалансированные схемы должны удовлетворять условию отсутствия по-

явления нефизичных перемещений воды над неровным дном из-за дискрети-

зации исходных дифференциальных уравнений в частных производных. Рас-

сматривается стационарная задача стоячей воды с неровным дном и грани-

цами раздела вода/сухое дно [14]. Расчетная область представляет собой за-

крытый квадратный бассейн размером 1 м × 1 м. В центре бассейна располо-

жен симметричный холм, поверхность которого задается формулой b(x, y) =

max[0, 0.25− 4.8((x− 0.5)
2

+ (y − 0.5)
2
)]. Трение о дно отсутствует, начальный
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уровень в канале задается равным H = 0.2 м, u = v = 0 м/c. Расчетное вре-

мя задачи составляет t = 60 c. Расчеты проводились на равномерных сетках

с количеством ячеек Nx × Ny = 25 × 25 и 50 × 50. Топография дна и уровень

поверхности воды на начальный момент времени представлены на рис. 3.

Рис. 3. Топография дна и уровень поверхности воды на начальный момент вре-
мени.

Полученные значения невязки в норме L2 для глубины воды h и величин hu,

hv представлены в табл. 1. Видно, что метод хорошо сохраняет стационарное

решение.
Таблица 1. Невязки h, hu и hv в норме L2.

Задача о покоящейся воде на неровном рельефе дна

Nx ×Ny L2(h) L2(hu) L2(hv)

25× 25 6.71× 10−13 7.92× 10−15 7.92× 10−15

50× 50 4.81× 10−13 4.96× 10−15 4.96× 10−15

4.2. Задача Римана на горизонтальном дне. Рассматриваются клас-

сические одномерные тесты о распаде произвольного разрыва на горизонталь-

ном дне, предложенные в работе [15], в квазидвумерной постановке. Начальные

условия для тестов представлены в табл. 2, где hL, uL, hR и uR — начальные

значения глубины и скорости слева и справа от разрыва соответственно, X0 —

положение разрыва, tout — расчетное время. Длина расчетной области L = 50 м.

Расчет проводится на двух сетках с количеством ячеек Nx = 500 и 1000 по оси x.

На рис. 4 представлены результаты расчета на подробной сетке (Nx =

1000). Численный метод дает хорошее совпадение с аналитическими решения-

ми. В первом тесте размытие скачка происходит на 2–3 ячейки, что говорит о

том, что скачок разрешается достаточно точно. Полученные значения невязки

в норме L2 для глубины воды h для данных тестов на разных сетках представ-

лены в табл. 3. Если говорить о порядке сходимости, то схема обеспечивает



102 Д. Г. Асфандияров, О. С. Сороковикова

Таблица 2. Данные тестовых задач
о распаде произвольного разрыва

N X0(m) hL(m) uL(m/s) hR(m) uR(m/s) tout(s)

1 10 1.0 2.5 0.1 0.0 7.0

2 25 1.0 -5.0 1.0 5.0 2.5

3 20 1.0 0.0 0.0 0.0 4.0

Таблица 3. Невязка h в норме L2.
Тесты о распаде произвольного разрыва

N L2(h), Nx = 500 L2(h), Nx = 1000

1 1.81× 10−1 9.61× 10−2

2 5.70× 10−2 3.37× 10−2

3 1.98× 10−2 1.06× 10−2

второй порядок только на гладких решениях. В данном случае решения не

являются всюду гладкими (равно как и в остальных тестах), и в областях с

большими градиентами моделируемых величин по теореме Годунова [1] могут

возникать немонотонные осцилляции, поэтому в данных областях срабатывает

ограничитель (13), который локально понижает порядок до первого. Исследо-

вание на порядок сходимости схемы КАБАРЕ на гладких решениях подробно

представлено в статьях [6, 16].

4.3. Тесты с обтеканием препятствия. Рассматриваются одномер-

ные тесты в квазидвумерной постановке с обтеканием препятствия при различ-

ных режимах течения, представленные в [4]. Препятствие имеет вид парабо-

лического холма, поверхность которого задается формулой b(x) = max[0, 0.2 −
0.05(x− 10)

2
]. Длина канала L = 25 м, трение о дно отсутствует. Как и во всех

остальных одномерных тестовых примерах, размеры области по направлению

y определяют только задаваемый расход и не влияют на результаты моделиро-

вания, равно как и количество ячеек по данному направлению. Начальные и

граничные условия для тестов задаются следующим образом.

1. Докритический поток. Начальные условия: h0 + b = 2 м и u0 = v0 =

0 м/c. В качестве граничных условий вверх по течению задается постоянный

расход q = hLuL = 4.42 м2/с (в 2D постановке hL(q) и соответственно uL на-

ходятся из аналитического решения), вниз по течению фиксируется глубина

потока hR = 2 м.

2. Транскритический поток без скачка. Начальные условия h0 + b = 0.66 м

и u0 = v0 = 0 м/c. Граничные условия: вверх по течению q = hLuL = 1.53 м2/с

(hL и uL определяются как и в предыдущем случае), вниз по течению фикси-

руется глубина потока hR = 0.66 м пока поток докритический, затем устанав-
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Рис. 4. Задача о распаде разрыва. Уровень поверхности воды: 1 — точное реше-
ние, 2 — численное решение.
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ливаются граничные условия на свободный выход.

3. Транскритический поток со скачком. Начальные условия h0 + b = 0.33 м

и u0 = v0 = 0 м/c. Граничные условия: вверх по течению q = hLuL = 0.18 м2/с

(hL и uL находятся аналогично предыдущим двум случаям), вниз по течению

hR = 0.33 м.

Расчеты проводятся на двух сетках с количеством ячеек Nx = 500 и 1000

по оси x. Для построения аналитических решений используется сетка с коли-

чеством ячеек Nx = 5000. Результаты расчета на подробной сетке (Nx = 1000)

представлены на рис. 5, где для каждого из тестов также показана критическая

высота hc = (q/
√
g)2/3 для определения области докритического и сверхкрити-

ческого потока. Результаты расчетов показывают очень хорошее совпадение с

аналитическими решениями. В случае транскритического перехода со скачком

скачок разрешается точно (рис. 5(г) — значения представлены во всех расчет-

ных узлах). Для сравнения, выполнение данного теста в работе [4] приводит к

размытию скачка на 4 ячейки. Полученные значения невязки в норме L2 для

глубины потока h для данных тестов на разных сетках представлены в табл. 4.

Таблица 4. Невязка h в норме L2.
Тесты с обтеканием препятствия

N L2(h), Nx = 500 L2(h), Nx = 1000

1 1.92× 10−4 6.69× 10−5

2 5.71× 10−4 1.99× 10−4

3 8.57× 10−4 1.53× 10−4

4.4. Тесты в каналах при наличии трения. Рассматриваются два те-

ста из серии одномерных задач установившегося течения в открытых каналах

при наличии трения, широко представленных в [4, 5]. Особенность построе-

ния решения в этих задачах заключается в нахождении при заданном расходе

воды в канале и высоты столба жидкости h(x) в установившемся течении релье-

фа дна, которому это течение будет соответствовать. В установившемся тече-

нии с учетом параметризации гидравлического трения по формуле Маннинга —

Штриклера (2) уклон дна определяется из системы уравнений (1) как

S0(x) = −∂xb =

(
1− (Rx+ q)

2

gh(x)
3

)
h′(x) +

2(Rx+ q)R

gh(x)
2 +

(Rx+ q)
2
n2

h(x)
10/3

. (21)

Здесь q = hu — задаваемый расход, м2/с. Сам уровень подстилающей поверх-

ности b(x) можно получить численно, например, используя равномерную сетку

с шагом �x = L/N и соотношение bi+1 = bi + �x∂xb, i = 0, . . . , N , b0 = b(L),

где L — длина расчетной области, N — количество ячеек сетки. Затем на по-

лученном рельефе дна воспроизводится модельное значение глубины потока.
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Рис. 5. Тесты с обтеканием препятствия. 1 — топография дна, 2 — аналитическое
решение, 3 — критическая высота, 4 — численное решение.

Тест 1. Рассматривается канал длиной L = 5000 м. Поток на входе и

на выходе докритический. Глубина воды в установившемся состоянии зада-

ется функцией hex(x) = 1.125 + 0.25 sin(πx/500). Начальные условия: h(x) =

max(0, hex(5000)+b(5000)−b(x)), u0 = v0 = 0 м/c. Граничные условия: вверх по

течению q = hLuL = 2 м2/с, где hL = hex(0), вниз по течению hR = hex(5000).

Коэффициент шероховатости дна по Маннингу n = 0.03 м−1/3с, интенсивность

осадков R = 0 м/с. Расчет проводится на двух сетках с количеством ячеек

Nx = 5000 и 10000 вдоль оси x. Для построения аналитического решения ис-

пользуется сетка с количеством ячеек Nx = 20000.

Тест 2. Рассматривается канал, течение в котором в установившемся со-

стоянии является всюду докритическим. Длина канала L = 1000 м. Глубина

воды в установившемся состоянии задается функцией

hex(x) = (4/g)
1/3

(1 + 0.5 exp(−16(0.001x− 0.5)
2
)).

Начальные условия: h(x) = 0 м, u0 = v0 = 0 м/с. Граничные условия: вверх по



106 Д. Г. Асфандияров, О. С. Сороковикова

X ( )

H
 (

)

0 1000 2000 3000 4000 5000
0

2

4

6

8

10

12

14

16

18

X ( )
H

 (
)

0 200 400 600 800 1000
0

2

4

6

8

10

12

14

(а) глубина воды — периодическая (б) тест при наличии осадков

функция в пространстве

Рис. 6. Тесты в каналах при наличии трения: 1 — топография дна, 2 — аналити-
ческое решение, 3 — численное решение.

течению q = hLuL = 2 м2/с, где hL = hex(0), вниз по течению hR = hex(1000).

Коэффициент шероховатости дна по Маннингу n = 0.033 м−1/3с, интенсивность

осадков R = 0.001 м/c. Расчет проводится на двух сетках с количеством яче-

ек Nx = 1000 и 2000 вдоль оси x. Для построения аналитического решения

используется сетка с количеством ячеек Nx = 4000.

Результаты расчета на подробных сетках для двух тестов представлены на

рис. 6. Результаты расчетов показывают хорошее совпадение с аналитическими

решениями. Метод хорошо справляется с границами раздела вода/сухое дно на

неровной поверхности и при наличии трения. Полученные значения невязки в

норме L2 для глубины потока h для данных тестов на разных сетках представ-

лены в табл. 5.
Таблица 5. Невязка h в норме L2.

Тесты в каналах при наличии трения

N L2(h), Nx = 1000 L2(h), Nx = 2000 L2(h), Nx = 5000 L2(h), Nx = 10000

1 — — 1.07× 100 1.07× 100

2 4.61× 10−1 4.60× 10−1 — —

4.5. Задача о разрушении двумерной плотины. Рассматривается ва-

лидационная задача о прорыве плотины [11]. Расчетная область представляет

собой прямоугольник размером 3 м× 2 м. Слева находится резервуар размером

1 м × 2 м с непротекаемыми стенками. На правой границе резервуара имеется

тонкая перегородка с симметричным относительно оси абсцисс отверстием ши-

риной 0,40 м (рис. 7(а)). В начальный момент времени отверстие в перегородке

закрыто и вся жидкость располагается слева от нее. Все условия проведенного
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Рис. 7. Задача о разрушении двумерной плотины.

численного эксперимента взяты в соответствии с условиями лабораторного и

численного экспериментов, представленных в [11]. Глубина воды в резервуаре

в начальный момент времени равна 0.6 м, уклон дна составляет 0%. Трение о

дно не учитывается. Количество ячеек расчетной сетки Nx × Ny = 150 × 50.

Расчетное время составляет 10 с.

Динамика глубины и скорости потока замеряется в контрольных точках,

расположение которых показано на рис. 7(a). На рис. 7(b) приведена 3D-визуа-

лизация моделируемого течения (глубины потока) на момент времени t = 0.837 с.

Результаты расчета в контрольных точках глубины (точки P0, P1, P2, P3)

и продольной компоненты скорости потока (точки P0 и P4) представлены на

рис. 8. Также приводится сравнение с результатами лабораторного экспери-

мента и расчета по авторской численной методике на основе WAF-метода [11].

Экспериментальные данные для продольной компоненты скорости представле-

ны осредненными по глубине.

Результаты расчета по предложенному методу и авторской численной мето-

дике хорошо согласуются между собой. Расчетные профили глубины и продоль-

ной компоненты скорости в различных точках показывают хорошую асимпто-

тику с ростом времени относительно результатов лабораторного эксперимента.

В начальные моменты времени различие существенно, что говорит о том, что

моделирование на основе приближения уравнений мелкой воды не позволяет

учитывать сложные турбулентные процессы, возникающие в момент проры-

ва [11].

5. Заключение

В работе представлен численный метод на основе модифицированной схемы

КАБАРЕ для моделирования нестационарных течений в приближении мелкой
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[11].
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воды.

Особое внимание уделяется практической составляющей метода. Построен-

ный алгоритм удовлетворяет требованию хорошей сбалансированности и позво-

ляет рассчитывать динамические границы, разделяющие жидкость и сухое дно,

на неоднородном рельефе дна. Также учитывается возможность моделирова-

ния при учете гидравлического трения и осадков.

Проведена верификация метода на различных задачах, допускающих точ-

ное решение. Рассмотренные задачи являются частью специальных наборов

тестов для проверки точности и качества моделирования разрабатываемых чис-

ленных методик, основанных на приближении мелкой воды. Также была рас-

смотрена классическая валидационная задача о разрушении плотины, реализу-

ющая существенно двумерное течение с распространением по сухому дну. Про-

ведено сравнение с данными эксперимента и авторской численной методики.

Результаты моделирования показывают, что разработанный метод работа-

ет надежно в широком диапазоне параметров течения, в том числе с режимами

обострения, что особенно важно при решении задач гиперболического типа. Не

приводит к появлению нефизических осцилляций в зоне больших градиентов

моделируемых величин и искажению амплитуд перепадов в этих зонах. В том

числе в проведенных тестах гидравлический скачок разрешается очень точно,

размытие происходит не более чем на три расчетные ячейки. Все представлен-

ные результаты рассчитаны с использованием полного двумерного кода. Ес-

ли аналитическое решение даже одномерное, то течение считается двумерным

симметричным. Это дополнительная проверка надежности алгоритма на от-

сутствие дефектов, связанных с фазовыми и амплитудными ошибками.
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Х Международная конференция по математическому моделированию,

посвященная 30-летию Академии наук Республики Саха (Якутия)

(16–20 июля 2023 г.)

Х Международная конференция по математическому моделированию, по-

священная 30-летию Академии наук Республики Саха (Якутия) и памяти пер-

вого президента АН РС(Я), чл.-корр. РАН Василия Васильевича Филиппо-

ва, была организована Академией наук Республики Саха (Якутия), Северо-

Восточным федеральным университетом им. М. К. Аммосова, Институтом при-

кладной математики им. М. В. Келдыша РАН (Москва), Институтом математи-

ки им. С. Л. Соболева СО РАН (Новосибирск) и Институтом вычислительной

математики и математической геофизики СО РАН (Новосибирск).

Программа конференции включала следующие направления:

неклассические задачи уравнений математической физики;

современные вычислительные методы и технологии;

математическое моделирование в науке и технике;

физико-технические проблемы в Арктике и Субарктике.

Конференция проходила в г. Якутске с 16 по 20 июля 2023 г. при под-

держке Северо-Восточного федерального университета имени М. К. Аммосова,

Академии наук Республики Саха (Якутия), Математического центра мирового

уровня «Математический центр в Академгородке», Якутского отделения Регио-

нального научно-образовательного математического центра «Дальневосточный

центр математических исследований».

Всего в конференции приняли участие более 150 человек, в том числе ве-

дущие ученые из России, Китая, Казахстана и Узбекистана. Среди участников

6 академиков и 8 член-корреспондентов Российской академии наук, 49 докторов

и 55 кандидатов наук. В работе конференции также приняли активное участие

студенты, аспиранты, молодые ученые республики.

За время работы конференции было заслушано 20 пленарных и 134 секци-

онных докладов, в которых был охвачен широкий круг вопросов, связанных с

применением методов математического моделирования и современных вычис-

лительных технологий при решении актуальных прикладных задач развития

Арктики и Субарктики, а также современных проблем математики и механи-

ки.

Следует отметить высокий уровень представленных докладов, а также ак-

туальность тематики и новизну доложенных результатов, положенных в их ос-

нову. Тематика докладов была связана с исследованиям корректности неклас-

сических задач математической физики, развитием подходов математическо-

го моделирования, проблемами численного решения прямых и обратных задач,

функциональными возможностям технологий машинного обучения, искусствен-

ного интеллекта и больших данных, параллельным вычислительными техноло-

гиями, междисциплинарными исследованиями с применением вычислительных
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технологий, а также актуальными физико-техническими проблемами Арктики

и северных территорий страны.

Помимо приглашенных докладов, работа конференции проводилась по сек-

циям:

«Неклассические задачи уравнений математической физики»,

«Современные вычислительные методы и технологии»,

«Математическое моделирование в науке и технике»,

«Физико-технические проблемы в Арктике и Субарктике, посвященные па-

мяти первого президента АН РС(Я), чл.-корр. РАН Василия Васильевича Фи-

липпова».

Разделение конференции на секции позволило более полно и точно охва-

тить различные научные области и специализации, а также удовлетворить ин-

тересы участников с разными научными направлениями. Каждая секция была

сосредоточена на конкретной тематике и предоставляла площадку для обмена

знаниями, представления научных исследований и дискуссий.

В рамках Конференции были проведены сопутствующие мероприятия:

встречи с представителями власти и компаний реального сектора экономики

и руководством университета; освещение конференции через средства массовой

информации; круглый стол участников конференции. Участники конференции

признали приоритетными следующие направления научных исследований в об-

ласти прикладной математики.

• Разработка и реализация математических методов для решения неклас-

сических задач математической физики. Оно включает в себя исследование

физических явлений, которые не могут быть полностью описаны классически-

ми уравнениями, и разработку специализированных математических подходов

для их моделирования.

• Дальнейшая разработка и реализация математических методов модели-

рования, решения прямых и обратных задач, технологий больших данных и

искусственного интеллекта.

• Интеграция результатов научных исследований в экономику региона и

страны, в частности, в рамках кооперации академического сообщества, компа-

ний реального сектора экономики и правительственных структур.

• Активизация работ по решению актуальных задач Севера и Арктики,

в том числе, с использованием технологий больших данных и искусственного

интеллекта.

К началу конференции был опубликован сборник тезисов докладов, кото-

рый индексирован в РИНЦ. В докладах были освещены научные результаты,

полученные в области математического моделирования природных и технологи-

ческих процессов, в теории краевых задач для неклассических уравнений мате-

матической физики, в области неклассических задач механики деформируемого

твердого тела, в теории оптимального управления, в теории игр среднего поля

и др.

Оргкомитетом подписан договор с издательством AIP Publishing на из-

дание сборника трудов X Международной конференции по математическому

моделированию в выпуске серии книг Американского института физики AIP

Conference Proceedings. Сборник трудов будет индексирован в реферативно-

библиографических и наукометрических базах данных Web of Science и

SCOPUS.
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По результатам работы конференции 100 докладов рекомендованы для пред-

ставления статей на рецензирование с целью опубликования в сборнике трудов

конференции (AIP Conference Proceedings), 20 докладов рекомендованы для

представления статей в научный журнал «Математические заметки СВФУ»,

входящий в БД SCOPUS.

Участники X Международной конференции по математическому модели-

рованию приняли следующее решение:

1) одобрить деятельность программного и организационного комитетов, по

организации и проведению конференции на высоком научно-организационном

уровне;

2) учитывая актуальность тематики научных исследований конференции,

организовать и провести XI Международную конференцию по математическому

моделированию в 2026 г. на базе СВФУ и АН РС(Я).



Григорьев Юрий Михайлович (18.07.1959–22.09.2023)

22 августа 2023 г. на 65-м году ушел из жизни известный ученый в области

механики, математического моделирования природных и техногенных процес-

сов, действительный член Академии наук РС(Я), доктор физико-математиче-

ских наук Юрий Михайлович Григорьев. Ю. М. Григорьев родился 18 июля

1959 г. в п. Нюрба Ленинского района Якутской АССР. После окончания в

1981 г. физического факультета Якутского государственного университета он

проходил стажировку и обучение в аспирантуре механико-математического фа-

культета Новосибирского государственного университета, которые завершились

защитой кандидатской диссертации в 1985 г. в Институте гидродинамики им.

М. А. Лаврентьева СО РАН. В 2000 г. он защитил докторскую диссертацию в

Институте вычислительной математики и математической геофизики СО РАН

на тему «Методы решения задач моделирования деформаций тел и электромаг-

нитной совместимости».

Ю. М. Григорьевым разработана теория кватернионных функций как но-

вый математический аппарат моделирования трехмерных задач математиче-

ской физики, показана эффективность метода кватернионных функций при ре-

шении ряда задач в теории упругости. Трудно переоценить вклад Ю. М. Григо-

рьева в развитие науки и укрепление высшей школы в Республике Саха (Яку-

тия). Он автор около 300 научных работ. Под его руководством выполнены ряд

федеральных и международных грантов и проектов, защищены 3 кандидатские

диссертации.

Юрий Михайлович уделял большое внимание проведению и организации

олимпиад школьников и вовлечению их в научные исследования в республике.

О научном авторитете Ю. М. Григорьева свидетельствует его членство в

ряде российских и международных научных советов, комитетов, диссертаци-

онных советов. Большая работа проведена Ю. М. Григорьевым в должности

заместителя ректора по международной научно-технической деятельности СВ-

ФУ. Как член Академии наук РС(Я) он выполнял обязанности главного ученого

секретаря, председателя ОУС по физико-техническим наукам, члена редколле-

гии ряда научных журналов.

Научные достижения Ю. М. Григорьева удостоены высоких званий и на-

град: «Заслуженный деятель науки РС(Я)», «Отличник образования РС(Я)»,

«Почетный работник высшего профессионального образования РФ» и др.

К глубокому сожалению, тяжелая болезнь унесла из наших рядов энер-

гичного, полного новых планов и задумок, сильного, незаурядного человека,

ученого, организатора науки и высшей школы. Светлая память о Юрии Ми-

хайловиче Григорьеве сохранится в сердцах его коллег и учеников.

Президиум АН РС (Я),
Редколлегия журнала «Математические заметки СВФУ»



Памяти Николая Андреевича Ларькина

30 августа 2023 г. ушел из жизни наш друг, коллега и прекрасный мате-

матик Николай Андреевич Ларькин. Нас связывали долгие годы совместной

работы, общие научные интересы, участие в конференциях и семинарах.

Научные интересы Николая Андреевича Ларькина были сосредоточены в

области, связанной с разрешимостью краевых задач для дифференциальных

уравнений математической физики. Им были получены яркие результаты о

разрешимости краевых задач для нелинейных уравнений третьего порядка, для

аналогов уравнения Кортвега — де Фриза в нецилиндрических областях, для

уравнений Курамото — Сивашинского — Захарова — Кузнецова, Бенни — Лина,

для многомерных аналогов системы Навье — Стокса.

Много лет Николай Андреевич работал в составе Программного комитета

Международных конференций, проводимых в Якутске, и мы постоянно обсуж-

дали с ним программу конференций, тематику докладов, приглашение гостей.

Последние годы Николай Андреевич работал в Бразилии, в г. Маринга.

Несмотря на большое расстояние между нами, наше сотрудничество не прекра-

щалось. Взаимные визиты в Россию и Бразилию, обсуждение новых результа-

тов, нерешенных задач и, наконец, совместные публикации — все это было до

последних дней его жизни.

Светлая память о Николае Андреевиче Ларькине будет всегда в наших

сердцах. Нам его будет не хватать.

А.И. Кожанов, И.Е. Егоров, С.В. Попов, С.Г. Пятков
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