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ФАЗОВЫЕ ПОРТРЕТЫ ДВУХ НЕЛИНЕЙНЫХ

МОДЕЛЕЙ КОЛЬЦЕВЫХ ГЕННЫХ СЕТЕЙ

Н. Б. Аюпова, В. П. Голубятников

Аннотация. Для двух динамических систем кинетического типа, четырехмерной и
пятимерной, моделирующих кольцевые генные сети с нелинейной деградацией ком-
понент, получены условия существования периодических траекторий и построены
инвариантные области, содержащие все такие траектории. Внутренность каждой
из этих областей гомеоморфна тору и содержит на своей границе единственную
стационарную точку соответствующей динамической системы.

DOI: 10.25587/SVFU.2023.54.12.001

Ключевые слова: модели кольцевых генных сетей, фазовые портреты нелиней-
ных динамических систем, стационарные точки, инвариантные области, периоди-
ческие траектории.

Введение

В соответствии с общими принципами построения моделей генных сетей

мы рассматриваем нелинейные динамические системы относительно вектор-

функции X = X(t) с неотрицательными координатами xj(t), которые описы-

вают концентрации взаимодействующих между собой компонент генной сети

посредством положительных и отрицательных регуляторных связей (см. [1–4]).

Уравнения в таких системах имеют кинетический тип, в них положительные

связи описываются монотонно возрастающими гладкими функциями, а отри-

цательные — монотонно убывающими гладкими функциями. Основная наша

задача состоит в нахождении условий существования периодических режимов

функционирования моделируемых генных сетей.

1. Математические модели

Рассматривается четырехмерная динамическая система, моделирующая

функционирование кольцевой генной сети:

dx1

dt
= G1(x4)− �1(x1),

dx2

dt
= γ2(x1)− �2(x2),

dx3

dt
= γ3(x2)− �3(x3),

dx4

dt
= γ4(x3)− �4(x4).

(1)

Работа выполнена в рамках Государственного задания ИМ СО РАН, проект FWNF-2022-
0009.
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Во всех уравнениях положительные слагаемые описывают скорости синтеза ве-

ществ, участвующих в реакциях, а вычитаемые — скорости их разложения;

неотрицательные переменные xj обозначают концентрации этих веществ. Ско-

рости их разложения описываются монотонно возрастающими гладкими огра-

ниченными функциями �j такими, что �j(0) = 0. Здесь и далее j = 1, 2, 3, 4.

Такая модель генной сети с линейными функциями �j рассматривалась в [1].

Скорость синтеза компоненты с концентрацией x1(t) описывается монотон-

но убывающей положительной гладкой функцией G1(x4). Это означает, что ре-

гуляторная связь между компонентами с концентрациями x4 и x1 отрицательна.

Скорости синтеза остальных компонент моделируемой генной сети описывают-

ся монотонно возрастающими гладкими функциями γs, здесь и далее s = 2, 3, 4;

соответствующие им регуляторные связи положительны (см. [1, 2, 5]).

Аналогичная пятимерная модель кольцевой генной сети — молекулярного

репрессилятора

dy1
dt

= L1(y5)− �1(y1),
dy2
dt

= L2(y1)− �2(y2),
dy3
dt

= L3(y2)− �3(y3),
dy4
dt

= L4(y3)− �4(y4),
dy5
dt

= L5(y4)− �5(y5)
(2)

рассматривалась в [6–9]. Здесь также неотрицательные переменные yi обозна-

чают концентрации веществ, участвующих в реакциях. Монотонно убывающие

гладкие функции Li, i = 1, 2, 3, 4, 5 описывают отрицательные регуляторные

связи, а монотонно возрастающие гладкие функции �i, как и в случае системы

(1), описывают деградацию компонент генной сети. Для обеих систем (1) и (2)

предполагается, что все функции �i, �j ограничены сверху, как и в [5], где были

описаны подобные динамические системы, у которых �j(xj) =
αjxj

βj+xj
.

Стационарные точки систем (1) и (2) находятся из уравнений

x0
4 = L4

(
x0

4

)
:= �−1

4

(
γ4

(
�−1
3

(
γ3

(
�−1
2

(
γ2

(
�−1
1

(
G1

(
x0

4

))))))))
(3)

и соответственно

y0
5 = L5

(
y0
5

)
:= �−1

5

(
L5

(
�−1
4

(
L4

(
�−1
3

(
L3

(
�−1
2

(
L2(�

−1
1

(
L1

(
y0
5

))))))))))
. (4)

Для того чтобы правые части равенств (3), (4) были определены при всех

неотрицательных значениях своих аргументов необходимы дополнительные пред-

положения: для системы (1) sup �s > sup γs при всех s = 2, 3, 4 и sup �1 > G1(0),

для системы (2) sup �i > Li(0).

Поскольку правая часть L4(x) уравнения (3) является композицией од-

ной монотонно убывающей и семи монотонно возрастающих функций, она сама

монотонно убывает, и ее график имеет в точности одну точку пересечения с

прямой ξ = x. Правая часть L5 уравнения (4) также монотонно убывает по y,

тем самым и это уравнение имеет единственное решение (рис. 1, где пунктиром

обозначен график линейной функции ξ = ϕ(x) := 2x0
4 − x при 0 ≤ x ≤ 2x0

4).

Для x > 2x0
4 полагаем ϕ(x) = 0. Поскольку ϕ(ϕ(x)) = x при 0 ≤ x ≤ 2x0

4, точ-

ки пересечения (a1, ϕ(a1)) и (b1, ϕ(b1)) прямой ξ = 2x0
4−x с графиком функции
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a1

b1

x0

ξ

x

Рис. 1. Построение инвариантной области Q4 .

ξ = L (x) лежат также и на графике итерации ξ = L (L (x)). Здесь 2x0
4 > L (0);

это условие выполняется для неустойчивых стационарных точек систем вида

(1), см. ниже неравенства (7).

Такие наблюдения о монотонности композиций были сделаны во многих

работах, посвященных геометрическому анализу фазовых портретов подобных

динамических систем произвольных размерностей (см., например, [1, 5, 8]).

Если x = x0
4 — решение уравнения (3), то остальные координаты x0

1, x
0
2 и

x0
3 стационарной точки S4 системы (1) имеют вид

x0
1 = �−1

1

(
G1

(
x0

4

))
; x0

2 = �−1
2

(
γ2

(
�−1
1

(
G1

(
x0

4

))))
; x0

3 = �−1
3

(
γ4

(
x0

2

))
. (5)

Аналогичным образом решение y = y0
5 уравнения (4) единственным образом

определяет стационарную точку S5 системы (2) (см. [10]).

Обозначим через kj , ki вычисленные в стационарных точках производные

функций �j и �i; производные убывающих функций G1 и Li, вычисленные в ста-

ционарных точках, обозначим через −q1 и соответственно −pi, и производные

функций γs обозначим через ms.

Устойчивость точек S4 и S5 определяется корнями характеристических

многочленов матриц линеаризаций M4 и соответственно M5 систем (1) и (2):

M4 =



−k1 0 0 −q1
m2 −k2 0 0

0 m3 −k3 0

0 0 m4 −k4


 ,

M5 =




−k1 0 0 0 −p1

−p2 −k2 0 0 0

0 −p3 −k3 0 0

0 0 −p4 −k4 0

0 0 0 −p5 −k5


 .

(6)

Эти характеристические многочлены приводятся к виду

P4(λ) = (λ+ k1)(λ+ k2)(λ+ k3)(λ + k4) + q1m2m3m4,
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соответственно

P5(λ) = (λ + k1)(λ+ k2)(λ+ k3)(λ+ k5)(λ+ k4) + p1p2p3p4p5.

Отметим, что в стационарных точках производные убывающих функций

L4 и L5 имеют вид

dL4

dx
= −q1m2m3m4

k1k2k3k4
,

dL5

dx
= − p1p2p3p4p5

k1k2k3k4k5
.

В интересующем нас случае неустойчивых стационарных точек произведе-

ние q1m2m3m4 достаточно велико по сравнению с k1k2k3k4, а p1p2p3p4p5 доста-

точно велико по сравнению с k1k2k3k4k5, точные оценки можно получить из

критерия Рауса — Гурвица [11]. Поэтому в дальнейшем будем предполагать,

что
q1m2m3m4

k1k2k3k4
> 1,

p1p2p3p4p5

k1k2k3k4k5
> 1. (7)

В этом случае производная функции ξ = L4(L4(x)) при x = x0
4 и производная

функции ξ = L5(L5(y)) при y = y0
5 строго больше единицы.

Лемма 1. Каждое из уравнений x = L4(L4(x)), y = L5(L5(y)) при вы-

полнении неравенства (7) имеет по крайней мере три положительных решения

a4 < x0
4 < b4 и соответственно α5 < y0

5 < β5.

На рис. 1 изображены пересечения графиков ξ = x4 и ξ = L4(x4). По-

добные геометрические построения, использующие итерации монотонно убы-

вающих функций, проделывались и при анализе фазовых портретов моделей

генных сетей других размерностей (см. [2, 12]).

2. Геометрические построения в фазовых портретах

Для нахождения условий существования циклов рассматриваемых дина-

мических систем (1) и (2) построим компактные инвариантные области в их

фазовых портретах. Область Q называется инвариантной, если траектории ее

точек не покидают эту область при t→ +∞.

Рассмотрим подробно случай системы (1), все описанные ниже построения

почти дословно воспроизводятся и для пятимерной системы (2).

Будем искать такие a4 < b4, a4 < x0
4 < b4, что L4(a4) = b4 и L4(b4) = a4.

Пусть a4 < x0 < b4 — ближайшие к x0
4 решения уравнения x = L4(L4(x)),

т. е. a4 = L4(b4), b4 = L4(a4).

На грани x4 = b4 для наших построений нужно неравенство ẋ4 = γ4(x3) −
�4(b4) ≤ 0.

На грани x4 = a4 нужно неравенство ẋ4 = γ4(x3)− �4(a4) ≥ 0.

Значит, γ−1
4 (�4(a4)) ≤ x3 ≤ γ−1

4 (�4(b4)) — это ребро [a3, b3] инвариантного

параллелепипеда Q4 системы (1).

На грани x3 = γ−1
4 (�4(b4)) = b3 нужно неравенство ẋ3 = γ3(x2)− �3(b3) ≤ 0.

На грани x3 = γ−1
4 (�4(a4)) = a3 нужно неравенство ẋ3 = γ3(x2)−�3(a3) ≥ 0.
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Значит, γ−1
3

(
�3
(
γ−1
4 (�4(a4))

))
≤ x2 ≤ γ−1

3

(
�3
(
γ−1
4 (�4(b4))

))
— это ребро

[a2, b2] параллелепипеда Q4.

Из определения

a4 = �−1
4

(
γ4

(
�−1
3

(
γ3

(
�−1
2

(
γ2

(
�−1
1 (G1(b4))

))))))

следует, что

a2 = γ−1
3 (�3(γ

−1
4 (�4(a4)))) = �−1

2 (γ2(�
−1
1 (G1(b4)))),

b2 = γ−1
3 (�3(γ

−1
4 (�4(b4)))) = �−1

2 (γ2(�
−1
1 (G1(a4)))).

Аналогично находится ребро [a1, b1] параллелепипеда Q4.

Всюду в этой работе изучается только Случай Общего Положения [13],

когда графики всех рассматриваемых функций пересекаются трансверсально.

Лемма 2. Параллелепипед Q4 = [a1, b1]× [a2, b2]× [a3, b3]× [a4, b4] является

инвариантной областью системы (1). Описанная уравнениями (3) стационарная

точка S4 системы (1) лежит во внутренности Q4.

Подобным же образом строится и инвариантный параллелепипед Q5 дина-

мической системы (2): Пусть α5 < y0
5 < β5 — корни уравнения y = L5(L5(y))

такие, что L5(α5) = β5 и L5(β5) = α5. Отрезок [α5, β5] — это ребро инвариант-

ного параллелепипеда

Q
5 = [α1, β1]× [α2, β2]× [α3, β3]× [α4, β4]× [α5, β5]

системы (2). Остальные его ребра строятся точно так же, как и у инвари-

антного параллелепипеда Q4. Стационарная точка S5 системы (2) лежит во

внутренности области Q5.

При моделировании генных сетей произвольных размерностей с целью ло-

кализации положения циклов в фазовых портретах соответствующих динами-

ческих систем подобные инвариантные области вида [0, b1] × [0, b2] . . . × [0, bn],

у которых половина граней лежит на координатных плоскостях, конструирова-

лись и ранее (см. [14–17]). Построенные инвариантные параллелепипеды Q4,

Q5 расположены во внутренностях положительных октантов пространств R4 и

R5.

Плоскости x1 = x0
1, x2 = x0

2, x3 = x0
3, x4 = x0

4 разбивают Q4 на 16 более

мелких параллелепипедов, которые будем называть блоками и, следуя [1, 5] (см.

также [6, 8]), будем нумеровать бинарными мульти-индексами {ε1ε2ε3ε4} по пра-

вилу: εj = 0, если для всех точек блока выполнены неравенства aj ≤ xj < x0
j , и

εj = 1, если для всех его точек x0
j ≤ xj ≤ bj.

Следующая кольцевая диаграмма описывает переходы траекторий системы

(1) по восьми блокам разбиения параллелепипеда Q4:

{1111} ϕ1−−−−→ {0111} −−−−→ {0011} −−−−→ {0001}
x

y

{1110} ←−−−− {1100} ←−−−− {1000} ←−−−− {0000} .

(8)
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Обозначим через W1 объединение перечисленных в диаграмме (8) блоков и рас-

смотрим пересечения «соседних» блоков этой области:

F0 = {1111} ∩ {0111}, F1 = {0111} ∩ {0011}, . . . , F7 = {1110} ∩ {1111}.

Из монотонности функций G1, γs, �j так же, как и в [1, 8], где рассматри-

вался случай линейных функций �j , следует, что для любой внутренней точки

блока {1111} ее траектория выходит из него только через трехмерную грань

F0 — в блок {0111}, согласно стрелке ϕ1 диаграммы (8). Через все остальные

грани блока {1111} траектории системы (1) могут только заходить в него. Точ-

но таким же образом для любой внутренней точки любого из восьми блоков,

перечисленных в диаграмме (8), ее траектория выходит из него только в тот со-

седний блок, в который указывает соответствующая стрелка этой диаграммы.

Объединение оставшихся восьми блоков разбиения параллелепипеда Q4

обозначим через W3. Комбинаторика поведения траекторий точек этой области

выглядит сложнее, например, из блока {1011} траектории системы (1) могут

выходить в один из трех блоков: {1111}, {0011} и {1001} (см. [6]). Здесь ниж-

ний индекс 3 указывает на возможность выхода из блока через три его грани,

а индекс 1 в W1 означает единственность направления выхода из блока.

Подобным же образом плоскости yi = y0
i разбивают инвариантный па-

раллелепипед Q5 на 32 блока, занумерованных бинарными мульти-индексами

{ε1ε2ε3ε4ε5}, как и выше, см. также [7, 9, 10], где для пятимерных динамиче-

ских систем вида (2) с линейными функциями �i и гладкими либо ступенчатыми

монотонно убывающими функциями Li была построена диаграмма переходов

траекторий из блока в блок:

{10101} −−−−→ {00101} −−−−→ {01101} −−−−→ {01001} −−−−→ {01011}
x

y

{10100} ←−−−− {10110} ←−−−− {10010} ←−−−− {11010} ←−−−− {01010} .

(9)

Для каждого из перечисленных здесь пятимерных блоков траектории его внут-

ренних точек выходят из него только в один соседний блок — в тот, в кото-

рый указывает соответствующая стрелка диаграммы (9). Из блоков {11111} и

{00000} этого разбиения траектории системы (2) могут выходить в любой из

пяти соседних блоков. Для оставшихся двадцати блоков разбиения области Q5

диаграмма переходов траекторий из блока в блок описана в [7].

Аналогичные диаграммы для других моделей кольцевых генных сетей с ли-

нейными функциями �j конструировались в [1, 14, 15, 17] с целью доказательства

существования циклов в объединениях блоков, образующих такие диаграммы.

3. Существование циклов

Траектории всех точек грани F0 после восьми шагов по диаграмме (8) воз-

вращаются на эту грань. Композиция �4 : F0 → F0 всех этих восьми сдвигов
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вдоль траекторий системы (1) является отображением Пуанкаре цикла, суще-

ствование которого установим ниже.

Введем, как и выше, обозначения

F0 = {10101} ∩ {00101}, F1 = {00101} ∩ {01101}, . . . ,F9 = {10100} ∩ {10101}.

Траектории всех точек четырехмерной грани F0 после десяти шагов по диа-

грамме (9) возвращаются на F0. Обозначим через �5 : F0 → F0 композицию

десяти сдвигов по блокам диаграммы (9) вдоль траекторий системы (2). Отме-

тим, что �4(S4) = S4 и �5(S5) = S5, поскольку точки S4 и S5 стационарны.

В целом ряде публикаций [5, 10, 18, 19] и др. доказательства существования

циклов у динамических систем, подобных (1) и (2), выводятся из теоремы Бо-

ля — Брауэра о неподвижной точке — «принцип тора» (см. [20]). Однако во

всех этих рассмотрениях стационарные точки указанных систем являются непо-

движными для соответствующих отображений Пуанкаре. Поэтому для доказа-

тельства существования цикла, состоящего более чем из одной точки, из граней

F0, F0 и т. п. приходится вырезать окрестности U(S4), U(S5) стационарных

точек так, чтобы при отображениях Пуанкаре усеченные грани F̂0 = F0\U(S4),

F̂0 = F0 \ U(S5) и др. отображались в себя.

Если стационарная точка такой системы устойчива, описанное построение

невозможно, поскольку с каждым обходом соответствующей диаграммы траек-

тории будут экспоненциально приближаться к стационарной точке.

Если же стационарная точка неустойчива и гиперболична, т. е. в этой точ-

ке матрица линеаризации системы не имеет мнимых корней, то в силу теоремы

Гробмана — Хартмана [21] в некоторой окрестности стационарной точки такую

динамическую систему можно линеаризовать с помощью непрерывной замены

переменных, и тогда усеченные грани будут переводиться в себя соответствую-

щим отображением Пуанкаре.

В частности, если у системы (1) стационарная точка гиперболична, то из

принципа аргумента следует, что матрица M4 имеет два комплексно-сопряжен-

ных собственных числа λ1 = λ̄2 с положителными вещественными частями и

два собственных числа λ3 = λ̄4 с отрицательными вещественными частями (см.

[11]). Так же, как и в [18], проверяется, что в линеаризующей системе коорди-

нат теоремы Гробмана — Хартмана у стационарной точки S4 существует такая

окрестность U4 = D2
1 × D2

3, что двумерный диск D2
1 лежит в плоскости, по-

рожденной собственными числами λ1, λ2, и его граница лежит во внутренности

области W1, а диск D2
3 лежит в плоскости, порожденной λ3 и λ4, и его граница

лежит во внутренности области W3.

Через поверхность D2
1 × ∂D2

3, лежащую на границе ∂U4 окрестности U4,

траектории системы (1) входят в окрестность U4, а через поверхность ∂D2
1×D2

3

они из этой окрестности выходят. Если диск D2
1 достаточно мал, то все блоки,

образующие инвариантную область W1, пересекаются с границей ∂U4 только

в точках поверхности ∂D2
1 × D2

3. Следовательно, траектории точек усеченной

грани F̂0 \ (F0 ∩ U4) при обходе вдоль стрелок диаграммы (8) не попадают
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в окрестность U4, и при отображении Пуанкаре �4 эта грань переходит сама

в себя. Поскольку F̂0 компактна и гомеоморфна шару, из теоремы Боля —

Брауэра следует существование точки P0 ∈ F̂0 такой, что �4 = P0, и, значит,

траектория точки P0 является циклом.

Все эти построения подобным же образом воспроизводятся и для случая

динамической системы (2).

Теорема. 1. Если стационарная точка динамической системы (1) гипербо-

лична, то у этой системы существует по крайней мере один цикл, проходящий

по блокам, образующим диаграмму (8) согласно ее стрелкам.

2. Если стационарная точка динамической системы (2) гиперболична, то у

этой системы существует по крайней мере один цикл, проходящий по блокам,

образующим диаграмму (9) согласно ее стрелкам.

Полученные результаты допускают обобщения на модели генных сетей дру-

гих размерностей, у которых окрестности неустойчивых стационарных точек (в

том числе и неединственных) допускают разбиения на блоки и построение диа-

грамм вида (8) и (9), а также на динамические системы с правыми частями

более общего вида, моделирующие генные сети с посттранскрипционной регу-

ляцией (см. [19, 22]).

Благодарность. Авторы искренне благодарны Ю. Г. Матушкину за по-

лезные обсуждения.

ЛИТЕРАТУРА

1. Glass L., Pasternack J. S. Stable oscillations in mathematical models of biological control
systems // J. Math. Biol. 1978. V. 6. P. 207–223.

2. Likhoshvai V. A., Kogai V. V., Fadeev S. I., Khlebodarova T. M. On the chaos in gene
networks // J. Bioinform. Comput. Biol. 2013. V. 11. Article ID 1340009.

3. Gedeon T., Pernarowski M., Wilander A. Cyclic feedback systems with quorum sensing cou-
pling // Bull. Math. Biol. 2016. V. 78, N 6. P. 1291–1317.

4. Глызин С. Д., Колесов А. Ю., Розов Н. Х. Существование и устойчивость релаксацион-
ного цикла в математической модели репрессилятора // Мат. заметки. 2017. Т. 101, № 1.
С. 58–67.

5. Hastings S., Tyson J., Webster D. Existence of periodic solutions for negative feedback cellular
control system // J. Differ. Equ. 1977. V. 25. P. 39–64.

6. Ayupova N. B., Golubyatnikov V. P. On two classes of non-linear dynamical systems: the
four-dimensional case // Sib. Math. J. 2015. V. 56, N 2. P. 231–236.

7. Golubyatnikov V. P., Gradov V. S. Non-uniqueness of cycles in piecewise-linear models of
circular gene networks // Sib. Adv. Math. 2021. V. 31, N 1. P. 1–12.

8. Golubyatnikov V. P., Minushkina L. S. On uniqueness and stability of a cycle in one gene
network // Sib. Electron. Math. Rep. 2021. V. 18, N 1. P. 464–473.

9. Ayupova N. B., Golubyatnikov V. P. On structure of phase portrait of one 5-dimensional
circular gene network model // J. Appl. Ind. Math. 2021. V. 15, N 4. P. 376–383.

10. Golubyatnikov V. P., Golubyatnikov I. V., Likhoshvai V. A. On the existence and stability of
cycles in five-dimensional models of gene networks // Numer. Anal. Appl. 2010. V. 3, N 4.
P. 329–335.

11. Гантмахер Ф. Р. Теория матриц. М.: Физматгиз, 1967.
12. Khlebodarova T. M., Kogai V. V., Fadeev S. I., Likhoshvai V. A. Chaos and hyperchaos in

simple gene network with negative feedback and time delays // J. Bioinform. Comput. Biol.
2017. V. 15, N 2. Article ID 1650042.



Фазовые портреты двух нелинейных моделей 11

13. Арнольд В. И., Варченко А. Н., Гусейн-Заде С. М. Особенности дифференцируемых
отображений. М.: МЦНМО, 2009.

14. Гайдов Ю. А. Об устойчивости периодических траекторий в некоторых моделях генных
сетей // Сиб. журн. индустр. математики. 2008. Т. 11, № 1. С. 57–62.

15. Казанцев М. В. О некоторых свойствах графов доменов динамических систем // Сиб.
журн. индустр. математики. 2015. Т. 18, № 4. С. 42–49.

16. Голубятников В. П., Кириллова Н. Е. Фазовые портреты двух моделей генных сетей //
Мат. заметки СВФУ. 2021. Т. 28, № 1. С. 3–11.

17. Ivanov V. V. Attracting limit cycle of an odd-dimensional circular gene network model //
J. Appl. Ind. Math. 2022. V. 16, N 3. P. 409–415.

18. Кириллова Н. Е. Об инвариантных поверхностях в моделях генных сетей // Сиб. журн.
индустр. математики. 2020. Т. 23, № 4. С. 69–76.

19. Golubyatnikov V. P., Likhoshvai V. A., Ratushny A. V. Existence of closed trajectories in 3-D
gene networks // J. Three Dimensional Images 3D Forum. Japan. 2004. V. 18, N 4. P. 96–101.

20. Петровский И. Г. Лекции по теории обыкновенных дифференциальных уравнений. М.:
изд-во Моск. ун-та, 1984.

21. Хартман Ф. Обыкновенные дифференциальные уравнения. М.: Мир, 1970.
22. Чумаков Г. А., Чумакова Н. А. Гомоклинические циклы в одной модели генной сети.

Мат. заметки СВФУ. 2014. Т. 21, № 14. C. 97–106.

Поступила в редакцию 22 марта 2023 г.

После доработки 22 марта 2023 г.

Принята к публикации 29 мая 2023 г.

Аюпова Наталья Борисовна
Институт математики им. С. Л. Соболева СО РАН,
пр. Академика Коптюга, 4, Новосибирск 630090
ayupova@math.nsc.ru

Голубятников Владимир Петрович
Институт математики им. С. Л. Соболева СО РАН,
пр. Академика Коптюга, 4, Новосибирск 630090;
Новосибирский военный институт им. И. К. Яковлева войск национальной гвардии РФ
Ключ-Камышенское плато, 6/2, Новосибирск 630114
golubyatn@yandex.ru



Математические заметки СВФУ
Апрель—июнь, 2023. Том 30, № 2

UDC 517.938

PHASE PORTRAITS OF TWO NONLINEAR

MODELS OF CIRCULAR GENE NETWORKS

N. B. Ayupova and V. P. Golubaytnikov

Abstract: For two dynamical systems of dimensions 4 and 5 which simulate circular
gene networks with non-linear degradation of their components we find conditions for
existence of periodic trajectories and construct invariant domains which contain all these
trajectories. Interiors of both domains are homeomorphic to torus, and the boundary
of each of them contains a unique equilibrium point of the corresponding dynamical
system.

DOI: 10.25587/SVFU.2023.54.12.001

Keywords: circular gene network model, phase portrait of non-linear dynamical system,
equilibrium point, invariant domain, periodic trajectory.

REFERENCES

1. Glass L. and Pasternack J. S., “Stable oscillations in mathematical models of biological control
systems,” J. Math. Biol., 6, 207–223 (1978).

2. Likhoshvai V. A., Kogai V. V., Fadeev S. I., and Khlebodarova T. M., “On the chaos in gene
networks,” J. Bioinform. Comput. Biol., 11, article No. 1340009 (2013).

3. Gedeon T., Pernarowski M., and Wilander A., “Cyclic feedback systems with quorum sensing
coupling,” Bull. Math. Biol., 78, No. 6, 1291–1317 (2016).

4. Glyzin S. D., Kolesov A. Yu., and Rozov N. Kh., “Existence and stability of the relaxation
cycle in a mathematical repressilator model,” Math. Notes, 101, No. 1, 71–86 (2017).

5. Hastings S., Tyson J., and Webster D., “Existence of periodic solutions for negative feedback
cellular control system,” J. Differ. Equ., 25, 39–64 (1977).

6. Ayupova N. B. and Golubyatnikov V. P., “On two classes of non-linear dynamical systems:
the four-dimensional case,” Sib. Math. J., 56, No. 2, 231–236 (2015).

7. Golubyatnikov V. P. and Gradov V. S., “Non-uniqueness of cycles in piecewise-linear models
of circular gene networks,” Sib. Adv. Math., 31, No. 1, 1–12 (2021).

8. Golubyatnikov V. P. and Minushkina L. S., “On uniqueness and stability of a cycle in one
gene network,” Sib. Electron. Math. Rep., 1, No. 1, 464–473 (2021).

9. Ayupova N. B. and Golubyatnikov V. P., “On structure of phase portrait of one 5-dimensional
circular gene network model,” J. Appl. Ind. Math., 15, No. 3, 376–383 (2021).

10. Golubyatnikov V. P., Golubyatnikov I. V., and Likhoshvai V. A., “On the existence and
stability of cycles in five-dimensional models of gene networks,” Numer. Anal. Appl., 3, No. 4,
329–335 (2010).

11. Gantmacher F. R., The Theory of Matrices, vol. 1, Chelsea Publ. Co. (1984).
12. Khlebodarova T. M., Kogai V. V., Fadeev S. I., and Likhoshvai V. A., “Chaos and hyperchaos

in simple gene network with negative feedback and time delays,” J. Bioinform. Comput. Biol.,
15, No. 2, article No. 1650042 (2017).

13. Arnold V. I., Gusein-Zade S. M., and Varchenko A. N., Singularities of Differentiable Maps,
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АНАЛИТИЧЕСКОЕ РЕШЕНИЕ ЗАДАЧИ

О ГАРМОНИЧЕСКИХ КОЛЕБАНИЯХ

ТЕЛА ПРЯМОУГОЛЬНОЙ ФОРМЫ

В МИКРОПОЛЯРНОЙ ТЕОРИИ УПРУГОСТИ

Ю. М. Григорьев, A. A. Гаврильева

Аннотация. Рассматривается плоская задача о собственных гармонических коле-
баниях прямоугольника со смешанными краевыми условиями в рамках линейной
микрополярной теории упругости. Микрополярная модель или модель Коссера
применяется для многих современных материалов с микроструктурой, когда эле-
ментарная частица сплошной среды имеет шесть степеней свободы. Предложен
метод решения, когда исходная краевая задача разделяется на отдельные после-
довательности согласованных скалярных краевых задач, отвечающих и за враща-
тельную компоненту. Выявлено, что в микрополярной среде возникают два «сорта
частот» собственных колебаний прямоугольника, одна из которых ограничена сни-
зу, тогда как в классической среде существует только один «сорт» собственных
частот и таких ограничений нет. Предложенный метод может быть развит на слу-
чай других граничных условий и на трехмерный случай.

DOI: 10.25587/SVFU.2023.93.57.002

Ключевые слова: модель Коссера, микрополярная теория упругости, собствен-
ные колебания, прямоугольник.

Введение

Механика обобщенных сплошных сред имеет более чем столетнюю исто-

рию и берет свое начало со знаменитой книги братьев Коссера [1]. В этой книге

авторы обобщили предыдущие подходы других исследователей к построению

модели упругих сред с кинематически независимыми поступательными и вра-

щательными степенями свободы. В теории Коссера, в отличие от классической

теории упругости, каждая точка среды характеризуется двумя независимыми

векторами смещения и вращения. Эта основополагающая работа братьев Кос-

сера не была своевременно оценена.

Однако после некоторого забвения идеи Коссера были переоткрыты и раз-

виты в работах [2–6] и др., появились основы новых теорий обобщенных сред.

Сейчас теории микрополярной, микроморфной, градиентной упругости и т. д.

описаны в монографиях [7–14] и др., в тысячах статей. Причина такого возрож-

дения моделей обобщенных сред заключается в том, что некоторые эффекты

механического поведения твердых тел и жидкостей не могли быть объяснены

c© 2023 Григорьев Ю. М., Гаврильева A. A.
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с помощью имеющихся классических моделей. На первое время оказалось, что

для практических приложений разработанные модели оказались мало полезны-

ми. Причиной этого был разрыв между уровнем формулировки определяющих

уравнений и возможностями идентификации параметров материала. Таких но-

вых параметров было гораздо больше, чем в классических моделях. С началом

2000–х годов ситуация изменилась. Доступность гораздо больше вычислитель-

ных возможностей позволяет численно моделировать очень сложные задачи.

Внимание к большому количеству материалов со сложной микроструктурой

значительно повысилось в связи с возрастающими практическими запросами,

связанными с современными технологиями.

Большую популярность имеет микрополярная теория упругости (МТУ),

разработанная на основе модели упругой среды Коссера. В русскоязычной лите-

ратуре для МТУ иногда пользуются термином «моментная теория упругости».

МТУ используется для описания сред с микроструктурой, таких как: зерни-

стые среды, включая кирпичную кладку; композиты, включая композиты со

случайными частицами; балочно-решетчатые материалы, включая пенопласты

и другие пористые материалы; теория тонкостенных конструкций; магнитные

жидкости и жидкие кристаллы; кости, биокерамика, геоматериалы и другие

среды с вращательными взаимодействиями (см., например, [14]).

В данной работе исследуется задача МТУ для упругой изотропной одно-

родной модели среды Коссера, характеризующейся шестью упругими констан-

тами [8]: две постоянные Ламе и четыре новые константы, отвечающие за мик-

роструктуру. Несмотря на достаточное развитие основ МТУ известно лишь

ограниченное количество точных аналитических решений задач равновесия и

колебаний микрополярных упругих тел конечных размеров. При этом только

некоторые из них подходят для разработки методов идентификации микропо-

лярных констант упругости по лабораторным измерениям.

Точные аналитические решения для круговых цилиндров получены в [15–

20]. Эти решения были распространены на изотропные полые цилиндры в рабо-

те [21]. Первая попытка определить все шесть констант упругости, основанная

на решениях задач о кручении круглого цилиндра и изгибе прямоугольной пла-

стины, была предпринята Готье и Джасманом [16, 22]. В [23] Чаухан из точных

аналитических решений вывел эффект увеличения макроскопической жестко-

сти для полукруглого кольца прямоугольного сечения, изгибаемого равнодей-

ствующими поперечного радиального сдвига. В работе [24] Сингх получил точ-

ные аналитические решения для областей со сферическими границами. В [25]

Р. Меладзе получил точные аналитические решения основных задач равнове-

сия микрополярного упругого шара в терминах абсолютно и равномерно сходя-

щихся рядов. В [26] проведен параметрический анализ точных аналитических

решений некоторых одномерных и двумерных задач деформации пластины и

шайбы, при этом введенные макропараметры микрополярной среды могут быть



16 Ю. М. Григорьев, A. A. Гаврильева

конструктивно экспериментально измерены. Имеются успешные работы Лейка

и Янга по экспериментальному определению микрополярных упругих констант

кости, полимерных и металлических пен [27, 28] и др. В [29] можно найти широ-

кий литературный обзор по экспериментальному определению микрополярных

упругих констант.

Для параллелепипеда и прямоугольника известны некоторые точные ана-

литические решения. В [30] Н. Г. Хомасуридзе показал, что для параллеле-

пипеда в случае согласованных краевых условий возникают задачи Дирихле

или Неймана для дивергенции векторного поля смещения. В развитие этих

результатов в работах [31–33] разработаны основы метода получения точных

аналитических решений задач равновесия и колебания микрополярного прямо-

угольника. В [34] получено точное аналитическое решение задачи равновесия

микрополярного прямоугольника, на границе которого заданы нормальные на-

пряжения, касательные составляющие вектора перемещения и моментных на-

пряжений. Вместе с тем для частного случая граничных условий выделено сла-

гаемое, отвечающее за микрополярный эффект — повышение жесткости пря-

моугольника.

Выше были отмечены все известные работы, в которых имеются точные

аналитические решения статических задач микрополярной упругости в ограни-

ченных областях в R2 и R3.

Цель настоящей статьи состоит в том, чтобы в рамках микрополярной тео-

рии упругости получить точное аналитическое решение задачи о собственных

гармонических колебаний тела прямоугольной формы со смешанными краевы-

ми условиями: когда на границе заданы нулевые касательные компоненты на-

пряжений, нормальные компоненты вектора перемещения и вектора вращения.

1. Основные соотношения

микрополярной теории упругости

Введем декартовы координаты xi, здесь и всюду в дальнейшем латинские

индексы принимают значения от 1 до 3: i = 1, 2, 3. В среде Коссера движение

каждой частицы среды описывается независимыми векторами перемещения u

и вращения ω, их компоненты соответственно обозначаются ui и ωi.

Уравнения движения в МТУ при отсутствии массовых сил и моментов име-

ют вид [8]
3∑

j=1

σji,j = ρüi,
3∑

j=1

µji,j +

3∑

j,k=1

eijkσjk = jω̈i, (1.1)

где σji — компоненты несимметричного тензора силовых напряжений, µji —

компонента тензора моментных напряжений; eijk — антисимметричный тензор

Леви-Чивита, ρ — плотность среды, j — локальная динамическая характери-

стика среды (плотность момента инерции, мера инерции при вращении); точка
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вверху буквы означает частную производную по времени; здесь и далее запятая

и переменная в индексе обозначают соответствующую частную производную.

Геометрические соотношения для компоненты тензора деформаций γji и

компоненты тензора изгиба-кручения χij имеют вид

γji = ui,j −
3∑

k=1

ekjiωk, χji = ωi,j . (1.2)

Компоненты γii тензора деформаций идентичны компонентам тензора дефор-

маций в классическом случае, а компоненты γij , где i 6= j, тензора деформа-

ций характеризуют отличие вектора вращения ω от половины вектора вихря

перемещения 1
2∇ × u; компоненты χii описывают крутильные деформации, а

компоненты χij , где i 6= j, — изгибные.

Определяющие уравнения МТУ (закон Гука) для изотропной однородной

центрально-симметричной среды Коссера имеют вид

σij = λδij

3∑

k=1

γkk + (µ+ α)γij + (µ− α)γji,

µij = βδij

3∑

k=1

χkk + (γ + ε)χij + (γ − ε)χji,

(1.3)

где λ, µ — постоянные Ламе; α, β, γ, ε — микрополярные упругие постоянные

среды, отвечающие за микроструктуру. Из условия положительности внутрен-

ней энергии вытекают следующие неравенства для упругих постоянных [7, 35]:

µ > 0, 3λ+ 2µ > 0, α > 0, γ > 0, ε > 0, 3β + 2γ > 0. (1.4)

При подстановке формул (1.3) в уравнения движения в напряжениях (1.1)

получаем уравнения движения в перемещениях-вращениях:

(µ+ α)�u + (λ + µ− α)∇(∇ · u) + 2α∇× ω = ρü,

(γ + ε)�ω + (β + γ − ε)∇(∇ · ω) + 2α∇× u− 4αω = jω̈.
(1.5)

Компоненты поверхностных усилий T и моментов M, действующих на гра-

нице области, даются соответственно формулами Ti =
∑

j σjinj , Mi =
∑

j µjinj ,

где ni — компоненты единичного вектора внешней нормали.

2. Постановка задачи

Рассматриваются собственные гармонические колебания тела прямоуголь-

ной формы в виде бесконечно длинного прямоугольного параллелепипеда в слу-

чае отсутствия массовых сил и массовых моментов, действующих на тело; а

само тело помещено в гладкий жесткий котлован с размерами, совпадающими

с его размерами. В случае плоской деформации при этом возникает задача о

деформации прямоугольника при однородных краевых условиях.
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Пусть прямоугольник заполняет область

P ≡ {(x, y) : 0 < x < a, 0 < y < b},

а собственные гармонические колебания имеют частоту и форму в виде

u = (u1(x, y), u2(x, y), 0) eiτt, ω = (0, 0, ω(x, y))eiτt, (2.1)

где i =
√
−1, τ — круговая частота, u1(x, y), u2(x, y), ω(x, y) — амплитуды векто-

ров перемещения и вращения. Физический смысл имеют только вещественные

части данных комплекснозначных функций.

Далее определяются амплитуды деформаций согласно (1.2):

γxx = u1,x, γxy = u2,x−ω, γyx = u1,y+ω, γyy = u2,y, χxz = ω,x, χyz = ω,y, (2.2)

и амплитуд напряжений согласно (1.3) — закон Гука:

σxx = λ∇ · u + 2µu1,x, σyy = λ∇ · u + 2µu2,y, σzz = λ∇ · u,
(а) σxy = (µ+ α)u2,x + (µ− α)u1,y − 2αω,

(б) σyx = (µ+ α)u1,y + (µ− α)u2,x + 2αω,

µxz = Bω,x, µyz = Bω,y, µzx = (γ − ε)ω,x, µzy = (γ − ε)ω,y.

(2.3)

Наконец, после подстановки выражений (2.1)–(2.3) в основные соотношения

(1.1)–(1.3) возникает следующая задача о нахождении собственных гармониче-

ских колебаний (2.1) прямоугольника со смешанными однородными краевыми

условиями:

(а) (µ+ α)�u1 + (λ+ µ− α)(∇ · u),x + 2α∇× ω,y + ρτ2u1 = 0,

(µ+ α)�u2 + (λ+ µ− α)(∇ · u),y − 2α∇× ω,x + ρτ2u2 = 0,

(б) B�ω + 2α(u2,x − u1,y)− 4αω + jτ2ω = 0 в P ;

(в), (г) σxy|x=a,0 ≡ σ̃xy(y) = 0, σyx|y=b,0 ≡ σ̃xy(x) = 0,

(д), (e) u1|x=a,0 ≡ ũ1(y) = 0, u2|y=b,0 ≡ ũ2(x) = 0,

(ё) ω|x=a,0 ≡ ω̃(y) = 0, ω|y=b,0 ≡ ω̃(x) = 0.

(2.4)

Здесь B ≡ γ + ε и B > 0 (1.4), следовательно, в случае плоской деформации

(2.1) имеются четыре микрополярно-упругие постоянные.

Отметим, что смешанные краевые условия задачи (2.4) является однород-

ными краевыми условиями V типа по классификации В. Д. Купрадзе [7].

3. Метод согласованных краевых задач

Введем векторную вспомогательную функцию

f ≡ (µ+ α)∇× u, f = (0, 0, (µ+ α)(u2,x − u1,y)) ≡
(
0, 0, f3(x, y)), (3.1)

где согласно (1.4) µ+ α > 0.
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3.1. Безвихревое решение.

Теорема 1. Пусть u ∈ C3(P ) ∩ C2(P ) и для векторной вспомогательной

функции (3.1)

f = 0. (3.1.1)

Тогда имеются два вида решений задачи (2.4):

u1(x, y) =

∞∑

n=1

∞∑

m=1

Cnm sin
(πn
a
x
)

cos
(πm
b
y
)
, u1 6= 0,

u2(x, y) =

∞∑

n=1

∞∑

m=1

Cnm
πm/b

πn/a
cos
(πn
a
x
)

sin
(πm
b
y
)
, u2 6= 0,

ω(x, y) = 0,

τ2
nm =

λ+ 2µ

ρ
π2

(
n2

a2
+
m2

b2

)
,

(3.1.2)

и
u1(x, y) = 0, u2(x, y) = 0,

ω(x, y) =

∞∑

n=1

∞∑

m=1

Cnm sin
(πn
a
x
)

sin
(πm
b
y
)
,

τ2
nm =

1

j

(
4α+Bπ2

(
n2

a2
+
m2

b2

))
.

(3.1.3)

Доказательство. При f = 0 возникает краевая задача для амплитуды

вращения ω (2.1) согласно (2.4(б)) и (2.4(ё)) в следующем виде:

�ω +

(
jτ2 − 4α

B

)
ω = 0 в P ; ω = 0 на ∂P. (3.1.4)

Покажем, что λ + 2µ > 0. От противного, пусть λ ≤ −2µ. Тогда согласно

(1.4) λ ≤ −2µ < 0. Рассмотрим неравенство 3λ+2µ > 0 (1.4) или 2λ+(λ+2µ) > 0,

тогда 2λ > −(λ+ 2µ) ≥ 0; пришли к противоречию.

Покажем, что скалярная вспомогательная функция в виде

f ≡ (λ + 2µ)∇ · u (3.1.5)

удовлетворяет уравнению 2-го порядка и для нее выполняются краевые условия

Неймана.

Применив ∇· к уравнениям (2.4(a)), получим

(λ+ 2µ)�(∇ · u) + ρτ2(∇ · u) = 0 ⇔ �f +
ρτ2

λ+ 2µ
f = 0.

Найдем краевые условия для вспомогательной функции f . Согласно закону

Гука (2.3(a))

σxy,y = (µ+ α)u2,xy + (µ− α)u1,yy − 2αω,y

⇔ σxy,y = (µ+ α)((∇ · u),x − u1,xx) + (µ− α)u1,yy − 2αω,y.
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Выражая u1,xx с помощью уравнения движения для компоненты перемещения

u1 (2.4(a)), получим

σxy,y = (λ+ 2µ)(∇ · u),x + 2µu1,yy + ρτ2u1.

На границе x = a, 0 это выражение преобразуется в

(∇ · u),x|x=a,0 = 0 ⇔ f,x|x=a,0 = 0,

так как на этой границе компоненты σxy (2.4(в)), u1 (2.4(д)) не зависят от y и

u1 = 0 (2.4(д)). Аналогично

(∇ · u),y|y=b,0 = 0 ⇔ f,y|y=b,0 = 0.

Таким образом, для вспомогательной скалярной функции (3.1.5) получили

искомую задачу

�f +
ρτ2

λ+ 2µ
f = 0 в P ; f,x|x=a,0 = 0, f,y|y=b,0 = 0. (3.1.6)

Итак, ищем решение (u1(x, y), u2(x, y), ω(x, y), τ), удовлетворяющее соотно-

шению (3.1.1) и краевым задачам (3.1.4), (3.1.6). Краевые задачи можно решить

методом разделения переменных [36].

Решение краевой задачи (3.1.6) имеет вид

f =





∞∑
n=1

∞∑
m=1

Cf
nm cos

(
πn
a x
)
cos
(
πm
b y
)
, τ2

nm = λ+2µ
ρ π2

(
n2

a2 + m2

b2

)
;

f = 0, τ любое.

(3.1.7)

В первом случае решение краевой задачи (3.1.4) может быть только ω = 0

и, учитывая (3.1.1), получим решение исходной задачи (2.4) в виде (3.1.2).

Во втором случае при любом τ решение краевой задачи (3.1.4) имеет вид

ω(x, y) =

∞∑

n=1

∞∑

m=1

Cnm sin
(πn
a
x
)

sin
(πm
b
y
)
,

τ2
nm =

1

j

(
4α+Bπ2

(
n2

a2
+
m2

b2

))
.

(3.1.8)

Учитывая (3.1.1) и граничные условия (2.4(д)), (2.4(е)), получим, что u1(x, y) =

0 и u2(x, y) = 0. Стало быть, решение исходной задачи имеет вид (3.1.3). �

Таким образом, безвихревое решение (f = 0) имеет вид (3.1.2) и (3.1.3).

Одно решение (3.1.2) отвечает классическому рассмотрению задачи гармони-

ческих колебаний прямоугольника (α = 0), другое (3.1.3) — микрополярному

бездивергентному случаю (f = 0).

3.2. Вихревое решение.
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Теорема 2. Пусть u ∈ C5(P )∩C3(P ) и векторная вспомогательная функ-

ция f 6= 0 (3.1). Тогда решение исходной задачи (2.4) имеет вид

u1(x, y) =

∞∑

n=1

∞∑

m=1

C1
nm sin

(πn
a
x
)

cos
(πm
b
y
)

+

∞∑

n=1

∞∑

m=1

C2
nm sin

(πn
a
x
)

cos
(πm
b
y
)
,

u2(x, y) = −
∞∑

n=1

∞∑

m=1

πn/a

πm/b
C1

nm cos
(πn
a
x
)

sin
(πm
b
y
)

−
∞∑

n=1

∞∑

m=1

πn/a

πm/b
C2

nm cos
(πn
a
x
)

sin
(πm
b
y
)
,

ω(x, y) =

∞∑

n=1

∞∑

m=1

C1
nm

2α
(
πm
b +

π2n2/a2

πm/b

)

Bπ2
(
n2

a2 + m2

b2

)
+ 4α− jτ2

1nm

sin
(πn
a
x
)

sin
(πm
b
y
)

+

∞∑

n=1

∞∑

m=1

C2
nm

2α
(
πm
b +

π2n2/a2

πm/b

)

Bπ2
(
n2

a2 + m2

b2

)
+ 4α− jτ2

2nm

sin
(πn
a
x
)

sin
(πm
b
y
)
,

τ2
1,2nm =

1

2jρ

(
π2

(
n2

a2
+
m2

b2

)
(j(µ+ α) +Bρ) + 4ρα

±
[
π4

(
n2

a2
+
m2

b2

)2

(j(µ+ α) −Bρ)2

+ π2

(
n2

a2
+
m2

b2

)
(8αρ (jα+Bρ− jµ)) + 16ρ2α2

]1/2)
. (3.2.1)

Доказательство. Покажем, что вспомогательная векторная функция f

удовлетворяет уравнению 4-го порядка и для нее выполняются краевые условия

типа Рикье.

Применим ∇× к уравнению (2.4(a)). Используя определение для f (3.1),

свойства ∇ × ∇(∇ · u) ≡ 0, ∇ × (∇ × ω) ≡ ∇(∇ · ω) − �ω и для плоской

деформации (∇ · ω) = 0, придем к соотношению

(a) �f − 2α�ω + ρτ2 f

µ+ α
= 0 ⇔ (б) �ω =

1

2α

(
�f + ρτ2 f

µ+ α

)
. (3.2.2)

Применим � к уравнению (2.4(б)). Используя определение для f (3.1),

придем к

−�2
ω =

1

B

(
2α

µ+ α
�f + (jτ2 − 4α)�ω

)
. (3.2.3)
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Применим � к уравнению (3.2.2(а)). Используя (3.2.3) и (3.2.2(б)), придем к

уравнению для вспомогательной функции f :

�2f +
((µ+ α)j + ρB)τ2 − 4αµ

B(µ+ α)
�f +

ρτ2(jτ2 − 4α)

B(µ+ α)
f = 0

⇔
(
�+ λ2

1)(�+ λ2
2

)
f = 0,

λ2
1 + λ2

2 =
((µ+ α)j + ρB)τ2 − 4αµ

B(µ+ α)
, λ2

1λ
2
2 =

ρτ2(jτ2 − 4α)

B(µ+ α)
.

(3.2.4)

Найдем краевые условия для функции f . Используя выражение для u2,x,

из закона Гука (2.3(a)) получим

f = (0, 0, σxy − 2µu1,y + 2αω).

На границе x = a, 0 согласно (2.4(в)), (2.4(д)), (2.4(е)) это выражение равно

нулю:

f |x=a,0 = 0. (3.2.5)

Аналогично получим

f = (0, 0,−σyx + 2µu2,x − 2αω), f |y=b,0 = 0. (3.2.6)

Тем самым функция f обращается в нуль в точках границы.

Подставляя в (3.2.2(a)) выражение для �ω из (2.4(б)), получим

�f = −Bρτ
2 + 4α2

B(µ+ α)
f +

2α

B
(4α− jτ2)ω. (3.2.7)

Отсюда согласно граничным условиям (2.4(ё)), (3.2.5), (3.2.6) получим, что зна-

чения �f обращаются в нуль на границе прямоугольника.

Таким образом, для векторной функции f (3.1) получили искомую задачу:

(
�+ λ2

1

)(
�+ λ2

2

)
f = 0 в P ;

�f = 0, f = 0 на ∂P,

λ2
1 + λ2

2 =
((µ+ α)j + ρB)τ2 − 4αµ

B(µ+ α)
, λ2

1λ
2
2 =

ρτ2
(
jτ2 − 4α

)

B(µ+ α)
.

(3.2.8)

Учитывая соотношение для �f (3.2.7) и граничное условие (2.4(ё)), полу-

чим, что решение для задачи Рикье (3.2.8) имеет вид f = Cf

1f
1+Cf

2f
2, где Cf

1 , Cf

2

— произвольные постоянные, а f1, f2 удовлетворяют следующим двум задачам

Штурма — Лиувилля:

(
�+ λ2

1

)
f1 = 0 в P, f1 = 0 на ∂P, (3.2.9.1)

(
�+ λ2

2

)
f2 = 0 в P, f2 = 0 на ∂P, (3.2.9.2)

λ2
1 + λ2

2 =
((µ+ α)j + ρB)τ2 − 4αµ

B(µ+ α)
, λ2

1λ
2
2 =

ρτ2(jτ2 − 4α)

B(µ+ α)
.



Аналитическое решение задачи о гармонических колебаниях 23

Итак, пусть векторная вспомогательная функция ненулевая f 6= 0, тогда в

силу произвольности постоянных Cf

1 , C
f

2 решаем отдельно две последователь-

ности задач. Первая последовательность: решаем краевую задачу (3.2.9.1) для

ненулевой компоненты f3. Тогда при известной f3 уравнение (2.4(б)) для ам-

плитуды вращения (2.1) преобразуется в следующую краевую задачу:

�ω +

(
jτ2 − 4α

B

)
ω = − 2

B

α

µ+ α
f3 в P, ω = 0 на ∂P. (3.2.10)

Далее, зная ω и f3, для амплитуд перемещения получаем следующие краевые

задачи, используя определение (3.1), согласно (2.4(a)), (2.4(е)), (3.2.6):

�u1 +
ρτ2

λ+ 2µ
u1 = − 1

λ+ 2µ

(
λ+ µ− α
µ+ α

f3,y + 2αω,y

)
в P,

u1|x=a,0 = u1,y|y=b,0 = 0,

(3.2.11)

и согласно (2.4(a)), (2.4(д)), (3.2.5)

�u2 +
ρτ2

λ+ 2µ
u2 =

1

λ+ 2µ

(
λ+ µ− α
µ+ α

f3,x + 2αω,x

)
в P.

u2|y=b,0 = u2,x|x=a,0 = 0.

(3.2.12)

Такие же задачи получаем для второй последовательности краевых задач

(3.2.9.2), (3.2.10), (3.2.11), (3.2.12), заменяя λ2
1 на λ2

2. Эти последовательности

задач решаются стандартными методами математической физики, например,

методом разделения переменных [36].

Итак, решение краевой задачи Штурма — Лиувилля (3.2.9.1) и (3.2.9.2)

имеет вид

f1,2
3 = (µ+ α)

∞∑

n=1

∞∑

m=1

(πm
b
C1,2

u1nm
− πn

a
C1,2

u2nm

)
sin
(πn
a
x
)

sin
(πm
b
y
)
,

(
λ2

1,2

)
nm

= π

(
n2

a2
+
m2

b2

)
,

(3.2.13)

где C1,2
u1nm

, C1,2
u2nm

определяются из начальных условий при t = 0 для амплитуд

перемещения u1(x, y), u2(x, y). Далее находим решение для каждого значения

n, m (индекс n, m опускаем).

Выражая λ2
2 через λ2

1 в соотношениях (3.2.9), приходим к квадратному

уравнению для τ2:

jρ

B(µ+ α)λ2
1

τ4−
(
j(µ+ α) +Bρ

B(µ+ α)
+

4αρ

B(µ+ α)λ2
1

)
τ2+λ2

1+
4αµ

B(µ+ α)
= 0. (3.2.14)

В силу того, что свободный член λ2
1 + 4αµ

B(µ+α) и множитель jρ
B(µ+α)λ2

1

при τ4

положительны, а множитель
( j(µ+α)+Bρ

B(µ+α) + 4αρ
B(µ+α)λ2

1

)
при τ2 отрицателен, всегда

существует два положительных корня τ2
1 , τ2

2 , если показать, что дискриминант

всегда положителен, т. е. выполняется неравенство

d(λ2
1) ≡ (j(α + µ)−Bρ)2λ4

1 + 8αρ(jα+Bρ− jµ)λ2
1 + 16α2ρ2 > 0. (3.2.15)
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Действительно, минимальное значение имеет вид

dmin =
64jρ2α3(jµ−Bρ)
(j(µ+ α)−Bρ)2 , (3.2.16)

если jµ − Bρ > 0, то dmin > 0, тогда и d
(
λ2

1

)
> 0; если jµ − Bρ ≤ 0, то

jα+Bρ− jµ > 0, тогда и d
(
λ2

1

)
> 0.

Таким образом, всегда существуют два положительных корня

τ2
1,2 =

1

2jρ

[
λ2

1(j(µ+ α) +Bρ) + 4ρα

±
(
λ4

1(j(µ+ α)−Bρ)2 + λ2
1(8αρ(jα+Bρ− jµ)) + 16ρ2α2

)1/2]
, (3.2.17)

при этом

τ2
1 >

4α

j
,

4α

j
> τ2

2 > 0. (3.2.18)

Для краевой задачи Штурма — Лиувилля (3.2.9.2) при λ2
2 = π

(
n2

a2 + m2

b2

)
получим

то же самое соотношение для τ2 (3.2.14).

Итак, при τ2 = τ2
1 решаем краевую задачу для амплитуды вращения (3.2.10),

для амплитуд перемещения (3.2.11), (3.2.12) получим

ω1(x, y) = C1
u1

2α
(
πm
b +

π2n2/a2

πm/b

)

Bπ2
(
n2

a2 + m2

b2

)
+ 4α− jτ2

1

sin
(πn
a
x
)

sin
(πm
b
y
)
,

u1
1(x, y) = C1

u1 sin
(πn
a
x
)

cos
(πm
b
y
)
,

u1
2(x, y) = − πn/a

πm/b
C1

u1 cos
(πn
a
x
)

sin
(πm
b
y
)
.

Такое же решение получим при τ2 = τ2
2 , заменяя τ2

1 на τ2
2 . Таким образом, если

f 6= 0, то решение исходной линейной задачи (2.4) имеет вид (3.2.1). �

Таким образом, вихревое решение f 6= 0 (3.1) приводит к краевой задаче

(3.2.8) для вспомогательной векторной функции (3.1) и решение исходной за-

дачи (2.4) имеет вид (3.2.1) с двумя микрополярными «сортами» собственных

частот, при этом одна частота ограничена снизу: τ2
1 > 4α

j , а вторая сверху:

τ2
2 <

4α
j (3.2.18).

4. Заключение

В случае плоской деформации получено точное аналитическое решение

краевой задачи о собственных гармонических колебаниях бесконечно длинного

прямоугольного параллелепипеда, помещенного в гладкий (без трения) жесткий

котлован с размерами, совпадающими с его размерами, в микрополярной упру-

гости. В отличие от плоской статической задачи о равновесии прямоугольника

в микрополярной теории упругости [34] дано решение плоской задачи о колеба-

ниях прямоугольника в микрополярной теории упругости непредставимо в виде
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суммы классического и микрополярного решений. В микрополярной среде воз-

никают два «сорта частот» собственных колебаний прямоугольника, одна из

которых ограничена снизу, тогда как в классической среде существует только

один «сорт» собственных частот. Полученное точное решение может быть ис-

пользовано для разработки метода идентификации микрополярных параметров

среды Коссера по лабораторным измерениям, может также служить тестовым

примером для различных численных методов нахождения частот собственных

колебаний. Предложенный метод может быть развит на случай других гранич-

ных условий и на трехмерный случай.
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A PROBLEM OF HARMONIC OSCILLATIONS

OF A RECTANGLE IN THE THEORY

OF MICROPOLAR ELASTICITY:

THE ANALYTICAL SOLUTION

Yu. M. Grigor’ev and A. A. Gavrilieva

Abstract: We consider the plane problem of natural harmonic oscillations of a rectangle
with mixed boundary conditions in the framework of the linear micropolar theory of
elasticity. The micropolar or Cosserat model is used for many modern materials with
microstructure, when an elementary particle of a continuous medium has six degrees of
freedom. A method for solving the original boundary value problem, when it is divided
into separate sequences of consistent scalar boundary value problems, including one for
rotational component, is proposed. It was revealed that in a micropolar medium there
are two «sorts» of natural oscillations of a rectangle, one of which is bounded from
below, while in a classical medium there is only one «sort» of natural oscillations and
there are no such restrictions. The proposed method can be developed for the case of
other boundary conditions and for the three-dimensional case.

DOI: 10.25587/SVFU.2023.93.57.002

Keywords: Cosserat model, micropolar theory of elasticity, natural oscillations, rec-
tangle.
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КРАЕВАЯ ЗАДАЧА НА ПОЛУОСИ

ДЛЯ ОБЫКНОВЕННОГО

ДИФФЕРЕНЦИАЛЬНОГО УРАВНЕНИЯ

С ДРОБНОЙ ПРОИЗВОДНОЙ КАПУТО

И. Е. Егоров, Е. Д. Федотов

Аннотация. Рассмотрена однозначная разрешимость краевой задачи на полу-
оси для обыкновенного дифференциального уравнения высокого порядка с дробной
производной Капуто и постоянными коэффициентами в классе ограниченных функ-
ций, где порядок дробной производной Капуто лежит на промежутке (0, 1). Вы-
сокие порядки дробной производной получаются путем композиции дробных про-
изводных Капуто. Дробная производная Капуто при целых порядках совпадает с
классическим понятием производной, при этом рассматриваемая задача становится
классической краевой задачей на полуоси для обыкновенного дифференциального
уравнения высокого порядка. Для рассматриваемого уравнения построена фунда-
ментальная система решений в классе ограниченных функций. Получены условия
типа Лопатинского для граничных операторов, при которых краевая задача одно-
значно разрешима в классе ограниченных функций.

DOI: 10.25587/SVFU.2023.49.50.003

Ключевые слова: производная Капуто, краевая задача, решение, оценка.

1. Введение

Теория краевых задач для классических обыкновенных дифференциаль-

ных уравнений развивается во многих работах [1–4]. Интерес к исследованию

краевых задач для дифференциальных уравнений с дробной производной вы-

зван их применениями в прикладных задачах физики, механики, химии и др., в

которых дробные производные описывают наиболее адекватно различные про-

цессы с памятью и наследственными свойствами [5–15].

Похожие постановки задач рассматривались в [16–22]. Однако во всех этих

работах в случае производных Капуто дифференциальные уравнения рассмат-

риваются только в классе неограниченных функций. В [23] рассматриваются

различные краевые постановки, но не исследуются ограниченные решения. В

Работа И. Е. Егорова (разд. 1, 2) выполнена при поддержке Министерства науки и выс-
шего образования Российской Федерации (грант № FSRG-2020-0006), работа Е. Д. Федотова
(разд. 3) выполнена при поддержке Министерства науки и высшего образования Российской
Федерации, соглашение от 02.02.2022 № 075-02-2022-881.

c© 2023 Егоров И. Е., Федотов Е. Д.
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данной работе рассматривается краевая задача на полуоси t > 0 для однородно-

го обыкновенного дифференциального уравнения высокого порядка с производ-

ной Капуто и постоянными коэффициентами. Получены условия Лопатинского

для граничных операторов [4], при которых краевая задача однозначно разре-

шима в классе ограниченных и абсолютно непрерывных функций.

2. Предварительные сведения

2.1. Дробные интеграл и производные. Как известно, существует

большое количество разных определений дробных производных, являющихся

обобщением производных целого порядка. В данной работе будем использовать

определение дробной производной Капуто [5–15] при α ∈ (0, 1).

Производная Капуто определена следующей формулой:

∂α0tφ(t) = I
1−α
0t

d

dt
φ(t), α ∈ (0, 1),

где I α
0t — дробный интеграл Римана — Лиувилля, определяемый формулой

I
α
0tφ(t) =

1

� (α)

t∫

0

(t− τ)α−1φ(τ) dτ.

2.2. Функция Миттаг-Леффлера. Пусть 0 < α < 2 и απ/2 < µ <

min(απ, π). Введем обозначения

C−α = {z | µ ≤ | arg(z)| ≤ π}, C+
α = {z | | arg(z)| < µ}.

Функция Миттаг-Леффлера определена следующим рядом [5–7]:

Eα,β(z) =

∞∑

k=0

zk

� (β + αk)
, α > 0, β ∈ R,

при этом Eα(z) = Eα,1(z).

При |z| → ∞ и z ∈ C+
α имеем следующую асимптотику:

Eα,β(z) =
1

α
z(1−β)/α exp(z1/α)−

N∑

k=1

z−k

� (β − αk) +O(|z|−1−N ).

Также при 0 < α < 2, β ∈ R существуют такие C1, C2, C3 > 0, что [7]

|Eα,β(z)| ≤ C1(1 + |z|)(1−β)/α exp(Re(z1/α)) +
C2

1 + |z| , z ∈ C+
α ,

|Eα,β(z)| ≤ C3

1 + |z| , z ∈ C−α .
(1)

Рассмотрим производные функции Миттаг-Леффлера:

d

dz
Eα,β(z) =

d

dz

∞∑

k=0

zk

� (β + αk)
=

∞∑

k=0

kzk−1

� (β + αk)
= z−1

∞∑

k=0

kzk

� (β + αk)

= (αz)−1
∞∑

k=0

(αk + β − 1)zk − (β − 1)zk

� (β + αk)
=

1

αz
(Eα,β−1(z)− (β − 1)Eα,β(z)).
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Их можно получить в другой записи:

∞∑

k=0

kzk−1

� (β + αk)
=

∞∑

k=0

(k + 1)zk

� (β + α+ αk)
=

1

α

∞∑

k=0

(αk + α+ β − 1)zk − (β − 1)zk

� (β + α+ αk)
,

d

dz
Eα,β(z) =

1

α
(Eα,β+α−1(z)− (β − 1)Eα,β+α).

Объединяя оценку (1) для обеих записей d
dzEα,β(z), получим

∣∣∣∣
d

dz
Eα,β(z)

∣∣∣∣ ≤
C

1 + |z|2 , 0 < α < 2, z ∈ C−α .

Аналогичную оценку получим и для n-й производной:
∣∣∣∣
dn

dzn
Eα,β(z)

∣∣∣∣ ≤
C

1 + |z|n+1
, 0 < α < 2, z ∈ C−α .

3. Постановка задачи и разрешимость краевой задачи

Рассмотрим дробно-дифференциальный оператор с постоянными коэффи-

циентами

Pm(∂α0t) =

m∑

k=0

ak(∂
α
0t)

k, 0 < α < 1,

при этом am = 1. Предположим, что уравнение Pm(λ) = 0 не имеет корней

таких, что | argλ| = πα/2. Введем множества

C
−
α = {z : πα/2 < | arg z| ≤ π}, C

+
α = {z : | arg z| < πα/2}.

Обозначим через λ−k корни уравнения Pm(λ) = 0 такие, что λ ∈ C−α , и через

λ+
k — такие, что λ ∈ C+

α . Определим полиномы

L−(λ) =

n∏

k=1

(λ− λ−k ), L+(λ) =

m−n∏

k=1

(λ− λ+
k ),

при этом в случае n = m полагаем L+(λ) = 1.

Рассмотрим краевую задачу вида

Pm(∂α0t)u = 0, t > 0, bj(∂
α
0t)u|t=0 = φj , j = 1, . . . , n, sup

t>0
|u(t)| <∞, (2)

где bj(∂
α
0t) — дифференциальные операторы порядка mj ≤ m− 1. Также пред-

полагаем, что многочлены bj(λ) линейно независимы.

Решение ищем в классе функций, ограниченных на полуоси и таких, что

u ∈ C([0,∞]), (∂α0t)
su ∈ C([0,∞]), s = 1, . . . ,m,

(
d

dt

)s

u ∈ C((0,∞]), s = 1, . . . ,m.

Представим многочлены bj(λ) в виде

bj(λ) = qj(λ)L−(λ) + βj(λ), (3)
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где qj(λ) и βj(λ) — многочлены и при этом степень последнего не превышает

n− 1. Пусть βj(λ) = βj1 + βj2λ+ · · ·+ βjnλ
n−1. Введем матрицу

B =




β1,1 β1,2 . . . β1,n

. . . . . . . . . . . .
βn−1,1 βn−1,2 . . . βn−1,n

βn,1 βn,2 . . . βn,n


 .

Далее полагаем, что граничные операторы удовлетворяют условию Лопатин-

ского

detB 6= 0. (4)

Лемма 1. Пусть λj — корень уравнения Pm(λ) = 0 с кратностью mj ≤ m.

Тогда функция

uk(t) =

(
d

dλ

)k

Eα(λtα)

∣∣∣∣
λ=λj

, 0 ≤ k ≤ mj − 1,

является решением уравнения

Pm(∂α0t)u = 0.

Доказательство. Имеем

Pm(∂α0t)Eα(λtα) = Pm(λ)Eα(λtα).

Дифференцируя данное равенство по λ, получаем

Pm(∂α0t)

(
d

dλ

)k

Eα(λtα) =

k∑

j=0

Cj
k

(
d

dλ

)j

Pm(λ)

(
d

dλ

)k−j

Eα(λtα).

Пологая в последнем равенстве λ = λj , будем иметь

Pm(∂α0t)uk(t) = 0, t > 0,

так как (
d

dλ

)s

Pm(λ)

∣∣∣∣
λ=λj

= 0, 0 ≤ s ≤ k ≤ mj − 1.

Лемма доказана.

Лемма 2. Последовательность

uk(t) =

(
d

dλ

)j

Eα(λtα)

∣∣∣∣
λ=λk

, j = 0, . . . ,mk − 1, k = 1, . . . , p,

линейно независима.

Доказательство. Пусть для некоторых постоянных Ck,j имеет место ра-

венство
p∑

k=1

mk−1∑

j=0

Ck,j

(
d

dλ

)j

Eα(λtα)

∣∣∣∣
λ=λk

= 0.
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Применив к нему преобразование Лапласа по t, получим [22]

p∑

k=1

mk−1∑

j=0

Ck,j

(
d

dλ

)j
sα−1

sα − λ

∣∣∣∣
λ=λk

= 0.

Преобразование Лапласа для функции Миттаг-Леффлера можно получить сум-

мированием почленного преобразования Лапласа ряда, которым определена

данная функция. Избавимся от sα−1 в числителе и далее произведем замену

sα = y:
p∑

k=1

mk−1∑

j=0

Ck,j

(
d

dλ

)j
1

y − λ

∣∣∣∣
λ=λk

= 0.

Проведем обратное преобразование Лапласа по y:

0 =

p∑

k=1

mk−1∑

j=0

Ck,j

(
d

dλ

)j

eλx
∣∣∣∣
λ=λk

=

p∑

k=1

eλkx



mk−1∑

j=0

Ck,jx
j


 .

Из последнего видно, что равенство выполняется, только если все Ck,j = 0.

Лемма доказана.

Теорема 1. Краевая задача (2) имеет единственное решение при любых

φj тогда и только тогда, когда bj линейно независимы, т. е. выполнено (4).

Доказательство. Если u(t) — решение уравнения Pm

(
∂α0t
)
u = 0 и |u(t)| <

∞ при t ≥ 0, то u(t) будет также решением уравнения

L−
(
∂α0t
)
u(t) = 0. (5)

Действительно, поскольку Pm(λ) = L−(λ)L+(λ) и L−(λ) взаимно прост с L+(λ)

то

u(t) =

n∑

k=1

cku
−
k (t) +

m−n∑

k=1

dku
+
k (t) = u−(t) + u+(t),

где u−k (t) — фундаментальная система решений (5), а u+
k (t) соответственно для

L+(∂α0t)u(t) = 0.

В качестве фундаментальной системы решений уравнения (5) можно взять

систему

u−k (t) =

(
d

dλ

)j

Eα(λtα)

∣∣∣∣
λ=λ−

k

, j = 0, . . . ,mk − 1,

где mk — кратность корня λ−k и m1 + m2 + · · · + mp = n. Аналогично можно

выбрать u+
k (t) для L+(∂α0t)u(t) = 0, νk — кратность корня λ+

k и ν1+ν2+ · · ·+νq =

m− n.

Учитывая, что λ−k ∈ C−α , а также соответствующие оценки для функции

Миттаг-Леффлера, заключаем, что |u−(t)| < ∞ при t ≥ 0. С другой стороны,

|u+(t)| → ∞ при t→∞. Поэтому если u(t) — ограниченное решение уравнения
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Pm

(
∂α0t
)
u = 0, то dk = 0, т. е. u(t) = u−(t). Учитывая вышесказанное, за-

ключаем, что решение краевой задачи (2) при f(t) = 0 сводится к нахождению

решения краевой задачи

L−(∂α0t)u = 0, t > 0, βj
(
∂α0t
)
u|t=0 = φj , j = 1, . . . , n.

Эта задача эквивалентна следующей задаче:

∂α0tu(t) = Au(t), t > 0, Bu(t)|t=0 = �, (6)

где

A =




0 1 . . . 0

. . . . . . . . . . . .
0 0 . . . 1

−a−n −a−n−1 . . . −a−1


 ,

B =




β1,1 β1,2 . . . β1,n

. . . . . . . . . . . .
βn−1,1 βn−1,2 . . . βn−1,n

βn,1 βn,2 . . . βn,n


 , � =




φ1

. . .
φn−1

φn




и элементы a−j , βi,j являются коэффициентами многочленов

L−(λ) =

n∏

k=1

(λ− λ−k ) =

n∑

j=0

a−j λ
n−j , βi(λ) =

n∑

j=1

βj,iλ
j−1. (7)

Также u(t) = (u(t), ∂α0tu(t), . . . ,
(
∂α0t
)n−1

u(t)).

Решение задачи (6) можно записать в виде u(t) = Eα(Atα)c, и при этом

Bc = �. Однозначная разрешимость c при любых φj соответствует линейной

независимости βj, или же det(B) 6= 0.

Теорема 2. Если выполнено условие Лопатинского (4), то краевая задача

(2) однозначно разрешима при любых φj , j = 1, . . . , n, и справедлива оценка

|u(t)| ≤ c
n∑

j=1

|φj | (8)

где c > 0 не зависит от φ1, . . . , φn.

Доказательство. В силу теоремы 1 из условия Лопатинского следует

единственность решения краевой задачи (2). Пусть bkj — элементы обратной

матрицы Лопатинского B−1 и a−j определены в (7), причем a−0 = 1. Введем

полиномы

L−k (λ) =

k∑

j=0

a−j λ
k−j , k = 0, . . . , n− 1, Nj(λ) =

n∑

k=1

bkjL−n−k(λ), j = 1, . . . , n.

Тогда решение краевой задачи (2) имеет вид

u(t) =

n∑

j=1

φj
2πi

∫

�−

Eα(λtα)Nj(λ)

L−(λ)
dλ, (9)
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контур �− содержит все λ−k и лежит внутри C−α .

В силу теоремы Коши имеем

Pm(∂α0t)u(t) ≡
n∑

j=1

φj
2πi

∫

�−

Eα(λtα)L+(λ)Nj(λ) dλ = 0.

Выполнение краевых условий следует из равенств [4]

1

2πi

∫

�−

bk(λ)Nj(λ)

L−(λ)
dλ = δkj , k, j = 1, . . . , n.

Используя п. 2 и оценивая контурный интеграл в (9), получаем оценку (8).

Теорема доказана.
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DIFFERENTIAL EQUATION

WITH A FRACTIONAL CAPUTO DERIVATIVE
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Abstract: The paper considers the unique solvability of a boundary value problem on
the semiaxis for a higher-order ordinary differential equation with a fractional Caputo
derivative and constant coefficients in the class of bounded functions, where the order of
the fractional Caputo derivative lies in the interval (0, 1). Higher orders of the fractional
derivative are obtained by composing fractional Caputo derivatives. A special case
of the fractional Caputo derivative for integer orders of the derivative coincides with
the classical concept of the derivative and the problem under consideration becomes a
classical boundary value problem on the half-axis for a higher-order ordinary differential
equation. For the equation under consideration, a fundamental system of solutions in
the class of bounded functions is constructed. Conditions of the Lopatinsky type for
boundary operators are obtained under which the boundary value problem is uniquely
solvable in the class of bounded functions.
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ЗАДАЧА О T–ОБРАЗНОМ СОПРЯЖЕНИИ ДВУХ

ТОНКИХ ВКЛЮЧЕНИЙ ТИМОШЕНКО

В ДВУМЕРНОМ УПРУГОМ ТЕЛЕ

Т. С. Попова

Аннотация. Исследуется задача о равновесии двумерного упругого тела, содержа-
щего два контактирующих тонких включения прямолинейной формы. Включения
являются упругими и моделируются в рамках теории балок Тимошенко. Включе-
ния пересекаются под прямым углом, и одно из включений отслаивается от упругой
матрицы, образуя трещину. Задача ставится как вариационная, при этом получена
полная дифференциальная формулировка в виде краевой задачи, в том числе в
общей точке включений выписаны условия сопряжения. На берегах разреза зада-
ются граничные условия вида неравенств. Доказана эквивалентность вариационной
и дифференциальной постановок задачи при условии достаточной гладкости реше-
ний. Обоснован предельный переход по параметру жесткости одного из включений.

DOI: 10.25587/SVFU.2023.88.57.004

Ключевые слова: вариационное неравенство, включение Тимошенко, тонкое упру-
гое включение, трещина, условия непроникания, нелинейные граничные условия,
задача сопряжения.

1. Введение

Задачи о сопряжении тонких включений в упругом теле могут возникать

при моделировании деформирования композитов с тонкими хаотично распо-

ложенными короткими волокнами. При этом концентрации напряжений, воз-

никающие вблизи тонких включений, осложнены проблемой контакта между

включениями, а также их возможным отслоением от упругой матрицы. Задачи

сопряжения актуальны с математической точки зрения и требуют корректного

обоснования, а также с точки зрения приложений, некоторые примеры и теоре-

мы можно найти в [1]. Одним из подходов при математическом моделировании

тонкого упругого включения является использование моделей тонких упругих

балок (см., например, [2–6]). Тогда постановка задачи о равновесии системы, со-

стоящей из упругого тела с расположенными в нем контактирующими тонкими

включениями, приводит к изучению контактного взаимодействия тел разных

размерностей (двумерная упругая матрица и тонкое одномерное включение),

а также сопряжения двух и более включений. В работах [7, 8] исследованы

Исследование выполнено за счет гранта Российского научного фонда (проект № 23-21-
00469), https://rscf.ru/project/23-21-00469/ .
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задачи о сопряжении тонкого включения Тимошенко с другими видами тон-

ких включений при их концевом контакте, т. е. при расположении включений

на одной прямой. Задачи о Т-образных сопряжениях включений Бернулли —

Эйлера и тонких жестких включений рассмотрены в [9, 10]. В настоящей работе

рассматривается задача об ортогональном Т-образном сопряжении двух тонких

упругих включений, моделируемых в рамках теории балки Тимошенко и рас-

положенных в двумерном упругом теле. Изучены случаи отслаивания одного

из включений и случай без отслоения. Одной из целей исследования является

получение условий сопряжения в точке контакта. Полученные условия сравни-

вались с известными соотношениями для контактирующих балок и стержней,

а также с условиями, характерными для различных дефектов балок таких, как

трещины и разрезы [11–16]. Отслоение включения моделируется как трещи-

на, на одном из берегов которой прикреплено тонкое включение. На берегах

трещины задаются краевые условия типа неравенств, исключающие взаимное

проникание точек противоположных берегов трещины друг в друга. Нелиней-

ность данного вида граничных условий приводит к необходимости привлече-

ния методов вариационных неравенств для исследования поставленной задачи.

С помощью этого метода получен полный вид краевой задачи и показано, что

дифференциальная и вариационная формулировки являются в определенном

смысле эквивалентными. Отдельно рассмотрена задача с параметром, характе-

ризующим жесткость одного из включений. Доказано, что при стремлении дан-

ного параметра к бесконечности упругое включение переходит в тонкое жесткое,

приведено точное обоснование предельного перехода. Для случая включений

без отслоения задача минимизации функционала энергии ставится на всем про-

странстве, а не на множестве, определяемом с помощью нелинейных граничных

условий, как в случае с трещиной отслоения. Вариационная формулировка в

случае неотслоившегося включения имеет вид уравнения.

Формулировки различных задач о трещинах и основные подходы для их

изучения подробно изложены в [17, 18]. Отметим, что указанный подход при-

меним и для задач о равновесии неупругих тел с трещинами [19–23], а также

позволяет строить алгоритмы численного решения, соответствующие резуль-

таты для модели одного включения Тимошенко можно найти в [24]. Модели

тонких жестких включений, в том числе корректность постановок, численное

моделирование, случаи взаимодействия жестких включений изучались в [25–

29]. Сопряжение упругих объектов разных размерностей изучались в [30], за-

дачи сопряжения балок и пластин — в [31–33].

2. Постановка задачи

Рассмотрим ограниченную область � ⊂ R2 с липшицевой границей � , при

этом � = �D ∪ �N , �D ∩ �N = ∅. Единичный вектор нормали к � обозначим

через n. В области � рассмотрим пересекающиеся линии γ и γ3, где γ = γ1 ∪
γ2 ∪ {(0, 0)}, γ1 = (−1, 0) × {0}, γ2 = (0, 1) × {0}, γ3 = {0} × (−1, 0). При этом

будем считать, что (γ ∪ γ3) ⊂ �. Введем обозначение для области с разрезом:

�c = � \
(

3⋃
I=1

γi

)
(рис. 1).
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Рис.1. T-образное сопряжение тонких включений.

Область �c задает форму двумерного тела из упругого материала, линии γ

и γ3 соответствуют двум сопрягающимся включениям. Поскольку точка сопря-

жения является внутренней для включения γ, то постановка задачи включает

отдельные части γ1 и γ2 для этого включения, которые будем рассматривать

как отдельные включения, соединенные между собой в условиях идеального

сцепления. Тело закреплено по краю вдоль кривой �D и испытывает внешние

нагрузки на �N .

Считаем также, что область �c с помощью кривых � и S может быть раз-

бита на подобласти �I , I = 0, 1, 2, с липшицевыми границами таким образом,

чтобы выполнялись условия γ ⊂ �, γ3 ⊂ S, (0, 0) ∈ ∂S, meas(∂�I ∩ �D) > 0,

I = 0, 1, 2. Единичные векторы нормали и касательной к � и S обозначим через

ν = (ν1, ν2) и τ = (ν2,−ν1). Заметим, что

ν =

{
(0, 1) на γ,

(1, 0) на γ3,
τ =

{
(1, 0) на γ,

(0,−1) на γ3.

Будем считать, что горизонтальное включение γ отслаивается от упругой мат-

рицы с образованием трещины. При этом разрез, соответствующий трещине,

имеет два берега γ+ и γ−, и включение остается прикрепленным к нижнему

берегу γ−. Вертикальное включение γ3 не имеет отслоений.

Пусть вектор-функция u = (u1, u2) задает перемещения точек тела �c, при

этом ui соответствует перемещениям вдоль оси xi, i = 1, 2. Для компонент

тензора деформаций и тензора напряжений тела введем следующие формулы:

εij(u) =
1

2
(ui,j + uj, i), i, j = 1, 2, σij = aijklεkl, i, j, k, l = 1, 2,

где ξ,j = ∂ξ
∂xj

. Коэффициенты aijkl(x), i, j, k, l = 1, 2, — компоненты тензора

модулей упругости A, удовлетворяющие условиям

aijkl = ajikl = aklij ,

aijklξklξij ≥ c0|ξ|2 ∀ξij = ξji,

где c0 — положительная постоянная. Всюду в тексте по повторяющимся индек-

сам предполагается суммирование.
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Тонкие упругие включения γ и γ3 моделируются в рамках теории тонкой

балки Тимошенко. Для описания модели данных включений Тимошенко введем

вектор-функции ψ(I) = (w(I), v(I), ϕ(I)), I = 1, 2, 3, где w(I) и v(I) — перемещения

точек оси включения γI вдоль осей x1 и x2 соответственно, ϕ(I) — угол поворо-

та нормального сечения γI . Поскольку включение γ отслаивается от упругой

матрицы с образованием трещины, перемещения точек на противоположных

берегах разреза γ могут не совпадать. Для значений некоторой функции ξ на

берегах γ+ и γ− введем обозначения с верхним индексом: ξ+ и ξ−, также введем

обозначение для скачка функции на берегах разреза: [ξ] = ξ+−ξ−. Аналогичное

обозначение будет использовано и для скачка на γ3. Горизонтальное включение

отслаивается от берега γ+ и прикреплено к берегу γ−, поэтому на γ− задаются

условия склейки перемещений точек тела и включения: u−1 = w(I), u−2 = v(I)

на γI , I = 1, 2. Вертикальное включение не отслаивается, поэтому на γ3 вы-

полнены условия u1 = w(3), u2 = v(3). В дальнейшем все функции, заданные

на γ1, γ2, будем отождествлять с функциями одной переменной x1, а функции,

заданные на γ3, — с функциями переменной x2.

Вначале приведем дифференциальную формулировку рассматриваемой за-

дачи о равновесии двумерного упругого тела, содержащего сопрягающиеся тон-

кие упругие включения. Для заданной на �N функции f = (f1, f2) внеш-

них нагрузок найти в �c поле перемещений u = (u1, u2) точек тела и тен-

зор напряжений σ = {σij(u)}, i, j = 1, 2, кроме того, на γI найти функции

ψ(I) = (w(I), v(I), ϕ(I)), I = 1, 2, 3, такие, что выполнены уравнения равновесия

− div σ = 0 в �c (1)

и краевые условия на внешней границе:

u = 0 на �D, σ(u)n = f на �N , (2)

где σn = (σ1jnj , σ2jnj), j = 1, 2. На γ1, γ2 и γ3 выполняются уравнения равно-

весия, соответствующие модели упругой балки Тимошенко:

−w(I)
,11 = [στ ], −v(I)

,11 − ϕ
(I)
,1 = [σν ], −ϕ(I)

,11 + v
(I)
,1 + ϕ(I) = 0 на γI , I = 1, 2, (3)

v
(3)
,22 = [στ ], −w(3)

,22 − ϕ
(3)
,2 = [σν ], −ϕ(3)

,22 + w
(3)
,2 + ϕ(3) = 0 на γ3, (4)

где σν = (σ1jνj , σ2jνj), σν = σijνjνi, στ = (σν)τ , i, j = 1, 2. Скачки [σν ] и [στ ]

нормальных и касательных напряжений в правых частях уравнений (3) и (4) вы-

ражают воздействие на балку окружающей упругой среды. В концевых точках

включений, кроме точки сопряжения (0, 0), выполняются граничные условия,

соответствующие условиям свободных концов балки:

w
(I)
,1 = v

(I)
,1 + ϕ(I) = ϕ

(I)
,1 = 0 при x1 = (−1)I , I = 1, 2, (5)

v
(3)
,2 = w

(3)
,2 + ϕ(3) = ϕ

(3)
,2 = 0 при x2 = −1. (6)

Кроме того, на γ1, γ2 и γ3 задаются условия склейки перемещений точек упру-

гого тела и включений:

u−1 = w(I), u−2 = v(I) на γI , I = 1, 2, u1 = w(3), u2 = v(3) на γ3. (7)
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Следующая группа условий составляет систему условий сопряжения в точке

контакта включений:

w(1)(0) = w(2)(0) = w(3)(0), v(1)(0) = v(2)(0) = v(3)(0), ϕ(1)(0) = ϕ(2)(0), (8)

w
(3)
,2 (0) + ϕ(3)(0) = w

(2)
,1 (0)− w(1)

,1 (0), v
(3)
,2 (0) = v

(2)
,1 (0)− v(1)

,1 (0), (9)

ϕ
(1)
,1 (0) = ϕ

(2)
,1 (0), ϕ

(3)
,2 (0) = 0. (10)

Из условий (8) следует совпадение горизонтальных и вертикальных перемеще-

ний всех включений, а также углов поворота для γ1 и γ2. Угол поворота γ3 не

участвует в условиях сопряжения (8), поскольку в точке сопряжения включения

γ и γ3 не соединены. Случай идеального сцепления между включениями γ и

γ3 требует отдельного рассмотрения. Условия (9) характеризуют соотношения

для продольных и поперечных сил для γ1, γ2 и γ3. Условия (10) показывают,

что изгибающие моменты γ1 и γ2 также совпадают, в то время как изгибающий

момент γ3 в точке сопряжения равен нулю. Кроме того, на γ выполнен стан-

дартный набор краевых условий, описывающих возможный контакт берегов

трещины, включая условие их взаимного непроникания (первое из представ-

ленных соотношений):

[u]ν ≥ 0, σ+
ν ≤ 0, σ+

τ = 0, σ+
ν [u]ν = 0 на γ. (11)

3. Вариационная формулировка задачи

Введем обозначения

χ = (u, ψ(1), ψ(2), ψ(3)), H1
�D (�c)

2 = {u ∈ H1(�c)
2 | u = 0 на �D}

и рассмотрим пространство

H =
{
χ | u ∈ H1

�D(�c)
2; ψ(I) ∈ H1(γI)

3, I = 1, 2, 3
}
.

Множество допустимых функций определим следующим образом:

K = {χ ∈ H | u−1 = w(I), u−2 = v(I) на γI , I = 1, 2,

u1 = w(3), u2 = v(3) на γ3, [u]ν ≥ 0 на γ, ϕ(1)(0) = ϕ(2)(0)}.

Краевую задачу (1)–(11) можно сформулировать в вариационной форме как

задачу минимизации функционала энергии

�(χ) =
1

2

∫

�c

σ(u)ε(u) dx−
∫

�N

f u ds

+
1

2

2∑

I=1

∫

γI

((
w

(I)
,1

)2
+
(
ϕ

(I)
,1

)2
+
(
v
(I)
,1 + ϕ

)2)
ds

+
1

2

∫

γ3

((
v
(3)
,2

)2
+
(
ϕ

(3)
,1

)2
+
(
w

(3)
,2 + ϕ

)2)
ds

на множестве K. Здесь принято обозначение σ(u)ε(u) = σij(u)εij(u), i, j = 1, 2.
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Для вектор-функций ξ = (p, q, r), ξ = (p, q, r), а также φ = (k, l,m), φ =

(k, l,m) введем в рассмотрение следующие билинейные формы:

�(ξ, ξ) = p,1p,1 + r,1r,1 + (q,1 + r)(q,1 + r),

�(φ, φ) = l,2l,2 +m,2m,2 + (k,2 +m)(k,2 +m).

В принятых обозначениях функционал энергии можно выписать в следующем

виде:

�(χ) =
1

2

∫

�c

σ(u)ε(u) dx−
∫

�N

f u ds

+
1

2

2∑

I=1

∫

γI

�(ψ(I), ψ(I)) ds+
1

2

∫

γ3

�(ψ(3), ψ(3)) ds.

Таким образом, вариационная формулировка состоит в следующем: найти эле-

мент χ ∈ K, доставляющий минимум функционалу �:

�(χ) = inf
χ∈K

�(χ). (12)

Задача (12) имеет единственное решение, удовлетворяющее вариационному нера-

венству [2]:

χ ∈ K :

∫

�c

σ(u)ε(u − u) dx

+

2∑

I=1

∫

γI

�(ψ(I), ψ
(I) − ψ(I)) ds+

∫

γ3

�(ψ(3), ψ
(3) − ψ(3)) ds

≥
∫

�N

f(u− u)ds ∀χ = (u, ψ
(1)
, ψ

(2)
, ψ

(3)
) ∈ K. (13)

Докажем следующее утверждение.

Теорема 1. Задача (1)–(11) эквивалентна вариационному неравенству (13)

при условии достаточной гладкости решений.

Доказательство. Пусть выполнены все соотношения (1)–(11). Возьмем

χ ∈ K и умножим уравнение (1) на u − u, уравнения (3) на w(I) − w(I), v(I) −
v(I), ϕ(I) − ϕ(I), I = 1, 2, а уравнения (4) — на v(3) − v(3), w(3) − w(3), ϕ(3) −
ϕ(3) соответственно. Проинтегрируем первое из полученных равенств по �c, а

остальные — по γ1, γ2, γ3, просуммируем их и получим

−
∫

�c

div σ(u)(u − u) dx−
2∑

I=1

(∫

γI

(
−w(I)

,11

)
(w(I) − w(I)) ds

+

∫

γI

(
−v(I)

,11 − ϕ
(I)
,1

)
(v(I) − v(I)) ds+

∫

γI

(
−ϕ(I)

,11 + v
(I)
,1 + ϕ(I)

)
(ϕ(I) − ϕ(I)) ds

)
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+

∫

γ3

(
−v(3)

,22

)
(v(3) − v(3)) ds+

∫

γ3

(
−w(3)

,22 − ϕ
(3)
,2

)
(w(3) − w(3)) ds

+

∫

γ3

(
−ϕ(3)

,22 + w
(3)
,2 + ϕ(3)

)
(ϕ(3) − ϕ(3)) ds

=

2∑

I=1

(∫

γI

[στ (u)](w(I) − w(I)) ds+

∫

γI

[σν(u)](v(I) − v(I)) ds

)
+

+

∫

γ3

(−[στ (u)])(v(3) − v(3)) ds+

∫

γ3

[σν(u)](w(3) − w(3)) ds.

Применяя интегрирование по частям и учитывая условия (2), (5), (6), (8)–(10),

можем записать∫

�c

σ(u)ε(u − u) ds−
∫

�N

f(u− u) ds

+

2∑

I=1

∫

γI

�(ψ(I), ψ
(I) − ψ(I)) ds+

∫

γ3

�(ψ(3), ψ
(3) − ψ(3)) ds = L,

где

L =

2∑

I=1

(∫

γI

[στ (u)](w(I) − w(I)) ds+

∫

γI

[σν(u)](v(I) − v(I)) ds

−
∫

γI

[σν(u)(u − u)] ds

)
+

∫

γ3

(−[στ (u)])(v(3) − v(3)) ds

+

∫

γ3

[σν(u)](w(3) − w(3)) ds−
∫

γ3

[σν(u)](u − u)] ds.

Для доказательства справедливости вариационного неравенства (13) достаточ-

но показать, что L ≥ 0. Действительно, используя в выражении для L условия

(11), а также свойства элементов χ ∈ K можно переписать L в виде

L = −
∫

γ

σ+
τ (u)[u1 − u1] ds−

∫

γ

σ+
ν (u)[u2] ds+

∫

γ

σ+
ν (u)[u2] dx ≥ 0.

Таким образом, доказано, что имеет место вариационное неравенство (13).

Обратно, пусть имеет место вариационное неравенство (13). Выбирая про-

извольную функцию θ = (θ1, θ2) ∈ C∞0 (�c)
2 и подставляя в (13) пробную функ-

цию вида χ = (u± θ, ψ(1), ψ(2), ψ(3)), можно получить, что в �c выполнено урав-

нение (1). Подставим теперь в (13) пробную функцию вида χ = χ ± χ̃, где

χ̃ = (ũ, ψ̃(1), ψ̃(2), ψ̃(3)) ∈ K такой, что [ũ2] = 0 на γ. Будем иметь

∫

�c

σ(u)ε(ũ) dx+

2∑

I=1

∫

γI

�(ψ(I), ψ̃(I)) ds+

∫

γ3

�(ψ(3), ψ̃(3)) ds =

∫

�N

fũ ds.
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Интегрируя по частям с учетом (1) и (2), запишем

−
2∑

I=1

(∫

γI

[στ (u)]ũ1 ds+

∫

γI

[σν(u)]ũ2 ds
)

+

∫

γ3

[στ (u)]ũ2 ds−
∫

γ3

[σν(u)]ũ1 ds

)

−
2∑

I=1

(∫

γI

w
(I)
,11w̃

(I) ds+

∫

γI

(
v
(I)
,11 + ϕ

(I)
,1

)
ṽ(I) ds+

∫

γI

(
ϕ

(I)
,11 − v

(I)
,1 − ϕ(I)

)
ϕ̃(I) ds

)

−
(∫

γ3

v
(3)
,22ṽ

(3) ds+

∫

γ3

(
w

(3)
,22 + ϕ

(3)
,2

)
w̃(3) +

∫

γ3

(
ϕ

(3)
,22 − w

(3)
,2 − ϕ(3)

)
ϕ̃(3) ds

)

+
(
w

(1)
,1 w̃

(1) + ϕ
(1)
,1 ϕ̃

(1) +
(
v
(1)
,1 + ϕ(1)

)
ṽ(1)

)∣∣0
−1

+
(
w

(2)
,1 w̃

(2) + ϕ
(2)
,1 ϕ̃

(2) +
(
v
(2)
,1 + ϕ(2)

)
ṽ(2)

)∣∣1
0

+
(
v
(3)
,2 ṽ

(3) + ϕ
(3)
,2 ϕ̃

(3) +
(
w

(3)
,2 + ϕ(3)

)
w̃(3)

)∣∣0
−1

= 0. (14)

Пусть ũ = 0 на γ±2 ∪ γ3, а также ϕ̃(I) = 0 на γI , I = 1, 2. Тогда

−
∫

γ1

[στ (u)]ũ1 ds−
∫

γ1

[σν(u)]ũ2 −
∫

γ1

w
(1)
,11w̃

(1) ds

−
∫

γ1

(
v
(1)
,11 + ϕ

(1)
,1

)
ṽ(1) −

∫

γ1

(
ϕ

(1)
,11 − v

(1)
,1 − ϕ(1)

)
ϕ̃(1) ds

−
(
w

(1)
,1 w̃

(1)
)
(−1)−

(
ϕ

(1)
,1 ϕ̃

(1)
)
(−1)−

((
v
(1)
,1 + ϕ(1)

)
ϕ̃(1)

)
(−1) = 0. (15)

Отсюда, предполагая ũ2 = ṽ(1) = 0 на γ±1 , ϕ̃(1) = 0 на γ1, получим первое

уравнение из (3) и первое граничное условие из (5) при x1 = −1. Вернемся к

(16). Выберем ϕ̃(1) = 0 на γ1. С учетом уже полученных уравнения и граничного

условия можно сделать вывод, что на γ1 выполнены второе уравнение из (3) и

второе граничное условие из (5) при x1 = −1. Тогда из (16) можно получить

также третье уравнение из (3) и третье условие из (5) при x1 = −1.

Рассмотрим снова (15). Возьмем пробные функции такого вида, что ũ = 0

и ϕ̃(3) = 0 на γ3. Рассуждая аналогично тому, как и при получении уравнений

на γ1, можно показать, что на γ2 выполнены уравнения (3) и граничные условия

(5) в точке x1 = 1.

С учетом полученных уравнений и граничных условий уравнение (15) мож-

но переписать в виде
∫

γ3

[στ (u)]ũ2 ds−
∫

γ3

[σν(u)]ũ1 ds

−
(∫

γ3

v
(3)
,22ṽ

(3) ds+

∫

γ3

(
w

(3)
,22 + ϕ

(3)
,2

)
w̃(3) ds+

∫

γ3

(
ϕ

(3)
,22 − w

(3)
,2 − ϕ(3)

)
ϕ̃(3) ds

)

+
(
v
(3)
,2 ṽ

(3) + ϕ
(3)
,2 ϕ̃

(3) + (w
(3)
,2 + ϕ(3))w̃(3)

)∣∣0
−1

+
(
w

(1)
,1 w̃

(1)
)
(0) +

(
ϕ

(1)
,1 ϕ̃

(1)
)
(0) +

(
(v

(1)
,1 + ϕ(1))ṽ(1)

)
(0)
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−
(
w

(2)
,1 w̃

(2)
)
(0)−

(
ϕ

(2)
,1 ϕ̃

(2)
)
(0)−

(
(v

(2)
,1 + ϕ(2))ṽ(2)

)
(0) = 0. (16)

Взяв ũ1 = ϕ̃(3) = 0 на γ3 и ϕ̃(1)(0) = ϕ̃(2)(0) = 0, можем получить отсюда
∫

γ3

[στ (u)]ũ2 ds−
∫

γ3

v
(3)
,22 ṽ

(3) ds+
(
v
(3)
,2 ṽ

(3)
)∣∣0
−1

+
((
v
(1)
,1 + ϕ(1)

)
ṽ(1)

)
(0)−

((
v
(2)
,1 + ϕ(2)

)
ṽ(2)

)
(0) = 0. (17)

При ṽ(3)(0) = ṽ(2)(0) = ṽ(1)(0) = 0 получим первое уравнение из (4) и первое

из условий (6). С учетом этих соотношений при ṽ(1)(0) = ṽ(2)(0) = ṽ(3)(0) = 0

и ϕ̃(1)(0) = ϕ̃(2)(0) = 0 из (18) получаем второе из условий сопряжения (9).

Возвращаясь к (17), будем иметь

−
∫

γ3

[σν(u)]ũ1 ds−
∫

γ3

(
w

(3)
,22 + ϕ

(3)
,2

)
w̃(3) ds−

∫

γ3

(
ϕ

(3)
,22 − w

(3)
,2 − ϕ(3)

)
ϕ̃(3) ds

+
(
ϕ

(3)
,2 ϕ̃

(3) +
(
w

(3)
,2 + ϕ(3)

)
w̃(3)

)∣∣0
−1

+
(
w

(1)
,1 w̃

(1)
)
(0) +

(
ϕ

(1)
,1 ϕ̃

(1)
)
(0)

−
(
w

(2)
,1 w̃

(2)
)
(0)−

(
ϕ

(2)
,1 ϕ̃

(2)
)
(0) = 0. (18)

Выбирая здесь пробные функции такими, чтобы ϕ̃(3) = 0 на γ3, w̃
(1)(0) =

w̃(2)(0) = w̃(3)(0) = 0, а также ϕ̃(1)(0) = ϕ̃(2)(0) = 0, получим второе уравнение

из (4) и второе граничное условие из (6). С учетом полученных соотношений

из (16) будем иметь

−
∫

γ3

(
ϕ

(3)
,22 − w

(3)
,2 − ϕ(3)

)
ϕ̃(3) ds+

(
ϕ

(3)
,2 ϕ̃

(3)
)∣∣0
−1

+
((
w

(3)
,2 + ϕ(3)

)
w̃(3)

)
(0)

+
(
w

(1)
,1 w̃

(1)
)
(0) +

(
ϕ

(1)
,1 ϕ̃

(1)
)
(0)−

(
w

(2)
,1 w̃

(2)
)
(0)−

(
ϕ

(2)
,1 ϕ̃

(2)
)
(0) = 0. (19)

Выбирая пробные функции такими, что ϕ̃(3)(0) = 0, а также w̃(1)(0) = w̃(2)(0) =

w̃(3)(0) = 0, ϕ̃(1)(0) = ϕ̃(2)(0) = 0, и подставляя их в (19), получим третье

уравнение из (4) и третье условие из (6) при x2 = −1. С учетом этого равенство

(19) перепишется в виде

(
ϕ

(3)
,2 ϕ̃

(3)
)
(0) +

((
w

(3)
,2 + ϕ(3)

)
w̃(3)

)
(0)

+
(
w

(1)
,1 w̃

(1)
)
(0) +

(
ϕ

(1)
,1 ϕ̃

(1)
)
(0)−

(
w

(2)
,1 w̃

(2)
)
(0)−

(
ϕ

(2)
,1 ϕ̃

(2)
)
(0) = 0.

Отсюда следуют условия сопряжения (10) и первое из соотношений (9). Условия

(11) могут быть получены стандартным путем, изложенным при доказатель-

стве аналогичных теорем для задач об отслоившемся включении Тимошенко

(3). Таким образом, получены все уравнения и соотношения (1)–(11). Теорема

доказана.

4. Предельный переход по параметру жесткости

Введем в рассмотрение параметр ρ > 0, характеризующий жесткость вер-

тикального включения γ3, и будем рассматривать семейство задач о сопряже-

нии упругих включений при различных значениях данного параметра. Нашей
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целью является обоснование предельного перехода при ρ→∞ и получение фор-

мулировки соответствующей задачи. Рассмотрим функционал энергии вида

�ρ(χ) =
1

2

∫

�c

σ(u)ε(u) dx−
∫

�N

f u ds

+
1

2

2∑

I=1

∫

γI

�(ψ(I), ψ(I)) ds+
ρ

2

∫

γ3

�(ψ(3), ψ(3)) ds

и сформулируем следующую задачу минимизации: найти элемент

χρ =
(
uρ, ψ

(1)
ρ , ψ(2)

ρ , ψ(3)
ρ

)
∈ K,

доставляющий минимум функционалу �ρ:

�ρ(χρ) = inf
χ∈K

�ρ(χ). (20)

При каждом фиксированном ρ > 0 задача (20) имеет единственное решение,

удовлетворяющее вариационному неравенству

χρ ∈ K :

∫

�c

σ(uρ)ε(u− uρ) dx

+

2∑

I=1

∫

γI

�
(
ψ(I)
ρ , ψ

(I) − ψ(I)
ρ

)
ds+ ρ

∫

γ3

�
(
ψ(3)
ρ , ψ

(3) − ψ(3)
ρ

)
ds

≥
∫

�N

f(u− uρ) ds ∀χ ∈ K. (21)

Подставим в (21) пробные элементы вида χ = 0 и χ = 2χρ. Тогда будем

иметь

∫

�c

σ(uρ)ε(uρ) dx+

2∑

I=1

∫

γI

�
(
ψ(I)
ρ , ψ(I)

ρ

)
ds+ ρ

∫

γ3

�
(
ψ(3)
ρ , ψ(3)

ρ

)
ds =

∫

�N

fuρ ds.

Отсюда

‖uρ‖H1
�D

(�c)2 ≤ C1,
∥∥ψ(I)

ρ

∥∥
H1(γI)3

≤ C(I)
2 , I = 1, 2, (22)

ρ

∫

γ3

�
(
ψ(3)
ρ , ψ(3)

ρ

)
ds ≤ C3,

∥∥ψ(3)
ρ

∥∥
H1(γ3)3

≤ C4 (23)

при ρ ≥ ρ0 > 0. Из (22), (23) следует, что при ρ→∞

uρ → ũ слабо в H1
�D (�c)

2, (24)

ψ(I)
ρ → ψ̃(I) слабо в H1(γI)

3, I = 1, 2, 3, (25)

ṽ
(3)
,2 = 0, ϕ̃

(3)
,2 = 0, w̃

(3)
,2 + ϕ̃(3) = 0 на γ3. (26)

Значит,

ṽ(3) = a1, ϕ̃(3) = −a2, w̃(3)(x2) = a2x2 + a3 на γ3, (27)
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где a1, a2, a3 — постоянные. Определим пространство жестких инфинитези-

мальных перемещений

R(γ3) = {(w̃, ṽ) | w̃ = ã2x2 + ã3, ṽ = ã1 на γ3, ãi ∈ R, i = 1, 2, 3}

и множество

KR =
{
ξ = (u, ψ(1), ψ(2)) ∈ H1

�D (�c)
2 ×H1(γ1)

3 ×H1(γ2)
3 |

u−1 = w(I), u−2 = v(I) на γI , I = 1, 2; u|γ3
∈ R(γ3);

[u]ν ≥ 0 на γ; ϕ(1)(0) = ϕ(2)(0)
}
.

Из (24), (25), (27) следует, что ξ̃ = (ũ, ψ̃(1), ψ̃(2)) ∈ KR. Возьмем далее ξ =

(u, ψ
(1)
, ψ

(2)
) ∈ KR и обозначим u1 = w(3), u2 = v(3) на γ3. Поскольку w(3) =

a2x2+a3, v
(3) = a1 на γ3, элемент χ = (u, ψ

(1)
, ψ

(2)
, ψ

(3)
), где ψ

(3)
= (w(3), v(3), ϕ(3))

и ϕ(3) = −a2, принадлежит K и его можно подставлять в качестве тестового в

(21). Получим

χρ ∈ K :

∫

�c

σ(uρ)ε(u− uρ) dx

+

2∑

I=1

∫

γI

�
(
ψ(I)
ρ , ψ

(I) − ψ(I)
ρ

)
ds+ ρ

∫

γ3

�
(
ψ(3)
ρ , ψ

(3))
ds

≥ ρ
∫

γ3

�
(
ψ(3)
ρ , ψ(3)

ρ

)
ds+

∫

�N

f(u− uρ) ds ∀χ ∈ K.

Переходя в этом неравенстве к пределу при ρ→∞, будем иметь

ξ̃ ∈ KR :

∫

�c

σ(ũ)ε(u − ũ) dx+

2∑

I=1

∫

γI

�(ψ̃(I), ψ
(I) − ψ̃(I)) ds

≥
∫

�N

f(u− ũ) ds ∀ξ ∈ KR. (28)

Таким образом, доказано следующее утверждение.

Теорема 2. При ρ → ∞ решения χρ задачи (21) сходятся в смысле (24),

(25) к решению задачи (28).

Задача (18) описывает T-образное сопряжение двух тонких включений в

упругом теле �c, при этом включение γ — включение Тимошенко, а γ3 — тонкое

жесткое включение.

5. Включение без отслоения

Если оба включения γ и γ3 не имеют отслоений, дифференциальная по-

становка задачи имеет следующую форму. Для заданной на �N функции f =

(f1, f2) внешних нагрузок найти в �c поле перемещений u = (u1, u2) точек тела
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и тензор напряжений σ = {σij(u)}, i, j = 1, 2, кроме того, на γI найти функции

ψ(I) = (w(I), v(I), ϕ(I)), I = 1, 2, 3, такие, что выполнены уравнения и соотноше-

ния (1)–(6), (8)–(10), а также условия вида

u1 = w(I), u2 = v(I) на γI , I = 1, 2, 3.

Соответствующая вариационная формулировка задачи о Т-образном сопряже-

нии упругих включений без отслоения состоит в следующем. Найти элемент χ,

доставляющий минимум функционалу � в пространстве V , имеющем вид

V = {χ ∈ H | u1 = w(I), u2 = v(I) на γI , I = 1, 2, 3; ϕ(1)(0) = ϕ(2)(0)}.

Таким образом, вариационная формулировка имеет вид

�(χ) = inf
χ∈V

�(χ). (29)

Задача (29) имеет единственное решение, удовлетворяющее уравнению

χ ∈ V :

∫

�c

σ(u)ε(u) dx+

2∑

I=1

∫

γI

�(ψ(I), ψ
(I)

) ds+

∫

γ3

�(ψ(3), ψ
(3)

) ds

=

∫

�N

fu ds ∀χ ∈ V.

Приведенные дифференциальная и вариационная формулировки эквивалентны

при условии достаточной гладкости решений. Доказательство можно произве-

сти аналогично доказательству теоремы 1.
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THE PROBLEM OF T–SHAPED JUNCTION

OF TWO THIN TIMOSHENKO INCLUSIONS

IN A TWO–DIMENSIONAL ELASTIC BODY
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Abstract: We consider the equilibrium problem for a two-dimensional elastic body
containing two contacting thin inclusions of a rectilinear shape. The inclusions are
elastic and are modeled within the framework of the theory of Timoshenko beams.
The inclusions intersect at a right angle, and one of the inclusions delaminates from
the elastic matrix, forming a crack. The problem is posed as a variational one and a
complete differential formulation is obtained in the form of a boundary value problem,
including junction conditions at a common point of inclusions. On the edges of the cut,
boundary conditions of the form of inequalities are specified. The equivalence of the
variational and differential formulations of the problem is proved under the condition
of sufficient smoothness of the solutions. The passage to the limit with respect to the
stiffness parameter of one of the inclusions is substantiated.
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условий переопределения рассматриваются значения решения в отдельных точках,
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априорных оценках и теореме о неподвижной точке.
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Введение

Рассматривается вопрос об определении вместе с решением краевой задачи

правой части специального вида и коэффициентов в параболическом уравнении.

Пусть G — область в Rn с границей � и Q = (0, T )× G. Считаем, что область

G разделена на два открытые множества G+ и G−, G− ⊂ G, G+ ∪ G− = G,

G+ ∩ G− = ∅, положим �0 = ∂G+ ∩ ∂G−, S0 = (0, T ) × �0, S = (0, T ) × � .

Параболическое уравнение имеет вид

ut +A(t, x,D)u = f(t, x), (t, x) ∈ Q, (1)

где функция f и эллиптический оператор второго порядка A в G± представимы

в виде

−A(t, x,D) = A0(t, x,Dx) +

r∑

i=1

qi(t)Ai(t, x,Dx), f = f0(t, x) +

s∑

i=r+1

fi(t, x)qi(t),

Ai =

n∑

k,l=1

∂xl
aikl(t, x)∂xk

+

n∑

k=1

aik(t, x)∂xk
+ ai0.

Исследование выполнено в рамках государственного задания Министерства науки и выс-
шего образования РФ (тема «Аналитическое и численное исследование обратных задач об
определении параметров источников атмосферного или водного загрязнения и (или) пара-
метров среды», код темы: FENG-2023-0004).

c© 2023 Пятков С. Г., Соколков О. И.
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Уравнение (1) дополняется начальными и граничными условиями

u|t=0 = u0, Bu|S = g(t, x), (2)

где Bu = u или

Bu =
∂u

∂N
+ σu =

n∑

i,j=1

aijuxinj + σu

и n = (n1, n2, . . . , nn) — внешняя единичная нормаль к � , и условиями сопря-

жения
∂u+

∂N
(t, x) =

∂u−

∂N
(t, x), u+(t, x) = u−(t, x), (t, x) ∈ S0, (3)

где

∂u±

∂N
(t, x0) = lim

x∈G±,
x→x0∈�0

n∑

i,j=1

aijuxiνj , u±(t, x0) = lim
x∈G±,

x→x0∈�0

u(t, x),

ν = (ν1, ν2, . . . , νn) — внешняя единичная нормаль к G−. Условия переопреде-

ления имеют вид

u(t, bj) = ψj(t), bj ∈ G+ ∪G−, j = 1, 2, . . . , s. (4)

Неизвестными в задаче (1)–(4) являются решение u и функции qi(t) (i = 1, . . . , s).

Мы не считаем, что � или �0 состоят из одной компоненты связности. Вообще

говоря, их может быть много и на каждой из них есть свои граничные условия

или соответственно свои условия сопряжения. В процессе доказательств мы не

оговариваем это дополнительно, чтобы не усложнять изложение.

Проблемы вида (1)–(4) возникают при описании процессов тепломассопере-

носа, диффузионных процессов, процессов фильтрации, в экологии и во многих

других областях. В частности, при описании температурных режимов почв се-

верных территорий возникают задачи об определении теплофизических и мас-

сообменных характеристик, которые находятся с помощью решения обратной

задачи (см. [1]). Теоретических результатов, посвященных задачам (1)–(4),

довольно мало или нет совсем, в отличие от случая одной среды. Опишем

полученные результаты в последнем случае. Отметим монографию [2], посвя-

щенную обратным параболическим задачам, и монографии [3–6], где описаны

основные постановки, в том числе и в параболическом случае. Стоит отметить

работы [7–10], где в случае n = 1 определяется теплопроводность как функция

времени и получены теоремы существования и единственности, а в качестве

данных берутся значения решения в отдельных точках, возможно, являющихся

граничными. Теплопроводность, не зависящая от одной из пространственных

переменных, и часть коэффициентов по данным Коши на боковой поверхности

цилиндра и интегральным данным определяется в [11, 12]. Получены теоремы

существования и единственности решений и оценки устойчивости. В моногра-

фии [3] (см. также, например, результаты работы [13] и др.) получены теоремы

существования и единственности решений, в том числе и старших коэффици-

ентов, не зависящих от некоторых пространственных переменных с данными
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переопределения на сечениях пространственной области плоскостями. В силу

специфики метода все коэффициенты также не зависят от части пространствен-

ных переменных. Более полные результаты получены в цикле работах [14–17],

где показана корректность обратных задач об определении коэффициентов в

случае задания решения на пространственных многообразиях или в отдельных

точках, как и в нашем случае. Обратные задачи с точечными данными иссле-

довались в работах А. И. Прилепко и его учеников, и ряд интересных задач

описан в [2]. Аналогичные результаты, но при несколько других условиях на

данные и в других пространствах получены в [18, 19]. Определение коэффици-

ента теплопроводности λ(T ) по значениям решения на некоторой кривой, ле-

жащей на границе, исследуется в [20], и получены теорема единственности и

оценки устойчивости. Наша работа близка к работе [21], где рассматривалась

обратная задача об определении старших коэффициентов в уравнении в случае

обычной начально-краевой задачи (не задачи сопряжения). Был исследован

вопрос о корректности задачи.

Численному решения задач (1)–(4) посвящено огромное количество работ.

Подавляющее большинство численных методов основаны на сведении задачи

к задаче оптимального управления и минимизации соответствующего целевого

функционала (см. [22–25]). С различными постановками и результатами можно

ознакомиться также в работах [26–30].

Опишем содержание работы. В разд. 1 описаны условия на данные задачи

и приведены вспомогательные результаты. Разд. 2 посвящен основным резуль-

татам.

1. Определения и вспомогательные результаты

Пусть E — банахово пространство. Через Lp(G;E) (G — область в Rn) обо-

значается пространство измеримых функций, определенных на G, со значения-

ми в E и с конечной нормой ‖‖u(x)‖E‖Lp(G) [31]. Обозначения для пространств

СоболеваW s
p (G;E), W s

p (Q;E) и т. д. стандартные (см. [32, 33]). Если E = R или

E = Rn, то последнее пространство обозначаем просто через W s
p (Q). Опреде-

ления пространств Гёльдера Cα,β(Q), Cα,β(S) могут быть найдены, например,

в [34]. Под нормой вектора понимаем сумму норм координат. Для данного

интервала J = (0, T ) положим W s,r
p (Q) = W s

p (J ;Lp(G)) ∩ Lp(J ;W r
p (G)). Соот-

ветственно W s,r
p (S) = W s

p (J ;Lp(� ))∩Lp(J ;W r
p (� )). Пусть (u, v) =

∫
G

u(x)v(x) dx.

Все рассматриваемые пространства и коэффициенты уравнения (1) считаем ве-

щественными. Далее считаем, что параметр p > n+ 2 зафиксирован и

� , �0 ∈ C2. (5)

Определение границы класса Cs, s ≥ 1, можно найти в [34, гл. 1]. Пусть Bδ(b) —

шар радиуса δ с центром в точке b. Зафиксируем параметр δ > 0 такой, что

Bδ(bi) ∩ (�0 ∪ � ) = ∅ для всех i, Bδ(bi) ∩ Bδ(bj) = ∅ для i 6= j, i, j = 1, 2, . . . , s.

Если необходимо, его всегда можно уменьшить. Введем обозначения: Qτ =
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(0, τ) ×G, Gδ = ∪iBδ(bi), S
τ
0 = (0, τ) × �0, Q± = (0, T )× G±, Q±τ = (0, τ) ×G±,

Sτ = (0, τ)× � .

Условия согласования и гладкости данных могут быть записаны в виде

u0(x) ∈W 2−2/p
p (G±), B(0, x,D)u0|� = g(0, x), g ∈ W k0,2k0

p (S), p > n+ 2,

∂u+
0

∂N
(x) =

∂u−0
∂N

(x), u+
0 (x) = u−0 (x), x ∈ �0,

(6)

где k0 = s1 = 1 − 1/2p в случае Bu = u и k0 = s0 = 1/2 − 1/2p в противном

случае;

u0(x) ∈ W 4−2/p
p (Gδ), fj ∈ Lp

(
0, T ;W 2

p (Gδ)
)
∩ Lp(Q), j = 0, r + 1, . . . , s, (7)

ψj ∈W 3/2−1/2p
p (0, T ), ψj(0) = u0(bj), j ≤ s. (8)

Ниже будут встречаться включения вида f ∈ Lp

(
0, T ;W 1

p (Gδ)
)

или аналогич-

ные, где соответствующее множество Gδ состоит из нескольких компонент связ-

ности (в данном случае Bδ(bj)). По определению это означает, что f |Bδ(bj) ∈
Lp

(
0, T ;W 1

p (Bδ(bj))
)

для всех j. В качестве нормы в этом пространстве рассмат-

риваем сумму норм по соответствующим компонентам связности. Аналогично

для других множеств. Мы считаем, что

akij ∈ C([0, T ];C1(G)), akl ∈ Lp(Q), σ, akij
∣∣
S
∈W s0,2s0

p (S), akij
∣∣
S0
∈W s0,2s0

p (S0);

(9)

akij ∈ L∞
(
0, T ;W 2

p (Gδ)
)
, akl ∈ Lp

(
0, T ;W 2

p (Gδ)
)
,

akij(t, ba), a
k
l (t, ba), fm(t, ba) ∈W s0

p (0, T ),
(10)

для i, j = 1, 2, . . . , n, l = 0, 1, . . . , n, k = 0, 1, . . . , r, a = 1, . . . , s, m = 0, r + 1,

. . . , s. Ввиду условий (10), (7) следы fm(t, bp), a
k
l (t, bj) определены и fm(t, bp),

akl (t, bj) ∈ Lp(0, T ); более того fm(t, x), akl (t, x) ∈ C(Gδ ;Lp(0, T )) (после, может

быть, изменения на множестве меры 0) (см. [35, § 2–4, соотношения (3.1)–(3.9),

следствие 4.3]).

Пусть E — банахово пространство. Введем пространство

W̃ s
p (0, T ;E) =



v ∈W

s
p (0, T ;E) :

T∫

0

‖v(t)‖pE
tsp

dt <∞



 , s ∈ (0, 1].

Оно состоит из v ∈ W s
p (0, T ;E) таких, что v(0) = 0 при s > 1/p, и совпадает с

W s
p (0, T ;E) при s < 1/p. Положим

‖v(t)‖p
W̃ s

p (0,T ;E)
=

∥∥∥∥
‖v‖E
ts

∥∥∥∥
p

Lp(0,T )

+

T∫

0

T∫

0

‖v(t)− v(τ)‖pE
|t− τ |1+sp

dtdτ.

Если E = R или E = C, пишем W̃ s
p (0, T ).
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Лемма 1. Пусть s ∈ (1/p, 1] и q(t) ∈ W̃ s
p (0, τ), v(t) ∈ W s

p (0, T ) (или v(t) ∈
W̃ s

p (0, T )). Тогда q(t)v(t) ∈ W̃ s
p (0, τ) и справедливы оценки

‖qv‖
W̃ s

p (0,τ)
≤ c‖q‖

W̃ s
p (0,τ)

‖v‖W s
p (0,T ), или

‖qv‖
W̃ s

p (0,τ)
≤ c‖q‖

W̃ s
p (0,τ)

‖v‖
W̃ s

p (0,τ)
, ‖q‖C([0,τ ]) ≤ c‖q‖W̃ s

p (0,τ)
,

(11)

где постоянная c не зависит от τ ∈ (0, T ]. Если q(t) ∈W s
p (0, T ), v(t) ∈ W s

p (0, T ),

то q(t)v(t) ∈W s
p (0, T ).

Утверждение вытекает непосредственно из определений норм (см. также

лемму 2 в [21]).

Рассмотрим матрицу B0 размера s× s со строками

A1(0, bj , D)u0(bj), . . . , Ar(0, bj, D)u0(bj), fr+1(0, bj), . . . , fs(0, bj), j ≤ s.

Потребуем, чтобы

detB0 6= 0. (12)

Рассмотрим системы уравнений

B0~q0 = ~g0, (13)

~g0 = (ψ1t(0)−A0(0, b1, D)u0 − f0(0, b1), . . . , ψst(0)−A0(0, bs, D)u0 − f0(0, bs))T .
В силу (12) система (13) имеет единственное решение q0 = (q01, . . . , q0s). Поло-

жим apl =
r∑

i=0

aiplq0i и далее будем считать, что

n∑

p,l=1

apl(t, x)ξpξl ≥ δ0|ξ|2 ∀ξ ∈ Rn, ∀(t, x) ∈ Q.

где δ0 — положительная постоянная. Тогда оператор

−A0 = A0(t, x,Dx) +

r∑

i=1

q0iAi(t, x,Dx)

эллиптичен в G+ ∪G− и можно рассмотреть задачу

ut +A0(t, x,Dx)u = f ((t, x) ∈ Q), u|t=0 = u0(x), Bu|S = g,

∂u+

∂N
(x, t) =

∂u−

∂N
(t, x), u+(t, x) = u−(t, x), (t, x) ∈ S0.

(14)

Теорема 1. Пусть выполнены условия (5), (6), (9) и f ∈ Lp(Q). Тогда су-

ществует единственное решение u ∈W 1,2
p (Q±) задачи (14). Справедлива оценка

‖u‖W 1,2
p (Q+) + ‖u‖W 1,2

p (Q−)

≤ c[‖u0‖W 2−2/p
p (Q+)

+ ‖u0‖W 2−2/p
p (Q−)

+ ‖f‖Lp(Q) + ‖g‖
W

k0,2k0
p (S)

]. (15)

Если g = 0, то справедлива оценка

‖u‖W 1,2
p (Q+

τ )+‖u‖W 1,2
p (Q−τ ) ≤ c[‖u0‖W 2−2/p

p (Q+
τ )

+‖u0‖W 2−2/p
p (Q−τ )

+‖f‖Lp(Qτ )], (16)



О некоторых классах коэффициентных обратных задач 61

где постоянная c не зависит от u0, f, τ ∈ (0, T ].

Доказательство. Первое утверждение теоремы доказано в случае не за-

висящих от t коэффициентов в [36, гл. 6]. В принципе, утверждение теоремы

в случае произвольных коэффициентов вытекает из результатов этой работы и

стандартных рассуждений, например, тех, что использованы в [37]. Случай за-

висящих от t коэффициентов был рассмотрен в [38, теорема 7.1]. К сожалению,

эти результаты посвящены в основном случаю, когда �∩�0 6= ∅, и поэтому изло-

жение и формулировки достаточно громоздкие. Второе утверждение и оценка

(16) вытекают из стандартных рассуждений, совпадающих, например, с теми,

которые использованы в [19, теорема 2; 18, теорема 1].

Теорема 2. Пусть выполнены условия (5)–(7), (9), (10), а также пусть

f ∈ Lp

(
0, T ;W 2

p (Gδ)
)
, f ∈ Lp(Q). Тогда существует единственное решение u ∈

W 1,2
p (Q±) задачи (14) такое, что u ∈ Lp

(
0, T ;W 4

p (Gδ1)
)
, ut ∈ Lp

(
0, T ;W 2

p (Gδ1)
)

для всех δ1 ∈ (0, δ). Если g = 0 и δ1 < δ, то справедлива оценка

‖u‖W 1,2m
p (Q+

τ ) + ‖u‖W 1,2
p (Q+

τ ) + ‖u‖Lp(0,T ;W 4
p (Gδ1

)) + ‖ut‖Lp(0,T ;W 2
p (Gδ1

))

≤ c[‖u0‖
W

2− 2
p

p (G−)
+ ‖u0‖

W
2− 2

p
p (G+)

+ ‖u0‖
W

4− 2
p

p (Gδ)

+ ‖f‖Lp(Qτ ) + ‖f‖Lp(0,τ ;W 2
p (Gδ))], (17)

где постоянная c не зависит от u0, f, τ ∈ (0, T ].

Доказательство. Утверждение о дополнительной гладкости решений и

оценке получается с использованием теоремы 1 и повторяет доказательство тео-

ремы 1 в [18] (см. также доказательство теоремы 4, п. 3, § 2, гл. 4 в [39]). Утвер-

ждение также содержится в [21, теорема 1], которая здесь применима.

Обозначим левую часть неравенства в (17) через ‖u‖Hτ
δ1

, а величину

‖f‖Lp(Qτ ) + ‖f‖Lp(0,τ ;W 2
p (Gδ)) — через ‖f‖W τ

δ
. Соответствующие банаховы про-

странства обозначаются через Hτ
δ1

и W τ
δ соответственно. Пространство Hτ

δ1
со-

стоит из функций u ∈ Lp(Q
τ ) таких, что u|G± ∈W 1,2

p (Q±τ ), u ∈ Lp

(
0, T ;W 4

p (Gδ1)
)
,

ut ∈ Lp

(
0, T ;W 2

p (Gδ1 )
)
, u удовлетворяет однородным начальным и граничным

условиям и условиям сопряжения в (14). Параметр δ1 ∈ (0, δ) зафиксируем.

2. Основные результаты

Теорема 3. Пусть выполнены условия (5)–(10), (12). Тогда найдется число

τ0 ∈ (0, T ] такое, что на (0, τ0) существует единственное решение (u, q1, q2, . . . , qs)

задачи (1)–(4) такое, что

u ∈W 1,2
p (Q±τ0), u ∈ Lp

(
0, τ0;W

4
p (Gδ1 )

)
, ut ∈ Lp

(
0, τ0;W

2
p (Gδ1)

)

для всех δ1 ∈ (0, δ), qj ∈W s0
p (0, τ0), j = 1, 2, . . . , s.

Доказательство. Пусть ~q = (q1, . . . , qs)
T . Найдем решение � задачи

(14), где вместо функции f возьмем функцию

f = f0 +

s∑

i=r+1

fi(t, x)q0i
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а в качестве функций g, u0 — данные из (1)–(3). В силу теорем 1, 2 существует

решение задачи (14) такое, что � ∈ W 1,2
p (Q±), � ∈ Lp

(
0, T ;W 4

p (Gδ2)
)
, �t ∈

Lp

(
0, T ;W 2

p (Gδ2)
)

для всех δ2 ∈ (0, δ). Сделав замену переменных u = v + �,

придем к задаче

Lv = vt + S(~µ)v = (A0 −A)�+

s∑

i=r+1

fi(t, x)µi(t), (t, x) ∈ Q, S(~µ) = A0 +A(~µ),

(18)

где

−A(~µ) =

r∑

i=1

µi(t)Ai(t, x,Dx), µi(t) = qi(t)− q0i;

v|t=0 = 0, Bv|S = 0,
∂v+

∂N
(x, t) =

∂v−

∂N
(t, x), v+(t, x) = v−(t, x) (t, x) ∈ S0; (19)

v(t, bj) = ψj(t)− �(t, bj) = ψ̃j , i = r + 1, . . . , s. (20)

ИмеемDα� ∈W 1,2
p ((0, T )×Bδ1(bj)) для всех j и |α| ≤ 2. В силу теорем вложения

Dα
x�i(t, x) ∈ C1−(n+2)/2p,2−(n+2)/p((0, T )×Bδ1(bj)) (см. § 6.3 и теорему 1 (разд.

«замечания», с. 424) в [40]). Тогда Dα
x�(t, bj) ∈ W

1/2−1/2p
p (0, T ), поскольку

1−(n+2)/2p > 1/2−1/2p, и произведения akij(t, bj)D
α
x�(t, bj), a

k
i (t, bj)D

α
x�(t, bj)

принадлежат W
1/2−1/2p
p (0, T ) (по лемме 1). Значит, A0�(t, bj) ∈ W 1/2−1/2p

p (0, T )

(после, может быть, изменения на множестве меры нуль). Рассмотрим пра-

вую часть в уравнении. Имеем fk(t, bj) ∈ W
1/2−1/2p
p (0, T ) (в силу (10)). Из

уравнения для � вытекает, что �t(t, bj) ∈ W
1/2−1/2p
p (0, T ), т. е. �(t, bj) ∈

W
3/2−1/2p
p (0, T ) для всех j. Таким образом, задача (1)–(4) сведена к эквивалент-

ной и более простой задаче (18)–(20), которую и будем исследовать. Рассмотрим

выражение

L(~ξ) =

n∑

ij=1

ãijξiξj , ãij =

r∑

k=1

akijµk,

и найдем величину R0 такую, что

|L(~ξ)| ≤ δ0|ξ|2/2 ∀ξ ∈ Rn, ∀(t, x) ∈ Q, ∀~µ : ‖~µ‖C([0,τ ]) ≤ R0.

Тогда оператор S(~µ) эллиптичен и будут справедливы теоремы 1, 2 с опера-

тором S(~µ) вместо оператора A0. Фиксируя δ3 ∈ (δ1, δ), для каждой функ-

ции µj ∈ W̃ 1/2−1/2p
p (0, τ) найдем, используя теоремы 1, 2 с δ3 вместо δ, реше-

ние v задачи (18), (19) на интервале (0, τ) такое, что v ∈ Lp

(
0, τ ;W 4

p (Gδ2 )
)
,

vt ∈ Lp

(
0, τ ;W 2

p (Gδ2)
)

для всех δ2 ∈ (0, δ3). Имеем отображение ~µ → v = v(~µ)

(~µ = (µ1, . . . , µs)). Изучим его свойства. Пусть

~µ ∈ BR0
=
{
~µ ∈ W̃ 1/2−1/2p

p (0, τ) : ‖~µ‖
W̃

1/2−1/2p
p (0,τ)

≤ R0

}
.

Отметим, что W
1/2−1/2p
p (0, τ) ⊂ C([0, τ ]), поэтому без ограничения общности

можем считать, что ‖~µ‖C([0,τ ]) ≤ ‖~µ‖W̃ 1/2−1/2p
p (0,τ)

≤ R0 для всех ~µ ∈ BR0
(см.
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лемму 1). Используя теорему 2, получим уравнение

v = L−1f, f = (A0 −A)� +

s∑

i=r+1

fi(t, x)µi(t) (x ∈ G±). (21)

Фиксируем δ2 ∈ (δ1, δ3). Имеем оценку

‖v‖Hτ
δ2

= ‖L−1f‖Hτ
δ2
≤ c‖f‖W τ

δ3
, (22)

где

f =

r∑

i=1

µiAi�(t, x) +

s∑

i=r+1

µifi(t, x), (t, x) ∈ Q±. (23)

Из этого представления и условий на коэффициенты имеем

‖f‖W τ
δ3
≤ c2‖~µ‖C([0,τ ]), (24)

где постоянная c2 не зависит от τ и зависит от норм коэффициентов в Q и ве-

личин ‖fi‖W τ
δ3

, ‖�‖Hτ
δ3

(их можно заменить на ‖fi‖WT
δ3

, ‖�‖HT
δ3

). Считая, что

~µi ∈ BR0
(i = 1, 2), рассмотрим два решения v1, v2 задачи (18), (19) (или урав-

нения (21)), отвечающие двум различным наборам ~µi (~µi = (µ1i, µ2i, . . . , µsi),

i = 1, 2). Вычитая второе уравнение (18) из первого, получим, что разность

ω = v2 − v1, vi = v(~µi), удовлетворяет уравнению

ωt + S

(
µ1 + µ2

2

)
ω =

r∑

j=1

(
µj2(t)− µj1(t)

)
Aj(t, x,D)(v1 + v2)/2

+

r∑

j=1

(µj2(t)− µj1(t))Aj(t, x,D)� +

s∑

j=r+1

fj(t, x)(µj2(t)− µj1(t)). (25)

Имеем (µ1 + µ2)/2 ∈ BR0
, и тем самым справедлива оценка (см. (22))

‖ω‖Hτ
δ1
≤ c‖f̃‖W τ

δ2
, (26)

f̃ =

r∑

j=1

(µj2(t)− µj1(t))Aj(t, x,D)(v1 + v2)/2 +

s∑

j=r+1

fj(t, x)(µj2(t)− µj1(t)).

Из оценок (26), (24) вытекает неравенство

‖ω‖Hτ
δ1
≤ c‖f̃‖W τ

δ2
≤ c2c‖~µ2 − ~µ1‖C([0,τ ]), (27)

где, как и ранее, c2 зависит от норм (как линейная функция) ‖(v1 + v2)/2‖Hτ
δ2

,

‖fi‖W τ
δ2

. Пусть v, ~µ — решение задачи (18), (19) и, таким образом, v = v(~µ).

Полагая x = bj в уравнении (18), с учетом того, что vt(t, bj) = ψ̃′j , получим

систему

ψ̃′j + S(~µ)v(t, bj) =

r∑

j=1

µjAj(t, bj , D)�+

s∑

j=r+1

fj(t, bj)µj(t). (28)
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Правую часть этого равенства можно записать в виде B(t)~µ, где строки матри-

цы B(t) записываются в виде

A1(t, bj, D)�(t, bj), . . . , Ar(t, bj , D)�(t, bj), fr+1(t, bj), . . . , fs(t, bj).

Матрица B(0) совпадают с матрицей B0 из (12) и, значит, detB(0) 6= 0. Функ-

ции fr+1(t, bj) непрерывны по t в силу наших условий. Все функции aikl(t, bj),

aik(t, bj) ∈ W s0
p (0, T ), непрерывны по t в силу условий (9), (10). Как отмеча-

ли выше, Dα
x�(t, x) ∈ C1−1/2p,2−1/p([0, T ]×Gδ) при |α| ≤ 2. Таким образом,

все элементы матрицы B непрерывны по t и тем самым существуют τ0 ≤ T и

постоянная δ3 > 0 такие, что

| detB(t)| ≥ δ3 > 0 ∀t ∈ [0, τ0]. (29)

Тогда систему (28) можно записать в виде

~µ(t) = B−1H(~µ)(t) = R(~µ), (30)

H(~µ) = (ψ̃′1 + S(~µ)v(t, b1), ψ̃
′
2 + S(~µ)v(t, b2), . . . , ψ̃

′
s + S(~µ)v(t, bs))

T .

В правую часть входит некоторый оператор, сопоставляющий вектор-функции

~µ величины S(~µ)v(t, bj) (j = 1, 2, . . . , s), где v — решение задачи (18), (19).

По доказанному этот оператор определен для всех векторов ~µ, удовлетворяю-

щих условию ~µ ∈ BR0
. Свойства отображения ~µ → v(~µ) мы уже исследовали.

Покажем, что можно найти такое τ1 ≤ τ0, что оператор R(~µ) = B−1H(~µ)(t),

R : W̃ s0
p (0, τ1) → W̃ s0

p (0, τ1), определен, переводит шар BR0
в себя и является в

нем сжимающим. Рассмотрим величину ψ̃′j(0). По построению

ψ̃′j(0) = ψ′j(0)− �′(t, bj)

= ψ′j(0)−A(0, bj, D)u0(bj)−
s∑

i=r+1

fi(0, bj)q0i = 0, j = 1, . . . , s,

в силу того, что числа q0i у нас находились из системы (13). Пусть ~ψ =

(ψ̃′1, ψ̃
′
2, . . . , ψ̃

′
s)

T . Тогда ~ψ ∈ W̃ s0
p (0, τ) (τ ≤ τ0) и в силу леммы 1 B−1(t)~ψ ∈

W̃ s0
p (0, τ1). Найдется число τ1 ≤ τ0 (в силу абсолютной непрерывности инте-

грала) такое, что ‖B−1(t)~ψ‖
W̃

s0
p (0,τ1)

≤ R0/2. Отметим, что R(0) = B−1(t)~ψ(t).

Получим оценки, считая, что ~µi ∈ BR0
и τ ≤ τ1. Оценим ‖R(~µ1)−R(~µ2)‖W̃ s0

p (0,τ)

с τ ≤ τ1. Имеем

‖R(~µ1)−R(~µ2)‖W̃ s0
p (0,τ)

≤ c0
(

s∑

i=1

‖A0v1(t, bi)−A0v2(t, bi)‖W̃ s0
p (0,τ)

+

s∑

i=1

r∑

k=1

‖µ1kAkv1(t, bi)− µ2kAkv2(t, bi)‖W̃ s0
p (0,τ)

)
. (31)

Далее используем условия на коэффициенты и вложение W θ
p (G) ⊂ C(G) при

θ > n/p [31, теоремы 4.6.1, 4.6.2.]. Возьмем θ ∈ (n/p, 1). Рассмотрим одно из

последних слагаемых. Используя лемму 1, имеем

‖µ1kAkv1(t, bi)− µ2kAkv2(t, bi)‖W̃ s0
p (0,τ)
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≤ ‖(µ1k − µ2k)(Akv1(t, bi) +Akv2(t, bi))‖W̃ s0
p (0,τ)

/2

+

∥∥∥∥
(µ1k + µ2k)

2
(Ak(v1(t, bi)−Av2(t, bi))

∥∥∥∥
W̃

s0
p (0,τ)

≤ ‖µ1k − µ2k‖W̃ s0
p (0,τ)

c4
∑

|α|≤2

‖Dα(v1(t, bj) + v2(t, bj))‖W̃ s0
p (0,τ)

+ ‖µ1k + µ2k‖W̃ s0
p (0,τ)

c5
∑

|α|≤2

‖Dαv1(t, bj)−Dαv2(t, bj)‖W̃ s0
p (0,τ)

≤ ‖µ1k − µ2k‖W̃ s0
p (0,τ)

c6‖v1(t, x) + v2(t, x)‖W̃ s0
p (0,τ ;W 2+θ

p (Gδ1
))

+ ‖µ1k + µ2k‖W̃ s0
p (0,τ ;W 2+θ

p (Gδ1
))
c7‖v1(t, x) − v2(t, x))‖W̃ s0

p (0,τ ;W 2+θ
p (Gδ1

))
, (32)

где постоянные ci не зависят от τ . Отметим, что пространство Бесова Bs
p,p

совпадает с пространством Соболева W s
p при дробных s. Далее воспользуемся

равенством
(
Bβ

p,p

(
0, τ ;B2−ε0

p,p (G)
)
, Lp

(
0, τ ;B4−ε0

p,p (G)
))

1−θ1,p
= Bs0

p,p

(
0, τ ;B2+θ

p,p (G)
)

(33)

с θ1β = s0, (2 − ε0)θ1 + (1 − θ1)(4 − ε0) = 2 + θ, где θ1 ∈ (0, 1). Утверждение

вытекает из [35, теорема 3.1] и известных результатов об интерполяции про-

странств Соболева [31]. В [35, теорема 3.1] взято Rn вместо (0, T ), однако далее

в работе имеется замечание о справедливости результата и в случае, если все

R
n заменить ограниченной областью, для которой имеется оператор продолже-

ния функций на все Rn с сохранением соответствующих классов Бесова. У нас

область совпадает с интервалом (0, τ) и утверждение, конечно, справедливо.

Возьмем 0 < ε0 < 2(1 − s0) − θ, θ1 = 1 − (θ + ε0)/2, β = s0/θ1. Поскольку все

показатели дробные, можем переписать (33) в виде
(
W β

p

(
0, τ ;W 2−ε0

p (G)
)
, Lp

(
0, τ ;W 4−ε0

p (G)
))

1−θ1,p
= W s0

p

(
0, τ ;W 2+θ

p (G)
)
. (34)

Здесь область G можно заменить любой другой областью. Отметим, что β ∈
(0, 1). В частности, поскольку для функций из пространств W̃ s

p (0, τ ;E) нормы

в пространствах W̃ s
p (0, τ ;E) (E — банахово пространство) и W s

p (0, τ ;E) эквива-

лентны, если s 6= 1/p, справедливо неравенство

‖v‖
W̃

s0
p (0,τ ;W 2+θ

p (Gδ1
))
≤ c8‖v‖θ1

W̃β
p (0,τ ;W

2−ε0
p (Gδ1

))
‖v‖1−θ1

Lp(0,τ ;W
4−ε0
p (Gδ1

))
, (35)

где постоянная c8 не зависит от τ ∈ (0, T ]. Доказательство этого факта реализу-

ется довольно просто: рассматриваем функцию w(ξ, x) = v(τξ, x), записываем

неравенство (35), где τ = 1, для этой функции, а затем делаем обратную замену

переменных τξ = t в интегралах, определяющих нормы. Используя (35), можем

переписать неравенство (32) в виде

‖µ1kAkv1(t, bi)− µ2kAkv2(t, bi)‖W̃ s0
p (0,τ)

≤ ‖µ1k − µ2k‖W̃ s0
p (0,τ)

c8‖v1 + v2‖θ1

W̃β
p (0,τ ;W

2−ε0
p (Gδ1

))
‖v1 + v2‖1−θ1

Lp(0,τ ;W
4−ε0
p (Gδ1

))

+ ‖µ1k + µ2k‖W̃ s0
p (0,τ)

c9‖v1 − v2‖θ1

W̃β
p (0,τ ;W

2−ε0
p (Gδ1

))
‖v1 − v2‖1−θ1

Lp(0,τ ;W
4−ε0
p (Gδ1

))
.

(36)
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Воспользуемся очевидными неравенствами

‖v‖
W̃β

p (0,τ ;W
2−ε0
p (Gδ1

))
≤ c10‖vt‖Lp(0,τ ;W 2

p (Gδ1
)),

‖v‖
Lp(0,τ ;W

4−ε0
p (Gδ1

))
≤ c11‖v‖θ2

Lp(0,τ ;W 4
p (Gδ1

))‖v‖
1−θ2

Lp(0,τ ;Lp(Gδ1
)),

‖v‖Lp(0,τ ;Lp(Gδ1
)) ≤ τ‖vt‖Lp(0,τ ;Lp(Gδ1

)),

4θ2 = 4− ε0, v ∈W 1
p

(
0, τ ;W 2

p (Gδ1)
)
∩ Lp

(
0, τ ;W 4

p (Gδ1)
)
, v(0) = 0.

(37)

Последнее неравенство легко получается из формулы Ньютона — Лейбница,

второе — обычное интерполяционное неравенство [31], а первое вытекает из

определения нормы и соответствующего вложения. Все постоянные в них не

зависят от τ . Воспользовавшись (36), (37), придем к неравенству

‖µ1kAkv1(t, bi)− µ2kAkv2(t, bi)‖W̃ s0
p (0,τ)

≤ c12τγ0(‖µ1k − µ2k‖W̃ s0
p (0,τ)

(‖v1‖Hτ
δ1

+ ‖v2‖Hτ
δ1

)

+ ‖µ1k + µ2k‖W̃ s0
p (0,τ)

‖v1 − v2‖Hτ
δ1

), γ0 = (1− θ2)(1 − θ1). (38)

Далее, воспользовавшись неравенствами (22), (24), (26), (27), получим

‖µ1kAkv1(t, bi)− µ2kAkv2(t, bi)‖W̃ s0
p (0,τ)

≤ c13τγ0‖~µ1 − ~µ2‖W̃ s0
p (0,τ)

, (39)

где постоянная c12 не зависит от τ ≤ τ1. Аналогичная оценка получается и при

оценке выражения

‖A0v1(t, bi)−A0v2(t, bi)‖W̃ s0
p (0,τ)

≤ c14τγ0‖~µ1 − ~µ2‖W̃ s0
p (0,τ)

. (40)

Окончательно получим оценку (см. (31))

‖R(~µ1)−R(~µ2)‖W̃ s0
p (0,τ)

≤ c15τγ0 ‖~µ1 − ~µ2‖W̃ s0
p (0,τ)

. (41)

Выбрав τ2 ≤ τ1 такое, что c14τ
γ0

2 ≤ 1/2, придем к тому, что оператор R сжи-

мающий и переводит шар BR0
в себя для всех τ ≤ τ2. Применяя теорему о

неподвижной точке, покажем существование решения системы (30). Положим

v = v(~µ). Покажем, что построенная функция удовлетворяет условиям пере-

определения (20). Возьмем в (18) x = bj . Получим систему равенств

vt(t, bj) +Av(t, bj) =

r∑

j=1

µjAj(t, bj , D)�+

s∑

j=r+1

fj(t, bj)µj(t). (42)

Вычитая эти равенства из (27), получим vt(t, bj) − ψ̃′j = 0 для всех j, значит,

выполнены условия (20). Единственность решений вытекает из оценок, приве-

денных при доказательстве существования решений. �

3. Алгоритм численного решения

и результаты численных экспериментов

Схема алгоритма. Рассмотрим довольно простой одномерный случай.

Данная модель использовалась при определении термофизических и термоки-

нетических параметров в [1]. В области Q = (0, T )×G, G = (0, R), рассматри-

вается задача

Mu = c(t, r)ut − Lu = f, L =
1

rν
∂r(r

νg(t, r)ur), ν = 0, 1, (43)
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u|t=0 = u0(x), ur|r=0 = 0, rνgur|r=0 = q(t), ν = 0, 1, (44)

u0r|r=0 = 0, Rνg(0, R)u0r(R) = q(0), (45)

u(yi, t) = ψi(t), i = 1, 2, . . . , s, yi ∈ (0, R). (46)

Для простоты рассмотрим случай, когда среда не является слоистой, хотя ал-

горитм может быть использован и в многослойном случае. Он основан на

рассуждениях из доказательства теоремы 3. Используем метод конечных эле-

ментов. Задана сетка на (0, R), например, равномерная, ri = hi, h = R/N ,

i = 0, 1, . . . , N , и базисные кусочно-линейные функции метода конечных эле-

ментов, ϕ0(r) = 1 − r/h при r ∈ (0, h), ϕ0(r) = 0 при r > h, ϕi = (r − ri−1)/h

при r ∈ (ri−1, ri), ϕi = (ri+1 − r)/h при r ∈ (ri, ri+1), ϕi = 0 при r /∈ (ri−1, ri+1),

ϕN (r) = (r − rN−1/h при r ∈ (rN−1, R), ϕN (r) = 0 при r < rN−1. Ищем прибли-

женное решение в виде

v =

N∑

i=1

Ci(t)ϕi.

Для удобства далее считаем, что точки yi совпадают с узлами сетки ri1 , . . . , ris .

Функции Ci определяем из системы

R0
~Ct +R1(t)~C = ~F , ~C = (C0, C1, . . . , CN )T , i = 0, 1, 2, . . . , N, (47)

~F =




R∫

0

rνf(t, r)ϕ0(r) dr, . . . ,

R∫

0

rνf(t, r)ϕN−1(r) dr,

R∫

0

rνf(t, r)ϕN (r) dr+q(t)




T

,

R0 — матрица с элементами

rij = (c(t, r)rνϕi, ϕj) =

R∫

0

c(t, r)rνϕi(r)ϕj(r) dr,

R1 — матрица с элементами Rjk = (rνg(t, r)ϕkr , ϕjr). Имеем ~C(0) = ~C0 =

(u0(r0), . . . , u0(rN )). Решение системы (47) ищем методом конечных разностей.

Пусть τ = T/M — шаг по времени. Заменим уравнение (47) системой

Ri+1

~Ci+1 − ~Ci

τ
+Ai+1

~Ci+1 = ~Fi+1, ~Ci = (C0
i , . . . , C

N
i )T , i = 0, 1, 2, . . . ,M −1,

(48)

где Ck
i ≈ Ck(τi), ~Fi = ~F (τi), Ai = R1(τi). Пусть ~αi = (α1

i , . . . , α
s
i )

T , ~αi ≈ ~α(τi),

αk
i ≈ αk(iτ). Элементы матрицы Ai+1 записываются в виде

Ri+1
lk = (gi+1(r)ϕkr , ϕjr), gi+1 =

s∑

k=1

αk
i+1�k(r).

Элементы матрицы Ri+1 записываются в виде

ri+1
kl = (c(τ(i+ 1), r)rνϕl, ϕk) =

R∫

0

c(τ(i+ 1), r)rνϕl(r)ϕk(r) dr.
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Имеем Ck
0 = u0(rk) при k = 0, . . . , N . Для чисел αk

0 получим систему уравнений

2h(ijh)νc(0, rij )ψ
′
j(0)/3 +

s∑

k=1

αk
0βjk = (rνf(0, rij ), ϕij ), j = 1, 2, . . . , s,

где

βjk =

N∑

l=0

Cl
0(r

ν�kϕlr, ϕijr).

Предполагается, что определитель этой системы отличен от нуля. Приближен-

но он равен определителю матрицы с элементами β̃jk = (rν�ku0r, ϕijr).

Последовательность вычислений. При i = 0 знаем векторы ~C0, ~α0.

При переходе на следующий временной слой используем идеи метода предик-

тор-корректор. Предположим, что построено решение ~Ci, ~αi. Далее решаем

систему (48), где в качестве функции gi+1 берем функцию

gi+1 =

s∑

k=1

αk
i �k.

Находим вектор ~Ci+1. Определим векторы ~�i =
(
ψ0
i , ψ

1
i , . . . , ψ

N
i

)T
такие, что

ψk
i = Ck

i при k 6= ij , j = 1, 2, . . . , s, и ψ
ij
i = ψj(τi) для всех j. Составим систему

N∑

l=0

(
ψl
i+1 − ψl

i

τ

)
(rνc((i+1)τ, r)ϕl, ϕij )+

s∑

k=1

αk
i+1βjk = (rνf((i+1)τ, r), ϕij ), (49)

j = 1, 2, . . . , s, где

βjk =

N∑

l=0

Cl
i+1(r

ν�kϕlr , ϕijr).

Из этой системы находим вектор ~αi+1. Присваиваем ~α1
i+1 := ~αi+1. Далее из

системы (48), где в качестве функции gi+1 берем функцию

gi+1 =

s∑

k=1

α1
i+1�k,

находим вектор ~Ci+1. Присваиваем ~C1
i+1 := ~Ci+1. Подставляя его в систему

(49), найдем вектор ~αi+1. Присваиваем ~α2
i+1 := ~αi+1. Далее опять решаем

систему (48), где в качестве функции gi+1 берем функцию

gi+1 =

s∑

k=1

α2
i+1�k.

Таким образом найдем ~Ci+1 и присваиваем ~C2
i+1 := ~Ci+1. Повторяя рассужде-

ния, построим последовательности векторов ~αk
i+1,

~Ck
i+1. Повторяем рассужде-

ния до тех пор, пока
∣∣~αk

i+1− ~αk−1
i+1

∣∣ < ε, где ε — заданное малое число. Если при



О некоторых классах коэффициентных обратных задач 69

(a) (б)

Рис. 1. (а) Решение прямой задачи u(0.7, r); (б) решение прямой задачи u(t, 0.7)
при различных интенсивностях возмущений ζ.

(a) (б)

Рис. 2. (а) Решение g(t, 0.7) для различных M,N, ε, (б) Решение g(t, 0.7) при
различных интенсивностях возмущений ζ.

данном k это условие выполнено, то положим ~Ci+1 = ~Ck
i+1, ~αi+1 = ~αk

i+1. Таким

образом, будет выполнено равенство (48), где в качестве gi+1 берется функция

gi+1 =

s∑

k=1

αk
i+1�k.

Результаты численных экспериментов. Реализация алгоритма осу-

ществлялась в программной среде Matlab R2019b. Характеристики ЭВМ сле-

дующие: процессор Intel(R) Core(TM) i5-10400F CPU @ 2.90GHz 16,00 Гб, 64-

разрядная операционная система Windows 10 Home. Входные и ожидаемые

выходные данные: R = 1, T = 1, ν = 1, c(t, r) = t+ r + 1, f(t, r) = 4r + 4t− 6rt,

q(t) = 2t + 2, u0(r) = r2, s = 5 y1, . . . , y5 = 0.1, 0.2, 0.5, 0.8, 0.9, �1, . . . , �5 =

1, r, r2, r3, r4, u(t, r) = 4t+ r2, g(t, r) = 1 + rt.
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Приведем результаты вычислений при нахождении решения прямой зада-

чи. График полученного решения уже при N = 10, M = 10 практически пол-

ностью накладывается на график ожидаемого (рис. 1(а)). Далее в процессе

вычисления ~Ci к каждому из векторов ~Fi добавим случайное возмущение вида

ξζ, где ξ — случайная величина, равномерно распределенная на отрезке [−1, 1]

и ζ — интенсивность возмущения. Результаты представлены на рис. 1(б). На

рис. 2(а) представлены результаты вычислений решений обратной задачи для

нашего примера, а на рис. 2(б) представлены результаты в случае, когда к пра-

вой части, как и ранее, добавлено случайное возмущение.
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ИНТЕГРИРОВАНИЕ НАГРУЖЕННОГО

УРАВНЕНИЯ МКДФ С ИСТОЧНИКОМ

В КЛАССЕ БЫСТРОУБЫВАЮЩИХ ФУНКЦИЙ

У. А. Хоитметов, Ш. К. Собиров

Аннотация. Рассматривается задача Коши для нагруженного модифицированно-
го уравнения Кортевега — де Фриза с самосогласованным источником. Получе-
на эволюция данных рассеяния оператора Дирака, потенциал которого является
решением нагруженного модифицированного уравнения Кортевега — де Фриза с
самосогласованным источником в классе быстроубывающих функций. Приведен
конкретный пример, иллюстрирующий применение полученных результатов.

DOI: 10.25587/SVFU.2023.75.56.006

Ключевые слова: нагруженное модифицированное уравнение Кортевега — де
Фриза, самосогласованный источник, решения Йоста, данные рассеяния.

1. Введение

Одним из основных методов, показывающих интегрируемость нелинейных

эволюционных уравнений, является метод обратной задачи рассеяния. Впер-

вые метод обратной задачи рассеяния был применен для нахождения глобаль-

ного решения задачи Коши для уравнения Кортевега — де Фриза [1]. В работе

[2] Лакс показал универсальность метода обратной задачи рассеяния. Вскоре

Вадати [3] предложил метод решения задачи Коши для модифицированного

уравнения Кортевега — де Фриза (мКдФ)

ut + 6u2ux + uxxx = 0,

где нижние индексы обозначают соответствующие частные производные, u —

вещественная скалярная функция.

Уравнение мКдФ может применяться во многих областях, включая альфве-

новские волны в бесстолкновительной плазме [4], гиперболические поверхности

[5], тонкие упругие стержни [6] и т. д. В работе [7] изучено уравнение мКдФ с

переменными коэффициентами

ut + u2ux + a(t)u + b(t)uxxx = 0.

Это уравнение используется в качестве математической модели для изучения

физических явлений, возникающих в нескольких областях, представляющих

интерес. Например, при изучении прибрежных волн в океане, жидких каплях

c© 2023 Хоитметов У. А., Собиров Ш. К.
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и пузырьках, в вопросах явления атмосферной блокировки и дипольной блоки-

ровки [8–10].

В артериальной механике широко используется модель, в которой артерия

рассматривается как тонкостенная предварительно напряженная эластичная

трубка переменного радиуса, а кровь рассматривается как идеальная жидкость

[11]. Определяющим уравнением, моделирующим слабонелинейные волны в та-

ких заполненных жидкостью эластичных трубках, является модифицированное

уравнение Кортевега — де Фриза с переменным коэффициентом

ut + 6u2ux + uxxx + h(t)ux = 0,

где t — масштабированная координата вдоль оси сосуда после статической де-

формации, характеризующая осесимметричный стеноз на поверхности артери-

альной стенки, x — переменная, которая зависит от времени и координат вдоль

оси сосуда, h(t) — форма стеноза, а u(x, t) характеризует среднюю осевую ско-

рость жидкости.

Благодаря простоте выражения и богатому физическому применению ин-

тегрированию уравнения мКдФ посвящено много работ [12–22].

В работах А. М. Нахушева (см. [23]) дано наиболее общее определение

нагруженного уравнения и подробно классифицированы различные нагружен-

ные уравнения, например, нагруженные дифференциальные, нагруженные ин-

тегральные, нагруженные интегродифференциальные, нагруженные функцио-

нальные уравнения и т. д. Среди работ, посвященных нагруженным уравнени-

ям, следует особо отметить работы [24–31] и др.

2. Постановка задачи

В данной работе исследуется нагруженное модифицированное уравнение

Кортевега — де Фриза с источником, а именно рассматривается следующая

система уравнений:

ut + β(t)u(x0, t)(6u
2ux + uxxx) + γ(t)u(x1, t)ux(x, t) =

2N∑

k=1

(
�2
k1
− �2

k2

)

L(t)�k = ξk�k, k = 1, 2, . . . , 2N, x ∈ R,
(1)

где β(t) и γ(t) — заданные непрерывно дифференцируемые функции и �k =

(�k1
(x, t), �k2

(x, t))T — собственная вектор-функция оператора

L(t) = i

(
d
dx −u(x, t)

−u(x, t) − d
dx

)
,

соответствующая собственному значению ξk.

Для определенности будем считать, что в сумму, участвующую в правой

части (1), входят сначала члены с Im ξk > 0, k = 1, 2, . . . , N. Также предпола-

гается, что
+∞∫

−∞

�k1
�k2

dx = Ak(t), k = 1, 2, . . . , 2N, (2)
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с заданными ненулевыми функциями Ak(t), которые удовлетворяют условиям

Ak(t) = Ak(t), ξk = −ξk, k = 1, 2, . . . , N.

Уравнение (1) рассматривается при начальном условии

u(x, 0) = u0(x). (3)

При этом начальная функция u0(x) (−∞ < x < ∞) обладает следующими

свойствами:

+∞∫

−∞

(1 + |x|)|u0(x)| dx <∞; (4)

оператор

L(0) = i

(
d
dx

−u0(x)

−u0(x) − d
dx

)

имеет ровно 2N простых собственных значений ξ1(0), ξ2(0), . . . , ξ2N (0).

Предположим, что функция u(x, t) обладает требуемой гладкостью и до-

статочно быстро стремится к своим пределам при x→ ±∞, т. е.

+∞∫

−∞

(
(1 + |x|)|u(x, t)| +

3∑

k=1

∣∣∣∣
∂ku(x, t)

∂xk

∣∣∣∣

)
dx <∞, k = 1, 2, 3. (5)

Основной целью работы является получение представлений для решения

u(x, t), �k(x, t), k = 1, 2, . . . , 2N , задачи (1)–(5) в рамках метода обратной задачи

рассеяния для оператора L(t).

3. Необходимые сведения

Рассмотрим систему уравнений Дирака
{
v1x + iξv1 = u(x)v2,

v2x − iξv2 = −u(x)v1
(6)

на всей оси (−∞ < x <∞) с потенциалом u(x), удовлетворяющим условию (4).

Видно, что с помощью оператора

L = i

(
d
dx −u(x)

−u(x) − d
dx

)

и вектор-функции ν = (ν1, ν2) систему (6) можно переписать в виде

Lν = ξν.

Система уравнений (6) имеет решения Йоста со следующей асимптотикой:

ϕ(x, ξ) ∼
(

1

0

)
e−iξx, ϕ(x, ξ) ∼

(
0

−1

)
eiξx при x→ −∞;

ψ(x, ξ) ∼
(

0

1

)
eiξx, ψ(x, ξ) ∼

(
1

0

)
e−iξ x при x→∞.

(7)



78 У. А. Хоитметов, Ш. К. Собиров

Отметим, что ϕ (ψ) не является комплексным сопряжением к ϕ (ψ). При дей-

ствительных ξ пары вектор-функций {ϕ,ϕ} и {ψ, ψ} являются парами линейно

независимых решений для системы уравнений (6). Поэтому имеют место сле-

дующие соотношения (см. [32, с. 27]):

ϕ = a(ξ)ψ + b(ξ)ψ, ϕ = −a(ξ)ψ + b(ξ)ψ,

ψ = −a(ξ)ϕ+ b(ξ)ϕ, ψ = a(ξ)ϕ+ b(ξ)ϕ,
(8)

где a(ξ) = W{ϕ, ψ}, b(ξ) = W{ψ,ϕ}. Верны следующие равенства:

|a(ξ)|2 + |b(ξ)|2 = 1, a(ξ) = a(−ξ), b(ξ) = b(−ξ). (9)

Коэффициенты a(ξ) и b(ξ) непрерывны для Im ξ = 0 и удовлетворяют асимпто-

тическим равенствам

a(ξ) = 1 +O(|ξ|−1), b(ξ) = O(|ξ|−1), |ξ| → ∞.

Функцию ψ(x, ξ) можно представить следующим образом (см. [32, с. 33]):

ψ(x, ξ) =

(
0

1

)
eiξx +

∞∫

x

K(x, s)eiξs ds, (10)

где K(x, s) =

(
K1(x, s)
K2(x, s)

)
. В представлении (10) ядро K(x, s) не зависит от ξ и

выполняется равенство

u(x) = −2K1(x, x). (11)

Функция a(ξ) (a(ξ)) аналитически продолжается в верхнюю (нижнюю) полу-

плоскость и имеет там конечное число нулей ξk (ξk), причем ξk (ξk) является

собственным значением оператора L(0), так что

ϕ(x, ξk) = Ckψ(x, ξk), ϕ(x, ξk) = Ckψ(x, ξk), k = 1, 2, . . . , N.

Справедливы следующие равенства:

ψ(x, ξ) =

(
ψ2(x,−ξ)
−ψ1(x,−ξ)

)
, ϕ(x, ξ) =

(
ϕ2(x,−ξ)
−ϕ1(x,−ξ)

)
, (12)

ξk = −ξk, Ck = Ck. (13)

Определение. Набор величин
{
r+(ξ) ≡ b(ξ)

a(ξ) , ξk, Ck, k = 1, 2, . . . , N
}

на-

зывается данными рассеяния для оператора L(0).

Компоненты ядра K(x, y) в представлении (11) для y > x являются реше-

ниями системы интегральных уравнений Гельфанда — Левитана — Марченко

(см. [32, с. 35])

K2(x, y) +

∞∫

x

K1(x, s)F (s + y) ds = 0,

−K1(x, y) + F (x+ y) +

∞∫

x

K2(x, s)F (s + y) ds = 0,
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где

F (x) =
1

2π

∞∫

−∞

r+(ξ)eiξ x dξ − i
N∑

j=1

Cje
iξjx.

Заметим, что вектор-функции

hn(x) =

d
dξ (ϕ− Cnψ)

∣∣
ξ=ξn

ȧ(ξn)
, n = 1, 2, . . . , N, (14)

являются решениями уравнений Lhn = ξnhn. Кроме того, функции hn(x) имеют

следующую асимптотику:

hn ∼ −Cn

(
0

1

)
eiξnx, x→ −∞; hn ∼

(
1

0

)
e−iξnx, x→∞. (15)

Согласно (15) получаем равенство

W{ϕn, hn} ≡ ϕn1
hn2
− ϕn2

hn1
= −Cn, n = 1, 2, . . . , N. (16)

Лемма 1. Если вектор-функции

Y =

(
Y1(x, ξ)
Y2(x, ξ)

)
, Z =

(
Z1(x, η)
Z2(x, η)

)

являются решениями уравнений LY = ξY и LZ = ηZ, то для их компонент

выполняются равенства

d

dx
(y1z1+y2z2) = −i(ξ+η)(y1z1−y2z2),

d

dx
(y1z2−y2z1) = −i(ξ−η)(y1z2+y2z1).

Справедливость этой леммы доказывается непосредственной проверкой.

Теорема 1 (см. [33, § 6.2, с. 353]). Данные рассеяния оператора L одно-

значно определяют L.

4. Эволюция данных рассеяния

Пусть потенциал u(x, t) в системе уравнений

{
y1x + iξy1 = u(x, t)y2,

y2x − iξy2 = −u(x, t)y1
(17)

является решением уравнения

ut + β(t)u(x0, t)(uxxx + 6u2ux) = G(x, t), (18)

где

G(x, t) = −γ(t)u(x1, t)ux(x, t) +

2N∑

k=1

(
�2
k1
− �2

k2

)
.

Оператор

A = β(t)u(x0, t)

(
−4iξ3 + 2iu2ξ 4uξ2 + 2iuxξ − 2u3 − uxx

−4uξ2 + 2iuxξ + 2u3 + uxx 4iξ3 − 2iu2ξ

)
(19)
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удовлетворяет соотношению Лакса

[L,A] ≡ LA−AL = iβ(t)u(x0, t)

(
0 −6u2ux − uxxx

−6u2ux − uxxx 0

)
. (20)

Поэтому уравнение (18) можно переписать в виде

Lt + [L,A] = iR, (21)

где R =

(
0 −G
−G 0

)
. Дифференцируя равенство

Lϕ = ξϕ

относительно t, получаем равенство

Ltϕ+ Lϕt = ξϕt,

которое согласно (21) можно переписать в виде

(L − ξ)(ϕt −Aϕ) = −iRϕ. (22)

Используя метод вариации постоянных, можно записать

ϕt −Aϕ = B(x)ψ +D(x)ϕ. (23)

Тогда для определения B(x) и D(x) получаем

MBxψ +MDxϕ = −Rϕ, (24)

где M =

(
1 0

0 −1

)
. Для решения уравнения (24) удобно ввести следующие

обозначения:

ϕ̂ =

(
ϕ2

ϕ1

)
, ψ̂ =

(
ψ2

ψ1

)
.

Согласно (20) и определению вронскиана справедливы равенства

ψ̂TMϕ = −ϕ̂TMψ = a, ψ̂TMψ = ϕ̂TMϕ = 0.

Умножая (24) на ϕ̂T и ψ̂T , получаем

Bx =
ϕ̂TRϕ

a
, Dx = − ψ̂

TRϕ

a
. (25)

Согласно (19) при x→ −∞ имеем

ϕt − Aϕ→
(

4iξ3β(t)u(x0, t) 0

0 −4iξ3β(t)u(x0, t)

)(
1

0

)
e−iξx

=

(
4iξ3β(t)u(x0, t)

0

)
e−iξx,

поэтому, исходя из (23), при x→ −∞ получаем следующее равенство:

D(x)→ 4iξ3β(t)u(x0, t), B(x)→ 0.
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Следовательно, из (25) можно определить

D(x) = −1

a

x∫

−∞

ψ̂TRϕdx+ 4iξ3β(t)u(x0, t), B(x) =
1

a

x∫

−∞

ϕ̂TRϕdx.

Таким образом, равенство (23) имеет следующий вид:

ϕt −Aϕ =
1

a

x∫

−∞

ϕ̂TRϕdxψ +


−1

a

x∫

−∞

ψ̂TRϕdx+ 4iξ3β(t)u(x0, t)


ϕ. (26)

Согласно (8) равенство (26) можно переписать в следующем виде:

atψ + btψ −A(aψ + bψ)

=
1

a

x∫

−∞

ϕ̂TRϕdx · ψ +


−1

a

x∫

−∞

ψ̂TRϕdx+ 4iξ3β(t)u(x0, t)


 (aψ + bψ).

Переходя в последнем равенстве к пределу при x → +∞ и учитывая (19), по-

лучаем

at = −
∞∫

−∞

ψ̂TRϕdx, bt =
1

a

∞∫

−∞

ϕ̂TRϕdx− b

a

∞∫

−∞

ψ̂TRϕdx+ 8iξ3β(t)u(x0, t)b.

Следовательно, при Im ξ = 0 имеем

dr+

dt
= 8iξ3β(t)u(x0, t)r

+ − 1

a2

∞∫

−∞

G
(
ϕ2

1 + ϕ2
2

)
dx. (27)

Лемма 2. Если вектор-функция ϕ(x, ξ) =

(
ϕ1(x, ξ)
ϕ2(x, ξ)

)
является решением

уравнения (17), то ее компоненты удовлетворяют равенству

+∞∫

−∞

G
(
ϕ2

1 + ϕ2
2

)
dx = 2iξγ(t)u(x1, t)a(ξ)b(ξ). (28)

Доказательство. Для доказательства леммы нам потребуется вычислить

следующий интеграл:

+∞∫

−∞

G
(
ϕ2

1+ϕ
2
2

)
dx = −

+∞∫

−∞

γ(t)u(x1, t)ux
(
ϕ2

1+ϕ
2
2

)
dx+

+∞∫

−∞

2N∑

k=1

(
�2
k1
−�2

k2

)(
ϕ2

1+ϕ
2
2

)
dx.

Сначала вычислим первый интеграл в правой части последнего равенства. Ис-

пользуя соотношения (7), (8), (17), имеем

−
∞∫

−∞

γ(t)u(x1, t)ux
(
ϕ2

1 + ϕ2
2

)
dx = −γ(t)u(x1, t)

∞∫

−∞

(
ϕ2

1 + ϕ2
2

)
du
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= −γ(t)u(x1, t)u
(
ϕ2

1 + ϕ2
2

)∣∣∞
−∞

+ γ(t)u(x1, t)

∞∫

−∞

u
(
ϕ2

1 + ϕ2
2

)′
dx

= 2γ(t)u(x1, t)

∞∫

−∞

(
uϕ1ϕ

′
1 + uϕ2ϕ

′
2

)
dx

= 2γ(t)u(x1, t)

∞∫

−∞

[(−ϕ′2 + iξϕ2)ϕ
′
1 + (ϕ′1 + iξϕ1)ϕ

′
2] dx

= 2γ(t)u(x1, t)

∞∫

−∞

[−ϕ′1ϕ′2 + iξϕ′1ϕ2 + ϕ′1ϕ
′
2 + iξϕ1ϕ

′
2] dx

= 2iξγ(t)u(x1, t)

∞∫

−∞

(ϕ1ϕ2)
′ dx = 2iξγ(t)u(x1, t) lim

R→∞
(ϕ1ϕ2)|R−R

= 2iξγ(t)u(x1, t)a(ξ)b(ξ).

Таким образом, имеем

∞∫

−∞

γ(t)u(x1, t)ux
(
ϕ2

1 + ϕ2
2

)
dx = −2iξγ(t)u(x1, t)a(ξ)b(ξ). (29)

Согласно условию Ak(t) = Ak(t) при ξk = −ξk и (12), (13) сумма в правой части

уравнения (1) может быть переписана следующим образом:

2N∑

k=1

(
�2
k1
− �2

k2

)
= 2

N∑

k=1,
Im ξk>0

(
�2
k1
− �2

k2

)
.

Используя это равенство и лемму 1, проведем следующие вычисления:

2

N∑

k=1,
Im ξk>0

+∞∫

−∞

(
�2
k1
ϕ2

1 + �2
k1
ϕ2

2 − �2
k2
ϕ2

1 − �2
k2
ϕ2

2

)
dx

= 2

N∑

k=1,
Im ξk>0

+∞∫

−∞

(�k1
ϕ1 − �k2

ϕ2)(�k1
ϕ1 + �k2

ϕ2) dx

+ 2

N∑

k=1,
Im ξk>0

+∞∫

−∞

(�k1
ϕ2 − �k2

ϕ1)(�k1
ϕ2 + �k2

ϕ1) dx

×
N∑

k=1,
Im ξk>0

+∞∫

−∞

2

−i(ξ + ξk)
(�k1

ϕ1 + �k2
ϕ2)

′(�k1
ϕ1 + �k2

ϕ2) dx
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+

N∑

k=1,
Im ξk>0

+∞∫

−∞

2

−i(ξ − ξk)
(�k1

ϕ2 − �k2
ϕ1)

′(�k1
ϕ2 − �k2

ϕ1) dx

=

N∑

k=1,
Im ξk>0

i(�k1
ϕ1 + �k2

ϕ2)
2|+∞−∞

(ξ + ξk)
+

N∑

k=1,
Im ξk>0

(�k1
ϕ2 − �k2

ϕ1)
2|+∞−∞

(ξ − ξk)
= 0.

Согласно последним тождествам и (29) можно получить равенство

+∞∫

−∞

G
(
ϕ2

1 + ϕ2
2

)
dx = 2iξγ(t)u(x1, t)a(ξ)b(ξ).

Лемма доказана.

В силу (27) и (28) имеем

dr+

dt
= (8iξ3β(t)u(x0, t)− 2iξγ(t)u(x1, t))r

+.

Продифференцировав равенство ϕn = Cnψn по t, получим равенство

∂ϕ

∂t

∣∣∣∣
ξ=ξn

+
∂ϕ

∂ξ

∣∣∣∣
ξ=ξn

· dξn
dt

=
dCn

dt
ψn + Cn

∂ψ

∂t

∣∣∣∣
ξ=ξn

+ Cn
∂ψ

∂ξ

∣∣∣∣
ξ=ξn

· dξn
dt

,

которое согласно (14) можно переписать в виде

∂ϕn

∂t
=
dCn

dt
ψn + Cn

∂ψn

∂t
− ȧ(ξn)hn

dξn
dt

, (30)

где
∂ϕn

∂t
=
∂ϕ

∂t

∣∣∣∣
ξ=ξn

.

Аналогично случаю непрерывного спектра с учетом (25) в случае дискрет-

ного спектра получаем равенство

∂ϕn

∂t
−Aϕn =


− 1

Cn

x∫

−∞

ϕ̂T
nRϕn dx


hn

+


 1

Cn

x∫

−∞

ĥTnRϕn dx+ 4iξ3nβ(t)u(x0, t)


ϕn,

которое является аналогом равенства (26). Согласно (30) последнее равенство

можно переписать в виде

∂Cn

∂t
ψn + Cn

∂ψn

∂t
− ȧ(ξn)

dξn
dt

hn − CnAψn

=


− 1

Cn

x∫

−∞

ϕ̂T
nRϕn dx


hn +


 1

Cn

x∫

−∞

ĥTnRϕn dx+ 4iξ3nβ(t)u(x0, t)


Cnψn.
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Переходя в этом равенстве к пределу при x→ +∞, с учетом (15) и (19) получаем

следующие равенства:

dCn

dt
=


8iξ3nβ(t)u(x0, t) +

∞∫

−∞

ĥTnRψn dx


Cn,

dξn
dt

=

∞∫
−∞

ϕ̂T
nRϕn dx

Cnȧ(ξn)
.

Таким образом, имеем тождества

dCn

dt
=


8iξ3nβ(t)u(x0, t)−

∞∫

−∞

G(hn1
ψn1

+ hn2
ψn2

) dx


Cn, (31)

dξn
dt

=

−
∞∫
−∞

G
(
ϕ2
n1

+ ϕ2
n2

)
dx

Cnȧ(ξn)
.

Остается заметить, что согласно тождеству (см. [32])

ȧ(ξn) = − 2i

Cn

∞∫

−∞

ϕn1
ϕn2

dx

последнее равенство можно переписать в виде

dξn
dt

=

∞∫
−∞

G
(
ϕ2
n1

+ ϕ2
n2

)
dx

2i
∞∫
−∞

ϕn1
ϕn2

dx

. (32)

Лемма 3. Если вектор-функции

ψn(x, ξ) =

(
ψn1

(x, ξn)

ψn2
(x, ξn)

)
, hn(x, ξ) =

(
hn1

(x, ξn)

hn2
(x, ξn)

)

являются решениями уравнения (17), то их компоненты удовлетворяют равен-

ствам
∞∫

−∞

G (hn1
ψn1

+ hn2
ψn2

) dx = 2iξnu(x1, t)γ(t)− 2An(t). (33)

Доказательство. Согласно определению G(x, t) справедливо следующее

тождество:

∞∫

−∞

G(hn1
ψn1

+ hn2
ψn2

) dx = −γ(t)u(x1, t)

∞∫

−∞

ux(hn1
ψn1

+ hn2
ψn2

) dx

+

2N∑

k=1

+∞∫

−∞

(
�2
k1
− �2

k2

)
(hn1

ψn1
+ hn2

ψn2
) dx.
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Сначала, используя лемму 1 и равенства (7), (15) и (17), вычислим следующий

интеграл:

− γ(t)u(x1, t)

∞∫

−∞

ux(hn1
ψn1

+ hn2
ψn2

) dx

= −γ(t)u(x1, t)

∞∫

−∞

(hn1
ψn1

+ hn2
ψn2

) du = −γ(t)u(x1, t)u(hn1
ψn1

+ hn2
ψn2

)
∣∣∞
−∞

+ γ(t)u(x1, t)

∞∫

−∞

(uh′n1
ψn1

+ uhn1
ψ′n1

+ uh′n2
ψn2

+ uhn2
ψ′n2

) dx

= −γ(t)u(x1, t)

∞∫

−∞

((−ψ′n2
+ iξnψn2

)h′n1
+ (−h′n2

+ iξnhn2
)ψ′n1

) dx

− γ(t)u(x1, t)

+∞∫

−∞

(h′n2
(ψ′n1

+ iξnψn1
) + ψ′n2

(h′n1
+ iξnhn1

)) dx

= iξnγ(t)u(x1, t)

∞∫

−∞

((hn1
ψn2

)
′

+ (hn2
ψn1

)
′

) dx

= iξnγ(t)u(x1, t)(hn1
ψn2

+ hn2
ψn1

)
∣∣∞
−∞

= iξnγ(t)u(x1, t)

(
e−iξnx · eiξnx −

(
−Cne

iξnx · 1

Cn
e−iξnx

))
= 2iξnγ(t)u(x1, t).

Теперь вычислим интеграл

+∞∫

−∞

(
�2
k1
− �2

k2

)
(hn1

ψn1
+ hn2

ψn2
) dx.

Для вычисления этого интеграла рассмотрим следующие два случая.

1. Пусть ξk отличается от ξn, в этом случае согласно лемме 1 имеем
(
�2
k1
− �2

k2

)
(hn1

ψn1
+ hn2

ψn2
)

= − 1

2i(ξk + ξn)

d

dx
((�k1

hn1
+ �k2

hn2
)(�k1

ψn1
+ �k2

ψn2
))

− 1

2i(ξk − ξn)

d

dx
((�k1

hn2
− �k2

hn1
)(�k1

ψn2
− �k2

ψn1
)).

Следовательно, в этом случае

+∞∫

−∞

(
�2
k1
− �2

k2

)
(hn1

ψn1
+ hn2

ψn2
) dx = 0.

2. Если ξk = ξn, то
(
�2
n1
− �2

n2

)
(hn1

ψn1
+ hn2

ψn2
)
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= − 1

4iξn

d

dx
((�n1

ψn1
+ �n2

ψn2
)(�n1

hn1
+ �n2

hn2
))

+ �n1
�n2

(ψn1
hn2
− ψn2

hn1
),

поэтому с учетом (2) и (16) получаем равенство

2

+∞∫

−∞

(
�2
n1
− �2

n2

)
(hn1

ψn1
+ hn2

ψn2
) dx = 2

+∞∫

−∞

�n1
�n2

W{ψn, hn} dx

=
2

Cn

+∞∫

−∞

�n1
�n2

W{ϕn, hn}dx = −2An(t).

Окончательно на основании вышеизложенного получаем

∞∫

−∞

G(hn1
ψn1

+ hn2
ψn2

) dx = 2iξnu(x1, t)γ(t)− 2An(t).

Лемма доказана.

Согласно (31) и (33) имеем

dCn

dt
=
(
8iξ3nβ(t)u(x0, t)− 2iξnγ(t)u(x1, t) + 2An(t)

)
Cn(t).

Подобным образом можно показать, что

+∞∫

−∞

G
(
ϕ2
n1

+ ϕ2
n2

)
dx = 0,

поэтому
dξn
dt

= 0, n = 1, 2, . . . , N.

Таким образом, доказана следующая

Теорема 2. Если функции u(x, t), �k(x, t), k = 1, 2, . . . , N , являются реше-

нием задачи (1)–(5), то данные рассеяния оператора L(t) с потенциалом u(x, t)

меняются по t следующим образом:

dξn
dt

= 0, n = 1, 2, . . . , N,

dr+

dt
= (8iξ3β(t)u(x0, t)− 2iξγ(t)u(x1, t))r

+, Im ξ = 0,

dCn

dt
=
(
8iξ3nβ(t)u(x0, t)− 2iξnγ(t)u(x1, t) + 2An(t)

)
Cn(t).

Полученные равенства полностью определяют эволюцию данных рассея-

ния, что позволяет применить метод обратной задачи рассеяния для решения

задачи Коши (1)–(5).
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Пример. Рассмотрим задачу

ut + β(t)u(1, t)(6u2ux + uxxx) + γ(t)u(0, t)ux = 2
(
�2

11 − �2
12

)
,

L�1 = ξ1�1,
(34)

u(x, 0) = − 2

ch 2x
, (35)

где

β(t) =
e2

−32(t+ 1)3
− t+ 1

32e2
, γ(t) =

−2t− 1

16
− 1

8(t+ 1)3
+

1

16(t+ 1)4
,

+∞∫

−∞

�11�12 dx = A1(t) =
1

4(t+ 1)2
.

Нетрудно найти данные рассеяния оператора L(0):

N = 1, r+(0) = 0, ξ1(0) = i, C1(0) = 2i.

Согласно теореме 2 имеем

ξ1(t) = ξ1(0) = i, r+(t) = 0, C1(t) = 2ieµ(t),

где

µ(t) = 8

t∫

0

β(τ)u(1, τ) dτ + 2

t∫

0

γ(τ)u(0, τ) dτ + 2

t∫

0

A1(τ) dτ.

Следовательно,

F (x) =
1

2π

∞∫

−∞

r+(ξ)eiξx dξ − i
N∑

j=1

Cje
iξjx = 2e−x+µ(t).

Решая интегральное уравнение

K1(x, y)− 2e−x−y+µ(t) + 4e−y+2µ(t)

∞∫

x

∞∫

x

K1(x, z)e
−z−2s dsdz = 0,

можно получить

K1(x, y) =
2e−x−y+µ(t)

1 + e−4x+2µ(t)
.

Откуда находим решение задачи Коши (32), (33):

u(x, t) = − 2

ch 2(x− ln(t+ 1))
,

�11(x, t) =
e−3x+2 ln(t+1)

1 + e−4x+4 ln(t+1)
, �12(x, t) =

e−x

1 + e−4x+4 ln(t+1)
.
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5. Заключение

В работе показано, что метод обратной задачи рассеяния может быть при-

менен для интегрирования нагруженного модифицированного уравнения Кор-

тевега — де Фриза с источником. Приведены факты из теории обратных задач

для оператора Дирака.
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equation with a self-consistent source. The evolution of the scattering data of the Dirac
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initial coefficients, the second Hankel determinant H2,2(f) = a2a4 − a2

3
and an upper

bound for the second Hankel determinant H2,3(f) = a3a5−a2

4
for the functions belonging
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of our main results are the coefficient inequalities of the Carathéodory class P .
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1. Introduction

Let H denote the class of all analytic functions defined in the open unit disc

D = {z ∈ C : |z| < 1}. Let A represent the class of functions f ∈H satisfying the

normalized conditions namely f(0) = f ′(0)− 1 = 0, i.e., of the form

f(z) =

∞∑

n=1

anz
n, a1 := 1, z ∈ D. (1.1)

By S, we denote the subfamily of A , consisting of all univalent functions (i.e., one-

to-one) in D. Pommerenke [1] characterized the nth Hankel determinant of order r,

for f given in (1.1) with r, n ∈ N = {1, 2, 3, . . .} as

Hr,n(f) =

∣∣∣∣∣∣∣∣

an an+1 · · · an+r−1

an+1 an+2 · · · an+r

...
...

...
...

an+r−1 an+r · · · an+2r−2

∣∣∣∣∣∣∣∣
. (1.2)

The Fekete–Szegö functional is obtained for r = 2 and n = 1 in (1.2) and denoted

by H2,1(f), where

H2,1(f) =

∣∣∣∣
a1 a2

a2 a3

∣∣∣∣ = a3 − a2
2.

c© 2023 N. Vani, D. Vamshee Krishna, B. Rath



Sharp bounds associated with the Zalcman conjecture 93

Further, sharp bounds for the functional |a2a4 − a2
3| are obtained in (1.2) for r = 2

and n = 2, the Hankel determinant of order two

H2,2(f) =

∣∣∣∣
a2 a3

a3 a4

∣∣∣∣ = a2a4 − a2
3.

In recent years, many authors have focussed research on the estimation of an upper

bound for |H2,2(f)|. The exact estimates of |H2,2(f)| for the family of univalent

functions, namely bounded turning, starlike and convex, denoted by ℜ, S∗ and K ,

respectively, fulfilling the analytic conditions Re{f ′(z)} > 0, Re
{ zf ′(z)

f(z)

}
> 0 and

Re
{
1 +

zf ′′(z)
f ′(z)

}
> 0 in the unit disc D, were proved by Janteng et al. (see [2, 3]),

the bounds as 4/9, 1, and 1/8 were derived. For recent results on the second Hankel

determinants (see [4–8]). Similarly, by taking r = 2 and n = 3 in (1.2), we have

H2,3(f) = a3a5 − a2
4, the second Hankel determinant, for which Zaprawa [9] derived

sharp bounds |H2,3(f)| ≤ 1 for the class S∗ and |H2,3(f)| ≤ 1
15 for the class K with

the assumption that a2 = 0 in f given in (1.1). By the results derived by Zaprawa

[9], recently, Andy Liew Pik Hern et al. [10] have shown that |H2,3(f)| ≤ 13
16 for

f ∈ S∗s and |H2,3(f)| ≤ 13
240 for f ∈ Ks, where S∗s and Ks denote the families of

starlike and convex functions with respect to symmetric points, analytically defined

as

f ∈ S∗s ⇔ Re

{
2zf ′(z)

f(z)− f(−z)

}
> 0, z ∈ D. (1.3)

f ∈Ks ⇔ Re

{
2 {zf ′(z)}′

zf ′(z) + zf ′(−z)

}
> 0, z ∈ D. (1.4)

Choosing r = 2 and n = p+ 1 in (1.2), we obtain the Hankel determinant of second

order for the p-valent function (see [11])

H2,p+1(f) =

∣∣∣∣
ap+1 ap+2

ap+2 ap+3

∣∣∣∣ = ap+1ap+3 − a2
p+2,

In the 1960s Zalcman posed a conjecture that if f ∈ S then
∣∣a2

n − a2n−1

∣∣ ≤ (n− 1)2 for n = 2, 3, . . . ; (1.5)

the equality holds only for the Koebe function k(z) = z/(1 − z)2 or its rotations.

For functions in S, Krushkal proved the Zalcman conjecture for n = 3 (see [12])

and recently for n = 4, 5, 6, . . . [13]. This remarkable conjecture was investigated

by many researchers and is still an open problem for functions belonging to class S

when n > 6. The Zalcman conjecture was proved for certain special subclasses of S,

such as starlike, typically real, and close-to-convex functions (see [12, 14]). Recently,

Abu Muhanna et al. [15] solved the Zalcman conjecture for the class F consisting

of the functions f ∈ A satisfying the analytic condition

Re

(
1 +

zf ′′(z)

f ′(z)

)
> −1/2, z ∈ D.

Functions in the class F are known to be convex in some direction (and hence close-

to-convex and univalent) in D. In 1988, Ma [16] proved the Zalcman conjecture
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for close-to-convex functions. For f ∈ S, Ma [17] proposed a generalized Zalcman

conjecture:

|anam − an+m−1| ≤ (n− 1)(m− 1) for m,n = 2, 3, . . . , (1.6)

which is still an open problem, and proved it for classes S∗ and SR, where SR denotes

the type of all functions in A which are typically real. Bansal and Sokol [18] studied

the Zalcman conjecture for some subclasses of analytic functions. Ravichandran and

Verma [19] proved this conjecture for the classes of starlike and convex functions of

a certain order and the class of functions with bounded turning. Motivated by the

results mentioned above, which are associated with the Zalcman conjecture and the

Hankel determinants, in the present paper, we are attempting to find sharp upper

bounds for the coefficient inequalities specified in the abstract for the functions

belonging to a certain subclass of analytic functions defined as follows.

Definition [20]. A mapping f ∈ A is said to be in the class S∗Ks(β) (0 ≤
β ≤ 1) if

Re

[
2
{
zf ′(z) + βz2f ′′(z)

}

(1 − β) {f(z)− f(−z)}+ β {zf ′(z) + zf ′(−z)}

]
> 0, z ∈ D. (1.7)

For β = 0 and β = 1 in (1.7), we get S∗Ks(0) = S∗s , consisting of starlike functions

with respect to symmetric points, interpreted and studied by Sakaguchi [21], and

S∗Ks(1) = Ks, consisting of convex functions with respect to symmetric points,

analyzed by Das and Singh [22], for which analytic conditions are given in (1.3) and

(1.4).

In proving our results, the required sharp estimates specified below are given as

lemmas suitable for functions possessing positive real part.

Let P be a class of all functions g having a positive real part in D:

g(z) = 1 +

∞∑

t=1

ctz
t, (1.8)

Every such a function is called Carathéodory function [23].

Lemma 1.1 [24]. If g ∈P, then |ct| ≤ 2 for t ∈ N; the equality is attained for

the function h(z) = 1+z
1−z , z ∈ D.

Lemma 1.2 [25]. If g ∈ P, then the estimate |ci − µcjci−j | ≤ 2 holds for

i, j ∈ N = {1, 2, 3, . . .} with i > j and µ ∈ [0, 1].

From Lemma 1.2, Livingston [26] proved that |ci − cjci−j | ≤ 2.

Lemma 1.3 [9]. If g ∈P, then
∣∣c2c4 − c23

∣∣ ≤ 4. The inequality holds only for

the functions

h1(z) =
1 + z2

1− z2
, h2(z) =

1 + z3

1− z3

and their rotations.
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Lemma 1.4 [27]. Let g ∈P be of the form (1.8) with c1 ≥ 0. Then

2c2 = c21 + y(4− c21)

and

4c3 =
[
c31 + {2c1y − c1y2 + 2(1− |x|2)y}(4− c21)

]
,

for some complex valued x and y such that |x| ≤ 1 and |y| ≤ 1.

To obtain our results, we adopt some ideas from Libera and Zlotkiewicz [27].

2. Important Results

Theorem 2.1. If f ∈ S∗Ks(β) (0 ≤ β ≤ 1), then

|a2a3 − a4| ≤
1

2(1 + 3β)
< (2− 1)(3− 1) = 2;

this inequality is sharp for g1(z) = 1+z3

1−z3 .

Proof. For f ∈ S∗Ks(β), there exists g ∈P such that

2{zf ′(z) + βz2f ′′(z)}
(1− β){f(z)− f(−z)}+ β{zf ′(z) + zf ′(−z)} = g(z). (2.1)

Putting the values for f , f ′ , f ′′ and g in (2.1), we get

[2(1 + β)a2 + 3(1 + 2β)a3z + 4(1 + 3β)a4z
2 + 5(1 + 4β)a5z

3 + . . . ]

= [c1 + {c2 + (1 + 2β)a3}z + {c3 + (1 + 2β)c1a3}z2

+ {c4 + (1 + 2β)c2a3 + (1 + 4β)a5}z3 + . . . ]. (2.2)

Equating the coefficients for powers of z in (2.2), we obtain

a2 =
c1

2(1 + β)
, a3 =

c2
2(1 + 2β)

, a4 =
(2c3 + c1c2)

8(1 + 3β)
, a5 =

(2c4 + c22)

8(1 + 4β)
. (2.3)

Using the values of a2, a3 and a4 from (2.3), we have

a2a3 − a4 =
c1c2

4(1 + β)(1 + 2β)
− (2c3 + c1c2)

8(1 + 3β)

= − 1

4(1 + 3β)

(
c3 −

(−2β2 + 3β + 1)

2(1 + β)(1 + 2β)
c1c2

)
.

Taking modulus on both sides and then applying Lemma 1.2 to the expression above,

upon simplification, we obtain

|a2a3 − a4| ≤
1

2(1 + 3β)
< (2− 1)(3− 1) = 2. �

Remark 2.2. For the extremal function g1(z) = 1+z3

1−z3 = 1 + 2z3 + 2z6 + . . . ,

we have c1 = 0, c2 = 0, and c3 = 2. Hence, from (2.3) we obtain a2 = 0, a3 = 0,

and a4 = c3
4(1+3β) .
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Theorem 2.3. If f ∈ S∗Ks(β) (0 ≤ β ≤ 1), then

∣∣a2
2 − a3

∣∣ ≤ 1

(1 + 2β)
< (2− 1)2 = 1;

this inequality is sharp for g2(z) = 1+z2

1−z2 .

Proof. Using the values of a2 and a3 from (2.3), we have

a2
2 − a3 =

c21
4(1 + β)2

− c2
2(1 + 2β)

= − 1

2(1 + 2β)

(
c2 −

(1 + 2β)

2(1 + β)2
c21

)
.

Putting modulus on both sides in the expression above and applying Lemma 1.2,

after simplifying, we get

|a2
2 − a3| ≤

1

(1 + 2β)
. �

Remark 2.4. For the extremal function g2(z) = 1+z2

1−z2 = 1 + 2z2 + 2z4 + . . . ,

we have c1 = 0 and c2 = 2; Hence, from (2.3), we obtain a2 = 0 and a3 = c2
2(1+2β) .

Theorem 2.5. If f ∈ S∗Ks(β) (0 ≤ β ≤ 1), then

∣∣a2
3 − a5

∣∣ ≤ 1

2(1 + 4β)
< (3− 1)2 = 4;

this inequality is sharp for g3(z) = 1+z4

1−z4 .

Proof. Using the values of a3 and a5 from (2.3), we have

a2
3−a5 =

c22
4(1 + 2β)2

− (2c4 + c22)

8(1 + 4β)
= − 1

4(1 + 4β)

(
c4 −

(−4β2 + 4β + 1)

2(1 + 2β)2
c22

)
. (2.4)

Taking modulus on both sides and applying Lemma 1.2, after simplifying, we get

∣∣a2
3 − a5

∣∣ ≤ 1

2(1 + 4β)
. �

Remark 2.6. For the extremal function

g3(z) =
1 + z4

1− z4
= 1 + 2z4 + 2z8 + . . . ,

we have c2 = 0 and c4 = 2, therefore, from (2.3), we obtain a3 = 0 and a5 = c4
4(1+4β) .

Theorem 2.7. If f ∈ S∗Ks(β) (0 ≤ β ≤ 1), then

|H2,2(f)| = |a2a4 − a2
3| ≤

1

(1 + 2β)2
;

the inequality is sharp for the same function g2(z) as in Theorem 2.3.

Proof. Using the values of a2, a3, and a4 from (2.3), for the expression a2a4−
a2
3, we get

a2a4 − a2
3 =

1

16(1 + β)(1 + 2β)2(1 + 3β)

×
(
2(1 + 2β)2c1c3 + (1 + 2β)2c21c2 − 4(1 + β)(1 + 3β)c22

)
, (2.5)
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which is equivalent to

a2a4 − a2
3 =

1

16(1 + β)(1 + 2β)2(1 + 3β)

[
d1c1c3 + d2c

2
1c2 + d3c

2
2

]
, (2.6)

where

d1 = 2(1 + 2β)2, d2 = (1 + 2β)2, d3 = −4(1 + β)(1 + 3β). (2.7)

Putting the values of c2 and c3 from Lemma 1.4 into the right-hand side of (2.6),

we simplify it into

4
[
d1c1c3 + d2c

2
1c2 + d3c

2
2

]
=
[
(d1 + 2d2 + d3)c

4
1

+ 2(d1 + d2 + d3)c
2
1(4− c21)x − d1c

2
1(4− c21)x2 + d3(4 − c21)2x2+

2d1c1(4− c21)(1− |x|2)y
]
. (2.8)

Taking modulus on both sides and applying the triangle inequality in the expression

above, we get

4
∣∣d1c1c3 + d2c

2
1c2 + d3c

2
2

∣∣ ≤
[
|d1 + 2d2 + d3||c1|4 + 2|d1||c1||4− c21||y|

+ 2|d1 + d2 + d3||c1|2|4− c21||x|+
{
(|d1| − |d3|)c21 − 2|d1||c1||y|+ 4|d3|

}
|4− c21||x|2

]
.

(2.9)

By (2.7), we can now write

|d1 + 2d2 + d3| = 4β2, |d1 + d2 + d3| = 1 + 4β, (2.10)

{
(|d1| − |d3|)c21 − 2|d1||c1||y|+ 4|d3|

}

= −(4β2 + 8β + 2)c21 − 4(1 + 2β)2c1|y|+ 16(1 + β)(1 + 3β)

= 2(c1 − 2){−(2β2 + 4β + 1)c1 − 4(1 + β)(1 + 3β)},
= 2(2− c1){(2β2 + 4β + 1)c1 + 4(1 + β)(1 + 3β)}, |y| = 1.

Putting the calculated values from (2.10) and the value of d1 from (2.7) into (2.9),

after simplifying, we get

2
∣∣d1c1c3 +d2c

2
1c2 +d3c

2
2

∣∣ ≤
[
2β2c41 +2(1+2β)2c1

(
4− c21

)
|y|+(1+4β)c21

(
4− c21

)
|x|

+ (2 − c1){(2β2 + 4β + 1)c1 + 4(1 + β)(1 + 3β)}
(
4− c21

)
|x|2
]
. (2.11)

Applying the triangle inequality, restoring |x| by ρ, with |y| ≤ 1, choosing c1 =

c ∈ [0, 2], on the right-hand side of (2.11) we obtain

2
∣∣d1c1c3 + d2c

2
1c2 + d3c

2
2

∣∣ ≤
[
2β2c4 + 2(1 + 2β)2c(4− c2) + (1 + 4β)c2(4− c2)ρ

+(2−c){(2β2+4β+1)c+4(1+β)(1+3β)}(4−c2)ρ2
]

= H(c, ρ) for |x| = ρ ∈ [0, 1].
(2.12)

Here

H(c, ρ) = [2β2c4 + 2(1 + 2β)2c(4− c2) + (1 + 4β)c2(4− c2)ρ
+ (2− c){(2β2 + 4β + 1)c+ 4(1 + β)(1 + 3β)}(4− c2)ρ2]. (2.13)
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To determine the maximum value of H(c, ρ) over the rectangle [0, 1] × [0, 2], we

consider the partial differential coefficient of H(c, ρ) from (2.13) with regard to ρ

given by

∂H

∂ρ
= [(1 + 4β)c2 + 2(2− c){(2β2 + 4β + 1)c+ 4(1 + β)(1 + 3β)}ρ](4− c2). (2.14)

For ρ ∈ (0, 1), c ∈ (0, 2), and (0 ≤ β ≤ 1), by (2.14), we notice that ∂H
∂ρ > 0,

which indicates that H(c, ρ) turns out to be an increasing mapping of ρ, hence, its

maximum value is attained on the boundary of the rectangle only, i.e., when ρ = 1.

Therefore, for ρ = 1 in (2.13), after simplifying, we get

F (c) = H(c, 1) = 4β2c4 − 8(1 + 2β)2c2 + 32(1 + β)(1 + 3β), (2.15)

F ′(c) = 16β2c3 − 16(1 + 2β)2c, (2.16)

F ′′(c) = 48β2c2 − 16(1 + 2β)2. (2.17)

For the extreme values of F (c), let F ′(c) = 0. From (2.16), we have

16c{β2c2 − (1 + 2β)2} = 0. (2.18)

Now, let us discuss the following two instances.

Case 1. When c = 0, from (2.17), we note that

F ′′(0) = −16(1 + 2β)2 < 0 for 0 ≤ β ≤ 1.

Therefore, by the 2nd differentiation test at c = 0, F (c) possesses the maximum

value, which we can obtain from (2.15) as

max
0≤c≤2

F (0) = 32(1 + β)(1 + 3β). (2.19)

Case 2. When c 6= 0, from (2.18), we get

c2 =
(1 + 2β)2

β2
. (2.20)

For 0 < β ≤ 1, from (2.20) we note that c2 does not belong to [0, 2].

Now, simplifying the expressions (2.12) and (2.19), we obtain
∣∣d1c1c3 + d2c

2
1c2 + d3c

2
2

∣∣ ≤ 16(1 + β)(1 + 3β). (2.21)

From (2.5) and (2.21), after simplifying, we get

∣∣a2a4 − a2
3

∣∣ ≤ 1

(1 + 2β)2
. � (2.22)

Remark 2.8. For the extremal function g2(z) = 1+z2

1−z2 = 1 + 2z2 + 2z4 + . . . ,

we have c1 = 0, c2 = 2, c3 = 0, and c4 = 2, for which from (2.3) we obtain a2 = 0,

a3 = c2
2(1+2β) , and a4 = 0.

Remark 2.9. For β = 0 and β = 1 in (2.22), the particular results coincide

with that of Rami Reddy and Vamshee Krishna [28].
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Theorem 2.10. If f ∈ S∗Ks(β) (0 ≤ β ≤ 1), then

|H2,3(f)| =
∣∣a3a5 − a2

4

∣∣ ≤ 13

16(1 + 2β)(1 + 4β)
.

Proof. Using the values of a3, a4, and a5 from (2.3) in a3a5 − a2
4, we simplify

it into

a3a5 − a2
4 =

1

64

[
(4c32 + 8c2c4)

(1 + 2β)(1 + 4β)
− (4c1c2c3 + 4c23 + c21c

2
2)

(1 + 3β)2

]
. (2.23)

Rearranging the terms in (2.23), we have

a3a5 − a2
4 =

1

64(1 + 2β)(1 + 4β)

[
4

{
c2c4 −

(1 + 2β)(1 + 4β)

4(1 + 3β)2
c23

}

+ 4c2

{
c4 −

(1 + 2β)(1 + 4β)

4(1 + 3β)2
c1c3

}

+
c22

(1 + 2β)(1 + 4β)

{
c2 −

(1 + 2β)(1 + 4β)

(1 + 3β)2
c21

}
+

3c32
(1 + 2β)(1 + 4β)

]
. (2.24)

Taking modulus on both sides and applying Lemmas 1.1, 1.2, and 1.3, upon simpli-

fication, we obtain

|H2,3(f)| =
∣∣a3a5 − a2

4

∣∣ ≤ 13

16(1 + 2β)(1 + 4β)
. � (2.25)

Remark 2.11. For β = 0 and β = 1 in (2.25), the results coincide with that of

Andy Liew Pik Hern et al. [10].
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ИДЕНТИФИКАЦИЯ СКОРОСТЕЙ

ГОМОГЕННО–ГЕТЕРОГЕННОЙ РЕАКЦИИ

В МАСШТАБЕ ПОР В ПОРИСТЫХ СРЕДАХ

В. В. Григорьев

Аннотация. Представлена модель гомогенно-гетерогенной реакции в масштабе
пор, основанная на уравнениях Стокса и уравнениях конвекции-диффузии-реакции
с граничными условиями третьего рода на границах включений. Гомогенная реак-
ция описывается как кубический автокатализ на всем поровом пространстве, а кине-
тика гетерогенной реакции описывается изотермой Ленгмюра. Численное решение
задачи производится методом конечных элементов на кусочно-линейных элементах.
Для дискретизации по времени используется схема Кранка — Николсон. Нелиней-
ная задача решается итерационным методом Ньютона. Массоперенос смоделирован
с рассчитанным полем скорости. Дополнительно проведен анализ чувствительно-
сти модели к параметрам для изучения их влияния на реагирующий перенос че-
рез пористую среду. Представлено численное решение обратной задачи, а именно,
идентификация ключевых параметров, характеризующих реагирующий перенос на
основе двух кривых проскока двух разных растворов. Рассмотрены зашумленные
данные с разными амплитудами шума, включая смешанные амплитуды. Для при-
ближенного решения многомерной обратной задачи применен метаэвристический
Алгоритм Искусственной Пчелиной Колонии, который показал хорошую эффек-
тивность при достаточно малых вычислительных затратах.

DOI: 10.25587/SVFU.2023.74.45.008

Ключевые слова: гомогенно-гетерогенная реакция, пористые среды, масштаб
пор, идентификация параметров, метод конечных элементов.

1. Введение

Реагирующий перенос в пористых средах встречается во многих промыш-

ленных задачах, например: сбор и захоронение CO2, перенос загрязняющих ве-

ществ, каталитические фильтры, кислотное воздействие на нефтяные пласты,

очистка сточных вод и т. д. Во всех этих перечисленных задачах присутству-

ют сложные химические процессы, такие как перенос реагентов и продуктов

реакции, взаимодействие между разными жидкостями и химические реакции

на границах раздела фаз [1, 2]. Различают два вида реакций в реагирующих

потоках: гетерогенный и гомогенный. Гомогенная реакция – реагирующие ком-

поненты находятся в одной фазе, реакция происходит по всему объему. Гетеро-

генная реакция – реагирующие компоненты находятся в разных фазах, реакция

Работа выполнена при поддержке гранта Главы Республики Саха (Якутия) (Соглашение
№ 10 от 17 мая 2022 года) молодым ученым и гранта Российского Правительства, нацеленного
на поддержку молодежных лабораторий (FSRG-2021-0015).

c© 2023 Григорьев В. В.
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происходит на границе раздела фаз [3]. Реагирующие процессы, как правило,

происходят в масштабе пор, поэтому необходимо проводить исследования в этом

масштабе для качественного и количественного понимания сложных процессов

реакции.

Существует несколько способов провести экспериментальные исследования

кинетики реакций в объекте исследования, некоторые из них описаны в [4, 5].

В общей схеме через объект исследования пропускают раствор или газ с из-

вестной концентрацией, попутно фиксируя концентрацию на выходе. Эта ди-

намика в последующем может сыграть роль дополнительной информации для

решения задачи идентификации ключевых параметров кинетики реакции. Для

получения надежных кинетических данных реакций необходимо очень точно

контролировать условия реакции в экспериментальных установках. Это слож-

но по трем основным причинам: во-первых, одновременно с рассматриваемой

химической реакцией происходят различные другие процессы, которые меша-

ют контролю условий реакции; во-вторых, концентрация и давление не могут

быть измерены непосредственно в образце; в-третьих, условия реакции могут

происходить неравномерно внутри образца из-за морфологических неоднород-

ностей [5]. Разработка эффективных вычислительных алгоритмов идентифи-

кации ключевых параметров, определяющих кинетику реакций, которые учи-

тывали бы вышеизложенные нюансы экспериментальных исследований, имеет

несомненную актуальность.

Численное моделирование как метод описания и изучения реагирующего

переноса в пористых средах широко применяется в последние два десятиле-

тия [6]. В целом численное моделирование процессов переноса в пористых сре-

дах можно классифицировать двумя классами: масштаб континуума и масштаб

пор. В моделях масштаба континуума пористая среда обычно рассматривается

как однородная и изотропная область, при этом неоднородностью на уровне пор

пренебрегают. Решаются макроскопические уравнения сохранения, которые по-

лучаются на основе теорий объемного усреднения при задании феноменологи-

ческих параметров для неявного учета микроструктуры пористой среды. Для

однофазного потока жидкости были приняты уравнение Дарси, Бринкмана с

расширением Дарси, Форхгеймера с расширением Дарси. Хотя эффективные

транспортные свойства и их крупномасштабная пространственная неоднород-

ность часто фигурируют в качестве важных факторов, определяющих транс-

портные процессы, признано, что микромасштабная неоднородность также иг-

рает важную роль, а процессы на уровне пор сильно влияют на производитель-

ность системы, долговечность и стоимость [7, 8].

При моделировании в масштабе пор микроскопические пористые структу-

ры пористой среды определяются в явном виде, что обеспечивает детализацию

распределения важных переменных на уровне пор, позволяет напрямую связать

сложные процессы переноса с реалистичными пористыми структурами и, таким

образом, могут обеспечить глубокое понимание взаимосвязей между структура-

ми, процессами и характеристиками. Детальное моделирование в масштабе пор
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требует эффективного метода трехмерной реконструкции. Для реконструкции

одним из основных препятствий является низкое разрешение трехмерной мик-

роструктуры. Несмотря на все большую доступность устройств для компьютер-

ной томографии, их разрешения все еще недостаточно [9]. Прямую визуализа-

цию трехмерной микроструктуры пористой среды получают с помощью экспе-

риментальных методов визуализации, таких как электронная томография, XCT

и FIB-SEM. Пористая среда визуализируется с разных направлений для созда-

ния последовательных двухмерных поперечных сечений, которые впоследствии

объединяются вместе для формирования трехмерной структуры. Описанные

методы помогают хорошо понять морфологию пористых структур, однако для

оценки изменчивости, связанной с геометрией и составляющими пористых сред,

требуются многочисленные эксперименты для анализа статистических характе-

ристик, которые все еще остаются весьма дорогим и времязатратным процессом

[10].

Данная работа связана с решением прямой задачи и решением обратной

коэффициентной задачи. Преследуются две цели: реализация математической

модели, описывающей процесс гомогенно-гетерогенной реакции, и вычислитель-

ная идентификация скоростей гомогенно-гетерогенной реакции в масштабе пор.

Процесс рассмотрен как изотермический, гетерогенная реакция описывается

изотермой Ленгмюра [11], гомогенная реакция представляется как кубический

автокатализ [12]. Ранее другие авторы уже решали гомогенно-гетерогенную ре-

акцию в пористых средах: в работе [13] авторы исследовали течение наножид-

кости в пористой среде; в [14] авторы рассмотрели магнитогидродинамический

поток жидкости Кассона; в [15] исследован теплообмен в ферромагнитном пото-

ке с химическими реакциями. Во всех перечисленных работах присутствует ку-

бический автокатализ и реакция первого порядка, описывающая гетерогенную

реакцию, которая состоит только из одного управляющего параметра. В нашей

работе гетерогенная реакция описывается изотермой Ленгмюра, которая явля-

ется более сложной трехпараметрической моделью и применима для описания

широкого спектра адсорбентов [16]. Ранее нами были выполнены несколько

работ по идентификации параметров скоростей реакций [17, 18], также есть ра-

боты и по изучению отдельных факторов, влияющих на гетерогенную реакцию

[19]. Во всех этих работах идентификация проводилась только для гетероген-

ных реакций. В этой работе идентификация будет проводиться сразу для двух

типов реакций, происходящих одновременно.

Численное решение проводится при конечно-элементной аппроксимации по

пространству. Поток жидкости описывается стационарными уравнениями

Стокса, а реагирующий перенос описывается уравнением конвекции-диффузии-

реакции. Для гидродинамических процессов используются элементы Тейлора —

Худа (P2 − P1), а для переноса реагирующих веществ — полиномы Лагранжа

первой степени (P1). Дискретизация по времени проводится симметричной схе-

мой Кранка — Николсон, которая абсолютно устойчива для линейных задач и

имеет второй порядок точности. Нелинейная задача решается итерационным
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методом Ньютона. Программный комплекс написан с использованием вычисли-

тельной платформы FEniCS [20]. Визуализация полученных результатов про-

водится с помощью программы Paraview и библиотеки matplotlib. Вычисления

представлены для двумерной задачи (сечение), саму математическую модель и

вычислительный алгоритм практически без изменений можно применить и для

полноценного трехмерного случая.

Решение обратной коэффициентной задачи предложено искать с помощью

метаэвристического метода. Метаэвристика — это не зависящая от задачи ал-

горитмическая структура высокого уровня, предназначенная для поиска реше-

ния оптимизационной задачи при ограниченных вычислительных мощностях с

неполной или несовершенной начальной информацией. Существуют довольно

много метаэвристических алгоритмов и всевозможные их модификации. Допол-

нительно с этим классом алгоритмов можно ознакомиться в [21, 22]. Будет ис-

пользоваться Алгоритм Искусственной Пчелиной Колонии (АИПК, англ. Arti-

ficial Bee Colony Algorithm) [23], который хорошо себя показал в промышленных

и инженерных задачах. Ранее в работе по применению метаэвристических ал-

горитмов была предложена модификация Пчелиного Алгоритма [24], который

оказался эффективен, когда необходимо идентифицировать только два или три

параметра. Для четырех и более параметров он неэффективен, поскольку де-

лает много вызовов минимизируемой функции из-за отсутствия глобального

поиска. АИПК имеет функцию глобального поиска, тем самым он является

более предпочтительным для идентификации большого числа параметров.

2. Постановка задачи

Будем рассматривать задачу в двумерной постановке. Схему расчетной

области можно посмотреть на рис. 1, а именно прямоугольную область, отме-

ченную на схеме красным цветом. Включения будут играть роль адсорбентов,

на поверхности которых (�s), будут происходить гетерогенные реакции, а имен-

но: адсорбция и десорбция. Гомогенные реакции будут происходить в порах

(�). Будем считать, что растворы входят на левой границе (�in) и выходят на

правой границе (�out). На боковых границах будут стоять условия симметрии

(�sim).

2.1. Гидродинамика. Гидродинамика рассматривается в предположе-

нии, что поток влияет на перенос примеси, а примесь на поток не влияет. Вслед-

ствие этого скорость просчитывается только один раз и полученный вектор

скорости используется для решения нелинейной задачи реагирующего перено-

са. Поток в пористой среде в масштабе пор считается достаточно медленным и

описывается уравнениями Стокса

∇p− µ∇2
u = 0, (1)

∇ · u = 0, x ∈ �, (2)

где u и p — скорость и давление жидкости соответственно, µ > 0 — вязкость

жидкости, которая предполагается постоянной.
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Рис. 1. Эскиз вычислительной области.

На входной границе задается равномерный поток жидкости:

u · n = u, u× n = 0, x ∈ �in. (3)

На выходе задано давление p и условие отсутствия тангенциальных сил:

p− σn · n = p, σn× n = 0, x ∈ �out, (4)

где σ — тензор вязких напряжений, который выглядит следующим образом:

σ = µ(∇u+ (∇u)T ).

На границе включений ставятся условия твердых стенок:

u · n = 0, u× n = 0, x ∈ �s. (5)

На границах симметрии используются условия идеального скольжения:

u · n = 0, σn× n = 0, x ∈ �sim. (6)

2.2. Перенос примесей. Буквы A и B будем использовать для обозна-

чения двух растворов. Схемой гомогенной реакции был выбран кубический

автокатализ [12], когда

A+ 2B → 3B, r = kabsCaC
2
b ,

где r — скорость реакции. На поверхности адсорбентов (�s) происходит изо-

термическая гетерогенная реакция, которая описывается изотермой Ленгмюра

[25]:

A→ B, r = kadsCa

(
1− m

m∞

)
− kdesm.

Управляющие параметры: kabs — коэффициент абсорбции на единицу объе-

ма, m∞ > 0 является максимально возможной адсорбированной поверхностной
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концентрацией, kads — коэффициент адсорбции на единицу измерения, kdes -

коэффициент десорбции на единицу времени.

Перенос примеси определяется уравнениями конвекции-диффузии

∂Ca

∂t
+∇ · (uCa) = Da∇2Ca − kabsCaC

2
b , x ∈ �, t > 0, (7)

∂Cb

∂t
+∇ · (uCb) = Db∇2Cb + kabsCaC

2
b , x ∈ �, t > 0, (8)

со следующими граничными условиями:

Ci = Ci, x ∈ �in, (9)

Di∇Ci · n = 0, i = [a, b], x ∈ �sim ∪ �out. (10)

Сам конвективный поток через границу выхода разрешен неявно приве-

денными выше уравнениями. Гетерогенные реакции, которые возникают на

поверхности включений �s, удовлетворяют закону сохранения массы. В данном

конкретном случае это означает, что изменение адсорбированной поверхност-

ной концентрации равно потоку от жидкости к поверхности. Массовый баланс

на поверхности включений для обоих растворов описывается так:

∂m

∂t
= Da∇Ca · n, x ∈ �s, (11)

∂m

∂t
= −Db∇Cb · n, x ∈ �s, (12)

где m — концентрация адсорбированного вещества на поверхности, Di > 0 —

коэффициент диффузии, Ci — концентрация веществ A и B соответственно

(i = [a, b]).

Концентрация адсорбированного вещества на поверхности описывается изо-

термой Ленгмюра:

∂m

∂t
= kadsCa

(
1− m

m∞

)
− kdesm, (13)

где m∞ является максимально возможной концентрацией на поверхности вклю-

чений, а kads и kdes являются параметрами скорости адсорбции и десорбции

соответственно.

Начальные условия выглядят следующим образом и считаются известны-

ми:

Ci(x, 0) = 0, i = [a, b], x ∈ �, (14)

m(x, 0) = 0, x ∈ �s. (15)

2.3. Безразмерная форма уравнений. В задачах идентификации па-

раметров является стандартным подход, когда управляющие уравнения рас-

сматриваются в безразмерной форме. Обезразмеривание будет происходить по

высоте вычислительной области l для масштабирования пространственных мас-

штабов, скорость будет масштабироваться через входную скорость u, а концен-

трация будет масштабироваться по входным концентрациям Ca и Cb.
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Уравнения Стокса (1), (2) и граничные условия (3), (4) принимают следу-

ющий вид:

∇p−∇2
u = 0, (16)

∇ · u = 0, x ∈ �, (17)

u · n = 1, u× n = 0, x ∈ �in, (18)

p− σn · n = 0, σn× n = 0, x ∈ �out, (19)

граничные условия (5) и (6) остаются неизменными.

Уравнения (7), (8) и граничные условия (9)–(12) с гетерогенной реакцией

(13) принимают следующий вид:

∂Ca

∂t
+∇ · (uCa) =

1

Pea
∇2Ca −Daabs CaC

2
b , (20)

∂Cb

∂t
+∇ · (uCb) =

1

Peb
∇2Cb + DaabsCaC

2
b , x ∈ �, t > 0, (21)

Ca = 1, Cb = 1, x ∈ �in, (22)

∇Ca · n = 0, ∇Cb · n = 0, x ∈ �sim ∪ �out, (23)

∂m

∂t
= ∇Ca · n, x ∈ �s, (24)

∂m

∂t
= −∇Cb · n, x ∈ �s, (25)

∂m

∂t
= DaadsCa

(
1− m

M

)
−Dadesm, x ∈ �s. (26)

Здесь числа Пекле для концентраций обоих растворов:

Pei =
ul

Di
, i = [a, b],

числа Дамколера, которые контролируют кинетику реакции:

Daabs =
kabs
u
, Daads =

kads
u
, Dades =

kdesl

u
,

и безразмерный параметр, отвечающий за максимально возможную концентра-

цию раствора на поверхности адсорбентов:

M =
m∞
lc

.

3. Численное исследование

Для моделирования процессов, проходящих в пористых средах, можно при-

менять различные методы дискретизации по пространству. Метод конечных

элементов на текущий момент является эталоном численных методов, объеди-

няя в себе научный и инженерные подходы [26], поскольку хорошо подходит

для решения задач на неструктурированной сетке с возможностью измельчения
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локального размера ячеек в отдельно взятых подобластях. Единственным недо-

статком метода конечных элементов можно назвать сложность программной ре-

ализации в отличие от других численных методов. На сегодняшний день этим

недостатком можно пренебречь, поскольку появились вычислительные библио-

теки, которые берут на себя рутинные моменты метода, давая исследователю

возможность больше концентрироваться на решаемой задаче [20].

3.1. Вариационная формулировка. Для решения задачи методом ко-

нечных элементов нужно переписать уравнения в вариационной формулировке,

используя стандартный метод Галёркина. Для скорости определяем простран-

ства пробных и тестовых векторных функций:

V = {u ∈H1(�) : u · n = 1, u× n = 0 на �in, u = 0 на �s, u · n = 0 на �sim},

V̂ = {v ∈H1(�) : v = 0 на �in ∪ �s, v · n = 0 на �sim}.
Для давления определяем следующее пространство:

Q = {p ∈ L2(�)}, Q̂ = {q ∈ L2(�) : q = 0 на �out}.

Умножив уравнения на соответствующие тестовые функции и интегрируя по

частям, получаем вариационную задачу: найти (u, p) ∈ V × Q, удовлетворяю-

щие граничным условиям (18) и (19), такие, что
∫

�

(∇u · ∇v −∇ · v p+∇ · u q) dx = 0 ∀(v, q) ∈ V̂ × Q̂. (27)

Для нестационарной задачи переноса раствора при гомогенно-гетерогенной ре-

акции определяем следующие пространства:

Sa = {Ca ∈ H1(�) : Ca = 1 на �in}, Ŝa = {sa ∈ H1(�) : sa = 0 на �in}, (28)

Sb = {Cb ∈ H1(�) : Cb = 1 на �in}, Ŝb = {sb ∈ H1(�) : sb = 0 на �in}, (29)

Z = {m ∈ L2(�)}, Ẑ = {j ∈ L2(�) : j = 0 на �in}. (30)

Необходимо ввести дискретизацию по времени. Будем использовать симмет-

ричную схему Кранка — Николсон [27]. Для удобства введем следующее обо-

значение:

ϕ
n+ 1

2

i =
ϕn+1 + ϕn

2
, ϕn = ϕ(tn), tn = nτ, n = 0, 1 . . . ,

где τ — шаг по времени. Найти (Ca, Cb,m) ∈ Sa × Sb × Z, удовлетворяющие

граничным условиям (22)–(26):

∫

�

Cn+1
a − Cn

a

τ
sa dx+

∫

�

C
n+ 1

2
a u · ∇sa dx+

1

Pea

∫

�

∇Cn+ 1
2

a · ∇sa dx

+

∫

�

Daabs C
n+ 1

2
a

(
C

n+ 1
2

b

)2

sa dx+

∫

�out

(u · n)C
n+ 1

2
a sa ds
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+

∫

�

Cn+1
b − Cn

b

τ
sb dx+

∫

�

C
n+ 1

2

b u · ∇sb dx+
1

Peb

∫

�

∇Cn+ 1
2

b · ∇sb dx

−
∫

�

Daabs C
n+ 1

2
a

(
C

n+ 1
2

b

)2

sbdx+

∫

�out

(u · n)C
n+ 1

2

b sbds

+

∫

�s

mn+1 −mn

τ
j ds−

∫

�s

DaadsC
n+ 1

2
a

(
1− mn+ 1

2

M

)
j ds

+

∫

�s

Dadesm
n+ 1

2 j ds = 0. (31)

Для решения вышеописанной задачи будем использовать вычислительную биб-

лиотеку FEniCS [20]. Пусть Vh ⊂ V , Qh ⊂ Q — конечно-элементные про-

странства на смешанных элементах Тейлора — Худа (P2 − P1), а Sah ⊂ Sa,

Sbh ⊂ Sb и Zh ⊂ Z — конечно-элементные пространства на непрерывных эле-

ментах Лагранжа первой степени. Нелинейная задача решается итерационным

методом Ньютона.

3.2. Численное решение прямой задачи. Для прямой визуализации

микроструктуры пористой среды используют экспериментальный метод ком-

пьютерной рентгено-томографии. Такие изображения можно использовать как

вычислительную сетку, особенно хорошо в связке с методом конечных объе-

мов (воксель — пиксель). Они помогают хорошо понять морфологию пористых

структур, однако для оценки изменчивости, связанной с геометрией и составля-

ющими пористых сред, требуются многочисленные эксперименты для анализа

статистических характеристик [10]. Синтетические пористые среды воспроиз-

водят основные усредненные характеристики пористых сред, таких как пори-

стость, поверхность включений и т. д. Они позволяют выполнять многократ-

ное моделирование в различных условиях и с множественной параметризацией.

Также синтетические пористые среды могут быть легко приведены к любым

пространственным масштабам. В данной работе была выбрана идеализирован-

ная геометрия с периодическими включениями, чтобы свести к нулю эффекты,

возникающие из-за геометрии пор [28], например канальное течение, тупиковые

поры и т. д. Исследование влияния таких эффектов при идентификации ключе-

вых параметров реагирующего переноса достойно отдельного систематического

исследования и в рамках этой работы проводиться не будет. Создание геомет-

рии исследуемой области и генерация вычислительной сетки было произведено

с помощью программы Gmsh.

Поскольку рассматриваемый нами процесс происходит в микромасштабе,

экспериментально понять скорости реакции в данный момент является слож-

ной и дорогостоящей задачей. Поэтому часто измеряют данные концентрации

растворов на выходе из керна. Эти кривые называются кривыми проскока и они

могут быть использованы как вспомогательная информация для определения

кинетики реакции. Кривая проскока для математической модели вычисляется
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(a)

(b)
Рис. 2. Исследования влияния на кривые проскока: (a) шага по сетке, (b) шага
по времени.

следующим образом:

Cout
i =

∫
�out

Ci(x, t,θ)ds

∫
�out

ds
, i = [a, b], (32)

где θ = {Pe,Daads,Dades,M,Daabs} — вектор параметров. В итоге получаем

средние значения концентраций на границе выхода в каждый момент времени.

На рис. 2(a) и 2(b) представлены кривые проскока, которые получены на

серии сгущающихся сеток по пространству и по времени соответственно. Видно,

что на кривую не сильно влияет количество элементов, поэтому выберем сетку с

4760 узлами. В случае с шагом по времени заметно небольшое отличие, поэтому

τ был выбран равным 0.2.

Расчетное поле концентраций для обоих веществ в разные временные ин-

тервалы можно увидеть на рис. 3. Можно заметить, что с момента времени t = 8

гомогенная реакция происходит заметнее: концентрация вещества Cb увеличи-
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(a)

(b)
Рис. 3. Расчетное поле концентрации при: (a) t = 4, (b) t = 8.

вается, поскольку молекулы вещества A превращаются в молекулу вещества

B. Результаты скорости и давления идентичны, в силу неучета, предыдущей

работе [17].

4. Обратная задача химической кинетики

Представляет интерес решение обратной задачи химической кинетики, ко-

торая нацелена на идентификацию определяющих параметров кинетики реак-

ции. В общем, необходимо идентифицировать пять параметров по эксперимен-

тальным данным кривых проскока обоих веществ. Существует много подходов

решения обратных коэффициентных задач. Выделим основные классы мето-

дов, вокруг которых больше всего исследований: градиентные, стохастические,

статистические и детерминированные [17]. В этой работе будет рассмотрен от-

носительно молодой по сравнению с остальными методами, но набирающий по-

пулярность подход под названием метаэвристика.

4.1. Чувствительность модели к параметрам. Процедура анализа

чувствительности модели к параметрам является типичной при решении обрат-

ной задачи, поскольку необходимо понять, какие параметры сильнее влияют на

кинетику реакции. Из рис. 4(a) видно, что параметр скорости гомогенной реак-

ции существенно влияет на кинетику реакции: чем больше значение, тем быст-



112 В. В. Григорьев

(a)

(b)

(c)

(d)

Рис. 4. Чувствительность модели к параметрам: (a) Daabs, (b) Daads (c) Dades
(d) M.
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(a)

(b)
Рис. 5. Кривые проскока при изменении числа Пекле: (a) фиксировано для кон-
центрации Cb, (b) фиксировано для концентрации Ca.

рее происходит переход вещества A в B. На рис. 4(b)–4(d) показаны ключевые

параметры гетерогенной реакции. Параметр Daads отвечает за адсорбцию, чем

больше значение, тем активнее вещество прилипает к поверхности адсорбента,

Dades отвечает за десорбцию — процесс, обратный адсорбции, а M отвечает за

максимально возможную концентрацию на поверхности адсорбента: чем выше

значение, тем дольше адсорбент будет копить депонированную массу перед тем,

как начнется процесс десорбции. По рис. 4(c) видно, что параметр, отвечающий

за десорбцию, мало влияет на кинетику реакции в выбранном диапазоне пара-

метров. На рис. 5(a),(b) показано влияние числа Пекле на кинетику реакции:

чем меньше значение, тем больше диффузия реагирующего переноса. Видно,

что разные числа Пекле для обоих растворов не оказывают влияния друг на

друга.

4.2. Задача идентификации параметров. Будем считать, что имеют-

ся экспериментальные данные в виде кривых проскока для каждого вещества,

по которым необходимо идентифицировать скорости реакций. Подобные обрат-

ные задачи часто рассматривают в виде задачи оптимизации, где необходимо

минимизировать некоторый функционал. Будем минимизировать следующий
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функционал невязки:

J(θ) =

T∫

0

((
Cout

a − C̃a

)2
+
(
Cout

b − C̃b

)2)
dt, (33)

где C̃a и C̃b — экспериментальные измерения для веществ A и B соответствен-

но, Cout
a и Cout

b — кривые проскока для заданных θ, которые являются средним

значением концентрации веществ A и B на границе выхода и вычисляются по

формуле (32). Следует отметить, что данный функционал невязки можно ис-

пользовать при условии, что значения кривых проскока для обоих веществ од-

ного порядка. В противном случае необходимо использование весов либо пред-

варительно их отмасштабировать на один порядок.

Предположим, что концентрацию каждого вещества будут измерять раз-

ные датчики, тем самым они становятся независимыми. Датчики всегда имеют

свои погрешности в каких-то заданных диапазонах и они обычно известны. По-

скольку есть подходы и методы, которые позволяют убрать шумы в данных,

обязательно нужно попробовать идентифицировать параметры на данных без

шума. Представляет интерес, когда для экспериментальных данных каждого

вещества все-таки присутствует шум, и притом может присутствовать с раз-

ной амплитудой для каждого из веществ. Для исследования таких ситуаций

будем использовать так называемый синтетический подход генерации экспери-

ментальных данных. Синтетический подход означает, что нужно выбрать из

пространства параметров один вектор параметров θ̂, который будет считать-

ся точным решением. Принято, что точное значение для каждого параметра

равняется:

Pe = 10.0, Daads = 0.005, Dades = 0.05, M = 0.05, Daabs = 0.005.

Для простоты исследования и поскольку разные числа Пекле в обоих веществах

не оказывают влияния на кинетику друг друга (см. рис. 5(b),(c)), берем в рас-

чет частный случай, когда число Пекле взято одинаковым для обоих веществ.

Экспериментальные данные генерируются по следующей формуле:

C̃i = C(x, t, θ̂) + δφ, i = [a, b], (34)

где δ — амплитуда шума (представлены данные для 0.01 и 0.05), а φ — слу-

чайное число с равномерным распределением в диапазоне [−1, 1]. На рис. 6

представлены описанные синтетические экспериментальные данные с разными

амплитудами шума. Далее будем их комбинировать.

4.3. Метаэвристический подход. Метаэвристические методы — относи-

тельно новый и быстро развивающийся класс методов оптимизации. Существу-

ют различные метаэвристические алгоритмы, вот несколько наиболее извест-

ных: Genetic Algorithms, Particle Swarm Optimization, Differential Evolution и

Greedy Randomized Adaptive Search Procedure, подробнее можно ознакомиться
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(a) (b)

(c)
Рис. 6. Кривые проскока двух концентраций: (a) без шума, (b) с шумом δ = 0.01,
(c) с шумом δ = 0.05.

в [29] и по указанным в ней ссылкам. Нами используется Алгоритм Искусствен-

ной Пчелиной Колонии (АИПК) [23], который хорошо себя показал в промыш-

ленных и инженерных задачах. АИПК имеет функцию глобального поиска,

тем самым для идентификации большого числа параметров он является весьма

эффективным.

Для идентификации рассмотрим несколько случаев: экспериментальные

данные не имеют шума, когда шум в экспериментальных данных одинаков для

обоих веществ (δ = 0.01 и δ = 0.05); когда шум в экспериментальных данных

различается в обоих веществах (δa = 0.01 и δb = 0.05 и наоборот). АИПК

для всех случаев запускали с одинаковыми управляющими параметрами: чис-

ло пчел 5, количество итераций 300. Для ознакомления с управляющими па-

раметрами алгоритма можно обратиться к [30]. Критерий останова можно за-

дать в алгоритме, но обычной является практика запуска алгоритма на зара-

нее определенном количестве итераций. Выбор таких параметров для АИПК

аргументируется тем, что решаемая система уравнений сама по себе является

сложной задачей и если запускать метаэвристический алгоритм (любой мета-

эвристический алгоритм, не только АИПК) на слишком большое количество
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итераций или с большим количеством пчел, смысл решения задачи может ис-

чезнуть из-за высоких вычислительных затрат. То же самое касается критерия

останова. Если задать точность по априорной оценке минимума функционала,

алгоритм может произвести слишком большое количество вызовов минимизи-

руемой функции в попытке достичь наилучшего результата, что может повлечь

собой большие вычислительные затраты. Следовательно, требуется адекватная

оценка имеющихся вычислительных ресурсов.

Для каждого параметра были заданы диапазоны, внутри которых должно

быть искомое значение:

Pe = [0, 20], Daads = [0.0, 0.01], Dades = [0.0, 0.1],

M = [0.0, 0.1], Daabs = [0.0, 0.01].

При работе с реальными данными такие диапазоны должны быть определены

через обоснованное предположение, например, по физическому смыслу. В табл. 1

можно увидеть результаты работы алгоритма: в первом столбце стоят пара-

метры с точными значениями, в остальных указаны идентифицированные па-

раметры для каждого случая, в последней строке показано значение целевого

функционала в идентифицированных точках. Видно, что с увеличением шума

в экспериментальных данных значение функционала увеличивается, что гово-

рит о том, что он сглаживается. Параметр Dades идентифицировался плохо

из-за того, что он не сильно влиял на кинетику реакции (см. рис. 4(c)). Слабое

влияние этого параметра на характер реагирующего переноса отчасти случи-

лось по причине большого значения параметра M, который ввиду названной

причины тоже идентифицировался не очень хорошо. Параметры Daads и Daabs

идентифицировались хорошо на всех случаях. Число Пекле в целом идентифи-

цировалось весьма точно, за исключением случая смешанной амплитуды шума

(δa = 0.01 и δb = 0.05). Это можно объяснить тем, что 5 пчел, скорее всего,

недостаточно для такого случая. В табл. 2 показаны относительные погрешно-

сти для каждого рассмотренного случая в процентах. Сравнительные графики

можно увидеть на рис. 7(a), где показаны кривые проскока по идентифициро-

ванным параметрам. Графики наложились друг на друга, поэтому нужно обра-

тить внимание на рис. 7(b), где показана относительная погрешность в L2-норме

в каждый момент времени в логарифмической шкале. Погрешность падает до

10−5, особенно в интервалах времени от 10 до 25, когда кривая проскока быстро

меняется. Как можно видеть из табл. 2, погрешность для всех случаев получи-

лась меньше 1%, что является вполне приемлемым результатом. Естественно,

можно увеличить количество пчел и число итераций для получения параметров

с большей точностью.

5. Заключение

В работе реализована модель для описания кинетики гомогенно-гетероген-

ной реакции и выполнена идентификация параметров скоростей реакции. Вы-
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Таблица 1. Идентифицированные
параметры для различного уровня шума
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Таблица 2. Относительная погрешность кривых проскока по
найденным параметрам для каждого вещества
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Рис. 7. Результаты идентификации: (a) кривые прорыва двух концентраций,
(b) относительная погрешность в L2 норме в отдельные моменты времени.

числения представлены в двумерном случае на идеализированной геометрии.

Полученные результаты формулируются следующим образом.

1. Реализована модель гомогенно-гетерогенной реакции в масштабе пор,

основанная на уравнениях Стокса и уравнениях конвекции-диффузии-реакции

с граничным условием третьего рода на границах включений. Гомогенная ре-

акция описывается как кубический автокатализ на всем поровом пространстве,

а гетерогенная реакция описывается изотермой Ленгмюра.

2. Численное решение задачи производится методом конечных элементов

на кусочно-линейных элементах. Дискретизация по времени проводится сим-

метричной схемой Кранка — Николсон. Нелинейная задача решается итераци-

онным методом Ньютона. Массоперенос смоделирован с рассчитанным полем

скорости (массоперенос не влияет на скорость). Проведены исследования на
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серии сеток для подтверждения сходимости, аналогичные исследования прове-

дены для разных шагов по времени. Дополнительно проведен анализ чувстви-

тельности модели к управляющим параметрам реагирующего переноса через

пористую среду.

3. Проведена идентификация ключевых параметров, характеризующих ре-

агирующий перенос на основе двух кривых проскока двух разных веществ. Бы-

ли рассмотрены данные без шума и зашумленные данные с разными амплитуда-

ми шума, включая смешанные амплитуды. Для многомерной обратной задачи

был применен метаэвристический Алгоритм Искусственной Пчелиной Колонии,

который показал хорошую эффективность при достаточно малой вычислитель-

ной цене. Параметры были идентифицированы с погрешностью менее 1% для

кривых проскока.
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IDENTIFICATION

OF HOMOGENEOUS–HETEROGENEOUS

PORE–SCALE REACTION RATES IN POROUS MEDIA

V. V. Grigoriev

Abstract: This paper presents a model of homogeneous-heterogeneous reaction in the
pore scale based on Stokes equations, convection-diffusion-reaction equations with the
Robin boundary condition at the inclusion boundaries. The homogeneous reaction is
described as cubic autocatalysis on the whole pore space, and the kinetics of the het-
erogeneous reaction is described by the Langmuir isotherm. Numerical solution of the
problem is carried out by the finite element method on piecewise linear elements. The
Crank–Nicholson scheme is used for discretization in time. The nonlinear problem is
solved using Newton’s iteration method. The mass transfer is simulated with a calcu-
lated velocity field. In addition, a sensitivity analysis of the model to the parameters
has been carried out to study their influence on the reactive transport through the
porous medium. A numerical solution for the inverse problem, namely, identification of
key parameters characterizing the reactive transport based on two breakthrough curves
of two different solutions is presented. Noisy measurements with different noise am-
plitudes including mixed amplitudes were considered. For approximate solution of the
multidimensional inverse problem the metaheuristic Artificial Bee Colony Algorithm was
applied and showed good efficiency at rather low computational cost.

DOI: 10.25587/SVFU.2023.74.45.008

Keywords: homogeneous-heterogeneous reaction, porous media, pore scale, parameter
identification, finite element method.
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Межгородской научно-исследовательский семинар

«Неклассические задачи математической физики»

1 апреля 2023 г.

Семинар был посвящен Дню математика.

29 апреля 2023 г.

«Краевые задачи для линейных обыкновенных дифференциальных урав-

нений дробного порядка с запаздывающим аргументом».

Докладчик: М. Г. Мажгихова (Институт прикладной математики автома-

тизации КБНЦ РАН, Нальчик, Россия).

В докладе изложены результаты, связанные с исследованием начальных,

локальных и нелокальных краевых задач для линейных обыкновенных диффе-

ренциальных уравнений дробного порядка с запаздывающим аргументом. Для

уравнения с дробной производной произвольного порядка получено общее пред-

ставление решения, найдено фундаментальное решение. Доказана теорема су-

ществования и единственности решения задачи Коши. Реализован метод шагов

для решения задачи Коши в случае переменного запаздывания. Исследована

обобщенная краевая задача с условиями типа Штурма, а также обобщенные

задачи Дирихле и Неймана. Развит метод функции Грина, исследованы спек-

тральные свойства.

Методом функции Грина получены решения нелокальных задач Стекло-

ва первого и второго классов и внутренней краевой задачи с условиями, свя-

зывающими значение искомой функции на граничной точке со значениями во

внутренних точках. Доказаны теоремы существования и единственности.

13 мая 2023 г.

"Convexification Numerical Method for a Coefficient Inverse Problem for the

Riemannian Radiative Transfer Equation".

Докладчик: M. V. Klibanov (Department of Mathematics and Statistics Uni-

versity of North Carolina at Charlotte).

В 1981 г. была напечатана статья А. Л. Бухгейма и М. В. Клибанова «Един-

ственность в целом одного класса многомерных обратных задач» в Докладах

Академии Наук СССР, 1981, Т. 260, № 2. С. 269–272. В этой работе был раз-

рублен гордиев узел всей теории коэффициентных обратных задач. А именно:

впервые удалось разработать методику, позволяющую доказывать глобальные

теоремы единственности коэффициентных обратных задач в непереопределен-

ной постановке. Только локальные теоремы единственности удавалось дока-

зать до этой работы. Ключом к разрешению проблемы оказалось впервые вве-

дение метода оценок Карлемана в теорию обратных задач. До сегодняшнего

дня все глобальные теоремы единственности и устойчивости для таких задач

доказаны только этим методом. Большое количество работ большого числа ав-

торов опубликовано про различные приложения этой техники, которая сейчас

называется «метод Бухгейма — Клибанова». Однако все те работы обсуждают
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только теоремы единственности и устойчивости. Начиная с 1995 г. докладчик

разработал серьезное обобщение этого метода на численные методы как для

коэффициентных обратных задач, так и для некорректно поставленных задач

Коши для уравнений с частными производными. Это так называемый convexi-

fication method. В итоге удалось избавиться от «проклятия» практически всех

численных методов для нелинейных обратных задач: проблемы локальных ми-

нимумов, т. е. вместо стандартных локально сходящихся численных методов

удалось построить глобально сходящиеся численные методы. Кроме собственно

теории и численных методов теории обратных задач в докладе представлены

некоторые результаты теории игр среднего поля (mean field games).

27 мая 2023 г.

«Интегродифференциальные уравнения в банаховых пространствах и ана-

литические разрешающие семейства операторов».

Докладчики: В. Е. Федоров, А. Д. Годова (Челябинский государственный

университет, Челябинск, Россия).

Исследуется класс уравнений в банаховых пространствах с интегродиф-

ференциальным оператором типа Римана — Лиувилля с операторнозначным

ядром свертки. Исследованы свойства разрешающих операторов таких урав-

нений, рассмотрен случай ограниченного оператора в указанном уравнении и

определен класс линейных замкнутых операторов, принадлежность которому

необходима и при коммутировании оператора с ядром свертки достаточна для

существования аналитических в секторе k-разрешающих семейств операторов

исследуемого уравнения. При некоторых дополнительных условиях на ядро

свертки доказаны теоремы об однозначной разрешимости неоднородного линей-

ного уравнения рассматриваемого класса в случае непрерывной в норме графи-

ка оператора из уравнения или гельдеровой неоднородности. Доказана теорема

о достаточных условиях на аддитивное возмущение оператора указанного клас-

са для того, чтобы возмущенный оператор также принадлежал такому классу.

Абстрактные результаты использованы при исследовании начально-краевых за-

дач для системы уравнений в частных производных с несколькими дробными

производными Римана — Лиувилля по времени разных порядков и для уравне-

ния с дробной производной Прабхакара по времени.

10 июня 2023 г.

«Сингулярные интегральные уравнения неклассического типа на кусочно-

ляпуновских кривых».

Докладчик: А. П. Солдатов (Федеральный исследовательский центр «Ин-

форматика и управление» РАН, Москва, Россия).

Рассматривается алгебра сингулярных интегральных операторов на кусоч-

но-ляпуновской кривой, расположенной на сфере Римана. Другими словами,

эти кривые сохраняют свой тип при дробно линейных преобразованиях плос-

кости. Указанная алгебра включает в себя помимо сингулярного оператора

с ядром Коши некомпактные интегральные операторы с ядрами, которые в

окрестности узлов кривой приближенно однородны степени −1 относительно

расстояний до этих узлов. В докладе обсуждается критерий фредгольмовости

операторов этой алгебры и приводится формула их индекса.
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24 июня 2023 г.

«О философии математики — от Пифагора до Перельмана (от геометрии

Евклида до теории струн)».

Докладчик: В. В. Лепов (Институт физико-технических проблем Севера

им. В. П. Ларионова СО РАН, обособленного подразделения Федерального ис-

следовательского центра «Якутский научный центр» СО РАН, Якутск, Россия).

Представлены значимость (фундаментальная и практическая) и основные

проблемы философии математики. Дана краткая история развития математи-

ки, включая Милетскую школу, Пифагореизм, Элейскую школу и учение Пла-

тона, Аристотеля, и первый кризис математики (несоизмеримость отрезков),

эпоху Возрождения и второй кризис (Лейбниц), Геттингенскую школу матема-

тики, теорему Эмми Нетер. Обсуждается программа Гильберта по обоснованию

математики и 23 проблемы Гильберта, гипотеза Пуанкаре и теорема Пуанкаре —

Перельмана. Дана формулировка теоремы Гёделя о неполноте (третий кризис).

Обосновывается связь математики с современной физической картиной мира и

переход от Стандартной теории к теории струн и голографическому принципу

AdS/CFT соответствия.

Автор не претендует на какую-либо полноту теорий и их философскую ин-

терпретацию. Материал предлагается для обсуждения и дальнейшего сотруд-

ничества.
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списком ключевых слов. Аннотация и список должны быть представлены на
русском и английском языках.

6. Список литературы печатается в конце текста. Ссылки на литературу
в тексте нумеруются в порядке их появления и даются в квадратных скобках.
Ссылки на неопубликованные работы нежелательны. Оформление литературы
должно соответствовать требованиям стандартов (примеры библиографических
описаний см. в последних номерах журнала).

7. Издание осуществляет рецензирование всех поступающих в редакцию
материалов, соответствующих ее тематике, с целью их экспертной оценки. Все
рецензенты являются признанными специалистами по тематике рецензируемых
материалов и имеют в течение последних 3 лет публикации по тематике рецен-
зируемой статьи. Рецензии хранятся в редакции издания в течение 5 лет.
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8. Принятая к рассмотрению статья направляется на анонимное рецензи-
рование. На основании рецензии редсовет принимает решение о возможности
публикации статьи, которое сообщается автору. Автор вправе сообщить свои
замечания и возражения к рецензии. Повторное решение редсовета по статье
является окончательным.

9. Редакция издания направляет авторам представленных материалов ко-
пии рецензий или мотивированный отказ, а также обязуется направлять копии
рецензий в Министерство науки и высшего образования Российской Федерации
при поступлении в редакцию издания соответствующего запроса.

10. После редакционной подготовки непосредственно перед публикацией
автору высылается корректура. По возможности в наиболее короткие сроки
необходимо ее прочесть, внести исправления (правка против авторского ориги-
нала нежелательна) и направить в редакцию. Статья выходит в свет только
после получения от автора (коллектива авторов) авторской корректуры, под-
писанной автором (всеми соавторами) в печать.

11. В соответствии с международными законами об авторском праве Ре-
дакция уведомляет авторов журнала об их ответственности за получение ими в
случае необходимости письменного разрешения на использование охраняемых
авторским правом материалов, таких, как цитаты, воспроизведение данных, ил-
люстраций и любых иных материалов, которые могут быть использованы в их
публикациях, а также о том, что вытекающая отсюда ответственность за на-
рушение таких авторских прав лежит на авторах. Плата за опубликование с
авторов или учреждений, где работают авторы, не взимается, и опубликованные
статьи не оплачиваются.

12. Права авторов на использование материалов статей и переводов статей

из журнала «Математические заметки СВФУ» в иных публикациях определя-

ются общими международными и российскими законами об авторских правах.
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