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ОБ УСТОЙЧИВОСТИ ЦИКЛОВ

КУСОЧНО–ЛИНЕЙНЫХ ДИНАМИЧЕСКИХ

СИСТЕМ МАТЕМАТИЧЕСКОЙ БИОЛОГИИ

А. В. Глубоких, В. П. Голубятников,

Е. П. Волокитин

Аннотация. Для кусочно-линейной трехмерной динамической системы биохими-
ческой кинетики с трехступенчатыми правыми частями получены условия суще-
ствования двух устойчивх циклов в ее фазовом портретете. Построены торические
окрестности этих циклов.

DOI: 10.25587/2411-9326-2025-1-4-14

Ключевые слова: математическая модель, кусочно-линейная динамическая си-
стема, фазовые портреты, цикл, устойчивость, отображение Пуанкаре.

Введение

Следуя [1, 2], мы изучаем траектории динамической системы, моделирую-

щей генную сеть, регулируемую отрицательными связями:

dx1

dt
= L3(x3)− x1;

dx2

dt
= L3(x1)− x2;

dx3

dt
= L3(x2)− x3. (1)

Общие схемы построения аналогичных моделей генных сетей см. в [3–5].

Положительные переменные xj обозначают концентрации компонент, мо-

нотонно убывающая трехступенчатая функция L3 описывает отрицательные ре-

гуляторные связи между этими компонентами и задается уравнениями

L3(w) = 2c, если 0 < w < c− ε; L3(w) = c+ ε, если c− ε ≤ w < c;

L3(w) = c− ε, если c ≤ w < c+ ε; L3(w) = 0, если c+ ε ≤ w <∞. (2)

Здесь c > ε > 0. Система (1) симметрична относительно циклической переста-

новки переменных σ : x1 → x2 → x3 → x1.

Как отмечено в [6], «количество ступенек может оказаться больше количе-

ства переменных».

Куб Q3 := [0, 2c]×[0, 2c]×[0, 2c] является положительно инвариантной обла-

стью системы (1), (2), в том числе и для многомерных аналогов динамической

Работа проводилась в рамках госзаданий Института математики им. С. Л. Соболева СО
РАН FWNF-2022-0009 и FWNF-2022-0005.

c© 2025 Глубоких А. В., Голубятников В. П., Волокитин Е. П.



Об устойчивости циклов 5

системы (1), (2), траектории всех его точек не выходят из него при t→∞ (см.

[7–9].

Для контроля поведения траекторий этой динамической системы разобьем

Q3 плоскостями xj = c − ε, xj = c, xj = c + ε, j = 1, 2, 3, которые содержат

все точки разрыва трехступенчатых функций в правых частях уравнений (1).

Тем самым куб Q3 разбивается на 64 более мелких параллелепипеда; будем

называть их блоками. В каждом из них система (1), (2) расщепляется на три

линейных уравнения с постоянными коэффициентами. Будем нумеровать все

эти блоки мультииндексами {r1r2r3} так, что

rj := A, если в блоке 0 ≤ xj < c− ε;
rj := 0, если для всех точек этого блока c− ε ≤ xj < c;

rj := 1, если для всех точек этого блока c ≤ xj < c+ ε;

rj := B, если для всех точек этого блока c+ ε ≤ xj ≤ 2c.

Обозначим черезQ1 куб {c−ε ≤ x1, x2, x3 ≤ c+ε}, и черезQ2 — объединение

18 блоков, имеющих непустые пересечения с шестью ребрами куба Q3:

x ≡ x1 = 2c, 0 ≤ y ≡ x2 ≤ 2c, z ≡ x3 = 0;

x = 2c, y = 0, 0 ≤ z ≤ 2c;

0 ≤ x ≤ 2c, y = 0, z = 2c; x = 0, 0 ≤ y ≤ 2c, z = 2c;

x = 0, y = 2c, 0 ≤ z ≤ 2c; 0 ≤ x ≤ 2c, y = 2c, z = 0.

Подобные построения были проделаны в [10, 11] для динамических систем

вида (1) с одноступенчатыми функциями в правых частях их уравнений. Для

таких систем правые части их уравнений имеют в точности по одной точке

разрыва, поэтому в перечисленных публикациях инвариантный куб Q разби-

вался подходящими плоскостями на восемь блоков, занумерованных бинарны-

ми мультииндексами {r1r2r3}, rj = 0, 1, j = 1, 2, 3. Аналогичные конструкции

возникают и для подобных динамических систем в старших размерностях (см.

[8, 12, 13]).

1. Основные результаты

Поскольку функция L3 монотонно убывает, куб Q1 также является поло-

жительно инвариантной областью в фазовом портрете системы (1), (2); в этом

кубе функция L3 является одноступенчатой, поэтому нумеруем лежащие в Q1

блоки бинарными мультииндексами. Ранее, в [14], было установлено, что ин-

вариантная область Q1 содержит в точности один цикл C1 и что этот цикл

устойчив и переходит из блока в блок согласно стрелкам кольцевой диаграммы

{001} → {011} → {010} → {110} → {100} → {101} → {001} → . . . . (3)

Обозначим через W1 объединение шести блоков, перечисленных в диаграмме

(3). Для одноступенчатых правых частей систем уравнений вида (1) область

W1 является положительно инвариантной, и траектории всех ее точек притяги-

ваются циклом C1 (см. [14]). В дальнейшем будем называть этот цикл системы

(1), (2) малым.
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Теорема 1. Если c > ε > 0, то область W1 содержит цикл C1 системы (1).

Этот цикл состоит из шести прямолинейных отрезков, устойчив и переходит из

блока в блок согласно стрелкам диаграммы (3).

Теорема 2. (a) Если 4ε ≤ c, то область Q2 содержит в точности один

цикл C2 системы (1), (2). Этот цикл состоит из 18 прямолинейных отрезков и

переходит из блока в блок согласно стрелкам следующей кольцевой диаграммы:

. . .→ {BBA} → {B1A} → {B0A} → {BAA} → {BA0} → {BA1}
→ {BAB} → {1AB} → {0AB} → {AAB} → {A0B}
→ {A1B} → {ABB} → {AB1} → {AB0} → . . .

. . .→ {ABA} → {0BA} → {1BA} → {BBA} → . . . . (4)

(b) Этот цикл устойчив и симметричен относительно σ.

Цикл C2 будем называть большим. Так же, как и в работах [7, 15], мы

не рассматриваем траектории системы (1), (2), проходящие через ребра блоков,

на которые разбивается инвариантная область Q3. Циклы C1 и C2 переходят

из блока в блок через внутренние точки граней, разделяющих эти блоки. Объ-

единение блоков, перечисленных в диаграмме (4), является торической окрест-

ностью цикла C2. Объединение блоков, перечисленных в диаграмме (3), из

которого выколота точка (c, c, c), является торической окрестностью цикла C1.

1.1. Описание большого цикла системы (1), (2). Пусть F2 := {B1A}∩
{B0A}, F3 := {B0A} ∩ {BAA} — общие грани пар соседних блоков диаграммы

(4). Аналогично определяются и другие такие пересечения: F4 := {BAA} ∩
{BA0}, F5 := {BA0} ∩ {BA1}, . . . Для произвольной точки X2(x2, y2, z2) из

внутренности F2, где

c+ ε < x2 < 2c; y2 = c; 0 < z2 < c− ε, (5)

построим ее траекторию, сначала в блоке {B0A}, в котором система (1), (2)

имеет вид
dx

dt
= 2c− x; dy

dt
= −y; dz

dt
= c+ ε− z.

В этом блоке траектория точки X2 описывается уравнениями

x = 2c+ (x2 − 2c)e−t; y = y2e
−t; z = c+ ε+ (z2 − c− ε)e−t,

это прямолинейный отрезок в R3. Если t1 = ln c−ε
c , то y(t1) = c − ε и точка

X3 = X2(t1) лежит в плоскости y = c− ε. Для того чтобы эта точка оказалась

в грани F3, необходимо выполнение условия

z3 < c− ε, эквивалентного z2 < c+ ε− 2cε

c− ε . (6)

Отметим, что

c+ ε− 2cε

c− ε = c− ε− 2ε2

c− ε .
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В следующем блоке {BAA} диаграммы (4) наша система принимает вид

dx

dt
= 2c− x; dy

dt
= −y; dz

dt
= 2c− z,

и в нем траектория точки X3 задается уравнениями

x = 2c+ (x3 − 2c)e−t+t1 ; y = y3e
−t+t1 ; z = 2c+ (z3 − 2c)e−t+t1 .

Если t2 := t1− t = ln c+ε
2c−z3

, то z(t2) = c−ε, тогда X4 = X2(t2) ∈ F4. Cледующий

шаг построения траектории точки X2 в блоке {BA0} описывается уравнениями

dx

dt
= c+ ε− x; dy

dt
= −y; dz

dt
= 2c− z,

и эта траектория при t = t3 = ln c
c+ε попадает на грань F5 = {BA0}∩{BA1}, где

z = c, в точку X5(x5, y5, z5) с координатами x5 = c+ ε+ (x4 − c− ε); y5 = y4
c

c+ε .

В итоге траектория точки X2 ∈ F2 будет пересекать грани F3, F4, F5, . . . в

точках X3(x3, y3, z3), X4(x4, y4, z4), X5(x5, y5, z5), . . . таких, что

x3 = 2c+ (x2 − 2c)
c− ε
c

; y3 = c− ε; z3 = c+ ε+ (z2 − c− ε)
c− ε
c

, (7)

x4 = 2c+ (x3 − 2c)
c+ ε

2c− z3
; y4 = y3

c+ ε

2c− z3
; z4 = c− ε, (8)

x5 = c+ ε+ (x4 − c− ε)
c

c+ ε
; y5 = y4

c

c+ ε
; z5 = c. (9)

Из (7) следует, что 2c− z3 = c− ε+ (x3 − 2c) c+ε
2c−z3

.

1.2. Гипербола и парабола. Будем искать на грани F2 такую точку P2, у

которой координаты удовлетворяют условиям (6) и ее траектория при переходе

через три блока {B0A}, {BAA}, {BA0} диаграммы (4) попадает на грань F5 в

точку P5 с координатами

x5 = 2c− z2, y5 = 2c− x2, z5 = 2c− y2 = c. (10)

Тогда в следующих блоках диаграммы (4) формулы перехода с грани на грань

имеют тот же вид, что и в ее предыдущих блоках. Например, в блоке {BA1}
система (1), (2) имеет вид

dx

dt
= c− ε− x; dy

dt
= −y; dz

dt
= 2c− z,

а формулы перехода

x6 = c− ε+ (x5 − c+ ε)
c− ε
c

; y6 = y5
c− ε
c

; z6 = c+ ε.

Из замены x5 = 2c− z2, y5 = 2c− x2, z5 = 2c− y2 = c, x6 = 2c− z3, y6 = 2c− x3,

z6 = 2c− y3 следует, что

2c− z3 = c− ε+(2c− z2− c+ ε)
c− ε
c

; 2c−x3 = (2c−x2)
c− ε
c

; 2c− y3 = c+ ε.
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Окончательно

z3 = c+ ε+ (z2 − c− ε)
c− ε
c

; x3 = 2с + (x2 − 2с)
c− ε
c

; y3 = c− ε,

что совпадает с уравнениями, описывающими переход F2 → F3. Если через

следующие три шага по диаграмме (4) положить x8 = 2c − z5, y8 = 2c − x5,

z8 = 2c− y5, получим x8 = y2, y8 = z2, z8 = x2, откуда следует симметричность

построенной траектории относительно циклической перестановки σ.

Второе из уравнений (10) задает гиперболу

c2 = (2c+ ε− z2)(2c− x2). (11)

Ее асимптоты описываются уравненими x2 = 2c и z2 = 2c + ε. Обе они не

пересекаются с внутренностью лежащего в F2 прямоугольника

R :=

{
c+ ε < x2 < 2c; y2 = c; 0 < z2 < c+ ε− 2cε

c− ε

}
.

Соответственно уравнение x5 = 2c− z2 подстановками (7)–(9) сводится к урав-

нению параболы:

(2c+ε−z2)((c+ε)2 +c(c−ε))+(x2−2c)c(c+ε) = (2c+ε−z2)(2c−z2)(c+ε). (12)

Здесь

x4 − c− ε = c− ε+ (x3 − 2c)
c+ ε

2c− z3
= c− ε+ (x2 − 2c)

c− ε
c

c+ ε

(c− ε+ (z2 − c− ε) c−ε
c )

= c− ε+
(x2 − 2c)(c+ ε)

(c+ z2 − c− ε)
;

x5 = c+ ε+
c

c+ ε

(
c− ε+

(x2 − 2c)(c+ ε)

(c+ z2 − c− ε)

)

=
(c+ ε)2 + c(c− ε)

c+ ε
+

(x2 − 2c)c

z2 − ε
= 2c− z2.

С целью построения большого цикла C2 ищем точку пересечения кривых (11) и

(12) во внутренности прямоугольника R. Нижнее его основание z2 = 0 пересе-

кается с гиперболой (11) при x2 = xh2 = c (3c+2ε)
2c+ε и при x2 = xp2 = 2c+ (c−ε)ε(2c+ε)

c(c+ε)

пересекается с параболой (12). Здесь при 0 < 4ε ≤ c для координат этих точек

пересечения выполняются соотношения

xp2 > 2c > xh2 . (13)

Аналогичным образом прямая z2 = c+ ε− 2cε
c−ε , содержащая верхнее основание

прямоугольника R, пересекается с гиперболой (11) при x2 = xh2 = c (c+3ε)
c+ε и при

x2 = xp2 = c3−2cε+3cε2+2ε3

(c−ε)2 пересекается с параболой (12). Так же, как и выше,

при 0 < 4ε ≤ c координаты этих точек пересечения удовлетворяют неравенствам

xp2 < c+ ε < xh2 . (14)
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Рис. 1. Пересечение гиперболы и параболы в сером прямоугольнике R ; c = 5ε.

Из (13) и (14) вытекает, что при 4ε ≤ c гипербола (11) пересекает границу пря-

моугольника R по ее горизонтальным отрезкам, а с параболой (12) эта граница

пересекается по ее вертикальным отрезкам. Из теоремы Жордана следует, что

эти две кривые второго порядка имеют по крайней мере одну точку пересече-

ния во внутренности R ⊂ F2. Поскольку при x2 < 2c гипербола (11) выпукла

вверх, а при z2 < c−ε− 2ε2

c−ε парабола (12) выпукла вниз, эта точка пересечения

единственна (рис. 1).

Система (1) симметрична относительно циклической перестановки пере-

менных σ, поэтому при выполнении условий (6) после трех шагов по диаграмме

(4) траектория точки X5 попадает на грань F8 = {1AB} ∩ {0AB}, после 18

шагов по стрелкам этой диаграммы

� : F2 → F3 → f4 → F5 → F6 → F7 → F8 . . .→ F14 → F2

траектория точки X2 возвращается в X2 и, следовательно, является циклом.

Композиция � перечисленных выше отображений является отображением Пу-

анкаре системы (1).

Как установлено в [15], симметричные относительно перестановки σ дина-

мические системы вида (1) не имеют циклов, которые несимметричны относи-

тельно σ. Тем самым первая часть теоремы 2 доказана.

2. Устойчивость большого цикла системы (1), (2)

Из предыдущих вычислений следует, что сдвиг �2,5 : F2 → F5 вдоль тра-

екторий системы (1), (2) описывается дробно-линейными функциями

x5 = ε+
2c2

c+ ε
+ (x2 − 2c)

c

2c+ ε− z2
; y5 =

c2

2c+ ε− z2
; y2 = z5 = c.

Рассмотрим матрицу Якоби этого сдвига:

J =
∂(x5y5)

∂(x2z2)
=

(
c

2c+ε−z2

c(x2−2c)
(2c+ε−z2)2

0 c2

(2c+ε−z2)2

)
.

Ее собственные значения имеют вид λ1 = c
2c+ε−z2

и λ2 = c2

(2c+ε−z2)2
= λ2

1.

Поскольку для точек грани F2 выполнены соотношения (5), то 0 < λ1 < 1;
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собственное число λ2 также положительно и строго меньше единицы. Так

как система (1), (2) симметрична относительно перестановки σ, сдвиги �2,5,

�5,8 : F5 → F8, �8,14 : F8 → F8,14 и �14,12 : F14 → F12 вдоль траекторий

этой системы конгруентны, поэтому у отображения Пуанкаре � матрица Якоби

представима в виде J6 и ее собственные числа имеют вид λ6
1, λ

6
2, положительны

и также строго меньше единицы. Как показано в [16] (см. также [12, 14, 17]),

если у динамической системы вида (1) абсолютные величины собственных чи-

сел матрицы Якоби отображения Пуанкаре строго меньше единицы и имеют

кратность один, то соответствующий цикл такой системы устойчив. �

3. Результаты численных экспериментов

На рис. 2 показаны два устойчивых цикла системы (1), (2) при различных

соотношениях между ее параметрами c и ε. Аналогичные результаты были

получены и для систем вида (1) с пятиступенчатыми правыми частями (см. [18],

где были установлены условия существовния трех циклов). Во всех указанных

случаях самый маленький цикл состоит из шести отрезков, как на рис. 2. Для

этого рисунка все вычисления проводились с помощью пакета Matematica 12.1,

лицензия 3322-8225.

c = 10; ε = 2 c = 10; ε = 2.5

Рис. 2.

Заключение

В работе получены достаточные условия существования двух устойчивых

периодических режимов функционирования простейшей, содержащей всего три

компоненты, модели молекулярного репрессилятора [19, 20], у которого отрица-

тельные регуляторные связи описываются многоступенчатыми функциями —

как в публикациях [1, 2, 6], где с помощью подобных пороговых связей построе-
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на и изучена модель бактериофага λ, имеющая два устойчивых режима функ-

ционирования. В фазовых портретах систем вида (1), (2) также наблюдается

явление бистабильности — часть траекторий притягивается к устойчивому цик-

лу C1, а почти все остальные траектории — к устойчивому циклу C2. Как было

указано выше в разд. 1, здесь не рассматривались траектории, пересекающиеся

с ребрами блоков разбиения инвариантного куба Q3; в выделенном курсивом

исключении имеются в виду как раз такие траектории.

Разработанные подходы применимы и к моделированию более сложных ген-

ных сетей [11, 21]. У динамических систем вида (1) с немонотонными правыми

частями траектории могут вести себя хаотически (см. [22]).

Благодарность. Авторы выражают искреннюю благодарность Н. А. Кол-

чанову за полезные обсуждения и конструктивные предложения.

ЛИТЕРАТУРА
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С. 21–39, и посвящена исследованию поведения решения параболического уравне-
ния второго порядка с вырождением Трикоми на боковой границе цилиндрической
области QT , где Q — звездная область, граница которой ∂Q — (n − 1)-мерная за-
мкнутая поверхность без края класса C1+λ, 0 < λ < 1.

При этом рассматриваются два случая принятия граничного условия: 1) по
звездности, 2) выделяется некоторое ортогональное к границе направление и утвер-
ждается непрерывность решения как функции по специальной переменной со значе-
ниями в Lp по этому направлению. Для этого в определении принятия граничного
значения при отображении границы ∂Q нужно брать сдвиг не по нормали в каждой
точке x ∈ ∂Q, а взять достаточно мелкое покрытие границы и каждый кусок этого
покрытия «параллельно» сдвигать по нормали в одной фиксированной точке этого
куска x0.

Рассматривается также вопрос об однозначной разрешимости первой смешан-
ной задачи для уравнения, когда граничная и начальная функции принадлежат
пространствам типа Lp, p > 1.
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Начнем со следующего результата, который в случае p > 2 был установлен

в [1].

Теорема 1. Пусть p > 1 и функция u(x, t) в областиQT является решением

из W 1,0
p,loc(Q

T ) уравнения

∂u

∂t
−

n∑

i,j=1

(aijuxi)xj +

n∑

i=1

aiuxi + au = f(x, t), (1)

c© 2025 Капицына Т. В.
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где f ∈ Lp(Q
T ) и коэффициенты удовлетворяют следующему дополнительному

условию: существует такое число γ2 > 0, что для всех (x, t) ∈ QT и для всех

ξ ∈ Rn выполняется неравенство

γ2r
m(x) ≤

n∑

i,j=1

aij(x, t)ξiξj

с показателем 0 < m < 2. Если u(x, t) принадлежит классу Харди Hp, то

существуют такие функции ϕ ∈ Lp(∂Q × (0, T )) и u0 ∈ Lp(Q, r), что имеют

место равенства

lim
δ→+0

T ′∫

δ

∫

∂Q

‖u((1− δ)x, t)− ϕ(x, t)‖p dxdt = 0,

lim
δ→+0

∫

Qδ
∗

‖u(x, δ)− u0(x)‖pr(x) dxdt = 0.

Доказательство. Напомним, что рассматриваемая теорема при p > 2

сводилась к случаю f = 0 однородного уравнения. Пусть теперь u(x, t) —

обобщенное из W 1,0
p,loc(Q

T ) решение уравнения (1), принадлежащее классу H∗p ,

1 < p ≤ 2. Заметим, что при сделанных предположениях относительно коэф-

фициентов уравнения функция u(x, t) непрерывна в QT . Положим u+(x, t) =

max{u(x, t), 0} и обозначим через vδ(x, t), (x, t) ∈ Qδ
∗×(δ, T ′), δ ∈ (0, δ0], решение

в Qδ
∗× (δ, T ′) первой смешанной задачи с граничным и начальным значениями:

v|(x,t)∈Qδ
∗
×(δ,T ′) = u+|(x,t)∈Qδ

∗
×(δ,T ′); vδ|t=δ = u+|t=δ.

В силу принципа максимума vδ(x, t) ≥ u(x, t), vδ(x, t) ≥ 0 для всех (x, t) ∈
Qδ
∗ × (δ, T ′) и, следовательно, vδ(x, t) ≥ u+(x, t).

Таким образом, в каждой точке (x, t) ∈ QT ′ функция vδ(x, t) переменного

δ (δ настолько мало, что (x, t) ∈ Qδ
∗ × (δ, T ′)) монотонно убывает. Так как

‖vδ‖Lp(∂Qδ
∗
×(δ,T ′)) + ‖vδ(x, δ)‖Lp(Qδ

∗
,ρ) = ‖u+‖Lp(∂Qδ

∗
×(δ,T ′)) + ‖u+‖Lp(Qδ

∗
,ρ)

≤ ‖u‖Lp(∂Qδ
∗
×(δ,T ′)) + ‖u(x, δ)‖Lp(Qδ

∗
,ρ) ≤ const,

в силу теоремы 2 из [1] дополнительно имеем

∫

Qδ
∗

|vδ(x, T ′)|p(ρ−δ)dx+

T ′∫

0

∫

Qδ
∗

n∑

i,j=1

aijvδxi
vδxj
|vδ|p−2(ρ−δ) dxdt+

T ′∫

0

∫

Qδ
∗

|vδ|p dxdt

≤ C7

(
‖vδ‖pLp(∂Qδ

∗
×(δ,T ′))

+ ‖vδ‖pLp(Qδ
∗
,ρ)

)
≤ C8.

Используя теорему Леви, заключаем, что функция, равная vδ(x, t) при

(x, t) ∈ Qδ
∗ × (δ, T ′) и нулю при (x, t) ∈ QT ′\{Qδ

∗ × (δ, T ′)}, имеет предел при
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δ → +0 п.в. в QT ′ и в Lp(Q
T ′). Обозначим этот предел через v(x, t) = R(u),

(x, t) ∈ QT ′ . Очевидно,

T ′∫

δ

∫

Qδ
∗

n∑

i,j=1

aij(v − vδ)xi(v − vδ)xj |v − vδ|p−2ρ(x) dxdt

+

∫

Qδ
∗

|v(x, T ′)− vδ(x, T ′)|p(ρ− δ) dx+

∫

QT ′

|v − vδ|p(ρ− δ) dxdt→ 0 (2)

при δ → +0. Функция v(x, t) ∈ W 1,0
p,loc(Q

T ) является в QT обобщенным из

W 1,0
p,loc(Q

T ) решением уравнения (1) (на самом деле v(x, t) ∈W 2,1
p,loc(Q

T ) и v(x, t)

есть решение уравнения (1) п.в. в QT ). Кроме того, очевидно, что

‖v‖Lp(∂Qδ
∗
×(δ,T ′)) + ‖v(x, δ)‖Lp(Qδ

∗
,ρ)

≤ const · sup{‖u+‖Lp(∂Qδ
∗
×(δ,T ′)) + ‖u+(x, δ)‖Lp(Qδ

∗
,ρ)}.

Заметим, что

если u(x, t) ≤M в QT , то и v(x, t) ≤M в QT ,

если u(x, t) ≥M в QT , то и v(x, t) ≥M в QT ,

где M ≥ 0 — некоторая произвольная постоянная.

Лемма 1. Пусть принадлежащая классу H∗p , 1 < p ≤ 2, функция u(x, t)

является обобщенным из W 2,1
p,loc(Q

T ) решением уравнения (1). Тогда для раз-

ности u+ − v, где v = R(u) при любом q ∈ (1, p), и для любого T ′ ∈
(
T
2 , T

)

справедливо соотношение

‖u+ − v‖Lq(∂Qδ
∗
×(δ,T ′)) + ‖u+ − v‖Lq(Qδ

∗
,ρ) → 0 при δ → +0.

Доказательство. Введем обозначение

�(δ) = max
δ≤µ≤δ0

T ′∫

µ

∫

∂Qµ
∗

|v − vδ| dSdt.

Возьмем произвольные δ ∈ (0, δ0] и T ′ ∈
(
T
2 , T

)
. По определению функции

vδ(x, t) она удовлетворяет интегральному тождеству

−
∫

Qδ
∗

vδ(x, δ)η(x, δ) dx +

∫

Qδ
∗

vδ(x, T
′)η(x, T ′) dx

+

T ′∫

δ

∫

Qδ
∗

[
−vδηt +

n∑

i,j=1

aijvδxiηxj +

n∑

i=1

aivδxjη + avδη

]
dxdt = 0
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для всех η(x, t) ∈ W 1,1
p′ (Qδ

∗ × (δ, T ′)), η|∂Qδ
∗
×(δ,T ′) = 0, 1

p + 1
p′ = 1. Подставим в

это равенство вместо η(x, t) функцию ρ
(

x
1−δ

)
. В результате получим

∫

Qδ
∗

vδ(x, δ)ρ

(
x

1− δ

)
dx−

∫

Qδ
∗

vδ(x, T
′)ρ

(
x

1− δ

)
dx+

T ′∫

δ

∫

∂Qδ
∗

n∑

i,j=1

aijρxiρxi

|∇ρ| vδ dSdt

−
T ′∫

δ

∫

Qδ
∗




n∑

i,j=1

(aijρxi)xjvδ −
n∑

i=1

aivδxjρ

(
x

1− δ

)
+ avδρ

(
x

1− δ

)
 dxdt = 0.

Аналогично для функции v(x, t) имеем

∫

Qδ
∗

v(x, δ)ρ

(
x

1− δ

)
dx−

∫

Qδ
∗

v(x, T ′)ρ

(
x

1− δ

)
dx+

T ′∫

δ

∫

∂Qδ
∗

n∑

i,j=1

aijρxiρxi

|∇ρ| v dSdt

−
T ′∫

δ

∫

Qδ
∗

[
n∑

i,j=1

(aijρxi)xjv −
n∑

i=1

aivxjρ

(
x

1− δ

)
+ avρ

(
x

1− δ

)]
dxdt = 0.

Так как (v − vδ) ≥ 0, получаем

∫

Qδ
∗

(v(x, δ) − vδ(x, δ))ρ
(

x

1− δ

)
dx+

T ′∫

δ

∫

∂Qδ
∗

(v − vδ) dSdt

≤ 1

γ2γ0

T ′∫

δ

∫

Qδ
∗

[
n∑

i,j=1

(aijρxi)xj (v − vδ)−
n∑

i=1

ai(v − vδ)xiρ

(
x

1− δ

)

− a(v − vδ)ρ
(

x

1− δ

)]
dxdt−

∫

Qδ

(v(x, T ′)− vδ(x, T ′))ρ
(

x

1− δ

)
dx

≤ C9





T ′∫

δ

∫

Qδ
∗

v − vδ
ρ(x)1−λ′

dxdt+

T ′∫

δ

∫

Qδ
∗

n∑

i,j=1

aij(v − vδ)xi(v − vδ)xjρ

(
x

1− δ

)
dxdt

+

∫

Qδ
∗

|v(x, T ′)− vδ(x, T ′)|ρ
(

x

1− δ

)
dx



.

Следовательно,

�(δ) ≤ C8





T ′∫

δ

∫

Qδ
∗

v − vδ
ρ(x)1−λ′

dxdt+

∫

Qδ
∗

|v(x, T ′)− vδ(x, T ′)|ρ
(

x

1− δ

)
dx

+

T ′∫

δ

∫

Qδ
∗

n∑

i,j=1

aij(v − vδ)xi(v − vδ)xjρ

(
x

1− δ

)
dxdt



. (3)
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Оценим первый интеграл в правой части неравенства (3). Возьмем произволь-

ное δ3 ∈ (δ, δ0):

T ′∫

δ

∫

Qδ
∗

v − vδ
ρ(x)1−λ′

dxdt ≤
T ′∫

δ

∫

Q
δ3
∗

v − vδ
ρ(x)1−λ′

dxdt+ c

T ′∫

δ

δ3∫

δ

dµ

µ1−λ′

∫

∂Qµ
∗

(v − vδ) dSdµdt

≤ C10

T ′∫

δ

∫

Q
δ3
∗

(v − vδ) dxdt+ c�(δ)
1

λ′
δλ
′

3 .

Подставляя эту оценку в неравенство (3), получим

�(δ) ≤ C8c�(δ)
1

λ′
δ3

λ′ + C8C10

T ′∫

δ

∫

Q
δ3
∗

(v − vδ) dxdt + C8‖v(x, T ′)− vδ(x, T ′)‖.

Выберем δ3 настолько малым, что C8c
1
λ′ δ

λ′

3 < 1
2 . Тогда для всех δ < δ3 имеем

�(δ) ≤ C11




T ′∫

δ

∫

Q
δ3
∗

(v − vδ) dxdt+

∫

Qδ
∗

|v(x, T ′)− vδ(x, T ′)|ρ
(

x

1− δ

)
dx

+

T ′∫

δ

∫

Qδ
∗

n∑

i,j=1

aij(v − vδ)xi(v − vδ)xjρ

(
x

1− δ

)
dxdt


.

Так как

vδ|∂Qδ
∗
×(δ,T ′) = v+|∂Qδ

∗
×(δ,T ′); vδ|t=δ = v+|t=δ,

имеем

∫

Qδ
∗

(v(x, δ) − u+(x, δ))ρ

(
x

1− δ

)
dx+

T ′∫

δ

∫

∂Qδ
∗

(v − u+) dSdt

≤ C12




T ′∫

δ

∫

Qδ
∗

|v − vδ|p dxdt +

∫

Qδ
∗

|v(x, T ′)− vδ(x, T ′)|pρ
(

x

1− δ

)
dx

+

T ′∫

δ

∫

Qδ
∗

n∑

i,j=1

aij(v − vδ)xi(v − vδ)xj |v − vδ|p−2ρ

(
x

1− δ

)
dxdt

+

T ′∫

δ

∫

Qδ
∗

|v − vδ|2−pρ

(
x

1− δ

)
dxdt


 ≤ C13



∫

Qδ
∗

|v(x, T ′)− vδ(x, T ′)|ρ
(

x

1− δ

)
dx

+

T ′∫

δ

∫

Qδ
∗

n∑

i,j=1

aij(v − vδ)xi(v − vδ)xj |v − vδ|p−2ρ

(
x

1− δ

)
dxdt
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+

T ′∫

δ

∫

Qδ
∗

|v − vδ|p dxdt


. (4)

Кроме того,

T ′∫

δ

∫

Qδ
∗

|v − u+|p dxdt+

∫

Qδ
∗

|v(x, δ) − u+(x, δ)|pρ
(

x

1− δ

)
dx

≤
T ′∫

δ

∫

Qδ
∗

|v|p dxdt+

T ′∫

δ

∫

Qδ
∗

|u+|p dxdt+

∫

Qδ
∗

|v(x, δ)|pρ
(

x

1− δ

)
dx

+

∫

Qδ
∗

|u+(x, δ)|pρ
(

x

1− δ

)
dx. (5)

Поэтому для любого q ∈ (1, p)

T ′∫

δ

∫

∂Qδ
∗

|v − u+|q dxdt→ 0,

∫

Qδ
∗

|v(x, δ)− u+(x, δ)|qρ
(

x

1− δ

)
dx→ 0

при δ → +0. Лемма 1 доказана.

Из этой леммы следует, что утверждение теоремы 1 достаточно доказать

для неотрицательных решений уравнения (1).

Пусть u(x, t) ≥ 0 в QT . Возьмем произвольное N > 0 и рассмотрим функ-

цию

uN =

{
u(x, t), u < N,

N, u ≥ N.
Обозначим через wδ решение из W 1,0

2 (Qδ
∗ × (δ, T ′′)), T ′ < T ′′ < T , первой сме-

шанной задачи для уравнения (1) с условиями

wδ|∂Qδ
∗
×(δ,T ′′) = uN |∂Qδ

∗
×(δ,T ′′), wδ|t=δ = uN |t=δ.

В силу принципа максимума для уравнения (1) wδ(x, t) ≤ uN (x, t), и функция

wδ(x, t) переменного δ монотонно не возрастает при δ → +0.

Аналогично вышеизложенному получаем, что wδ → w(x, t) при δ → +0 п.в.

в QT ′′ и в L2(Q
T ′′), причем w(x, t) является решением из W 1,0

p,loc(Q
T ′′) уравнения

(1).

Так как 0 ≤ w(x, t) ≤ N , по утверждению теоремы при p = 2 функция

w(x, t) имеет предел в L2(∂Q, T
′), т. е. существует такая функция ϕN (x, t) ∈

L2(∂Q× (0, T ′)), ϕN (x, t) ∈ Lp(∂Q× (0, T ′)), что выполняется равенство

T ′∫

δ

∫

∂Q

|w((1 − δ)x, t)− ϕN (x, t)|p dSdt→ 0 при δ → +0.
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Аналогично существует такая функция uN0 (x) ∈ Lp(Q, r), что

∫

Qδ

|w(x, δ) − uN0 (x)|pρ
(

x

1− δ

)
dx→ 0 при δ → +0.

Таким образом, для любого q ∈ (1, p) в силу леммы 1

T ′∫

δ

∫

∂Q

|uN((1 − δ)x, t)− ϕN (x, t)|q dSdt→ 0 при δ → +0,

∫

Qδ
∗

|uN(x, δ)− uN0 (x)|qρ
(

x

1− δ

)
dx→ 0 при δ → +0.

Пусть N1 < N2. Тогда существует последовательность δk, δk → +0 при

k→∞, такая, что

uN1((1 − δk)x, t)→ ϕN1 при k →∞ для п.в. (x, t) ∈ ∂Q× (0, T ′),

uN2((1 − δk)x, t)→ ϕN2 при k →∞ для п.в. (x, t) ∈ ∂Q× (0, T ′).

Следовательно, ϕN2(x, t) < N1, ϕ
N2(x, t) = ϕN1(x, t) для п.в. (x, t) ∈ ∂Q×(0, T ′),

т. е. существует такая функция ϕ(x, t) ≥ 0, (x, t) ∈ ∂Q× (0, T ′), что для любого

N > 0

ϕN (x, t) = ϕN (x, t) =

{
ϕ при ϕ < N,

N при ϕ > N.

Аналогично доказывается, что существует такая функция u0(x) ≥ 0, x ∈ Q, что

для любого N > 0

uN0 (x, t) = u0N(x, t) =

{
u0 при u0 < N,

N при u0 > N.

А так как для любого N > 0

‖ϕN‖Lp(∂Q×(0,T ′)) ≤ sup
0<δ<δ0

‖u‖Lp(∂Qδ×(δ,T ′)) ≤ const,

‖u0N‖pLp(Qδ,ρ)
≤ sup

0<δ<δ0

∫

Qδ
∗

|u(x, δ)|pρ
(

x

1− δ

)
dx ≤ const,

то ϕ ∈ Lp(∂Q× (0, T ′)) и u0(x) ∈ Lp(Q, r).

Таким образом, для любых q ∈ (1, p) и N > 0

‖uN((1 − δ)x, t)− ϕN (x, t)‖pLq(∂Q×(δ,T ′)) → 0 при δ → +0.

При фиксированном q ∈ (1, p) имеем

T ′∫

δ

∫

∂Q

|u((1− δ)x, t) − ϕ(x, t)|q dSdt
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≤
∫

εN

|u((1− δ)x, t) − ϕ(x, t)|q dSdt+

∫

εδN

|u((1 − δ)x, t)− ϕN (x, t)|q dSdt

+

∫

∂Q\εN

|uN((1 − δ)x, t)− ϕN (x, t)|q dSdt,

где

εN = {(x, t) ∈ ∂Q× (δ, T ′), ϕ(x, t) > N},
εδN = {(x, t) ∈ ∂Q× (δ, T ′), u((1− δ)x, t) > N}.

Так как
∫

εN

|u((1− δ)x, t)− ϕ(x, t)|q dSdt

≤ ‖u((1− δ)x, t)− ϕN (x, t)‖q/pLp(∂Q×(δ,T ′))(mes εN )(p−q)/p

≤ const(mes εN)(p−q)/p → 0 при N →∞,

∫

εδ
N

|u((1− δ)x, t)− ϕN (x, t)|q dSdt ≤
∫

εδ
N

|u((1 − δ)x, t)|q dSdt

≤ 1

Np−q

∫

εδ
N

|u((1− δ)x, t)|p dSdt

≤ 1

Np−q
sup

0<δ<δ0

‖u‖p
Lp(∂Qδ×(δ,T ′))

→ 0 при N →∞,

то для любого ε > 0 существует N0 > 0 такое, что для всех δ ∈ (0, δ0] и N > N0

∫

εN

|u((1− δ)x, t) − ϕ(x, t)|q dSdt+

∫

εδN

|u((1 − δ)x, t)− ϕN (x, t)|q dSdt < ε

2
.

Фиксируем некотороеN > N0 и выберем δ1 ∈ (0, δ0] такое, что для всех δ ∈ (0, δ1]

T ′∫

δ

∫

∂Qδ

|uN ((1− δ)x, t) − ϕN (x, t)|q dSdt < ε

2
.

Тогда для всех δ ∈ (0, δ1]

T ′∫

δ

∫

∂Q

|u((1− δ)x, t)− ϕ(x, t)|q dSdt < ε.

Следовательно,

lim
δ→+0

T ′∫

δ

∫

∂Q

|u((1− δ)x, t) − ϕ(x, t)|q dSdt = 0.
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Аналогично доказывается, что

lim
δ→+0

∫

Qδ
∗

|u(x, δ)− u0(x)|qρ
(

x

1− δ

)
dx = 0.

Утверждение теоремы 1 в рассматриваемом случае 1 < p ≤ 2 теперь легко

вытекает из леммы 5 в [1].

Однако для звездной области можно рассмотреть принятие граничного

условия и по другому условию, а именно по приближению к боковой грани-

це по «параллельным» поверхностям аналогично тому, как рассматривалось в

работе [2].

Обозначим через δ1 столь малое число, что поверхности уровня ρ(x) = δ,

0 < δ < δ1, x ∈ Q, находятся в области Q\{Qδ(r(x) > r0)}. Кроме того, будем

предполагать число δ1 настолько малым, что подмножество Qδ = {Q ∩ {x ∈
Q, ρ(x) > δ}}, 0 < δ < δ1 < δ0, точек области Q является областью с границей

∂Qδ (класса C2) и нормаль, проведенная в любой точке x0 ∈ ∂Q, пересекает

∂Qδ ∩ {|x− x0| < r0} для всех δ ∈ (0, δ1].

Будем говорить, что функция u(x, t) принадлежит классу Харди Hp, если

функция

M̃(δ) =

T ′∫

δ

∫

∂Qδ

|u|p(ρ(x) − δ) dSdt+

∫

Qδ

|u(x, δ)|pρ(x) dx

ограничена на (0, δ0], т. е. если sup
0<µ≤δ1

M̃(µ) <∞(Hp).

Теорема 2. Для того чтобы обобщенное из W 1,0
p,loc(Q

T ) решение уравнения

(1) с f(x, t) ∈ Lp(Q
T ) принадлежало классу ХардиHp, необходимо и достаточно,

чтобы
∫

Q

|u(x, T ′)|pρ(x) dx +

T∫

0

∫

Q

n∑

i,j=1

aijuxiuxjρ(x) dxdt <∞.

Прежде чем сформулировать основную теорему этой части статьи, введем

следующую систему координат.

Пусть x0 — произвольная точка поверхности ∂Q. Проведем через точку x0

прямую, совпадающую с нормалью в этой точке к поверхности ∂Q, и обозначим

через x0
δ1

точку пересечения этой прямой с поверхностью ∂Qδ1 (ближайшую к

x0).

Введем ортогональную систему координат Oy1, y2, . . . , yn так, чтобы точка

x0
δ1

была началом координат, а внешняя нормаль к границе ∂Q в точке x0 имела

направление, совпадающее с направлением оси Oyn. Такую систему координат

будем называть местной системой координат. Координаты точки x в местной

системе координат будем обозначать через (y1, y2, . . . , yn) = (y′, yn). Координа-

ты точки x0 — это (0, 0, . . . , 0, y0
n). Функцию ρ(x) в местной системе координат

будем обозначать через ρ(y).
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Рассмотрим функцию n+ 1 переменных R(δ, y′, yn) = ρ(y)− δ.
При фиксированном δ ∈ (0, δ1] поверхность нулевого уровня R(δ, y′, yn),

находящаяся в Q, совпадает с поверхностью ∂Qδ. Так как

∂R

∂yn
(0, 0, y0

n) =
∂ρ(x0)

∂v
< 0,

по теореме о неявной функции существуют такие положительные числа r1, δ <

δ1/2, h, что при δ ∈ (0, δ1] связный кусок �δ поверхности ∂Qδ, находящейся в

пересечении

∂Qδ =
{
y : |y′| < r1, y

0
n − h < yn < y0

n + h
}
,

описывается уравнением yn = ϕ(δ, y′), где

ϕ(δ, y′) ∈ C1([0, δ1], |y′| < r1).

При этом можно считать r1 настолько малым, что гиперплоскость yn = 0 не

пересекает �δ поверхности ∂Qδ для всех δ ∈ (0, δ1/2], угол между нормалью к

∂Q в точке x0 и нормалью, проведенной в любой точке к поверхности

�0(x
0) = ∂Q ∩ {y : |y′| < r1, y

0
n − h < yn < y0

n + h},

не превышает π/8 и цилиндр Qh = {y : |y′| < r1, 0 < yn < ϕ(0, y′) + h} при

любом δ ∈ (0, δ1] не содержит точек поверхности ∂Qδ, отличных от точек �δ,

описываемой уравнением yn = ϕ(δ, y′), |y′| < r1.

Пусть 0 < δ < δ1. Положим

Qδ = {y : |y′| < r, 0 < yn < ϕ(δ, y′)}.

Построим отображение Aδ цилиндра Qδ на � = {Qh ∩Q} следующим образом:

точка x ∈ �δ с местными координатами (y′, yn) переходит в точку Aδ(x) ∈ �

c местными координатами
(
y′, yn

ϕ(δ,y′)ϕ(0, y′)
)
. При этом поверхность �δ перехо-

дит в �0(x
0). Обратное отображение A−1

δ задается аналогично. Точка x ∈ � c

местными координатами (y′, yn) переходит в точку A−1
δ ∈ � с местными коор-

динатами
(
y′, yn

ϕ(0,y′)ϕ(δ, y′)
)
.

Заметим, что в силу свойств функции ϕ(δ, y′) для любых δ ∈ (0, δ1] отобра-

жения Aδ(x) и A−1
δ (x) принадлежат C1. Отображение точек �0(x

0) на �δ будем

обозначать через xδx0
(x), a обратное к нему отображение �δ на �0(x

0) — через

x−1
δx0

(x).

Возьмем некоторое δ ∈ (0, δ1], и пусть xδ — произвольная точка поверхности

�δ. Обозначим через dSδ

dS0
(xδ) предел при ε→ 0 отношения площади поверхности

�δ ∩ {|x− xδ| < ε} к площади куска поверхности ∂Q, состоящей из точек

x = x−1
δx0

(xδ), xδ ∈ �δ ∩ {|x− xδ| < ε}.

Из свойств функции ϕ(δ, y′) вытекает существование такого γ01 > 0, что для

всех точек xδ ∈ �δ имеют место неравенства γ−1
01 ≤ dS

dS0
< γ01 и

dSδ

dS0
(xδ)→ 1, δ → +0.
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Будем говорить, что обобщенное из W 1,0
p,loc(Q

T ) решение уравнения (1) при-

нимает граничное значение

u|∂Q = ϕ, ϕ(x, t) ∈ Lp(∂Q× (0, T )), (6)

в смысле Lp, если для каждой точки x0 ∈ ∂Q существует такая поверхностная

окрестность ℧(x0) ⊂ �0(x0), что

lim
δ→+0

T∫

0

∫

℧(x0)

|u(xδx0
, t)− ϕ(x, t)|p dSdt = 0. (7)

Будем также говорить, что принадлежащая W 1,0
p,loc(Q

T ) функция u(x, t) удовле-

творяет начальному условию

u|t=0 = u0(x), u0(x) ∈ Lp(Q, r), (8)

в смысле Lp с весом r(x), если

lim
δ→+0

∫

Qδ

|u(x, δ)− u0(x)|pr(x) dx = 0. (9)

Теорема 3. При любых функциях ϕ ∈ Lp(∂Q × (0, T )), u0(x) ∈ Lp(Q, r)

и любой функции f(x, t) ∈ Lp(Q
T ) первая смешанная задача (1), (6), (8) имеет

обобщенное решение u(x, t) ∈ W 1,0
p,loc(Q

T ). Это решение единственно и для него

справедлива оценка

∫

Q

|u(x, T ′)|pr(x) dx +

T ′∫

0

∫

Q

n∑

i,j=1

aijuxiuxj |u|p−2r(x) dxdt +

∫

QT ′

|u|p dxdt

+ max
0≤δ≤δ1




T ′∫

δ

∫

∂Qδ

|u|p dSdt+

∫

Qδ

|u(x, δ)|p(ρ(x) − δ) dx




≤ C6

[
‖f‖p

Lp(QT ′)
+ ‖ϕ‖pLp(∂Q×(0,T ′)) + ‖u0‖pLp(Q,r)

]
.

Отметим, что доказательства теорем 2 и 3 практически аналогичны дока-

зательствам теорем 1 и 2 из [1], поэтому их приводить не будем.

Теорема 4. Пусть функция u(x, t) в области QT является решением из

W 1,0
p,loc(Q

T ) уравнения (1) f ∈ Lp(Q
T ) с коэффициентами, удовлетворяющими

дополнительному условию: существует такое число γ2 > 0, что для всех (x, t) ∈
QT и для всех ξ ∈ Rn выполняется неравенство

γ2r(x)
m ≤

n∑

i,j=1

aij(x, t)ξiξj
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с показателем 0 < m < 2. Если u(x, t) принадлежит классу Харди Hp, то

существуют такие функции ϕ ∈ Lp(∂Q × (0, T )) и u0 ∈ Lp(Q, r), что имеют

место равенства (7), (9).

Доказательство. Пусть u(x, t) — решение уравнения (1) из W 1,0
p,loc(Q

T ),

принадлежащее классу Hp. Тогда в силу теоремы 2 функция

n∑

i,j=1

aijuxiuxj |u|p−2ρ(x)

принадлежит L1(Q
T ). Аналогично функция |u(x, T ′)|pr(x) принадлежит L1(Q).

Следовательно, на основании теоремы 1 существуют функция ϕ(x, t) ∈ Lp(∂Q×
(0, T )) такая, что

lim
δ→0

T ′∫

δ

∫

∂Q

|u((1− δ)x, t) − ϕ(x, t)|p dsdt = 0, (10)

и функция u0(x) такая, что

lim
δ→+0

∫

Qδ
∗

|u(x, δ)− u0(x)|pρ
(

x

1− δ

)
dxdt = 0.

Покажем, что функция ϕ(x, t) является пределом в Lp в смысле равенства

(7). Возьмем произвольную точку x0 ∈ ∂Q. Построим в окрестности точки x0

местную систему координат (y′, yn). Выберем числа r0 и h0 настолько малыми,

что

U1(x0) = {y : |y′| < r0, −h0 < yn < ϕ(0, y′) + h0} ,

U2(x0) =

{
y : |y′| < 3

4
r0, −

3

4
h0 < yn < ϕ(0, y′) +

3

4
h0

}
,

U3(x0) =

{
y : |y′| < 1

2
r0, −

1

2
h0 < yn < ϕ(0, y′) +

1

2
h0

}
;

�1(x0) ∈ ∂Q ∩ U1(x0), �2(x0) ∈ ∂Q ∩ U2(x0), �3(x0) ∈ ∂Q ∩ U3(x0);

�1δ(x0) ∈ ∂Qδ ∩ U1(x0), �2δ(x0) ∈ ∂Qδ ∩ U2(x0), �3δ(x0) ∈ ∂Qδ ∩ U3(x0).

Выбрав из покрытия U3(x0), x0 ∈ ∂Q, конечное подпокрытие областиQ\Qδ1 ,

получим конечное число N1 областей B1(x1), B2(x2), . . . , BN1(xN1) (далее будем

обозначать их через B̃1, B̃2, . . . , B̃N1 соответственно) таких, что

N1⋃

i=1

B̃i = Q\Qδ1,
N1⋃

i=1

�3(x0) = ∂Q, �3δ(xi) ∈ ∂Qδ, i = 1, 2, . . . , N1.

Отметим, что из справедливости (x0, t) ∈ � (x0
i )× (0, T ) и для всех i = 1, . . . , N1

равенства (10) будет следовать, что если

�1(xi)× (0, T ) ∩ �1(xj)× (0, T ) 6= ∅,
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то ϕi(x, t) = ϕj(x, t) для всех x ∈ �1(xi)× (0, T )∩�1(xj)× (0, T ). Таким образом,

существует функция

ϕ(x, t) ∈ Lp(∂Q× (0, T )) (ϕ = ϕi на �1(xi)× (0, T )),

являющаяся пределом u(x, t) на (∂Q× (0, T )) в Lp в смысле равенства (10).

Построим функцию ξ(x) ∈ C∞(Rn) такую, что

ξ(x) = 1, x ∈ U3(xi); ξ(x) = 0, x ∈ Rn\U2(xi),

и рассмотрим функцию

v(x, t) = u(x, t)ξ(x).

Так как u(x, t) — решение из W 1,0
p,loc(Q

T ) уравнения (1), принадлежащее классу

Hp, то функция v(x, t) — решение из W 1,0
p,loc(Q

T ) с правой частью f̃(x, t), равной

f̃(x, t) = f(x, t)− 2

n∑

i,j=1

aijuxjξxi −
[

n∑

i,j=1

(aijξxi)xj −
n∑

i=1

aiξxi

]
,

также принадлежит классу Hp. (Заметим, что f̃(x, t) ∈ Lp(Q
T ).)

Из принадлежности решения u(x, t) классу Hp вытекает, что функция

ξ(x)ϕi(x, t) является пределом в Lp по звездности функции v(x, t) на ∂Q×(0, T ),

т. е.

lim
δ→+0

T ′∫

δ

∫

∂Q

|v((1− δ)x, t) − ξ(x)ϕi(x, t)|p dSdt = 0. (11)

Кроме того, из принадлежности классу Hp функции v(x, t) вытекает, что

для любого δ ∈ (0, δ1] функция

Mi(δ) =

T ′∫

δ

∫

�1(xi)

|v|p(x, t) dsdt

ограничена и, стало быть, ограничена функция

Mxi(δ) =

T ′∫

δ

∫

�1(xi)

|u|p(xδxi
(x), t) dsdt, (12)

т. е. существует такая функция ϕ̃i(x, t) ∈ Lp(�1(xi) × (0, T )) и, следовательно,

ϕ̃i(x, t) ∈ Lp(�1(xi)×(0, T ), к которой слабо в Lp сходится функция u(xδk,xi
(x), t).

Практически совершенно аналогично, как это делается в работах [3, 4], до-

казывается

Лемма 2. Пусть u0(x, t) — решение из W 1
2,loc(Q

T ) уравнения (1). Тогда

функции ϕ(x, t) и ξ(x)ϕ̃i(x, t) совпадают на �1(xi)× (0, T ), т. е.

ϕ(x, t) = ξ(x)ϕ̃i(x, t) ∀(x, t) ∈ �1(xi)× (0, T ).
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Обозначим через u1(x, t) обобщенное из W 1,0
2,loc(Q

T ) решение уравнения (1),

(6), (8). Функция u0(x, t) = u(x, t) − u1(x, t) является решением однородно-

го уравнения L(u) = 0, удовлетворяющим нулевым граничному и начальному

условиям. При этом

lim
δ→+0

T ′∫

δ

∫

∂Q

|u0((1 − δ)x, t)|p dsdt = 0, (13)

lim
δ→+0

∫

�0δ

|u0(x, δ)|pρ
(

x

1− δ

)
dx = 0; (14)

1

p

T ′∫

δ

∫

∂Qδ

n∑

i,j=1

(
aij

ρxiρxj

|∇ρ|

)
|u0|p dsdt+

1

p

∫

Qδ

|u0(x, δ)|p(ρ(x) − δ) dx

=
1

p

∫

Qδ

|u0(x, T
′)|p(ρ(x) − δ) dx+

T ′∫

δ

∫

Qδ

a|u0|p(ρ(x) − δ) dxdt

+ (p− 1)

T ′∫

δ

∫

Qδ

n∑

i,j=1

aiju0xi
u0xj
|u0|p−2(ρ(x)− δ) dxdt

− 1

p

T ′∫

δ

∫

Qδ

n∑

i=1

(ai(ρ(x) − δ)xi |u0|p dxdt −
1

p

T ′∫

δ

∫

Qδ

n∑

i,j=1

(aijρxi)xj |u0|p dxdt. (15)

Аналогично

1

p

T ′∫

δ

∫

∂Qδ
∗

n∑

i,j=1

(
aij

ρxiρxj

|∇ρ|

)
|u0|p dsdt+

1

p

∫

Qδ
∗

|u0(x, δ)|pρ
(

x

1− δ

)
dx

=
1

p

∫

Qδ
∗

|u0(x, T
′)|pρ

(
x

1− δ

)
dx+

T ′∫

δ

∫

Qδ
∗

a|u0|pρ
(

x

1− δ

)
dxdt

+ (p− 1)

T ′∫

δ

∫

Qδ
∗

n∑

i,j=1

aiju0xi
u0xj
|u0|p−2ρ

(
x

1− δ

)
dxdt

− 1

p

T ′∫

δ

∫

Qδ
∗

n∑

i=1

(
aiρ

(
x

1− δ

))

xi

|u0|p dxdt−
1

p

T ′∫

δ

∫

Qδ
∗

n∑

i,j=1

(aijρxi)xj |u0|p dxdt. (16)

Перейдя в (15) и (16) к пределу при δ → +0, получим в силу равенств (13)

и (14):

lim
δ→+0

T ′∫

δ

∫

∂Qδ

n∑

i,j=1

(
aij

ρxiρxj

|∇ρ|

)
|u0|p dsdt = 0
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и

lim
δ→+0

∫

Qδ

|u0(x, δ)|p(ρ(x)− δ) dx = 0.

Теорема 4 доказана.
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Аннотация. Исследуется разрешимость нелокальных краевых задач с обобщен-
ным условием Самарского — Ионкина для эллиптических дифференциальных урав-
нений второго порядка c разрывным коэффициентом в старшей части. Доказыва-
ются теоремы существования и единственности регулярных решений изучаемых
задач, т. е. решений, имеющих все обобщенные по С. Л. Соболеву производные,
входящие в соответствующее уравнение.
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Ключевые слова: эллиптические уравнения, разрывный коэффициент, нелокаль-
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Введение

Работа посвящена исследованию разрешимости в пространствах С. Л. Со-

болева нелокальных краевых задач для эллиптических уравнений второго по-

рядка c разрывным коэффициентом в старшей части.

Краевые (локальные) задачи для эллиптических уравнений c разрывны-

ми коэффициентами можно трактовать как обобщенные задачи дифракции.

Разрешимость подобных задач как в пространствах гладких функций, так и

в пространствах суммируемых функций представляется хорошо изученной (см.

[1–13]).

Существенно менее исследованными задачами для эллиптических уравне-

ний c разрывными коэффициентами представляются нелокальные краевые за-

дачи. Именно такие задачи и будут рассматриваться в данной работе.

Изучаемые ниже нелокальные задачи можно назвать нелокальными зада-

чами с обобщенными условиями Самарского — Ионкина. Исследование разре-

шимости подобных задач началось с работы Н. И. Ионкина [14], опубликованной

Исследование выполнено в рамках государственного задания Министерства науки и выс-
шего образования РФ, тема «Аналитическое и численное исследование обратных задач об
определении параметров источников атмосферного или водного загрязнения и(или) парамет-
ров среды» (код проекта FENG-2023-0004).
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в 1977 г. В дальнейшем изучением разрешимости задачи Ионкина и близких

к ней нелокальных задач занимались многие математики (см. [15–20]). Как

наиболее близкую к настоящей работе по постановке и применяемой технике

выделим работу [19], в которой изучалась обобщенная задача Ионкина (зада-

ча Самарского — Ионкина) для эллиптических уравнений второго порядка c

непрерывными коэффициентами.

Заметим также следующее. Наличие в дифференциальном уравнении сла-

гаемых с разрывными коэффициентами требует, как правило, присоединения к

краевым условиям некоторых дополнительных условий — условий сопряжения.

Уточним, что целью настоящей работы будет определение условий, при вы-

полнении которых изучаемые задачи будут иметь все обобщенные по С. Л. Со-

болеву производные, входящие в соответствующее уравнение.

1. Постановка задач

Пусть � — интервал (0, 1) оси Ox, Q, Q1, Q2 — прямоугольники �× (−a, a),
�× (−a, 0), �× (0, a) соответственно (a > 0 — заданное число), c(x, y), f(x, y),

h(y) и γ(y) суть заданные функции, определенные при (x, y) ∈ Q, y ∈ [−a, a],
α, β, αi, βi, i = 1, 2, — заданные действительные числа. Всюду ниже будем

считать, что функция h(y) непрерывна на промежутках [−a, 0) и (0, a] и имеет

конечное значение h(−0) и h(+0). Далее, пусть L — дифференциальный опера-

тор, действие которого на заданной функции v(x, y) определяется равенством

Lv = vxx +
∂

∂y
(h(y)vy) + c(x, y)v.

Нелокальная задача I. Найти функцию u(x, y), являющуюся в прямо-

угольниках Q1 и Q2 решением уравнения

Lu = f(x, y) (1)

и такую, что для нее выполняются краевые условия

u(x, a) = u(x,−a) = 0, x ∈ �, (2)

u(0, y) = γ(y)u(1, y), y ∈ (−a, 0) ∪ (0, a), (3)

ux(1, y) = 0, y ∈ (−a, 0) ∪ (0, a), (4)

. а также условия сопряжения

u(x,−0) = αu(x,+0), x ∈ �, (5)

uy(x,+0) = βuy(x,−0), x ∈ �. (6)

Нелокальная задача II. Найти функцию u(x, y), являющуюся в прямо-

угольниках Q1 и Q2 решением уравнения (1) и такую, что для нее выполняются

условия сопряжения (5) и (6), а также краевое условие (2) и краевые условия

ux(0, y) = γ(y)ux(1, y), y ∈ (−a, 0) ∪ (0, a), (7)

u(1, y) = 0, y ∈ (−a, 0) ∪ (0, a). (8)
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Нелокальная задача III. Найти функцию u(x, y), являющуюся в прямо-

угольниках Q1 и Q2 решением уравнения (1) и такую, что для нее выполняются

краевые условия (2)–(4), а также условия сопряжения

uy(x,−0) = α1u(x,−0) + α2u(x,+0), (9)

uy(x,+0) = β1u(x,−0) + β2u(x,+0). (10)

Нелокальная задача IV. Найти функцию u(x, y), являющуюся в прямо-

угольниках Q1 и Q2 решением уравнения (1) и такую, что для нее выполняются

краевые условия (2), (7) и (8), а также условия сопряжения (9) и (10)

Нелокальные задачи I и II в случае γ(y) ≡ 0 являются обычными (локаль-

ными) краевыми задачами для эллиптических уравнений с дополнительными

условиями сопряжения на линии y = 0. Если в этих задачах γ(y) ≡ 1, то

условия (3) и (4), (7) и (8) означают, что нелокальные задачи I и II являют-

ся нелокальными задачами Н. И. Ионкина [14] с дополнительными условиями

сопряжения. В более общем случае произвольной функции γ(y) нелокальные

задачи I и II являются задачами с нелокальными условиями, предложенными

в работе А. А. Самарского [20] и с дополнительными условиями сопряжения.

Обозначим через V множество функций v(x, y), определенных в прямо-

угольниках Q1 и Q2 и таких, что v(x, y) ∈W 2
2 (Q1), v(x, y) ∈W 2

2 (Q2). Очевидно,

что это множество будет банаховым пространством с нормой

‖v‖V =
(
‖v‖2W 2

2 (Q1) + ‖v‖2W 2
2 (Q2)

) 1
2 .

Именно это пространство и будет основным в работе, т. е. будут доказаны

теоремы существования и единственности решений нелокальных задач I и II,

принадлежащих пространству V .

Заметим, что вследствие теорем вложения [21] (см. также [9, 22]) для функ-

ции v(x, y) из пространства V условия (5) и (6) корректно определены.

2. Разрешимость нелокальных задачи I и II

Существование решений нелокальной задачи I будет установлено с помо-

щью метода регуляризации и метода продолжения по параметру. Поскольку

для применения метода регуляризации (точнее, для осуществления процедуры

предельного перехода) и метода продолжения по параметру необходимы апри-

орные оценки, установим вначале их наличие.

Определим функции γ+(y) и γ−(y):

γ+(y) = max{1− γ2(y), 0}, γ−(y) = 1− γ2(y)− γ+(y) (y ∈ [−a, a]).

Положим γ0 = max
[−a,a]

|γ−(y)|,

h1(y) =

{
h(y) при y ∈ [−a, 0),

h(−0) при y = 0,
h2(y) =

{
h(y) при y ∈ (0, a],

h(+0) при y = 0.
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Лемма 1. Пусть выполняются условия

h1(y) ∈ C1([−a, 0]), h2(y) ∈ C1([0, a]), c(x, y) ∈ C(Q);

h1(y) ≥ h1 > 0 при y ∈ [−a, 0], h2(y) ≥ h2 > 0 при y ∈ [0, a]; γ(y) ∈ C([−a, a]);
c(x, y) ≤ −c0 < 0 при (x, y) ∈ Q;

4c0 − 4γ0 − γ2
0 > 0, αβ > 0.

Тогда для решений u(x, y) из пространства V нелокальной задачи I справедлива

оценка

∫

Q1

x
(
u2
x +u2

y +u2
)
dxdy+

∫

Q2

x
(
u2
x +u2

y +u2
)
dxdy+

0∫

−a

u2(1, y) dy+

a∫

0

u2(1, y) dy

≤M1

(∫

Q1

f2 dxdy +

∫

Q2

f2 dxdy

)
(11)

с постоянной M1, определяющейся лишь функциями h(y), c(x, y) и γ(y).

Доказательство. Рассмотрим равенство

−
∫

Q1

Lu · xu dxdy −A
∫

Q2

Lu · xu dxdy = −
∫

Q1

xfu dxdy −A
∫

Q2

xfu dxdy.

Интегрируя по частям, полагая A =
αh1(0)
βh2(0)

и используя условия леммы, нетруд-

но от данного равенства перейти к неравенству∫

Q1

(
xu2

x+c0xu
2
)
dxdy+A

∫

Q2

(
xu2

x+c0xu
2
)
dxdy+h1

∫

Q1

xu2
y dxdy+Ah2

∫

Q2

xu2
y dxdy

≤ γ0

2




0∫

−a

u2(1, y) dy +A

a∫

0

u2(1, y) dy


+

∣∣∣∣
∫

Q1

xfu dxdy

∣∣∣∣+A

∣∣∣∣
∫

Q2

xfu dxdy)

∣∣∣∣. (12)

Используя неравенство

∫

E

u2(1, y)dy ≤ δ20
1∫

0

∫

E

xu2
x dxdy +

(
2 +

1

δ20

) 1∫

0

∫

E

xu2 dxdy, (13)

в котором δ0 — произвольное положительное число, E — либо отрезок [−a, 0],

либо отрезок [0, a] (см., например, [19, 23]), далее используя неравенство Юнга,

нетрудно от (12) перейти к оценке
(

1− γ0δ
2
0

2

)∫

Q1

xu2
x dxdy +

[
c0 −

(
2 +

1

δ20

)
γ0

2
− δ21

2

] ∫

Q1

xu2 dxdy + h1

∫

Q1

xu2
y dxdy

+A

(
1−γ0δ

2
0

2

)∫

Q2

xu2
x dxdy+A

[
c0−

(
2+

1

δ20

)
γ0

2
− δ

2
1

2

] ∫

Q2

xu2 dxdy+Ah2

∫

Q2

xu2
y dxdy

≤ 1

2δ21

∫

Q1

f2 dxdy +
A

2δ21

∫

Q2

f2 dxdy, (14)
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в которой δ1 — произвольное положительное число.

Неравенство 4c0 − 4γ0 − γ2
0 > 0 из условия леммы означает, что можно

подобрать δ0 так, чтобы выполнялись неравенства

1− γ0δ
2
0

2
> 0, c0 −

(
2 +

1

δ20

)
γ0

2
> 0.

Фиксируя δ0 и далее подбирая число δ1 малым, получим, что следствием (14)

будет неравенство

∫

Q1

x
(
u2
x + u2

y + u2
)
dxdy +

∫

Q2

x
(
u2
x + u2

y + u2
)
dxdy ≤M

(∫

Q1

f2 dxdy+

∫

Q2

f2 dxdy

)
,

в котором M — число, определяющееся функциями h(y), c(x, y) и γ(y), а так-

же числами α и β. Из этого неравенства и неравенств (13) следует требуемая

оценка.

Лемма доказана.

Лемма 2. Пусть выполняются все условия леммы 1 и дополнительно пусть

выполняется включение

γ(y) ∈ C1([−a, a]).

Тогда для решений u(x, y) из пространства V нелокальной задачи I справедлива

оценка

∫

Q1

x
(
u2
xy + u2

yy

)
dxdy +

∫

Q2

x
(
u2
xy + u2

yy

)
dxdy +

0∫

−a

u2
y(1, y)dy +

a∫

0

u2
y(1, y) dy

≤M2

(∫

Q1

f2 dxdy +

∫

Q2

f2 dxdy

)
(15)

с постояннойM2, определяющейся лишь функциями h(y), c(x, y) и γ(y), а также

числами α и β.

Доказательство. Рассмотрим равенство

∫

Q1

Lu · xuyy dxdy +A

∫

Q2

Lu · xuyy dxdy =

∫

Q1

xfuyy dxdy +A

∫

Q2

xfuyy dxdy.

Интегрируя по частям, вновь полагая A = α
β , используя условия леммы, по-

вторяя выкладки, с помощью которых была доказана оценка (11), и, наконец,

используя саму оценку (11), получим требуемое.

Лемма доказана.

В следующей лемме будет получена еще одна априорная оценка для реше-

ний u(x, y), но при выполнении некоторых дополнительных граничных условий.

Обоснование возможности подобных действий будет дано ниже.
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Лемма 3. Пусть выполняются все условия леммы 2 и дополнительно пусть

выполняются условия

h1(y) ∈ C2([−a, 0)], h2(y) ∈ C2([0, a)],

γ(y) ∈ C2([−a, a]), cy(x, y) ∈ C(Q), f(x,−a) = f(x, a) = 0 при x ∈ �.
Тогда для решений u(x, y) нелокальной задачи I таких, что

u(x, y) ∈ V, uyyyy(x, y) ∈ L2(Q1), uyyyy(x, y) ∈ L2(Q2),

uyy(x,−a) = uyy(x, a) = 0 при x ∈ �,
uyy(x,−0) = αuyy(x,+0), uyyy(x,+0) = βuyyy(x,−0) при x ∈ �,

справедлива оценка

∫

Q1

x
(
u2
xyy+u2

yyy

)
dxdy+

∫

Q2

x
(
u2
xyy+u2

yyy

)
dxdy+

0∫

−a

u2
xyy(1, y)dy+

a∫

0

u2
xyy(1, y) dy

≤M3

(∫

Q1

(
f2 + f2

y

)
dxdy +

∫

Q2

(
f2 + f2

y

)
dxdy

)
(16)

с постояннойM3, определяющейся лишь функциями h(y), c(x, y) и γ(y), а также

числами α и β.

Доказательство. Рассмотрим равенство

−
∫

Q1

xLu · uyyyy dxdy −A
∫

Q2

xLu · uyyyy dxdy

= −
∫

Q1

xfuyyyy dxdy −A
∫

Q2

xfuyyyy dxdy. (17)

Повторяя в левой части этого равенства выкладки, которые привели к оценке

(11), в правой части интегрируя один раз по переменной y и дополнительно

используя оценки (11), (15), получим требуемое.

Лемма доказана.

Полученных оценок достаточно для доказательства разрешимости нело-

кальной задачи I.

Теорема 1. Пусть выполняются условия

h1(y) ∈ C2([−a, 0]), h2(y) ∈ C2([0, a]), c(x, y) ∈ C(Q), cy(x, y) ∈ C(Q);

h1(y) ≥ h1 > 0 при y ∈ [−a, 0], h2(y) ≥ h2 > 0 при y ∈ [0, a];

γ(y) ∈ C2([−a, a]);
c(x, y) ≤ −c0 < 0 при (x, y) ∈ Q;

4c0 − 4γ0 − γ2
0 > 0, αβ > 0.
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Тогда для любой функции f(x, y) такой, что f(x, y) ∈ L2(Qi), fy(x, y) ∈ L2(Qi),

i = 1, 2, f(x,−a) = f(x, a) = 0 при x ∈ �, нелокальная задача I имеет решение

u(x, y), принадлежащее пространству V , причем ровно одно.

Доказательство. Воспользуемся методом регуляризации.

Пусть ε— положительное число. Рассмотрим краевую задачу: найти функ-

цию u(x, y), являющуюся в прямоугольниках Q1 и Q2 решением уравнения

Lu− εuyyyy = f(x, y) (18)

и такую, что для нее выполняются условия (2)–(4), а также условия

uyy(x,−a) = uyy(x, a) = 0, uyy(x,−0) = αuyy(x,+0),

uyyy(x,+0) = βuyyy(x,−0) x ∈ �. (19)

Данная краевая задача при фиксированном ε и при принадлежности функ-

ции f(x, y) пространствам L2(Qi), i = 1, 2, имеет регулярное решение, что дока-

зывается с помощью метода продолжения по параметру, детали см. в [19]. Да-

лее, для семейства {uε(x, y)} имеют место равномерные по ε априорная оценка

(16) и равномерная по ε оценка

ε

∫

Q1

xu2
yyyy dxdy + ε

∫

Q2

xu2
yyyy dxdy

≤M3

(∫

Q1

(
f2 + f2

y

)
dxdy +

∫

Q2

(
f2 + f2

y

)
dxdy

)
. (20)

Рассмотрим равенство
∫

Q1

Lu · uxx dxdy − ε
∫

Q1

uyyyyuxx dxdy +A

∫

Q2

Lu · uxx dxdy

− εA
∫

Q2

uyyyyuxx dxdy =

∫

Q1

fuxx dxdy +A

∫

Q2

fuxx dxdy. (21)

Используя дополнительные условия сопряжения, а также условие uyy(x,−a) =

uyy(x, a) = 0 при x ∈ �, получим, что следствием (21) будет равенство
∫

Q1

u2
xx dxdy +

∫

Q2

u2
xx dxdy +

∫

Q1

h(y)u2
xy dxdy +

∫

Q2

h(y)u2
xy dxdy

+

0∫

−a

h(y)uy(0, y)uxy(0, y) dy +

a∫

0

h(y)uy(0, y)uxy(0, y) dy

+ ε

∫

Q1

u2
xyy dxdy +Aε

∫

Q2

u2
xyy dxdy

+

∫

Q1

cuuxx dxdy +A

∫

Q2

cuuxx dxdy =

∫

Q1

fuxx dxdy +A

∫

Q2

fuxx dxdy. (22)



Исследование корректности 39

Пятое и шестое слагаемые в левой части этого равенства нетрудно оценить

сверху с помощью оценки (15) и теорем вложения (см. [9, 21, 22]). В результате

придем к оценке∫

Q1

(
u2
xx + u2

xy

)
dxdy +

∫

Q2

(
u2
xx + u2

xy

)
dxdy + ε

∫

Q1

u2
xyy dxdy + ε

∫

Q2

u2
xyy dxdy

≤M4

(∫

Q1

(
f2 + f2

y

)
dxdy +

∫

Q2

(
f2 + f2

y

)
dxdy

)
. (23)

На следующем шаге рассмотрим равенство

−
∫

Q1

Lu · uyyyy dxdy + ε

∫

Q1

u2
yyyy dxdy −A

∫

Q2

Lu · uyyyy dxdy +Aε

∫

Q2

u2
yyyy dxdy

= −
∫

Q1

fuyyyy dxdy −A
∫

Q2

fuyyyy dxdy.

Повторяя рассуждения, которые привели к оценке (23), получим, что для ре-

шений u(x, y) краевой задачи (18), (2)–(4), (19) будет выполняться оценка∫

Q1

(
u2
xx + u2

xy + εu2
yyyy

)
dxdy +

∫

Q2

(
u2
xx + u2

xy + εu2
yyyy

)
dxdy

≤M5

(∫

Q1

(
f2 + f2

y

)
dxdy +

∫

Q2

(
f2 + f2

y

)
dxdy

)
. (24)

Последняя оценка∫

Q1

u2
yy dxdy +

∫

Q2

u2
yy dxdy ≤M6

(∫

Q1

(
f2 + f2

y

)
dxdy +

∫

Q2

(
f2 + f2

y

)
dxdy

)
(25)

очевидным образом вытекает из самого уравнения (18) и оценки (23).

Оценок (24) и (25) вполне достаточно для доказательства существования

решения нелокальной задачи I. Действительно, из этих оценок и свойства ре-

флексивности гильбертова пространства вытекает существование последова-

тельностей {εm}∞m=1, {um(x, y)}∞m=1, а также функции u(x, y) таких, что при

m→∞ имеют место сходимости

um(x, y)→ u(x, y) слабо в V,

εmumyyyy(x, y)→ 0 слабо в L2(Q1) и в L2(Q2).

Предельная функция u(x, y) принадлежит пространству V и будет искомым

решением нелокальной задачи I.

Единственность решений нелокальной задачи I в пространстве V очевид-

ным образом вытекает из оценки (11).

Теорема доказана.

Разрешимость нелокальной задачи II, как и в [19], будет доказана с помо-

щью перехода от уравнения (1) к продифференцированному по переменной x в

прямоугольниках Q1 и Q2 уравнению.
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Теорема 2. Пусть выполняются условия

h1(y) ∈ C2([−a, 0]), h2(y) ∈ C2([0, a]), c(x, y) ∈ C1(Q), cxx(x, y) ∈ C(Q);

h1(y) ≥ h1 > 0 при y ∈ [−a, 0], h2(y) ≥ h2 > 0 при y ∈ [0, a];

γ(y) ∈ C2([−a, a]);
c(x, y) ≤ −c0 < 0, (xcx(x, y))x ≥ 0 при (x, y) ∈ Q;

4c0 − 4γ0 − γ2
0 > 0, αβ > 0.

Тогда для любой функции f(x, y) такой, что f(x, y) ∈ W 1
2 (Qi), fxy(x, y) ∈

L2(Qi), i = 1, 2, f(x,−a) = f(x, a) = 0 при x ∈ �, нелокальная задача II имеет

решение u(x, y) такое, что u(x, y) ∈ V , ux(x, y) ∈ V , причем ровно одно.

Доказательство. Рассмотрим следующую задачу: найти функцию v(x, y),

являющуюся в прямоугольниках Q1 и Q2 решением уравнения

vxx +
∂

∂x
(h(y)vy) + c(x, y)v − cx(x, y)

1∫

x

v(ξ, y)dξ = fx(x, y) (26)

и такую, что для нее выполняются условия (2)–(6). Данная задача отличается

от нелокальной задачи I лишь последним слагаемым, ее разрешимость в про-

странстве V очевидна (поскольку для регулярных решений v(x, y) задачи (26),

(2)–(6) имеют место оценки (11), (15) и (16)). Определим функцию u(x, y):

u(x, y) = vx(x, y), (x, y) ∈ Q1 ∪Q2.

Эта функция и будет искомым решением нелокальной задачи II.

Теорема доказана.

3. Разрешимость нелокальных задач III и IV

Доказательство разрешимости нелокальных задач III и IV, как и доказа-

тельство разрешимости нелокальных задач I и II, основано на априорных оцен-

ках и методе регуляризации. Непосредственная техника доказательств вполне

аналогична технике, использованной при доказательстве теорем 1 и 2, поэтому,

не вдаваясь в излишние подробности, приведем лишь окончательные результа-

ты.

Определим квадратичную форму

F (ξ, η) = −α1h1(0)ξ2 + [β1h2(0)− α2h1(0)]ξη + β2h2(0)η2.

Теорема 3. Пусть выполняются условия

h1(y) ∈ C1([−a, 0]), h2(y) ∈ C1([0, a]), c(x, y) ∈ C(Q), cy(x, y) ∈ C(Q);

h1(y) ≥ h1 > 0 при y ∈ [−a, 0], h2(y) ≥ h2 > 0 при y ∈ [0, a];

γ(y) ∈ C2([−a, a]);
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c(x, y) ≤ −c0 < 0 при (x, y) ∈ Q;

4c0 − 4γ0 − γ2
0 > 0;

α1 ≤ 0, β2 ≥ 0, F (ξ, η) ≥ 0 при (ξ, η) ∈ R2.

Тогда для любой функции f(x, y) такой, что f(x, y) ∈ L2(Qi), fy(x, y) ∈ L2(Qi),

i = 1, 2, f(x,−a) = f(x, a) = 0 при x ∈ �, нелокальная задача III имеет решение

u(x, y), принадлежащее пространству V , причем ровно одно.

Доказательство. Как отмечено выше, вновь воспользуемся методом ре-

гуляризации.

Пусть ε— положительное число. Рассмотрим краевую задачу: найти функ-

цию u(x, y), являющуюся в прямоугольниках Q1 и Q2 решением уравнения (18)

и такую, что для нее выполняются условия (2)–(4), а также условия

uyy(x,−a) = uyy(x, a) = 0, x ∈ �, (27)

−εuyy(x,−0) + uy(x,−0) = α1u(x,−0) + α2u(x,+0), x ∈ �, (28)

εuyy(x,+0) + uy(x,+0) = β1u(x,−0) + β2u(x,+0), x ∈ �. (29)

Данная краевая задача разрешима в классе регулярных решений, что нетруд-

но установить с помощью метода продолжения по параметру и априорных оце-

нок. Собственно априорные оценки легко выводятся прежде всего с помощью

анализа равенств

−
∫

Q1

(Lu−εuyyyy)xu dxdy−
∫

Q2

(Lu−εuyyyy)xu dxdy = −
∫

Q1

fxu dxdy−
∫

Q2

fxu dxdy,

∫
Q1

(Lu− εuyyyy)xuyy dxdy +
∫
Q2

(Lu− εuyyyy)xuyy dxdy

=

∫

Q1

fxuyy dxdy +

∫

Q2

fxuyy dxdy,

∫

Q1

(Lu− εuyyyy)xuyyyy dxdy +

∫

Q2

(Lu− εuyyyy)xuyyyy dxdy

= −
∫

Q1

fxuyyyy dxdy −
∫

Q2

fxuyyyy dxdy.

Эти равенства и условия теоремы дадут оценки (11), (15) и (16). Дальней-

шие априорные оценки выводятся с помощью стандартных для эллиптических

уравнений рассуждений и выкладок (см. доказательство оценок (24) и (25)).

Полученные априорные оценки позволят вновь с помощью свойства ре-

флексивности гильбертова пространства построить последовательность реше-

ний задачи (18), (2)–(4), (27)–(29), сходящуюся к искомому решению нелокаль-

ной задачи III.

Единственность в пространстве V решений нелокальной задачи III очевид-

на.

Теорема доказана.
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Теорема 4. Пусть выполняются условия

h1(y) ∈ C2([−a, 0]), h2(y) ∈ C2([0, a]), c(x, y) ∈ C1(Q), cxx(x, y) ∈ C(Q);

h1(y) ≥ h1 > 0 при y ∈ [−a, 0], h2(y) ≥ h2 > 0 при y ∈ [0, a];

γ(y) ∈ C2([−a, a]);

c(x, y) ≤ −c0 < 0, (xcx(x, y))x ≥ 0 при (x, y) ∈ Q;

4c0 − 4γ0 − γ2
0 > 0;

α1 ≤ 0, β2 ≥ 0, F (ξ, η) ≥ 0 при (ξ, η) ∈ R2.

Тогда для любой функции f(x, y) такой, что f(x, y) ∈ W 1
2 (Qi), fxy(x, y) ∈

L2(Qi), i = 1, 2, f(x,−a) = f(x, a) = 0 при x ∈ �, нелокальная задача IV

имеет решение u(x, y) такое, что u(x, y) ∈ V , ux(x, y) ∈ V , причем ровно одно.

Доказательство этой теоремы, как и доказательство теоремы 2, основано

на переходе к продифференцированному по x уравнению (1) и использовании

теоремы 3.

4. Заключение

В работе получены достаточные условия разрешимости — существования

и единственности — в пространствах Соболева нелокальных задач с обобщен-

ным условием Самарского — Ионкина для эллиптических уравнений второго

порядка с разрывным коэффициентом. Технически доказательства основаны

на методе регуляризации и априорных оценках.
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ЛИНЕЙНЫЕ ЗАДАЧИ ИДЕНТИФИКАЦИИ ДЛЯ

СИНГУЛЯРНЫХ ИНТЕГРО–ДИФФЕРЕНЦИАЛЬНЫХ

УРАВНЕНИЙ ТИПА ГЕРАСИМОВА

В. Е. Федоров, Д. В. Мелехина

Аннотация. Исследованы вопросы однозначной разрешимости линейных обрат-
ных коэффициентных задач для эволюционных интегро-дифференциальных урав-
нений типа Герасимова с сингулярным интегральным ядром в банаховых простран-
ствах. Рассмотрены случаи ограниченного и секториального операторов при иско-
мой функции в уравнении. В каждом из случаев получены критерии корректности
для линейной обратной задачи с не зависящим от времени неизвестным коэффи-
циентом, а также достаточные условия разрешимости и оценки корректности для
линейной задачи идентификации с зависящим от времени неизвестным коэффи-
циентом. Полученные абстрактные результаты проиллюстрированы на примере
класса обратных задач для уравнений с частными производными.
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гулярное ядро, обратная коэффициентная задача, задача идентификации, сектори-
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Обратные задачи для дифференциальных уравнений с неизвестными коэф-

фициентами являются объектом пристального внимания исследователей

[1–4], поскольку представляют интерес как с теоретической точки зрения, так

и в плане их использования в прикладных задачах. В последние годы активно

исследуются обратные коэффициентные задачи, называемые также задачами

идентификации, для уравнений с различными дробными производными [5–11].

Класс интегро-дифференциальных эволюционных уравнений включает в

себя многие уравнения с дробными производными. Вопросы однозначной раз-

решимости начальных, начально-краевых задач для таких уравнений исследо-

ваны в работах [12–17]. При этом можно выделить два различных по свой-

ствам класса интегро-дифференциальных операторов: с сингулярным ядром

интегрального оператора [14–16] и с регулярным ядром [12, 13, 17]. Каждый

из этих классов, в свою очередь, можно разбить на два: операторы типа Ри-

мана — Лиувилля, когда сначала действует интегральный оператор, а затем

дифференциальный, и операторы типа Герасимова, когда действие интеграль-

ного оператора следует за действием дифференциального оператора. Эти же

Исследование выполнено за счет гранта Российского научного фонда и Правительства
Челябинской области № 24–21–20015, https://rscf.ru/project/24-21-20015/.
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термины будем использовать для обозначения уравнений с соответствующими

интегро-дифференциальными операторами.

В данной работе исследуются вопросы однозначной разрешимости линей-

ных обратных задач (или задач идентификации) для сингулярных интегро-диф-

ференциальных уравнений типа Герасимова в банаховых пространствах. При

этом используются полученные ранее результаты об однозначной разрешимости

задачи Коши для таких уравнений в случае ограниченного оператора при иско-

мой функции [14] и в случае секториального оператора, т. е. оператора, порож-

дающего аналитическое разрешающее семейство операторов соответствующего

линейного однородного уравнения [16]. Для задач идентификации с постоян-

ным по времени неизвестным элементом получены критерии корректности, а

для задач с переменным элементом получены достаточные условия однозначной

разрешимости. Абстрактные результаты использованы при исследовании одно-

го класса обратных задач для интегро-дифференциальных уравнений в частных

производных.

1. Задача Коши для интегро-дифференциального

уравнения с ограниченным оператором

Рассмотрим банахово пространство Z . Обозначим через L (Z ) банахову

алгебру всех линейных ограниченных операторов в Z , R+ = {a ∈ R : a >

0},K ∈ L1,loc(R+; L (Z )). Определим оператор свертки

(JKz)(t) :=

t∫

0

K(t− s)z(s) ds

и интегро-дифференциальный оператор типа Герасимова

(DK,mz)(t) := (JKDmz)(t) :=

t∫

0

K(t− s)z(m)(s) ds,

где Dm — производная целого порядка m ∈ N.

При K(t) = tm−α−1

� (m−α)I интегро-дифференциальный оператор типа Герасимо-

ва является производной Герасимова — Капуто порядка α ∈ (m− 1,m], m ∈ N.

При A ∈ L (Z ), f ∈ C([0, T ]; Z ) для уравнения

(DK,mz)(t) = Az(t) + f(t), t ∈ [0, T ], (1)

рассмотрим задачу Коши

z(k)(0) = zk, k = 0, 1, . . . ,m− 1. (2)

Решением задачи (1), (2) является функция z ∈ ACm([0, T ]; Z ) ∩Cm((0, T ]; Z )

такая, что Dmz ∈ L1(0, T ; Z ), выполняются условия (2) и равенство (1).

Здесь и далее ACm([0, T ]; Z ) := {v ∈ Cm−1([0, T ]; Z ) : Dm−1v абсолютно

непрерывна на [0, T ]}.
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Для функции h : R+ → Z через ĥ обозначим преобразование Лапласа.

Сформулируем следующее условие.

(K) Пусть при некотором R0 > 0 существует однозначная аналитическая

функция K̂ : �R0 := {µ ∈ C : | argµ| < π, |µ| ≥ R0} → L (Z ) —

преобразование Лапласа функции K ∈ L1,loc(R+; L (Z )). При этом

для любого λ ∈ �R0 существует обратный оператор K̂(λ)−1 ∈ L (Z ) и

выполняется условие

∃c > 0 ∃χ > −1 ∀λ ∈ �R0 ‖K̂(λ)‖L (Z ) ≥ c|λ|χ.

Далее используются обозначения

f ∗ g :=

t∫

0

f(t− s)g(s) ds, gα(t) :=
tα−1

� (α)
, α > 0.

Теорема 1 [14]. Пусть m ∈ N, K ∈ L1,loc(R+; L (Z )) удовлетворяет усло-

вию (K), A ∈ L (Z ), f ∈ C([0, T ]; Z ), zk ∈ Z , k = 0, 1, . . . ,m − 1. Тогда суще-

ствует решение задачи (1), (2), оно имеет вид

z(t) =

m−1∑

k=0

Yk(t)zk +

t∫

0

Y (t− s)f(s) ds, (3)

где

Yk(t) =
1

2πi

∫

γ

λm−1−k(λkK̂ −A)−1K̂eλt dλ, k = 0, 1, . . . ,m− 1,

Y (t) =
1

2πi

∫

γ

(λmK̂ −A)−1eλt dλ,

γ = γR ∪ γR,− ∪ γR,+, γR := {Reiϕ : ϕ ∈ (−π, π)}, γR,± := {re±iπ : r ∈ [R,+∞)}.
Если к тому же существуют операторы




t∫

0

K(s) ds



−1

∈ L (Z ), t > 0, (4)

то решение задачи (1), (2) единственно.

Доказательство. Существование решения доказано в [14, теорема 4], до-

кажем его единственность.

Рассмотрим решение y задачи Коши с начальными значениями z0 ∈ Z ,

z1 = z2 = · · · = zm−1 = 0 для уравнения (1). Так как y ∈ ACm([0, T ]; Z ) ∩
Cm((0, T ]; Z ) ∩ C((0, T ];DA), Dmy ∈ L1(0, T ; Z ), то JmJKDmy = JKJmDmy =

JK(y − z0) = JmAy,

z0 =




t∫

0

K(s) ds



−1

(JKy(t)−JmAy(t)) =




t∫

0

K(s) ds



−1

(K∗y(t)−gm∗Ay(t)).
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Учитывая, что Y0(t)z0 также решение этой задачи Коши, имеем

1 ∗ y = 1 ∗




t∫

0

K(s) ds



−1

(K ∗ Y0 − gm ∗AY0)y

=




t∫

0

K(s) ds



−1

(K ∗ Y0 − gmA ∗ Y0) ∗ y

= Y0 ∗




t∫

0

K(s) ds



−1

(K − gmA) ∗ y = Y0 ∗ z0 = 1 ∗ Y0z0.

После дифференцирования полученного равенства получим y(t) = Y0(t)z0.

Пусть теперь y — решение (1), (2) с начальными значениями z0, z1, . . . , zm−1

∈ Z . Тогда y(t)−
m−1∑
k=1

Ykzk является решением этой задачи при z1 = z2 = · · · =
zm−1 = 0, а значит,

y(t)−
m−1∑

k=1

Ykzk = Y0(t)z0

по доказанному. �

Замечание 1. В [14] используется также условие K ∈ C(R+; L (Z )), од-

нако утверждение остается справедливым и без его использования.

Замечание 2. При доказательстве теорем 3 и 4 в работе [14] показано,

что при всех t ∈ [0, T ]

‖Yk(t)‖L (Z ) ≤ Ctk, k = 0, 1, . . . ,m− 1, ‖Y (t)‖L (Z ) ≤ Ctχ+m−1.

2. Линейная обратная задача с постоянным

неизвестным параметром и ограниченным оператором

Рассмотрим задачу

(DK,mz)(t) = Az(t) +B(t)u+ g(t), t ∈ (0, T ], (5)

z(k)(0) = zk ∈ Z , k = 0, 1, . . . ,m− 1, (6)

T∫

0

z(t)dµ(t) = zT ∈ Z , (7)

где A ∈ L (Z ), B ∈ C([0, T ]; L (U ; Z )), g ∈ C([0, T ]; Z ), Z , U — банаховы

пространства, µ ∈ BV ((0, T ];C), т. е. µ — функция ограниченной вариации на

(0, T ]. Неизвестными в задаче являются функция z и параметр u ∈ U . Такая

задача называется обратной задачей или задачей идентификации. Независи-

мость параметра u от t означает, что в соответствующих приложениях u зависит

только от пространственных переменных.
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Решением будем называть такую пару (z, u), что справедливы включения

z ∈ ACm([0, T ]; Z ) ∩ Cm((0, T ]; Z ), Dmz ∈ L1(0, T ; Z ), выполняются условия

(6), (7) и равенство (5) при соответствующем u ∈ U .

Задачу (5)–(7) будем называть корректной, если для любых g ∈ C([0, T ]; Z ),

z0, z1, . . . , zm−1, zT ∈ Z она имеет единственное решение (z, u) и при этом

‖u‖U ≤ C
(

m−1∑

k=0

‖zk‖Z + ‖zT‖Z + ‖g‖C([0,T ];Z )

)
, (8)

где константа C не зависит от z0, z1, . . . , zm−1, zT , g.

Введем оператор

� :=

T∫

0

t∫

0

Y (t− s)B(s) dsdµ(t) ∈ L (U ; Z ).

Теорема 2. Пусть m ∈ N, K удовлетворяет условию (K), выполняется

условие (4), A ∈ L (Z ), g ∈ C([0, T ]; Z ), B ∈ C([0, T ]; L (U ; Z )), zk ∈ Z ,

k = 0, 1, . . . ,m− 1, zT ∈ Z , µ ∈ BV ((0, T ];C). Тогда задача (5)–(7) корректна

в том и только в том случае, когда существует �−1 ∈ L (Z ; U ). В случае

корректности задачи решение имеет вид

u = �−1

(
zT −

T∫

0

m−1∑

k=0

Yk(t)zk dµ(t) −
T∫

0

t∫

0

Y (t− s)g(s) dsdµ(t)

)
,

z(t) =

m−1∑

k=0

Yk(t)zk +

t∫

0

Y (t− s)(B(s)u + g(s)) ds.

Доказательство. Подставив решение (3) задачи (5), (6) в соотношение

(7), получим равенство

T∫

0

t∫

0

Y (t− s)B(s) dsdµ(t)u = zT −
T∫

0

m−1∑

k=0

Zk(t)zkdµ(t)−
T∫

0

t∫

0

Y (t− s)g(s) dsdµ(t),

из которого следует, что однозначная разрешимость задачи (5)–(7) эквивалент-

на непрерывной обратимости оператора � ∈ L (U ; Z ). Отсюда следует вид

решения задачи, а из него — неравенство (8). В частности, имеем
∥∥∥∥∥∥

T∫

0

t∫

0

Y (t− s)g(s) dsdµ(t)

∥∥∥∥∥∥
Z

≤ CV T
0 [µ] sup

t∈[0,T ]

t∫

0

(t− s)χ+m−1‖g(s)‖Z ds

≤ CV T
0 [µ]

T χ+m

χ+m
‖g‖C([0,T ];Z ),

где V T
0 [µ] — вариация функции µ на (0, T ]. �

Замечание 3. Понятно, что в условиях теоремы 2

‖z‖C([0,T ];Z ) + ‖u‖U ≤ C
(

m−1∑

k=0

‖zk‖Z + ‖zT ‖Z + ‖g‖C([0,T ];Z )

)
.
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3. Линейная обратная задача с переменным

неизвестным параметром и ограниченным оператором

Рассмотрим теперь задачу идентификации с зависящим от t неизвестным

параметром u:

(DK,mz)(t) = Az(t) +B(t)u(t) + g(t), t ∈ (0, T ], (9)

z(k)(0) = zk ∈ Z , k = 0, 1, . . . ,m− 1, (10)

�z(t) = �(t), t ∈ (0, T ], (11)

где A ∈ L (Z ), g ∈ C([0, T ]; Z ), B ∈ C([0, T ]; L (U ; Z )), Z , U — банаховы про-

странства, � ∈ L (U ; Z ), � ∈ C([0, T ]; U ). Неизвестными в задаче являются

функции z : [0, T ]→ Z и u : [0, T ]→ U .

Решением задачи (9)–(11) является такая пара (z, u), что z ∈ ACm([0, T ]; Z )

∩Cm((0, T ]; Z ), Dmz ∈ L1(0, T ; Z ), выполняются условия (10), (11) и равенство

(9) при соответствующем u ∈ C([0, T ]; U ).

Определим множество �̂T := {(t, s) ∈ R2 : t ∈ [0, T ], s ∈ [0, t]}.

Теорема 3. Пусть m ∈ N, K удовлетворяет условию (K), выполняется

условие (4), A ∈ L (Z ), g ∈ C([0, T ]; Z ), B ∈ C([0, T ]; L (U ; Z )), zk ∈ Z ,

k = 0, 1, . . . ,m− 1, � ∈ L (Z ; U ), при почти всех t ∈ (0, T ) имеет место равен-

ство �K(t) = M(t)� для некоторого M ∈ L1(0, T ; L (U )), при всех t ∈ [0, T ] су-

ществует обратный оператор (�B(t))−1, при этом (�B(t))−1 ∈ C([0, T ]; L (U )),

�,DM,m� ∈ C([0, T ]; U ), DM,k�(0) = �zk, k = 0, 1, . . . ,m − 1. Тогда задача

(9)–(11) имеет единственное решение (z, u) ∈ C([0, T ]; Z ) × C([0, T ]; U ), при

этом

‖z‖C([0,T ];Z ) + ‖u‖C([0,T ];U )

≤ C
(

m−1∑

k=0

‖zk‖Z + ‖g‖C([0,T ];Z ) + ‖DM,m�‖C([0,T ];U )

)
,

где C не зависит от zk, k = 0, 1, . . . ,m− 1, g, �.

Доказательство. Подействовав оператором � на обе части уравнения

(9), в силу непрерывности оператора � получим

�(DK,mz)(t) = (DM,m�z)(t) = (DM,m�)(t) = �B(t)u(t) + �g(t)

+ �A




m−1∑

k=0

Yk(t)zk +

t∫

0

Y (t− s)B(s)u(s) ds+

t∫

0

Y (t− s)g(s) ds


 .

Отсюда следует уравнение

u(t) =

t∫

0

N(t, s)u(s) ds+ h(t), (12)
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где N(t, s) := −(�B(t))−1�AY (t− s)B(s),

h(t) := (�B(t))−1


(DM,m�)(t)− �A




m−1∑

k=0

Yk(t)zk +

t∫

0

Y (t− s)g(s) ds


− �g(t)


 .

Имеем h ∈ C([0, T ]; Z ), N ∈ C(�̂T ; L (Z )). Поэтому по теореме Вольтерры

существует единственное решение u ∈ C([0, T ]; U ) уравнения (12), а значит, и

обратной задачи, (9)–(11), и выполнены неравенства

‖u‖C([0,T ];U ) ≤ C‖h‖C([0,T ];Z ) ≤ C1‖DM,m�‖C([0,T ];U ) + C1‖g‖([0,T ];Z )

+ C1

m−1∑

k=0

‖zk‖Z + C1 sup
t∈[0,T ]

t∫

0

(t− s)χ+m−1‖g(s)‖Z ds

≤ C2

(
‖DM,m�‖C([0,T ];U ) + ‖g‖C([0,T ];Z ) +

m−1∑

k=0

‖zk‖Z
)

+C2T
χ+m‖g‖C([0,T ];Z ).

Отсюда следует, что

‖z‖C([0,T ];Z ) ≤
m−1∑

k=0

sup
t∈[0,T ]

‖Zk(t)‖L (Z )‖zk‖Z

+ C3 sup
t∈[0,T ]

t∫

0

(t− s)χ+m−1‖u(s)‖U ds+ C3 sup
t∈[0,T ]

t∫

0

(t− s)χ+m−1‖g(s)‖Z ds

≤ C4

(
m−1∑

k=0

‖zk‖Z + ‖g‖C([0,T ];Z ) + ‖u‖C([0,T ];U )

)

≤ C5

(
m−1∑

k=0

‖zk‖Z + ‖g‖C([0,T ];Z ) + ‖Dm,L�‖C([0,T ];U )

)
. �

4. Задача Коши в секториальном случае

Пусть C l(Z ) — множество всех линейных замкнутых операторов, плотно

определенных в Z , DA — область определения оператора A ∈ C l(Z ), ρ(A) —

резольвентное множество оператора A.

При A ∈ C l(Z ), K ∈ L1,loc(R+; L (Z )), f ∈ C([0, T ]; Z ) для уравнения

(DK,1z)(t) = Az(t) + f(t), t ∈ [0, T ], (13)

рассмотрим задачу Коши

z(0) = z0. (14)

Решением задачи (13), (14) является такое z ∈ C((0, T ];DA) ∩ AC1([0, T ]; Z ) ∩
C1((0, T ]; Z ), что D1z ∈ L1(0, T ; Z ), выполняются условие (14) и равенство

(13).

(Ks) Пусть при некоторых θK ∈ (π/2, π), aK ≥ 0 существует преобразова-

ние Лапласа для K ∈ L1,loc(R+; L (Z )) — однозначная аналитическая
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функция K̂ : SθK ,aK := {λ ∈ C : | arg(λ− aK)| < θK , λ 6= aK} → L (Z ).

При этом для всех λ ∈ SθK ,aK существует K̂(λ)−1 ∈ L (Z ) и

∃c > 0 ∃χ > −1 ∀λ ∈ SθK ,aK ‖K̂(λ)‖L (Z ) ≥ c|λ|χ.
Определение 1. ПустьK удовлетворяет условию (Ks), θ0 ∈ (π/2, θK ], a0 ≥

aK ≥ 0. Через AK(θ0, a0) обозначим класс операторов A ∈ C l(Z ), для которых

выполняются следующие условия:

(i) для любого λ ∈ Sθ0,a0 существует оператор (λK̂(λ)−A)−1 ∈ L (Z );

(ii) для любых θ ∈ (π/2, θ0), a > a0 найдется такое C = C(θ, a) > 0, что

‖(λK̂(λ) −A)−1K̂(λ)‖L (Z ) ≤ C(θ, a)|λ − a|−1 для всех λ ∈ Sθ,a.

Обозначим

AK :=
⋃

θ0∈(π/2,π), a0≥0

AK(θ0, a0).

Замечание 4. В [16, лемма 2] показано, что L (Z ) ⊂ AK при K, удовле-

творяющем условию (Ks).

Замечание 5. В [16, замечание 3] показано, что если определить класс

операторов, аналогичный AK , для уравнения (DK,mz)(t) = Az(t) при m > 1, то

он будет совпадать с L (Z ). При m = 1 это, очевидно, не так (см. [16, § 5, 6]).

Аналогичный факт известен о дифференциальных уравнениях.

Замечание 6. В [16, теорема 3] доказана теорема о необходимости и до-

статочности включения A ∈ AK для существования аналитического в секторе

разрешающего семейства операторов для уравнения (DK,1z)(t) = Az(t).

Через C1
β([0, T ]; Z ), β ∈ R, обозначим множество функций v ∈ C([0, T ]; Z )∩

C1((0, T ]; Z ) таких, что tβD1v(t) ∈ C([0, T ]; Z ).

Теорема 4 [16]. Пусть K ∈ L1,loc(R+; L (Z )) удовлетворяет условию (Ks),

A ∈ AK(θ0, a0) при некоторых θ0 ∈ (π/2, θK ], a0 ≥ aK ≥ 0, для любых x ∈ DA

и почти всех t > 0 имеют место соотношения K(t)x ∈ DA, K(t)Ax = AK(t)x,

f ∈ [C([0, T ];DA)∩C1
β([0, T ]; Z )]∪ [Cγ([0, T ]; Z )∩C1

β([0, T ]; Z )], γ ∈ (0, 1], β < 1,

z0 ∈ DA. Тогда существует решение задачи (13), (14), которое имеет вид

z(t) = Z0(t)z0 +

t∫

0

Z(t− s)f(s) ds, (15)

где

Z0(t) =
1

2πi

∫

�

(λK̂ −A)−1K̂eλt dλ, Z(t) =
1

2πi

∫

�

(λK̂ −A)−1eλt dλ,

� := �0 ∪ �− ∪ �+, �0 := {δeiϕ : ϕ ∈ (−θ, θ)}, �± := {re±iθ : r ∈ [R,+∞)} при

некоторых θ ∈ (π/2, θ0), a > a0, δ > 0. Если к тому же выполняется условие

(K), то решение задачи (13), (14) единственно.

Замечание 7. В [16, лемма 3] показано, что для некоторого C > 0 при

всех t ∈ (0, T ] выполнены неравенства ‖Z0(t)‖L (Z ) ≤ C, ‖D1Z0(t)‖L (Z ) ≤ Ct−1,

‖Z(t)‖L (Z ) ≤ Ctχ.



54 В. Е. Федоров, Д. В. Мелехина

5. Задача идентификации с постоянным

неизвестным параметром в секториальном случае

Пусть Z , U — банаховы пространства. Рассмотрим задачу идентификации

(DK,1z)(t) = Az(t) +B(t)u+ g(t), t ∈ (0, T ], (16)

z(0) = z0 ∈ DA, (17)

T∫

ε

z(t)dµ(t) = zT , (18)

гдеA ∈ AK , g ∈ C([0, T ]; Z ), B ∈ C([0, T ]; L (U ; Z )), ε ∈ (0, T ), µ ∈ BV ((ε, T ];C).

Решением задачи (16)–(18) назовем такую пару (z, u), что z ∈ C((0, T ];DA)∩
AC1([0, T ]; Z ) ∩ C1((0, T ]; Z ), D1z ∈ L1(0, T ; Z ), выполняются условия (17),

(18) и равенство (16) при соответствующем u ∈ U .

Замечание 8. В силу определения решения Az ∈ C([ε, T ]; Z ), а значит,

сходится интеграл
T∫

ε

Az(t)dµ(t)

и поэтому в силу замкнутости оператора A должно выполняться включение

zT ∈ DA. Аналогично с учетом теоремы 4 доказывается, что

T∫

ε

Z0(t)z0dµ(t) ∈ DA,

T∫

ε

t∫

0

Z(t− s)f(s) dsdµ(t) ∈ DA

при z0 ∈ DA, f ∈ Cγ([0, T ]; Z ) ∩ C1
β([0, T ]; Z ), γ ∈ (0, 1], или f ∈ C([0, T ];DA) ∩

C1
β([0, T ]; Z ), β < 1.

Задачу (17), (18) будем называть корректной, если для любых z0, zT ∈ Z ,

g ∈ [Cγ([0, T ]; Z )∩C1
β([0, T ]; Z )]∪ [C([0, T ];DA)∩C1

β([0, T ]; Z )], γ ∈ (0, 1], β < 1,

она имеет единственное решение (z, u) и при этом в случае g ∈ Cγ([0, T ]; Z ) ∩
C1

β([0, T ]; Z ) выполняется неравенство

‖u‖U ≤ C(‖z0‖DA + ‖zT ‖DA + ‖g‖Cγ([0,T ];Z )), (19)

где константаC не зависит от z0, zT , g, а в случае g ∈ C([0, T ];DA)∩C1
β([0, T ]; Z )

— неравенство

‖u‖U ≤ C(‖z0‖DA + ‖zT‖DA + ‖g‖C([0,T ];DA)). (20)

Зададим оператор

� :=

T∫

ε

t∫

0

Z(t− s)B(s) dsdµ(t) ∈ L (U ;DA).
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Теорема 5. Пусть K удовлетворяет условию (Ks), существуют операторы

(4), A ∈ AK , g ∈ [Cγ([0, T ]; Z ) ∩ C1
β([0, T ]; Z )] ∪ [C([0, T ];DA) ∩ C1

β([0, T ]; Z )],

B ∈ [Cγ([0, T ]; L (U ; Z ))∩C1
β([0, T ]; L (U ; Z ))]∪[C([0, T ]; L (U ;DA))∩C1

β([0, T ];

L (U ; Z ))], γ ∈ (0, 1], β < 1, z0, zT ∈ DA, µ ∈ BV ((ε, T ];C), ε ∈ (0, T ). Тогда

задача (16)–(18) корректна в том и только в том случае, когда существует�−1 ∈
L (DA; U ). В случае корректности задачи ее решение имеет вид

u = �−1

(
zT −

T∫

ε

Z0(t)z0dµ(t)−
T∫

ε

t∫

0

Z(t− s)g(s) dsdµ(t)

)
,

z(t) = Z0(t)z0 +

t∫

0

Z(t− s)(B(s)u + g(s)) ds.

Доказательство. Подставив решение задачи (16), (17) в (18), получим

�u =

T∫

ε

t∫

0

Z(t−s)B(s) dsdµ(t)u = zT−
T∫

ε

Z0(t)z0 dµ(t)−
T∫

ε

t∫

0

Z(t−s)g(s) dsdµ(t).

В силу замечания 8 правая часть этого равенства принадлежит DA, поэтому

корректность задачи (16)–(18) эквивалентна непрерывной обратимости опера-

тора � ∈ L (U ;DA). В случае, когда это выполняется, с учетом замечания 7 и

равенства (4.5) из [16] для g ∈ Cγ([0, T ]; Z ) ∩ C1
β([0, T ]; Z ) имеем

‖u‖U ≤ ‖�−1‖L (DA;U )



∥∥∥∥∥zT +

T∫

ε

Z0(t)z0 dµ(t) +

T∫

ε

t∫

0

Z(t− s)g(s) dsdµ(t)

∥∥∥∥∥
DA




≤ ‖�−1‖L (DA;U )

(
‖zT‖DA + CV T

ε [µ]‖z0‖DA + CV T
ε [µ]

T χ+1

χ+ 1
‖g‖C([0,T ];Z )

)

+ ‖�−1‖L (DA;U )V
T
ε [µ] sup

t∈[0,T ]

∥∥∥∥∥∥
A

t∫

0

Z(t− s)g(s) ds

∥∥∥∥∥∥
Z

≤ C1(‖zT ‖DA + ‖z0‖DA + ‖g‖C([0,T ];Z ))

+ C1 sup
t∈[0,T ]

∥∥∥∥∥∥

t∫

0

D1Z0(t− s)(g(s)− g(t)) ds+ (Z0(t)− I)g(t)

∥∥∥∥∥∥
Z

≤ C1(‖zT ‖DA + ‖z0‖DA + ‖g‖C([0,T ];Z )) + C2

T∫

0

(t− s)γ−1 ds‖g‖Cγ([0,T ];Z )

+C2‖g‖C([0,T ];Z ) ≤ C3(‖zT‖DA + ‖z0‖DA + ‖g‖C([0,T ];Z )) +C2
T γ

γ
‖g‖Cγ([0,T ];Z ),

отсюда следует неравенство (19). Если же g ∈ C([0, T ];DA) ∩ C1
β([0, T ]; Z ), то

отличие в рассуждениях при получении неравенства (20) заключается лишь в
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следующей оценке:

sup
t∈[0,T ]

∥∥∥∥∥∥
A

t∫

0

Z(t− s)g(s) ds

∥∥∥∥∥∥
Z

= sup
t∈[0,T ]

∥∥∥∥∥∥

t∫

0

Z(t− s)Ag(s) ds

∥∥∥∥∥∥
Z

≤ CT χ+1

χ+ 1
‖g‖C([0,T ];DA). �

6. Задача идентификации с переменным

неизвестным параметром в секториальном случае

Рассмотрим задачу идентификации с зависящим от t неизвестным пара-

метром u:

(DK,1z)(t) = Az(t) +B(t)u(t) + g(t), t ∈ (0, T ], (21)

z(0) = z0 ∈ DA, (22)

�z(t) = �(t), t ∈ (0, T ], (23)

где Z , U — банаховы пространства, A ∈ AK , g ∈ C([0, T ]; Z ), B ∈ C([0, T ];

L (U ; Z )), � ∈ L (U ; Z ), � ∈ C([0, T ]; U ).

Решением задачи (21)–(23) будем называть такую пару функций (z, u), что

z ∈ C((0, T ];DA) ∩ AC1([0, T ]; Z ) ∩ C1((0, T ]; Z ), D1z ∈ L1(0, T ; Z ), выполня-

ются условия (22), (23) и равенство (21) при соответствующем u.

Лемма 1. Пусть β ∈ (−χ, 1), h ∈ C1
β([0, T ]; U ), K удовлетворяет условию

(Ks), A ∈ AK , B ∈ C1
β([0, T ]; L (U ;DA)), � ∈ L (Z ; U ), при всех t ∈ [0, T ] су-

ществует обратный оператор (�B(t))−1, при этом (�B(t))−1 ∈ C1
β([0, T ]; L (U )).

Тогда уравнение

u(t) = −
t∫

0

(�B(t))−1�Z(t− s)AB(s)u(s) ds + h(t)

имеет единственное решение u ∈ C1
β([0, T ]; U ), при этом выполняется неравен-

ство ‖u‖C1
β
([0,T ];U ) ≤ C‖h‖C1

β
([0,T ];U ), где константа C = C(A,B,�) не зависит

от h.

Доказательство. Рассмотрим оператор F : C1
β([0, T ]; U )→ C1

β([0, T ]; U ),

действующий по правилу

(Fu)(t) := −
t∫

0

(�B(t))−1�Z(t− s)AB(s)u(s) ds + h(t).

Заметим, что при всех t ∈ (0, T ]

∥∥∥∥∥∥

t∫

0

(�B(t))−1�Z(t− s)AB(s)u(s) ds

∥∥∥∥∥∥
U

≤ C1t
χ+1, χ+ 1 > 0,



Линейные задачи идентификации 57

tβD1

t∫

0

(�B(t))−1�Z(t− s)AB(s)u(s) ds = tβ(�B(t))−1�Z(t)AB(0)u(0)

+ tβ
t∫

0

[(�B(t))−1]′�Z(s)AB(t− s)u(t− s) ds

+ tβ
t∫

0

(�B(t))−1�Z(s)A(B′(t− s)u(t− s) ds+B(t− s)u′(t− s)) ds,

∥∥∥∥∥∥
tβD1

t∫

0

(�B(t))−1�Z(t− s)AB(s)u(s) ds

∥∥∥∥∥∥
U

≤ C1t
β+χ + C1t

χ+1 + 2C1t
β

t∫

0

sχ(t− s)−β ds

≤ C2(t
β+χ + tχ+1), χ+ 1 > 0, β + χ > 0.

Поэтому действительно Fu ∈ C1
β([0, T ]; U ) для любого u ∈ C1

β([0, T ]; U ).

Обозначим K1 = C‖(�B(t))−1‖C([0,T ];L (U ))‖�‖L (Z ;U ), где C — константа

из замечания 7. Пусть T1 ≤ min{1, T }. Для u, v ∈ C1
β([0, T1]; U ) имеем

‖F (u)−F (v)‖C1
β
([0,T1];U ) ≤ sup

t∈(0,T1]

∥∥∥∥∥∥

t∫

0

(�B(t))−1�Z(t− s)AB(s)(u(s) − v(s)) ds

∥∥∥∥∥∥
U

+ sup
t∈(0,T1]

‖tβ(�B(t))−1�Z(t)AB(0)(u(0)− v(0))‖U

+ sup
t∈(0,T1]

∥∥∥∥∥∥
tβ

t∫

0

[(�B(t))−1]′�Z(s)AB(t− s)(u(t− s)− v(t− s)) ds

∥∥∥∥∥∥
U

+ sup
t∈(0,T1]

∥∥∥∥∥∥
tβ

t∫

0

(�B(t))−1�Z(s)AB′(t− s)(u(t− s)− v(t− s)) ds

∥∥∥∥∥∥
U

+ sup
t∈(0,T1]

∥∥∥∥∥∥
tβ

t∫

0

(�B(t))−1�Z(s)AB(t− s)(u′(t− s)− v′(t− s)) ds

∥∥∥∥∥∥
U

≤ C T
χ+1
1

χ+ 1
‖(�B(t))−1‖C([0,T ];L (U ))‖�‖L (Z ;U )‖B‖C([0,T ];L (U ;DA))‖u−v‖C([0,T1];U )

+CT χ+β
1 ‖(�B(t))−1‖C([0,T ];L (U ))‖�‖L (Z ;U )‖B‖C([0,T ];L (U ;DA))‖u− v‖C([0,T1];U )

+C
T χ+1

1

χ+ 1
‖(�B(t))−1‖C1

β([0,T ];L (U ))‖�‖L (Z ;U )‖B‖C([0,T ];L (U ;DA))‖u−v‖C([0,T1];U )

+K1T
χ+1
1 B(χ + 1, 1− β)‖B‖C1

β
([0,T ];L (U ;DA))‖u− v‖C([0,T1];U )
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+K1T
χ+1
1 B(χ+1, 1−β)‖B‖C([0,T ];L(U ;DA))‖u−v‖C1

β
([0,T1];U ) ≤

1

2
‖u−v‖C1

β
([0,T1];U ),

если взять

T1 =

(
2

(
K1

χ+ 2

χ+ 1
+K1B(χ+ 1, 1− β)

)
‖B‖C([0,T ];L (U ;DA))

+
2C

χ+ 1
‖(�B(t))−1‖C1

β
([0,T ];L (U ))‖�‖L (Z ;U )‖B‖C([0,T ];L (U ;DA))

+ 2K1B(χ+ 1, 1− β)‖B‖C1
β
([0,T ];L (U ;DA))

) −1
χ+β

.

Здесь B — бета-функция Эйлера. По теореме о сжимающем отображении су-

ществует единственная неподвижная точка u0 отображения F в полном метри-

ческом пространстве C1
β([0, T1]; U ).

Если T1 < T , возьмем T2 = 2
1

χ+β T1 и рассмотрим оператор F в полном мет-

рическом пространстве C1
β,T1

([0, T2]; U ) :=
{
u ∈ C1

β([0, T2]; U ) : u(t) = u0(t), t ∈
[0, T1]

}
с метрикой d(u, v) = ‖u− v‖C1

β
([0,T2];U ). В силу выбора T1

‖F (u)− F (v)‖C1
β,T1

([0,T2];U ) ≤
1

2T χ+β
1

(
T χ+β

2 − T χ+β
1

)
‖u− v‖C1

β([0,T2];U )

=
1

2
‖u− v‖C1

β([0,T2];U ).

Поэтому существует единственная неподвижная точка u0 отображения F в про-

странстве C1
β([0, T2]; U ).

На k-м шаге возьмем Tk = min{2 k
χ+β T1, T } и повторим рассуждения. За

конечное число n шагов мы исчерпаем отрезок [0, T ], получив 2
n

χ+β T1 ≥ T . �

Теорема 6. Пусть β ∈ (−χ, 1), K удовлетворяет условию (Ks), существуют

операторы (4), A ∈ AK , g ∈ C1
β([0, T ];DA), B ∈ C1

β([0, T ]; L (U ;DA)), z0 ∈ DA2 ,

� ∈ L (Z ; U ), при почти всех t ∈ (0, T ) имеет место равенство �K(t) = M(t)�

для некоторого M ∈ L1(0, T ; L (U )), при всех t ∈ [0, T ] существует обратный

оператор (�B(t))−1, при этом (�B(t))−1 ∈ C1
β([0, T ]; L (U )), � ∈ C([0, T ]; U ),

DM,1� ∈ C1
β([0, T ]; U ), DM,0�(0) = �z0. Тогда задача (21)–(23) имеет един-

ственное решение (z, u), при этом

‖u‖C1
β
([0,T ];U ) ≤ C(‖Az0‖DA + ‖g‖C1

β
([0,T ];DA) + ‖DM,1�‖C1

β
([0,T ];U )),

где C не зависит от z0, g, �.

Доказательство. Подействуем оператором� на обе части уравнения (21).

В силу непрерывности оператора � получим

�(DK,1z)(t) = (DM,1�z)(t) = (DM,1�)(t) = �B(t)u(t) + �g(t)

+ �A


Z0(t)z0 +

t∫

0

Z(t− s)B(s)u(s) ds+

t∫

0

Z(t− s)g(s) ds


 .
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Отсюда следует уравнение

u(t) = −
t∫

0

(�B(t))−1�Z(t− s)AB(s)u(s) ds+ h(t), (24)

где

h(t) := (�B(t))−1


(DM,1�)(t)− �


Z0(t)Az0 +

t∫

0

Z(t− s)Ag(s) ds


− �g(t)


 .

Нетрудно показать, что по условиям данной теоремы h ∈ C1
β([0, T ]; U ), в част-

ности,

D1Z0(t)Az0 =
1

2πi

∫

�

(λK̂ −A)−1λK̂eλtAz0 dλ

=
1

2πi

∫

�

(λK̂ −A)−1eλtA2z0 dλ = Z(t)A2z0,

‖tβ(�B(t))−1�D1Z0(t)Az0‖U ≤ K1t
β+χ‖A2z0‖Z ,

D1

t∫

0

Z(t− s)Ag(s) ds = Z(t)Ag(0) +

t∫

0

Z(t− s)D1Ag(s) ds,

∥∥∥∥∥∥
tβ(�B(t))−1�D1

t∫

0

Z(t− s)Ag(s) ds

∥∥∥∥∥∥
U

≤ K1t
β+χ‖g‖C([0,T ];DA)

+K1t
χ+1

B(χ+ 1, 1− β)‖g‖C1
β
([0,T ];DA).

По лемме 1 получим существование единственного решения u ∈ C1
β([0, T ]; U )

уравнения (24).

В таком случае B(t)u(t) ∈ C1
β([0, T ];DA) и существует единственное реше-

ние обратной задачи (21)–(23), при этом

‖u‖C1
β
([0,T ];U ) ≤ C1‖h‖C1

β
([0,T ];Z )

≤ C2(‖DM,1�‖C1
β
([0,T ];U ) + ‖g‖C1

β
([0,T ];Z ) + ‖Az0‖DA) + ‖g‖C1

β
([0,T ];DA)

≤ C3(‖DM,1�‖C1
β([0,T ];U ) + ‖g‖C1

β([0,T ];DA) + ‖Az0‖DA). �

7. Приложение к одной обратной задаче

Возьмем α ∈ (0, 1), K(t) = tα−1E1,α(t)I,

JKh(t) :=

t∫

0

(t− s)α−1E1,α(t− s)h(s) ds, DK,1h(t) := JKD1h(t),
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где используется функция Миттаг-Леффлера

E1,α(t) :=

∞∑

n=0

tn

� (n+ α)
.

Имеем K̂(λ) = (λ−1)−1λ1−αI, поэтому выполняется условие (Ks) с константами

θK ∈ (π/2, π), aK ≥ 1, χ = −α ∈ (−1, 0).

Пусть заданы многочлены

P (x) =

n∑

j=0

pjx
j , Q(x) =

m∑

j=0

qjx
j

с коэффициентами pj ∈ R, j = 1, 2, . . . , n, qj ∈ R, j = 1, 2, . . . ,m, pn 6= 0,

qm 6= 0, n < m, ограниченная область � ⊂ Rd с гладкой границей ∂�, ξ0 ∈ �.

Рассмотрим начально-краевую задачу

v(ξ, 0) = v0(ξ), ξ ∈ �, (25)

�lv(ξ, t) = 0, (ξ, t) ∈ ∂�× (0, T ], l = 0, 1, . . . ,m− 1, (26)

P (�)DK,1
t v(ξ, t) = Q(�)v(ξ, t) + b(ξ, t)w(t), (ξ, t) ∈ �× (0, T ], (27)

v(ξ0, t) = ψ(t), t ∈ [0, T ]. (28)

Здесь нижний индекс t означает действие интегро-дифференциального опера-

тора по переменной t, ξ = (ξ1, ξ2, . . . , ξd), � — оператор Лапласа по переменным

ξ1, ξ2, . . . , ξd, b : � × [0, T ] → R, ψ : [0, T ] → C — заданные функции. Определе-

нию подлежат v и w.

Пусть {λk} — собственные значения оператора Лапласа с условием Дири-

хле на границе ∂�, занумерованные по невозрастанию с учетом их кратности,

{ϕk} — ортонормированная в смысле скалярного произведения 〈·, ·〉 в L2(�)

система соответствующих собственных функций, P (λk) 6= 0 для всех k ∈ N.

Тогда задача (25)–(28) редуцируется к (21)–(23), если взять Z = H2n
0 (�) :=

{y ∈ H2n(�) : �ly(ξ) = 0, l = 0, 1, . . . , n − 1}, A = P (�)−1Q(�) ∈ C l(Z ),

DA = H2m
0 (�) := {y ∈ H2m(�) : �ly(ξ) = 0, l = 0, 1, . . . ,m − 1}, U = C,

B(t) = P (�)−1b(·, t) — оператор умножения на функцию P (�)−1b(·, t), z(t) =

v(·, t) ∈ Z , u(t) = w(t) ∈ C при t ∈ [0, T ], g ≡ 0, z0 = v0(·), �y = y(ξ0),

�(t) = ψ(t).

Если выполнено непрерывное вложение Z ⊂ C(�;C), введем оператор сле-

да Jξ0 : Z → C, т. е. Jξ0y := y(ξ0) для y ∈ Z .

Теорема 7. Пусть pj ∈ C, j = 1, 2, . . . , n, qj ∈ C, j = 1, 2, . . . ,m, pn 6=
0, qm 6= 0, qm/pn > 0 при нечетном m − n, qm/pn < 0 при четном m − n,

d < 4n, P (λk) 6= 0 для всех k ∈ N, α ∈ (0, 1), K(t) = tα−1E1,α(t)I, b ∈
C1

β([0, T ];H
2(m−n)
0 (�)), β ∈ (α, 1), ξ0 ∈ �, Jξ0P (�)−1b(·, t) 6= 0 при t ∈ [0, T ],

1/Jξ0P (�)−1b(·, t) ∈ C1
β([0, T ];C), v0 ∈ H4m−2n

0 (�), ψ ∈ C([0, T ];C), DK,1ψ ∈
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C1
β([0, T ];C), DK,0ψ(0) = v0(ξ0). Тогда существует единственное решение (v, w)

задачи (25)–(28), при этом

‖w‖C1
β
([0,T ];C) ≤ C(‖v0‖H4m−2n(�) + ‖DK,1ψ‖C1

β
([0,T ];C)),

где C не зависит от v0, ψ.

Доказательство. Для y ∈ Z

‖(λK̂ −A)−1K̂y‖H2n(�) =

∞∑

k=1

(
1 + λ2n

k

)
|(λ− 1)−1λ1−β |2|〈y, ϕk〉|2

|(λ− 1)−1λ2−β − P (λk)−1Q(λk)|2

≤ 1

|λ|2
∞∑

k=1

(
1 + λ2n

k

)
|〈y, ϕk〉|2∣∣1− (λ−1)Q(λk)

λ2−βP (λk)

∣∣2 ≤
C2

|λ|2 ‖y‖H2n(�)

при всех λ ∈ Sθ0,a0 для некоторого θ0 ∈ (π/2, θK ] и достаточно большого a0 ≥
aK ≥ 1. Здесь учитывается тот факт, что в условиях данной теоремы вы-

полняется неравенство P (λk)
−1Q(λk) < 0 при достаточно больших k ∈ N, а

множитель (λ− 1)λβ−2 ограничен в Sθ0,a0 при a0 > 0. Таким образом, A ∈ AK .

Заметим, что
t∫
0

sβ−1E1,β(s) ds = tβE1,β+1(t) 6= 0 при t > 0, поэтому при

таких t оператор
t∫
0

K(s) ds обратим. Условие v0 ∈ H4m−2n
0 (�) означает, что

v0 ∈ DA2 .

Имеем B(t) = P (�)−1b(·, t) ∈ L (C;H2m
0 (�)) при t ∈ [0, T ], так как b(·, t) ∈

H
2(m−n)
0 (�) при t ∈ [0, T ], P (�)−1[H

2(m−n)
0 (�)] ⊂ H2m

0 (�). Для любого y ∈ Z

имеем ‖�y‖U = |y(ξ0)| ≤ C‖y‖Z в силу теоремы вложения Соболева, так как

d < 4n. Для любого y ∈ Z

�K(t)y = tβ−1E1,β(t)y(ξ0) = K(t)�y,

поэтому надо взять M(t) = K(t) = tβ−1E1,β(t)I в условиях теоремы 6.

При любом u ∈ C будет �B(t)u = Jξ0P (�)−1b(·, t)u, (�B(t))−1 — опера-

тор умножения на 1/Jξ0P (�)−1b(·, t), определенный на [0, T ] в силу условий на

функцию b: b ∈ C([0, T ];H
2(m−n)
0 (�)), Jξ0P (�)−1b(·, t) 6= 0 при t ∈ [0, T ].

По теореме 6 получаем требуемое. �
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Abstract: The issues of unique solvability of linear inverse coefficient problems for
evolution integro-differential equations of Gerasimov type with a singular integral kernel
in Banach spaces are investigated. The cases of bounded and sectorial operators at the
unknown function in the equation are considered. In each case, correctness criteria were
obtained for the linear inverse problem with a time-independent unknown coefficient,
and sufficient conditions for solvability and correctness estimates were found for the
linear identification problem with a time-dependent unknown coefficient. The abstract
results obtained are illustrated by an example of a class of inverse problems for partial
differential equations.
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TWO–PHASE RADIAL VISCOUS FINGERING

PROBLEM IN A HELE–SHAW CELL WITH

SURFACE TENSION. II: UNIQUENESS

A. Tani and H. Tani

Abstract: The existence of classical solutions was established in [(∗)] Tani A. and

Tani H., “Two-phase radial viscous fingering problem in a Hele-Shaw cell with surface
tension, I: Classical solvavility,’ Mat. Zametki SVFU, 31, No. 4, 82–105 (2024), for the
two-phase radial viscous fingering problem in a Hele-Shaw cell under the surface tension
(the original two-phase problem) by means of parabolic regularization with a small
parameter ε (> 0) in the time-derivative terms and the non-homogeneous terms (the
parabolic regularized two-phase problem), vanishing along some subsequence {εn}n∈N
of {ε > 0}. In this paper we prove the uniqueness of classical solutions to the original
two-phase problem. This gives the improvement to the convergence result in [(∗)]: the
convergence of the full sequence {ε > 0}, not the subsequence {εn}n∈N, of classical
solutions of the parabolic regularized two-phase problem to those of the original two-
phase problem. Similar results for some one-phase problem have been already studied in
Tani H., “Classical solvability of the radial viscous fingering problem in a Hele-Shaw cell
with surface tension,” Sib. J. Pure Appl. Math., 16, 79–92 (2016) (the existence) and
in Tani A. and Tani H., “On the uniqueness of the classical solution of the radial viscous
fingering problem in a Hele-Shaw cell with surface tension,” J. Appl. Mech. Tech. Phys.,
65, No. 5 (2024) (the uniqueness).
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unique classical solution.

1. Introduction

Viscous fingering may occur in the flow of two immiscible, viscous fluids be-

tween the two closely spaced parallel plates in a Hele-Shaw cell [1]. Due to pressure

gradients and/or gravity, the initially planar interface separating the two fluids un-

dergoes a so-called Saffman–Taylor instability [2] and develops finger-like structure

(see [3–6] and the references therein).

In [7] the existence of solution in the standard Hölder spaces for two-phase

Hele-Shaw problem without surface tension effect and the same result on one-phase

(liquid/air two phase) case was obtained in [8]. The uniqueness in both cases was

studied in [9]. For such a problem the existence and uniqueness of solution in the

standard Hölder spaces were proved in [10] and [11], respectively. Recently the

classical solvability for two-phase problem are discussed in [12]. Our aim of this

paper is to prove the uniqueness of such a solution.

c© 2025 A. Tani, H. Tani
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Other mathematical results were found in [13–16]; especially, the solvability

was studied in little, not standard, Hölder spaces, in [15, 16]. Moreover, it should be

noted that some papers, not only [15, 16], have been discussed in n (> 2)-dimensions,

which are absurd from applied viewpoint because Hele-Shaw flows are inherently

two-dimensional.

This paper consists of three sections. In § 2, we briefly formulate the two-phase

problem with surface tension effect and describe the main result. In § 3, we give a

proof of the uniqueness of the classical solution to the original two-phase problem

mentioned above.

2. Formulation of the problem and the main theorem

We consider a slow quasi-stationary displacement of a fluid by another fluid in

a Hele-Shaw cell under the assumptions that both fluids are immiscible and both

flows are incompressible. The motion of such fluids is described by

∇ · vi = 0, vi = −Mi∇pi in �i(t), t > 0 (i = 1, 2). (2.1)

Here in (2.1) vi is the velocity vector field in the fluid and pi is the pressure (i = 1

for the displacing fluid and 2 for the displaced one); Mi = b2/(12µi) is mobility, µi

is the fluid viscosity, b is the width of two plates. For a radial fingering phenomenon

it is sufficient to study (2.1) under the following geometric situation:

�1(t) =

{
x ∈ R2 | R∗ < |x| < R(t) + ζ

(
x

|x| , t
)}

(the displacing region),

�2(t) =

{
x ∈ R2 | R(t) + ζ

(
x

|x| , t
)
< |x| < R∗

}
(the displaced region),

where R∗ is the radius of the hole through which the displacing fluid is injected (or

driven by suction) at a time-dependent injection (or suction) rate Q(t), R∗ is the

radius of a Hele-Shaw cell occupied by the displaced fluid, R(t) is the time-dependent

unperturbed radius satisfying

πR(t)2 = πR2
0 +

t∫

0

Q(τ) dτ, R0 ≡ R(0) ∈ (R∗, R
∗)

and ζ is the perturbed radius.

In addition, the following boundary and initial conditions are imposed:





v1 · n =
Q(t)
2πR∗

on �∗ = {x ∈ R2 | |x| = R∗}, t > 0,

p2 = pe on � ∗ = {x ∈ R2 | |x| = R∗}, t > 0,

v1 · n = v2 · n = Vn, p1 = p2 + σ
(

2
b +H

)
on � (t), t > 0,

(2.2)

where

� (t) =

{
x ∈ R2 | |x| = R(t) + ζ

(
x

|x| , t
)}

,
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Vn is the normal velocity of the interface � (t), n is the unit normal vector on �∗ or

� (t), pe is the pressure on the outside of a Hele-Shaw cell, σ (> 0) is the surface

tension coefficient, H is the surface curvature of � (t);

{
vi|t=0 = v0

i , pi|t=0 = p0
i on �i(0) ≡ �i (i = 1, 2),

ζ|t=0 = ζ0 on � (0) ≡ � (ζ0 ∈ (R∗ −R0, R
∗ −R0)).

(2.3)

Problem (2.1)–(2.3) for (v1,v2, p1, p2, ζ) is equivalently written as the following one

for (p1, p2, ζ):





�p1 = 0 in �1(t), t > 0, �p2 = 0 in �2(t), t > 0,

−M1∇p1 · n =
Q(t)
2πR∗

on �∗, t > 0, p2 = pe on � ∗, t > 0,

−M1∇p1 · n = −M2∇p2 · n = Vn,

p1 = p2 + σ
(

2
b +H

)
on � (t), t > 0,

p1|t=0 = p0
1 on �1, p1|t=0 = p0

2 on �2, ζ|t=0 = ζ0 on � .

(2.4)

The initial data (p0
1, p

0
2) are assumed to satisfy the compatibility conditions.

In polar coordinates (r, θ), problem (2.4) and its parabolic regularized problem

are written as follows:





1
r

∂
∂r

(
r ∂p1

∂r

)
+ 1

r2
∂2p1

∂θ2 = 0

(r ∈ (R∗, R(t) + ζ(θ, t)), θ ∈ J ≡ (0, 2π), t > 0),

1
r

∂
∂r

(
r ∂p2

∂r

)
+ 1

r2
∂2p2

∂θ2 = 0 (r ∈ (R(t) + ζ(θ, t), R∗), θ ∈ J, t > 0),

M1
∂p1

∂r = − Q(t)
2πR∗

(r = R∗, θ ∈ J, t > 0),

p2 = pe (r = R∗, θ ∈ J, t > 0),

M1

(
∂p1

∂r − 1
r2

∂ζ
∂θ

∂p1

∂θ

)
= M2

(
∂p2

∂r − 1
r2

∂ζ
∂θ

∂p2

∂θ

)
= − ∂

∂t (R(t) + ζ),

p1 = p2 + σ
(

2
b +H

)
(r = R(t) + ζ(θ, t), θ ∈ J, t > 0),

p1|t=0 = p0
1 (r ∈ (R∗, R0 + ζ0(θ)), θ ∈ J),

p2|t=0 = p0
2 (r ∈ (R0 + ζ0(θ), R∗), θ ∈ J), ζ|t=0 = ζ0 (θ ∈ J),

(2.5)

where

H =
(R + ζ)2 + 2

(
∂ζ
∂θ

)2 − (R + ζ)∂
2ζ

∂θ2

[
(R + ζ)2 +

(
∂ζ
∂θ

)2]3/2 .

Now let us transform problem (2.5) on the time-dependent domains into the

one on the time-independent domains. By changing the variables

(r, θ, t) 7→
(
r′ =

R0 + ζ0 −R∗
R+ ζ −R∗

(r −R∗) +R∗, θ
′, t′
)

: �1(t)→ �1 ≡ �1(0),

(r, θ, t) 7→
(
r′ =

R0 + ζ0 −R∗
R+ ζ −R∗ (r −R∗) +R∗, θ′, t′

)
: �2(t)→ �2 ≡ �2(0).

Moreover, set p1(r, θ, t) = p′1(r
′, θ′, t′), p2(r, θ, t) = p′2(r

′, θ′, t′), ζ(θ, t) = ζ′(θ′, t′).
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By omitting the primes for simplicity, problem (2.5) becomes




L 1
ζ p1 = 0 in �1, t > 0, L 2

ζ p2 = 0 in �2, t > 0,

∂p1

∂r = − Q(t)
2πR∗M1

R+ζ−R∗
R0+ζ0−R∗

on �∗ ≡ {r = R∗, θ ∈ J}, t > 0,

p2 = pe on � ∗ ≡ {r = R∗, θ ∈ J}, t > 0,
∂ζ
∂t + b12(ζ)

∂p1

∂r + b11(ζ)
∂p1

∂θ + b22(ζ)
∂p2

∂r + b21(ζ)
∂p2

∂θ = −Q(t)
2πR ,

b12(ζ)
∂p1

∂r + b11(ζ)
∂p1

∂θ = b22(ζ)
∂p2

∂r + b21(ζ)
∂p2

∂θ , p1 = p2 + σ
(

2
b +H

)

on � ≡ {r = R0 + ζ0(θ), θ ∈ J}, t > 0,

p1|t=0 = p0
1 on �1, p2|t=0 = p0

2 on �2, ζ|t=0 = ζ0 on J.

(2.6)

Here

L
1
ζ ≡ L

1
ζ

(
r, θ;

∂

∂r
,
∂

∂θ

)
=

1
(
R∗ + R+ζ−R∗

R0+ζ0−R∗
(r −R∗)

)2

×
[
∂2

∂θ2
+ 2

(
1

R0 + ζ0 −R∗
dζ0

dθ
− 1

R+ ζ −R∗
∂ζ

∂θ

)
(r −R∗)

∂2

∂r∂θ

+

((
R∗ +

R+ ζ −R∗
R0 + ζ0 −R∗

(r −R∗)
)2(

R0 + ζ0 −R∗
R+ ζ −R∗

)2

+

(
1

R0 + ζ0 −R∗
dζ0

dθ
− 1

R+ ζ −R∗
∂ζ

∂θ

)2

(r −R∗)2
)
∂2

∂r2

]

+

{
1

R∗ + R+ζ−R∗
R0+ζ0−R∗

(r −R∗)
R0 + ζ0 −R∗
R+ ζ −R∗

+
r −R∗(

R∗ + R+ζ−R∗
R0+ζ0−R∗

(r −R∗)
)2
[
∂

∂θ

(
1

R0 + ζ0 −R∗
dζ0

dθ
− 1

R+ ζ −R∗
∂ζ

∂θ

)

+

(
1

R0 + ζ0 −R∗
dζ0

dθ
− 1

R+ ζ −R∗
∂ζ

∂θ

)2]}
∂

∂r
,

L
2
ζ ≡ L

2
ζ

(
r, θ;

∂

∂r
,
∂

∂θ

)
= L

1
ζ with R∗ replaced by R∗,

b12(ζ) =
M1

2

[
R0 + ζ0 −R∗
R + ζ − R∗

(
1 +

1

(R+ ζ)2

(
∂ζ

∂θ

)2)
− 1

(R+ ζ)2
∂ζ

∂θ

dζ0

dθ

]
,

b22(ζ) = b12(ζ) with (M1, R∗) replaced by (M2, R
∗),

b11(ζ) = −M1

2

1

(R+ ζ)2
∂ζ

∂θ
, b21(ζ) = b11(ζ) with M1 replaced by M2.

Throughout this paper we use the standard Hölder spaces (see [17, 18]): Ck+α(�)

and C
k+α,(k+α)/2
x,t (QT ) (QT ≡ �× [0, T ]) (k = 0, 1, 2, . . . , α ∈ (0, 1)) equipped with

the norms

‖u‖(k+α)

�
= ‖u‖(k)

�
+
〈
Dk

xu
〉(α)

�
,

‖u‖(k)

�
=

k∑

l=0

∣∣Dl
xu
∣∣(0)
�

(
Dl

x =
∑

|j|=l

Dj
x (j is a multi-index)

)
,
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‖u‖(k+α)

QT

= ‖u‖(k)

QT

+
∑

l+2l′=k

〈
∂2l′

∂tl′
Dl

xu

〉(α)

x,QT

+

k∑

l+2l′=max{k−1,0}

〈
∂2l′

∂tl′
Dl

xu

〉((k−l−2l′+α)/2)

t,QT

,

‖u‖(k)

QT

=

k∑

l+2l′=0

∣∣∣∣
∂2l′

∂tl′
Dl

xu

∣∣∣∣
(0)

QT

,

respectively. Here

|u|(0)
�

= sup
x∈�
|u(x)|, 〈u〉(α)

�
= sup

x,x′∈�

x 6=x′

|u(x)− u(x′)|
|x− x′|α , |u|(0)

QT

= sup
(x,t)∈QT

|u(x, t)|,

〈u〉(α)

x,QT

≡ sup
x,x′∈�, t∈[0,T ]

x 6=x′

|u(x, t)− u(x′, t)|
|x− x′|α , 〈u〉(α)

t,QT

≡ sup
x∈�, t,t′∈[0,T ]

t6=t′

|u(x, t)− u(x, t′)|
|t− t′|α ,

〈u〉(α)

QT

= 〈u〉(α)

x,QT

+ 〈u〉(α/2)
t,QT

.

The spaces of vector fields are denoted by the same notation as their components

belong to and their norms are supposed to be equal to the sum of norms of all its

components (see [17]). We also introduce the semi-norm

[u]
(α,β)

QT

≡ sup
x,x′∈�, t,t′∈[0,T ]

x 6=x′, t6=t′

|u(x, t)− u(x′, t)− u(x, t′) + u(x′, t′)|
|x− x′|α|t− t′|β , α, β ∈ (0, 1),

and define the Banach spaces Ek+α(QT ) (k = 0, 1, 2) that are defined by the com-

pletion of infinitely differentiable functions in respective norms

‖u‖Eα(QT ) = ‖u‖(α)

QT

+ [u]
(α,α/2)

QT

, ‖u‖E1+α(QT ) =
∥∥D1

xu
∥∥
α,QT

+Dα,α

QT

[u],

‖u‖E2+α(QT ) = ‖D2
xu‖α,QT

+

1∑

k=0

Dα,α

QT

[Dk
xu],

Dα,α

QT

[u] = |u|(0)
QT

+ 〈u〉(α)

x,QT

+ 〈u〉(α)

t,QT

,+[u]
(α,α)

QT

.

Moreover, let us introduce the spaces

Ê2+α(QT ) =

{
u ∈ E2+α(QT ) | ∂u

∂t
∈ E1+α(QT ), ‖u‖

Ê2+α(QT )
<∞

}
,

Ê4+α(QT ) =
{
u ∈ Ê2+α(QT )

∣∣ D2
xu ∈ E2+α(QT ), ‖u‖

Ê4+α(QT )
<∞

}
,

‖u‖
Ê2+α(QT )

≡ ‖u‖2+α,QT
+

∥∥∥∥
∂u

∂t

∥∥∥∥
1+α,QT

,

‖u‖
Ê4+α(QT )

≡ ‖u‖
Ê2+α(QT )

+ ‖D2
xu‖2+α,QT

.

Denote by E
0

k+α(QT ), Ê
0

2+α
(QT ) and Ê

0

4+α
(QT ) the spaces of the corresponding

spaces whose elements are equal to zero at t = 0 together with their admissible

derivatives with respect to t. The function spaces on a smooth manifold are defined

with the help of partition of unity and of local maps.

The following is our main result.
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Theorem 2.1. Let T > 0 and α ∈ (0, 1). Assume that
(
p0
1, p

0
2, ζ

0
)
∈ C3+α(�1)× C3+α(�2)× C4+α(J)

satisfy the compatibility conditions (2.5), ∂p0
2/∂r−∂p0

1/∂r > 0 on � , Q ∈ Cα/2([0, T ])

and pe ∈ C3+α,(3+α)/2
θ,t (JT ). Moreover, let

(p1, p2, ζ) ∈ E2+α(Q1,T )× E2+α(Q2,T )× Ê4+α(JT )

be a solution of problem (2.6). Then there exists T∗ > 0 depending on the data of

the problem such that it is unique on [0, T∗].

In the same way as in [12] we seek a solution (p1, p2, ζ) to problem (2.6) in the

form
{
p1 = p∗1 + p0

1 + r−R∗
R+ζ−R∗

∂p0
1

∂r ζ∗, p2 = p∗2 + p0
2 + r−R∗

R+ζ−R∗
∂p0

2

∂r ζ
∗,

ζ = ζ∗ + ζ,
(2.7)

where ζ ∈ Ê4+α(JT ) is an extension of ζ0 such that
(
ζ,
∂ζ

∂t
,
∂2ζ

∂t2

)∣∣∣∣
t=0

=

(
ζ0,

∂ζ

∂t
,
∂2ζ

∂t2

)∣∣∣∣
t=0

.

Here, the values ∂ζ/∂t|t=0 and ∂2ζ/∂t2|t=0 are determined by the first boundary

condition on � in (2.6) and its derivative with respect to t at t = 0, respectively.

Then problem (2.6) leads to the following one for (p∗1, p
∗
2, ζ
∗) by virtue of (2.7)

(see (3.2) with ε = 0 in [12]):




L 1
∗ p
∗
1 = −�0

1(p
∗
1, ζ

∗) in �1, t > 0, L 2
∗ p
∗
2 = −�0

2(p
∗
2, ζ

∗) in �2, t > 0,
∂p∗1
∂r = �∗(ζ∗) on �∗, t > 0, p∗2 = �∗(ζ∗) on � ∗, t > 0,

∂ζ∗

∂t + b12(ζ)
∂p∗1
∂r + b11(ζ)

∂p∗1
∂θ + b22(ζ)

∂p∗2
∂r + b21(ζ)

∂p∗2
∂θ

= �1(p
∗
1, p

∗
2, ζ

∗) + �2(p
∗
1, p

∗
2, ζ
∗),

b22(ζ)
∂p∗2
∂r + b21(ζ)

∂p∗2
∂θ − b12(ζ)

∂p∗1
∂r − b11(ζ)

∂p∗1
∂θ

= −�1(p
∗
1, p

∗
2, ζ

∗) + �2(p
∗
1, p

∗
2, ζ

∗),

p∗2 − p∗1 + d1(ζ)ζ
∗ − σd2(ζ)

∂2ζ∗

∂θ2 = �3(ζ
∗) on � , t > 0,

p∗1|t=0 = 0 on �1, p∗2|t=0 = 0 on �2, ζ∗|t=0 = 0 on J.

(2.8)

All symbols in (2.8) were seen in [12], especially, L i
∗ be principal part of L i

ζ
(i = 1, 2)

and (
�0

1(p
∗
1, ζ

∗), �0
2(p
∗
2, ζ

∗)
)

=
(
�ε

1, �
ε
2

)
|ε=0.

Since

d1(ζ) =
R0 + ζ0 −R∗
R+ ζ −R∗

∂p0
2

∂r
− R0 + ζ0 −R∗

R+ ζ −R∗
∂p0

1

∂r

∣∣∣∣∣
r=R0+ζ0

,

d2(ζ) =
R+ ζ

[(R+ ζ)2 + (∂ζ/∂θ)2]3/2
,

as already noted that the assumption ∂p0
2/∂r − ∂p0

1/∂r > 0 on � implies d1(ζ) > 0

at t = 0, and clearly bj2(ζ) > 0 at t = 0 (j = 1, 2).
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3. Proof of Theorem 2.1

In what follows, we shall prove that the solution of problem (2.8) is identical with

zero on some time interval [0, T∗] (0 < T∗ ≤ T ) in the same way as in [9, 11]. Once the

uniqueness of the solution to problem (2.6) is verified on [0, T∗], and the convergence

result holds on (0, T ∗] (Theorem 2.1 in [12]), then on (0,min{T∗, T ∗}] the solution of

the parabolic regularized problem converges to the solution of the original problem

along the full sequence, not the subsequence, that means, the existence result in [12]

is really improved.

In the rest, we prove the uniqueness of a solution to problem (2.8) by retracing

the arguments in [12], §4. Let (p∗1, p
∗
2, ζ

∗) be the solution of problem (2.8) on [0, T ]

satisfying

‖p∗1‖E2+α(Q1,T ) + ‖p∗2‖E2+α(Q1,T ) + ‖ζ∗‖
Ê4+α(JT )

≤ C1. (3.1)

Then, we have

Lemma 3.1. The following inequalities hold:

‖p∗1‖E2+α(Q1,t)
+ ‖p∗2‖E2+α(Q2,t)

+ ‖ζ∗‖
Ê4+α(�t)

≤ C2

(
‖�0

1(p
∗
1, ζ

∗)‖Eα(Q1,t)
+
∥∥�0

2(p
∗
2, ζ

∗)
∥∥
Eα(Q2,t)

+ ‖�∗(ζ∗)‖E1+α(�∗,t)

+ ‖�∗‖E2+α(�∗t ) + ‖�1(p
∗
1, p

∗
2, ζ

∗)‖E1+α(�t)

+ ‖�2(p
∗
1, p

∗
2, ζ

∗)‖E1+α(�t) + ‖�3(ζ
∗)‖E2+α(�t)

)
for t ∈ [0, T ]. (3.2)

Before proving inequality (3.2), we begin with demonstrating the uniqueness

of the solution. Applying (3.2) to the difference of two solutions (p∗1, p
∗
2, ζ

∗) and

(p∗∗1 , p
∗∗
2 , ζ

∗∗) to problem (2.8) satisfying (3.2) on [0, T ], we have the following in-

equality for t ∈ [0, T ]:

‖p∗1 − p∗∗1 ‖E2+α(Q1,t)
+ ‖p∗2 − p∗∗2 ‖E2+α(Q2,t)

+ ‖ζ∗ − ζ∗∗‖
Ê4+α(�t)

≤ C2

(∥∥�0
1(p
∗
1, ζ

∗)− �0
1(p
∗∗
1 , ζ

∗∗)
∥∥
Eα(Q1,t)

+
∥∥�0

2(p
∗
2, ζ

∗)− �0
2(p
∗∗
2 , ζ

∗∗)
∥∥
Eα(Q2,t)

+ ‖�∗(ζ∗)− �∗(ζ∗∗)‖E1+α(�∗,t) + ‖�1(p
∗
1, p

∗
2, ζ

∗)− �1(p
∗∗
1 , p

∗∗
2 , ζ

∗∗)‖E1+α(�t)

+ ‖�2(p
∗
1, p

∗
2, ζ

∗)− �2(p
∗∗
1 , p

∗∗
2 , ζ

∗∗)‖E1+α(�t) + ‖�3(ζ
∗)− �3(ζ

∗∗)‖E2+α(�t)

)
. (3.3)

In the same way as the last part in § 5, [12], with the help of the interpolation

inequalities, the term in the parenthesis of the right hand side of (3.3) is found to

be bounded from above by

(β+Cβt
χF (4C1M))(‖p∗1−p∗∗1 ‖E2+α(Q1,t)

+‖p∗2−p∗∗2 ‖E2+α(Q2,t)
+‖ζ∗−ζ∗∗‖

Ê4+α(�t)
)

on [0, T ] with any β > 0; Cβ > 0 is a constant depending on β non-increasingly;

χ > 0 is a constant depending on α; F (·) is a polynomial in its argument; M is a

constant satisfying

∥∥(�0
1(0, 0), �0

2, �∗(0), �∗, �1(0, 0, 0), �2(0, 0, 0), �3(0)
)∥∥

HT
≤M,
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where

HT = E
0

α(Q1,T )× E
0

α(Q2,T )× E
0

1+α(�∗,T )× E
0

2+α(� ∗T )

× E
0

1+α(�T )× E
0

1+α(�T )× E
0

2+α(�T ).

Substituting this for the right hand side of (3.3), we get the inequality for any

t ∈ [0, T ]

‖p∗1 − p∗∗1 ‖E2+α(Q1,t)
+ ‖p∗2 − p∗∗2 ‖E2+α(Q2,t)

+ ‖ζ∗ − ζ∗∗‖
Ê4+α(�t)

≤ C2 (β + Cβt
χF (4C1M))

× (‖p∗1 − p∗∗1 ‖E2+α(Q1,t)
+ ‖p∗2 − p∗∗2 ‖E2+α(Q2,t)

+ ‖ζ∗ − ζ∗∗‖
Ê4+α(�t)

).

Now, choose first β = 1/(4C2), and then

T∗ = (4C2CβF (4C1M))−1/χ(≤ T ).

Therefore, we have

‖p∗1 − p∗∗1 ‖E2+α(Q1,t)
+ ‖p∗2 − p∗∗2 ‖E2+α(Q2,t)

+ ‖ζ∗ − ζ∗∗‖
Ê4+α(�t)

≤ 1

2
(‖p∗1 − p∗∗1 ‖E2+α(Q1,t)

+ ‖p∗2 − p∗∗2 ‖E2+α(Q2,t)
+ ‖ζ∗ − ζ∗∗‖

Ê4+α(�t)
)

for any t ∈ [0, T∗], which means (p∗1, p
∗
2, ζ

∗) = (p∗∗1 , p
∗∗
2 , ζ

∗∗) in E2+α(Q1,T∗) ×
E2+α(Q2,T∗) × Ê4+α(�T∗). Consequently, the solution (p1, p2, ζ) to problem (2.6)

is clearly unique on [0, T∗].

3.1. Auxiliary Problems. We begin with studying the following auxiliary

linear problem:





L 1
∗ u1 = φ1 in �1, t > 0, L 2

∗ u2 = φ1 in �2, t > 0,
∂u1

∂r = ψ∗ on �∗, t > 0, u2 = ψ∗ on � ∗, t > 0,
∂̺
∂t + b12(ζ)

∂u1

∂r + b22(ζ)
∂u2

∂θ = ψ1 + ψ2, b22(ζ)
∂u2

∂θ − b12(ζ)∂u1

∂r = −ψ1 + ψ2,

u2 − u1 + d1(ζ)̺− σd2(ζ)
∂2̺
∂θ2 = ψ3 on � , t > 0,

u1|t=0 = 0 on �1, u2|t=0 = 0 on �2, ̺|t=0 = 0 on J

(3.4)

for given φ1, φ2, ψ∗, ψ∗, ψ1, ψ2, ψ3 under the conditions b12 > 0, b22 > 0, d1 > 0,

d2 > 0 and satisfying the compatibility conditions. First, in place of problems (4.2)–

(4.5) in [12], we study four model problems corresponding to the case ε = 0 in [12]

in the whole- and half-spaces:

L u = f(x, t) (x ∈ R2, t > 0), u|t=0 = 0; (3.5)

L u = f(x, t)
(
x ∈ R2

+, t > 0
)
, u|x2=0 = g∗, u

∣∣
t=0

= 0; (3.6)

L u = f(x, t)
(
x ∈ R2

+, t > 0
)
,

∂u

∂x2

∣∣∣∣
x2=0

= g∗, u|t=0 = 0; (3.7)
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



L +u+ = 0
(
x ∈ R2

+, t > 0
)
, L −u− = 0 (x ∈ R2

−, t > 0),

∂̺
∂t + b

+ ∂u+

∂x2
+ b

− ∂u−

∂x2
|x2=0 = g1(x1, t), b

+ ∂u+

∂x2
− b− ∂u−

∂x2

∣∣
x2=0

= g2(x1, t),

u+ − u− + d1̺− σd2
∂2̺
∂x2

1

∣∣
x2=0

= g3(x1, t), (u+, u−, ̺)|t=0 = 0.

(3.8)

In (3.5)–(3.8) alike (4.2)–(4.5) in [12], we can assume, without loss of generality, that

L = L± = � by changing the independent variables (cf. [17]), and b
±

, d1 and d2

are positive constants. Then, the solutions to problems (3.5)–(3.7) for L = � are

given by

u(x, t) =

∫

R2

�0(x− y)f(y, t) dy;

u(x, t) =

∫

R2
+

G0(x− y)f(y, t) dy +

∫

R

G0(x1 − y1, x2)g
∗(y1, t) dy1;

u(x, t) =

∫

R2
+

N0(x− y)f(y, t) dy +

∫

R

N0(x1 − y1, x2)g∗(y1, t) dy1,

respectively, where

�0(x) =
1

2π
log |x|, G0(x1, x2) = �0(x1, x2)− �0(x1,−x2),

N0(x1, x2) = �0(x1, x2) + �0(x1,−x2).

The well-known estimates of the volume potential (cf. [18]) yield the estimates for

the solutions of problems (3.5)–(3.7)




‖u‖E2+α(R2
t )
≤ C3‖f‖Eα(R2

t )
,

‖u‖E2+α(R2
+,t)
≤ C3(‖f‖Eα(R2

+,t)
+ ‖g∗‖E2+α(Rt)),

‖u‖E2+α(R2
+,t)
≤ C3(‖f‖Eα(R2

+,t)
+ ‖g∗‖E1+α(Rt)).

(3.9)

Concerning problem (3.8), let us consider the equations for u+ and u− with a given

∂̺/∂t. Since boundary conditions (3.8)3 and (3.8)4 are written as

∂u+

∂x2

∣∣∣∣
x2=0

=
1

2b+

(
g1 + g2 −

∂̺

∂t

)
,

∂u−

∂x2

∣∣∣∣
x2=0

=
1

2b−

(
g1 − g2 −

∂̺

∂t

)
, (3.10)

u+ and u− are the solutions of problems (3.8)1, (3.10)1 and (3.8)2, (3.10)2, respec-

tively. Hence, estimate (3.9)3 gives the following one:

‖u+‖E2+α(R2
+,T ) + ‖u−‖E2+α(R2

−,T )

≤ C4

(
‖(g1, g2)‖E1+α(RT ) +

∥∥∥∥
∂̺

∂t

∥∥∥∥
E1+α(RT )

)
. (3.11)

Next, the solution ̺ in problem (3.8) is given by the inverse Fourier–Laplace trans-

formation as follows:

̺(x1, t) = (FL )−1

[
1

s+ �0

]
∗
(
g1−

b
+ − b−

b
+

+ b
− g2+

2b
+
b
−

b
+

+ b
− (FL )−1[|ξ|g̃3]

)
, (3.12)
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�0 =
2b

+
b
−

b
+

+ b
− |ξ|(d1 + σd2|ξ|2).

Here ∗ means a convolution with respect to (x1, t). Retracing the arguments in

[11, 19] and assuming as aforesaid 2b
+
b
−
d1/(b

+
+b
−

) = 1 and 2b
+
b
−
σd2/(b

+
+b
−

) =

d
′
, we have for t > 0

Zσ
0 (x1, t) ≡ (FL )−1

[
1

s+ �0(s, ξ)

]
=

1

2π

∞∫

0

Ẑσ
0 (ξ, t) cos(x1ξ) dξ, (3.13)

Ẑσ
0 (ξ, t) =

∞∫

0

L
−1[e−τ(s+|ξ|(1+ξ2))] dτ

=

∞∫

0

δ(t− τ) ∗
t
e−τ |ξ| (1+d′ξ2) δ(t) dτ = e−t|ξ|(1+d′ξ2),

where ∗
t

means a convolution with respect to t. Here we used the same calculations

in [12], §4 with ε = 0. For the estimate of Zσ
0 (x1, t) in (3.13) we can assume x1 > 0

without loss of generality. Letting ξ0 = 0 and ξn (n = 1, 2, 3, . . . ) be the points of

zeros of cos(ξx1) = 0 (ξn < ξn+1), we have

|Zσ
0 (x1, t)| =

∣∣∣∣∣∣
1

2π

∞∫

0

Ẑσ
0 (ξ, t) cos(ξx1) dξ

∣∣∣∣∣∣

≤ 1

2π

∞∑

n=0





ξ2n+1∫

ξ2n

e−t|ξ|(1+d′ξ2) cos(ξx1) dξ −
ξ2n+2∫

ξ2n+1

e−t|ξ|(1+d′ξ2) cos(ξx1) dξ





≤ 1

2π

(
t

x2
1 + t2

+
4x1

x2
1 + t2

1

sinh(πt/(2x1))

)
. (3.14)

The derivatives of Zσ
0 (x1, t) are analogously estimated, so that we get

Lemma 3.2. The following inequalities hold:

|Zσ
0 (x1, t)| ≤ C5

1√
x2

1 + t2
,

∣∣∣∣
∂

∂t
Zσ

0 (x1, t)

∣∣∣∣+
∣∣∣∣
∂

∂x1
Zσ

0 (x1, t)

∣∣∣∣ ≤ C5
1

x2
1 + t2

,

∣∣∣∣
∂2

∂t∂x1
Zσ

0 (x1, t)

∣∣∣∣+
∣∣∣∣
∂2

∂x2
1

Zσ
0 (x1, t)

∣∣∣∣ ≤ C5
1

(x2
1 + t2)3/2

.

(3.15)

Lemma 3.2 implies the estimates on ̺.

Lemma 3.3. The following inequalities hold:

‖̺‖E2+α(RT ) +

∥∥∥∥
∂2̺

∂x2
1

∥∥∥∥
E2+α(RT )

≤ C6

(
‖(g1, g2)‖E1+α(RT ) + ‖g3‖E2+α(RT )

)
,

〈
∂2̺

∂x2
1

〉(α)

t,RT

≤ C6

(〈
∂g1

∂x1

〉(α)

x,RT

+

〈
∂g2

∂x1

〉(α)

x,RT

+

[
∂g3

∂x1

](1+α,(1+α)/2)

RT

)
.

(3.16)
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Proof. Each estimate in (3.16) by virtue of Lemma 3.2 is deduced from the

same way as in [12], § 4, so that we draw in outline only. First, from Lemma 3.2 it

follows

lim
t→0

∞∫

−∞

Zσ
0 (x1 − ξ, t)f(ξ) dξ = f(x1) (3.17)

for any bounded continuous function f(x1). Introduce the notation

w(x1, t) = (Zσ
0 ∗ g)(x1, t) =

t∫

0

dτ

∞∫

−∞

Zσ
0 (x1 − y, t− τ)g(y, τ) dy,

wh(x1, t) =

t−h∫

0

dτ

∞∫

−∞

Zσ
0 (x1 − y, t− τ)g(y, τ) dy (h > 0).

For wh it is clear to hold

∂

∂t
wh(x1, t) =

t−h∫

0

dτ

∞∫

−∞

∂

∂t
Zσ

0 (x1 − y, t− τ)(g(y, τ)− g(x1, τ)) dy

+

t−h∫

0

g(x1, τ) dτ

∞∫

−∞

∂

∂t
Zσ

0 (x1 − y, t− τ) dy +

∞∫

−∞

Zσ
0 (x1 − y, h)g(y, t− h) dy.

Making use of (3.17), the explicit formula derived from Ẑσ
0 and the estimates in

Lemma 3.2, we obtain, after passing to the limit h→ 0,

∂

∂t
w(x1, t) =

t∫

0

dτ

∞∫

−∞

∂

∂t
Zσ

0 (x1 − y, t− τ)(g(y, τ)− g(x1, τ)) dy

+

t∫

0

g(x1, τ) dτ

∞∫

−∞

∂

∂t
Zσ

0 (x1 − y, t− τ) dy + g(x1, t). (3.18)

Analogously, ∂2wh/∂x
2
1 as h→ 0 yields

∂2

∂x2
1

w(x1, t) =

t∫

0

dτ

∞∫

−∞

∂

∂x1
Zσ

0 (x1 − y, t− τ)
(
∂

∂y
g(y, τ) − ∂

∂x1
g(x1, τ)

)
dy. (3.19)

Since each term in (3.18) can be estimated as the respective term of ∂w/∂t in [12],

§4 by tracing the arguments in [17], we get

〈
∂w

∂t

〉(α)

x,RT

≤ C7〈g〉(α)
x,RT

,

〈
∂w

∂t

〉(α)

t,RT

≤ C7

(
〈g〉(α)

x,RT
+ 〈g〉(α)

t,RT

)
. (3.20)
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From (3.18) we can derive

∂2

∂t∂x1
w(x1, t) =

t∫

0

dτ

∞∫

−∞

∂

∂t
Zσ

0 (x1 − y, t− τ)
(
∂

∂y
g(y, τ)− ∂

∂x1
g(x1, τ)

)
dy

+

t∫

0

∂

∂x1
g(x1, τ) dτ

∞∫

−∞

∂

∂t
Zσ

0 (x1 − y, t− τ) dy +
∂

∂x1
g(x1, t),

which leads to the estimates
〈
∂2w

∂t∂x1

〉(α)

x,RT

≤ C8

〈
∂g

∂x1

〉(α)

x,RT

,

〈
∂2w

∂t∂x1

〉(α/2)

t,RT

≤ C8

〈
∂g

∂x1

〉(α)

RT

,

[
∂2w

∂t∂x1

](α,α/2)

RT

≤ C8

[
∂g

∂x1

](α,α/2)

RT

.

(3.21)

In order to estimate ̺ in (3.12), the following representation of (FL )−1[|ξ|g̃3] is

used:

(FL )−1[|ξ|g̃3](x1, t) = 2
∂2

∂x2
2

t∫

0

dτ

∞∫

−∞

�0(x1 − y, x2) g3(y, τ) dy

∣∣∣∣
x2=0

.

This formula gives the estimate

〈(FL )−1[|ξ|g̃3](·, t)〉
(α)
R
≤ C9

〈
∂g3

∂x1
(·, t)

〉(α)

R

(see [7, 20]). Equation (3.12) and estimates (3.20), (3.21) lead to
∥∥∥∥
∂̺

∂t

∥∥∥∥
E1+α(RT )

≤ C10

(
‖(g1, g2)‖E1+α(RT ) + ‖g3‖E2+α(RT )

)
. (3.22)

The same arguments can be applied to (3.19) with the help of Lemma 3.2 and the

similar estimates to (3.20), (3.21), so that we have

∥∥∥∥
∂2w

∂x2
1

∥∥∥∥
Eα(RT )

≤ C11

∥∥∥∥
∂g

∂x1

∥∥∥∥
Eα(RT )

,

〈
∂2w

∂x2
1

〉(α)

t,RT

≤ C11

〈
∂g

∂x1

〉(α)

x,RT

. (3.23)

Since the lower order derivatives of w are easily estimated, we deduce from (3.12)

that

‖̺‖E2+α(RT ) ≤ C12 (‖(g1, g2)‖E1+α(RT ) + ‖g3‖E2+α(RT )),
〈
∂2̺

∂x2
1

〉(α)

t,RT

≤ C12

(〈
∂g1

∂x1

〉(α)

x,RT

+

〈
∂g2

∂x1

〉(α)

x,RT

+

[
∂g3

∂x1

](1+α,(1+α)/2)

RT

)
.

(3.24)

For the further regularity of ̺ we make use of the representation derived from (3.12)

∂2̺

∂x2
1

= − 1

σd2

b
+

+ b
−

2b
+
b
−

(
(FL )−1

[
1

|ξ|

]
∗ g1 −

b
+ − b−

b
+
b
− (FL )−1

[
1

|ξ|

]
∗ g2

+
2b

+
b
−

b
+

+ b
− g3 − (FL )−1

[
1

|ξ|

]
∗ ∂̺
∂t

)
+

d1

σd2

̺,
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from which it follows
∥∥∥∥
∂2̺

∂x2
1

∥∥∥∥
E2+α(RT )

≤ C13

(
‖(g1, g2)‖E1+α(RT ) + ‖(g3, ̺)‖E2+α(RT ) +

∥∥∥∥
∂̺

∂t

∥∥∥∥
E1+α(RT )

)
(3.25)

by applying the arguments in [7] again and the estimate of

(FL )−1

[
1

|ξ|

]
∗ g(x1, t) =

t∫

0

dτ

∞∫

−∞

�0(x1 − y, 0)g(y, τ) dy.

Estimates (3.22), (3.24) and (3.25) imply (3.16). �

In conclusion, estimate (3.11) and Lemma 3.3 lead to

Lemma 3.4. Let b
±

, d1 and d2 be positive constants. Assume that g1, g2 ∈
E
0

1+α(RT ), and g3 ∈ E
0

2+α(RT ) with α ∈ (0, 1) and any T > 0. Then the unique

solution

(u+, u−, ̺) ∈ E
0

2+α(R2
+,T )× E

0

2+α(R2
−,T )× Ê

0

4+α
(RT )

to problem (3.8) satisfies the inequality

‖u+‖E2+α(R2
+,T

) + ‖u−‖E2+α(R2
−,T

) + ‖̺‖
Ê4+α,α/2(RT )

≤ C14(‖(g1, g2)‖E1+α(RT ) + ‖g3‖E2+α(RT )) (3.26)

with a positive constant C14.

The solvability of problem (3.4) is proved by constructing the regularizer by

analogy with the case of free boundary problem for hydrodynamic equations in [21]

(cf. [20, 22]) on the basis of Lemma 3.4 and estimate (3.9). Thus, we have

Lemma 3.5. For α ∈ (0, 1) and any T > 0. Then the unique solution to

problem (3.4)

(u1, u2, ̺) ∈ E
0

2+α(Q1,T )× E
0

2+α(Q2,T )× Ê
0

4+α
(�T )

satisfies inequality

‖u1‖E2+α(Q1,T ) + ‖u2‖E2+α(Q2,T ) + ‖̺‖
Ê4+α(�T )

≤ C15‖(φ1, φ2, ψ∗, ψ
∗, ψ1, ψ2, ψ3)‖HT (3.27)

with some positive constant C15.

Proof of Lemma 3.1. In the remaining part we prove Lemma 3.1. For this

purpose it is effective to use the similar arguments to those for the case ε > 0.

Obviously problem (2.8) for (p∗1, p
∗
2, ζ

∗) is transformed into the form (3.4) for

(u1, u2, ̺) by putting (p∗1, p
∗
2, ζ
∗) = (u1, u2, ̺) and

�0
1(p
∗
1, ζ

∗) = φ1, �0
2(p
∗
2, ζ

∗) = φ2, �∗(ζ
∗) = ψ∗, �∗ = ψ∗,
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�1(p
∗
1, p

∗
2, ζ

∗) = ψ1, �2(p
∗
1, p

∗
2, ζ

∗) = ψ2, �3(ζ
∗) = ψ3

with given

(p∗1, p
∗
2, ζ

∗) ∈ E
0

2+α(Q1,T )× E
0

2+α(Q2,T )× Ê
0

4+α
(�T ).

By noting the fact

(�0
1(p
∗
1, ζ

∗), �0
2(p
∗
2, ζ

∗), �∗(ζ
∗), �∗, �1(p

∗
1, p

∗
2, ζ

∗), �2(p
∗
1, p

∗
2, ζ

∗), �3(ζ
∗))|t=0

= (0, 0, 0, 0, 0, 0),

Lemma 3.5 leads to the assertion in Lemma 3.1.

In conclusion, Theorem 2.1 is confirmed.
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МАТЕМАТИЧЕСКАЯ МОДЕЛЬ ДИНАМИКИ

УГЛЕРОДА БОЛОТНЫХ ЭКОСИСТЕМ

С УЧЕТОМ КЛИМАТИЧЕСКИХ ФАКТОРОВ

С. П. Семёнов,

E. Ю. Дюкарев, А. О. Ташкин

Аннотация. Предложена математическая модель, описывающая углеродный цикл
в болотных экосистемах северных регионов. Модель описывает концентрацию уг-
лерода в двух ключевых резервуарах: Live (живые растения-биомасса) и Mort (от-
мершие органические материалы). Основные процессы, учтенные в модели, вклю-
чают фотосинтез, автотрофное и гетеротрофное дыхание, отмирание биомассы и
вынос углерода грунтовыми водами. Процессы формализованы с учетом темпера-
туры и уровня грунтовых вод. Включение в модель уровня грунтовых вод поз-
воляет учитывать различия между аэробным и анаэробным процессами разложе-
ния органики. Проведены численные расчеты на модельных данных. При низких
температурах и высоком уровне грунтовых вод гетеротрофное дыхание замедляет-
ся, создаются анаэробные условия, что способствует накоплению углерода в почве.
В условиях пониженного уровня воды доступ кислорода к органическому матери-
алу увеличивается, что стимулирует аэробное разложение и увеличивает выбросы
CO2. В отличие от моделей, ориентированных на глобальные процессы, данная
работа учитывает специфику климатических, гидрологических и биохимических
условий северных болот, что особенно важно для моделирования углеродного ба-
ланса в холодных регионах.
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Ключевые слова: математические модели, динамика углерода, болотные экоси-
стемы, водно- болотистые угодия, углерод, численные эксперименты, окружающая
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Введение

Стабильность содержания парниковых газов в атмосфере и глобального

климата существенно зависит от состояния болотных экосистем, играющих клю-

чевую роль в поглощении углекислого газа из атмосферы и накоплении его в

виде торфа. Значимую роль в углеродном обмене болотных экосистем игра-

ют температура и уровень грунтовых вод. Исследования в северных болотах

Западной Сибири и других холодных регионах, таких как канадская тундра,

демонстрируют значительные накопления углерода благодаря низким темпера-

турам и высоким уровням вод, что замедляет процессы разложения. Тем не

Работа выполнена при финансовой поддержке Российского научного фонда и правитель-
ства Ханты-Мансийского автономного округа-ЮГРЫ (грант № 22-11-20031).
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менее в условиях глобального потепления экосистемы холодных регионов стал-

киваются с риском изменения водного режима, что вызывает вопросы о дол-

госрочном углеродном балансе. Понижение уровня грунтовых вод в болотных

экосистемах, характерное для ряда регионов, приводит к тому, что процессы

разложения органического вещества ускоряются за счет увеличения аэрируе-

мого слоя почвы. Это увеличивает выбросы углекислого газа, что может в

значительной мере повлиять на климатические изменения. Снижение уров-

ня грунтовых вод стимулирует процессы, приводящие к увеличению выбросов

CO2, превращая болота из «углеродных поглотителей» в «углеродные источни-

ки». Болотные экосистемы, являясь важной частью глобального углеродного

баланса, могут значительно влиять на концентрацию CO2 в атмосфере. Можно

выделить ряд работ, посвященных моделированию углеродного обмена в бо-

лотах с учетом уровня грунтовых вод. Например, в работе [1] описываются

пространственно-временные модели для анализа связи между уровнем грунто-

вых вод (WTD) и углеродными потоками, демонстрируя, что высокий уровень

воды способствует накоплению органического углерода (SOC) за счет замедлен-

ного разложения. В исследовании [2] показано, что глубина торфа и уровень

грунтовых вод определяют углеродный баланс, и небольшие изменения в осад-

ках или температуре могут превратить торфяник из накопителя в источник

углерода. В [3] представлена модель McGill Wetland Model (MWM) для иссле-

дования углеродного обмена в торфяниках c учетом биогеохимической струк-

туры, которая была протестирована на данных болота Mer Bleue в Онтарио.

В исследовании [4] применяется модель смешанных эффектов для изучения уг-

леродных потоков в альпийских торфяниках, показывающая, что повышение

уровня грунтовых вод усиливает анаэробные процессы и выбросы метана, а по-

нижение усиливает аэробное разложение и выбросы CO2. В [5] представлена

реакционно-диффузионная модель, анализирующая устойчивость углеродного

баланса торфяников Западной Сибири при различных сценариях климатиче-

ских изменений (RCP-2.6 и RCP-8.5). В [6] разработана модификация модели

ORCHIDEE для северных торфяников, где деление на кислородную и бескисло-

родную зоны позволяет учитывать метаногенные процессы и углеродный баланс

в зависимости от уровня воды. В [7] представлена глобальная модель углерод-

ного цикла ISBA-CTRIP, учитывающая перемещение органического углерода в

речных системах, а также лесные пожары и изменение землепользования. В ра-

боте [8] изучается влияние уровня грунтовых вод на углеродный и парниковый

балансы восстановленных торфяных экосистем. В [9] моделируется утечка CO2

из водоносных горизонтов, анализируется удержание CO2 в подземных соле-

вых слоях. В исследовании [10] описывается влияние уровня грунтовых вод и

осадков на валовую первичную продукцию (GPP) и углеродный баланс в за-

сушливых зонах. Динамическое моделирование углеродного цикла в болотных

экосистемах — критически важный инструмент, позволяющий оценить влия-

ние различных климатических и гидрологических факторов на обмен углерода

и прогнозировать потенциальные изменения в этих экосистемах. Компьютер-
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ные модели позволяют с высокой точностью анализировать влияние факторов

внешней среды на процессы фотосинтеза, дыхания и разложения органическо-

го углерода. Это особенно актуально для северных болотных экосистем, где

холодный климат способствует накоплению углерода, замедляя процессы раз-

ложения органического вещества торфа. В таких условиях потепление может

значительно изменить баланс, превращая болота из углеродных поглотителей

в источники углекислого газа. Предлагаемая работа продолжает исследование

углеродного цикла в болотных экосистемах северных регионов, начатое авто-

рами в [11, 12], построена математическая модель, которая отражает процессы,

происходящие в углеродном цикле, с учетом динамики уровня грунтовых вод

и температуры. В среде Matlab разработана компьютерная модель, сплани-

рованы и проведены на модельных данных численные эксперименты, которые

показывают хорошую чувствительность модели к изменению уровня грунтовых

вод.

1. Моделирование динамики углерода

с учетом уровня грунтовых вод

В работах [11, 12] предполагалось, что углерод в локальных болотных экоси-

стемах сосредоточен в двух резервуарах: Live иMort. Live объединяет углерод,

находящийся в листве, стволах, корнях и других живых частях растений, то-

гда как Mort представляет собой отмершие частицы, включая опад, подстилку,

гумус и т. п. Модель охватывает несколько взаимосвязанных процессов, влия-

ющих на обмен углерода с атмосферой, включая фотосинтез (валовая первич-

ная продукция, GPP), дыхание растений (автотрофное дыхание, Ra), а также

процессы отмирания биомассы (PM) и гетеротрофное дыхание почвенных орга-

низмов (Rh), возвращающих углерод обратно в атмосферу в виде CO2. Кроме

того, учитывается вынос углерода (Wtl) с грунтовыми водами в ручьи, реки

и далее в океан. Одним из наиболее значимых факторов в модели является

температура, функции f(T ), g(T ), h(T ) определяют процессы фотосинтеза, ав-

тотрофное и гетеротрофное дыхания. Выбор этих функций обоснован в [12].

Для моделирования зависимости углеродного обмена от уровня грунтовых вод

часто используется функция насыщения, которая отражает влияние грунтовых

вод на процессы разложения органического вещества и объемов гетеротрофно-

го дыхания. Далее обозначено: wtl(t) — текущий уровень грунтовых вод, со-

ответственно, W (wtl) — функция насыщения. Обычно уровень грунтовых вод

измеряют в см или м относительно фиксированных референсных точек на по-

верхности болота, причем уровни, расположенные ниже точки отсчета, берутся

со знаком минус, соответственно выше — со знаком плюс. Для моделирования

функции насыщения предлагается использовать логистическую функцию вида

W (wtl) =
1

1 + e−α(wtl−wmean)
. (1)

График функции изменяется на промежутке 0 до 1. При малых значениях wtl

функция W (wtl) близка к 0, что соответствует аэробным условиям с высокими
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объемами гетеротрофного дыхания, при больших значениях wtl функция насы-

щения близка к 1, что соответствует анаэробным условиям, где гетеротрофное

дыхание замедляется, уменьшается выделение CO2 и увеличивается накопле-

ние углерода в мортомассе. Параметр wmean соответствует среднему уровню

грунтовых вод для наблюдаемой экосистемы. Использование функций насы-

щения вида (1), описывающих зависимость процессов разложения органики от

уровня грунтовых вод, является распространенным подходом в моделировании

углеродного цикла болотных экосистем (см., например, работы [2, 13]). Эта же

функция используется для моделирования выноса органического углерода из

почвы гидрологическим потоком: при высоком уровне грунтовых вод увели-

чивается вынос углерода, а при понижении wtl вынос углерода уменьшается.

В данной работе гетеротрофное дыхание Rh выражается с учетом функции на-

сыщения следующим образом:

Rh = d · h(T ) · (1−W (wtl)) · y.

Система дифференциальных уравнений, предлагаемая в данной работе, ко-

торая далее будет называться базовой математической моделью динамики уг-

лерода с учетом климатических факторов для локальных болотных экосистем,

принимает вид

dx

dt
= a · f(T ) · x− b · g(T ) · x2 − c · x

x+Mp
· y, (2)

dy

dt
=
s · x
j
· y − d · h(T ) · y2 −Wtl · y, (3)

x(0) = x0, y(0) = y0, (4)

где t — время (дни), T = T (t) — температура, x(t), y(t) — искомое количе-

ство углерода в момент времени t соответственно в резервуарах Live и Mort.

Температурные функции f(T ), g(T ), h(T ) определяют процессы фотосинтеза,

автотрофное и гетеротрофное дыхание. Переменные и параметры модели ранее

описаны авторами в работе [12]. Следуя [12], искомыми величинами являют-

ся безразмерные относительные запасы углерода x(t), y(t), при этом считается,

что согласование остальных размерностей обеспечивается неотрицательными

параметрами модели a, b, c, d, s, j, Mp.

2. Компьютерная модель и результаты

численных экспериментов

Компьютерная реализация математической модели и ее дальнейшие ис-

следования были выполнены в вычислительной среде MatLab. Единицей мо-

дельного времени выбран день, а базовым наблюдаемым периодом — год (365

дней). В описываемых экспериментах использовался массив суточных темпера-

тур, смоделированный в работе [12]. В той же работе приведено обоснование на

основе модели О′Нейла выбора температурных зависимостей f(T ), g(T ), h(T )
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(а) (б)

Рис 1. (а) Модельная динамика годового уровня грунтовых вод. (б) Функция
насыщения, wmean = −7.8588.

Рис. 2. Динамика относительных запасов углерода.

для процессов фотосинтеза и дыхания. Аналогично тому, как это было сдела-

но для модельной температуры в [12], была сгенерирована динамика годового

уровня грунтовых вод (wtl) с максимумом весной (+5 на 125 день), миниму-

мом осенью (−15 на 230 день) и средним значением wmean = −7.8588. Массив

грунтовых вод учитывает сезонные факторы, такие как таяние снега весной, ис-

парение летом и осадки в осенний период. На рис. 1 приведен сгенерированный

массив wtl и соответствующая функция насыщения.

Для численных экспериментов была использована библиотека функций Mat-

lab, которая включает универсальный решатель ODE45 для приближенного ре-

шения системы дифференциальных уравнений. ODE45 реализует метод Рунге-

Кутта 4-го и 5-го порядков точности и отличается тем, что автоматически адап-
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Рис. 3. Динамика относительных запасов углерода в зависимости от годичных
колебаний уровней грунтовых вод. Отметка 0 соответствует wmean = −7.8588.

тирует шаг интеграции в процессе вычислений. Однако в описываемых экспе-

риментах шаг задавался принудительно, равный восьмой части суток. Пара-

метры модели были откалиброваны так, чтобы на модельной динамике годо-

вого уровня грунтовых вод прирост углерода в мортомассе составил 0.02% в

год. Количественные значения параметров приведены в подписях к рисункам.

Температурные функции в точности такие же, как в [12].

На рис. 2 приведены результаты расчетов динамики углерода для одного

года. Динамика углерода в живой биомассе определяется в основном темпера-

турным режимом фотосинтеза: при высоких летних температурах фотосинтез

замедляется, а при низких температурах прекращается. Соответственно умень-

шается количество углерода в пуле Live, это хорошо видно на графике для

июльских дней и для зимних месяцев. Изменение углерода в мортомассе в ос-

новном определяется уровнем грунтовых вод. Локальные максимумы на рис. 2

для графика пула Mort соответствуют в первом случае повышению грунтовых

вод, вызванных весенним подтоплением, и во втором случае — периодом дождей

осенью. Интересным представляется исследование процесса накопления угле-

рода при различных режимах грунтовых вод, в том числе при затоплении и при

засухе. На рис. 3 приведен график зависимости относительного годового при-

роста углерода в процентах, на горизонтальной оси отложены приросты уровня

грунтовых вод относительно базового (wmean = −7.8588), а по вертикальной от-

кладываются величины относительного прироста углерода. Зависимости носят

качественный характер.

Заключение и выводы

Проведенное исследование динамики углерода в болотных экосистемах на

основе модели, учитывающей уровень грунтовых вод и температуру, существен-
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но расширяет возможности прогнозирования углеродного баланса в подобных

экосистемах, играющих важнейшую роль в глобальном балансе углерода. Бо-

лотные экосистемы, благодаря способности накапливать углерод в виде органи-

ческого вещества, в первую очередь торфа, играют ключевую роль в удержании

значительных объемов углерода. Исследование показало, что уровень грунто-

вых вод является критическим фактором, определяющим углеродный баланс в

болотных экосистемах. Использование функции насыщения грунта водой поз-

волило смоделировать переход между аэробными и анаэробными условиями,

что дало возможность предсказать, при каких условиях болота могут перехо-

дить от состояния накопления углерода к состоянию его интенсивного выделе-

ния в виде CO2 (см. рис. 3). Данная модель демонстрирует высокую чувстви-

тельность болотных экосистем к гидрологическим изменениям и подтверждает,

что они могут выступать как значимыми углеродными стоками, так и значи-

мыми источниками выбросов при изменении условий. Дальнейшее развитие

модели с учетом потоков метана позволит оценить полный баланс парниковых

газов в болотных экосистемах и прогнозировать их радиационное воздействие

на климат. В практическом аспекте данная работа подчеркивает важность со-

хранения болотных экосистем и предлагает рекомендации по их устойчивому

управлению. Результаты моделирования могут использоваться для разработ-

ки природоохранных мер, таких как регулирование уровня грунтовых вод, ми-

нимизация антропогенного воздействия и защита углеродных запасов болот.

Включение интерактивных интерфейсов и визуализаций для анализа динами-

ки углерода также имеет значительный потенциал для образовательных и ис-

следовательских программ, предоставляя интуитивный доступ к результатам

моделирования для ученых и природоохранных специалистов. Разработанная

модель углубляет понимание углеродного цикла в болотных экосистемах и яв-

ляется важным инструментом для анализа и прогнозирования их реакции на

изменения климата.
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Abstract: This study presents a mathematical model describing the carbon cycle in
wetland ecosystems of northern regions. The model characterizes carbon concentration
in two key reservoirs: Live (living plants and biomass) and Mort (dead organic matter).
The primary processes incorporated in the model include photosynthesis, autotrophic
and heterotrophic respiration, biomass decay, and carbon transport via groundwater.
These processes are formalized with respect to temperature and groundwater level. The
inclusion of groundwater level allows us to consider of differences between aerobic and
anaerobic organic matter decomposition processes. Numerical simulations were per-
formed using model data. Under conditions of low temperatures and high groundwater
levels, heterotrophic respiration is slowed, leading to the formation of anaerobic con-
ditions that favor the accumulation of carbon in the soil. In contrast, under reduced
water levels, increased oxygen availability to organic material stimulates aerobic decom-
position, resulting in higher CO2 emissions. Unlike models focused on global processes,
this work emphasizes the specific climatic, hydrological, and biochemical conditions of
northern wetlands, which is crucial for accurately modeling the carbon balance in cold

regions.
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ВИДОИЗМЕНЕННАЯ ЗАДАЧА

ДИРИХЛЕ ДЛЯ ВЫРОЖДАЮЩЕЙСЯ

ЭЛЛИПТИЧЕСКОЙ СИСТЕМЫ

А. М. Абдрахманов, Р. П. Абдрахманова

Аннотация. Рассматривается задача Дирихле, для которой доказано, что она
разрешима в классе ограниченных функций, получены регулярные решения в рас-
сматриваемой постановке.
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Ключевые слова: задача Дирихле, вырождающаяся эллиптическая система, ре-
гулярное в рассматриваемой области решение.

В 1948 г. А. В. Бицадзе построил пример эллиптической системы двух

уравнений второго порядка, для которой нарушается единственность решения

задачи Дирихле. Аналогично ведет себя и система
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∂

∂x1

(
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+
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)
= 0,
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)
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Будем рассматривать некоторое обобщение системы (1)
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(2)

Система (2) эллиптична везде, кроме x3 = 0 и x3 = λ, где она вырождается.

Систему (2) будем рассматривать в полупространстве E3+ = {(x1, x2, x3) :

x3 > 0}.
Задачу Дирихле будем рассматривать в следующей постановке: найти ре-

гулярное в области E3+ решение системы (2), удовлетворяющее условиям

u1|x3=0 = f1(x1, x2),

u2|x3=0 = f2(x1, x2),

u3|x3=0 = f3(x1, x2),

(3)
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где f1(x1, x2), f2(x1, x2), f3(x1, x2) достаточно гладкие функции.

Доказано, что задача Дирихле (2), (3) разрешима в классе ограниченных

функций, причем u1, u2 определяются единственным образом, а u3 — с точно-

стью до константы.
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MODIFIED PROBLEM FOR A DEGENERATE ELLIPTIC SYSTEM

A. M. Abdrakhmanov, R. P. Abdrakhmanova

Abstract: The Dirichlet problem is considered, for which it is proved that it is solvable in
the class of bounded functions, and regular solutions in the formulation under consideration are
obtained.
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КРАЕВАЯ ЗАДАЧА ДЛЯ ДРОБНО–ВОЛНОВОГО

УРАВНЕНИЯ С МЕНЯЮЩИМСЯ

НАПРАВЛЕНИЕМ ЭВОЛЮЦИИ

А. Н. Артюшин

Аннотация. Рассматривается дробно-волновое уравнение с меняющимся направ-
лением эволюции. По аналогии с обычной производной ставится краевая задача
в цилиндрической области. Доказано существование обобщенного решения. При
некоторых дополнительных предположениях на коэффициенты доказана теорема
единственности такого решения.

DOI: 10.25587/2411-9326-2025-1-92-93
Ключевые слова: дробно-волновое уравнение, меняющееся направление эволю-
ции.

Постановка задачи. Пусть T > 0, � ⊂ Rm — ограниченная область с

гладкой границей � = ∂�, Q = (0, T )× �, S = (0, T )× � , 0 < ν < 1. В цилин-

дре Q рассматривается смешанная задача для модельного уравнения с дробной

производной Герасимова — Капуто

∂νt (k(t, x)ut(t, x)) −�u(t, x) + γut(t, x) = f(t, x) (1)

с коэффициентом k(t, x) ∈ C1(Q) произвольного знака.

Случай уравнения дробной диффузии ранее был рассмотрен в работе [1].

В ней была указана некоторая постановка краевой задачи, дано определение

обобщенного решения и доказано его существование. При этом использовался

метод априорных оценок, использующий неравенства вида

T∫

0

ψ(v)Dν (kv) dt > C(‖v‖B).

Неравенства такого вида и их приложение может быть найдено в [2, с. 574, 576,

581, 639] (см. также библиографию в [1]).

Такая же техника используется при изучении дробно-волнового уравнения.

Как известно, при определенных условиях корректна следующая краевая зада-

ча для уравнения смешанного типа:

(k(t, x)ut(t, x))t −�u(t, x) + γut(t, x) = f(t, x),

u(t, x)|S = 0, u(0, x) = u0(x),
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ut(0, x) = u0(x), x ∈ �+
0 = {x | k(0, x) > 0},

ut(T, x) = u1(x), x ∈ �−T = {x | k(T, x) < 0}.
Оказывается, что аналогичная краевая задача корректна и для уравнения (1).

При умеренных требованиях на коэффициент k(t, x) доказывается существова-

ние обобщенного решения этой задачи. Если функции k(0, x), k(T, x) не меняют

знак, то такое решение единственно.

ЛИТЕРАТУРА

1. Artyuhsin A., Dzhamalov S. Differential equations with fractional derivatives and changing
direction of evolution // J. Math. Sci. 2023. V. 277, N 3. P. 366–374.

2. Gripenberg G., Londen S-O. Staffans O. Volterra integral and functional equations. Cam-
bridge: Camb. Univ. Press, 1990 (Cambridge Ocean Technology Series; V. 701).

Артюшин Александр Николаевич
Новосибирский государственный университет,
ул. Пирогова, 1, Новосибирск 630090
alexsp3@yandex.ru

RFACTIONAL WAVE EQUATION
WITH CHANGING DIRECTION OF EVOLUTION

A. N. Artyushin

Abstract: We study the fractional wave equation with changing direction of evolution. Ex-
istence and uniqueness theorems of a generalized solution are proven.

Keywords: fractional wave equation, changing direction of evolution.

Aleksandr N. Artyuhsin

Novosibirsk State University,
1 Pirogova St., Novosibirsk 630090, Russia



Математические заметки СВФУ
Январь—март, 2025. Том 32, № 1

УДК 517.957

РЕДУКЦИЯ СИНГУЛЯРНО ВОЗМУЩЕННОЙ

СИСТЕМЫ ИНТЕГРО–ДИФФЕРЕНЦИАЛЬНЫХ

УРАВНЕНИЙ В ЧАСТНЫХ ПРОИЗВОДНЫХ

А. А. Арчибасов

Аннотация. Рассматривается эволюционная модель ВИЧ, которая отражает ди-
намику популяций здоровых и зараженных клеток. Эта модель после введения
безразмерных переменных и параметров описывается сингулярно возмущенной си-
стемой интегро-дифференциальных уравнений с частными производными. Размер-
ность полученной системы может быть понижена.

DOI: 10.25587/2411-9326-2025-1-94-95
Ключевые слова: сингулярные возмущения, асимптотические разложения, по-
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Понижение размерности. Рассмотрим начально-краевую задачу для

сингулярно возмущенной системы (0 < ε≪ 1 — малый параметр):

εut = 1− u
ℓ∫

0

βv ds− u,

vt = −mv + pβuv + vss,

(1)

u(0) = u0, v(0, s) = v0(s), vs(t, 0) = 0, vs(t, ℓ) = 0, (2)

к которой может быть приведена модель эволюции ВИЧ [1] после введения

безразмерных переменных и параметров [2]. Положив ε = 0, получим так на-

зываемую укороченную задачу

vt = vss −mv + pβv/


1 +

ℓ∫

0

βv ds


 , u = 1/


1 +

ℓ∫

0

βv ds


 , (3)

v(0, s) = v0(s), vs(t, 0) = 0, vs(t, ℓ) = 0. (4)

Заметим, что решение укороченной задачи, вообще говоря, не удовлетворя-

ет начальному условию (2) для переменной u, в результате чего в окрестности

точки t = 0 возникает пограничный слой. В [3] обоснована допустимость пре-

дельного перехода при ε→ +0 решения (1), (2) к решению (3), (4).

Заключение. Можно найти решение полной задачи в виде асимптотиче-

ских разложений в ряд по степеням малого параметра [2], пользуясь методом

пограничных функций Тихонова — Васильевой. Полученное таким образом ре-

шение укороченной задачи с любой степенью точности аппроксимирует решение

полной задачи.
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МЕТОДИКА ИДЕНТИФИКАЦИИ ПАРАМЕТРОВ

СИСТЕМЫ ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ

МАТЕМАТИЧЕСКОЙ МОДЕЛИ ПОЛЗУЧЕСТИ

Е. А. Афанасьева

Аннотация. Разработана методика параметрической идентификации системы диф-
ференциальных уравнений математической модели неполной обратимости дефор-
мации ползучести. С использованием методов нелинейного регрессионного анализа
найдены оценки случайных параметров системы на основе разностных уравнений.
Получены соотношения, связывающие оценки параметров и коэффициенты раз-
ностных уравнений, разработаны итерационные процедуры уточнения параметров.
Проведена апробация метода на большом объеме экспериментальных данных.
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При продолжительной эксплуатации в условиях высоких температур и внеш-

них нагрузок определяющими параметрами поведения материалов и элементов

конструкций являются характеристики ползучести и длительной прочности.

Одним из вариантов теорий ползучести в пределах первых двух стадий, опи-

сывающих обратимую компоненту реологического деформирования, является

математическая модель Ю. П. Самарина [1] в виде системы дифференциаль-

ных уравнений. Предложенный метод идентификации параметров имеет ряд

недостатков, главным из которых является детерминированный подход к реше-

нию задачи идентификации [2].

В настоящей работе разработан численный метод, позволяющий перейти

от системы дифференциальных уравнений к математической модели в форме

разностных уравнений, описывающей результаты эксперимента. Получены со-

отношения, связывающие коэффициенты математической модели и параметры

исходной модели. Разработано программное обеспечение для реализации пред-

ложенной методики.

Выполнена проверка адекватности разработанной методики эксперимен-

тальными данными для сплавов ВЖ98 при температуре 900◦C, ЭИ437А при

температуре 700◦C, ЭП693 при температуре 700◦C, и стали ЭИ736 при темпе-

ратуре 500◦C, которая показала адекватность и эффективность метода.

Работа поддержана Министерством науки и высшего образования Российской Федерации
(тема № FSSE-2023-0003) в рамках государственного задания Самарского государственного
технического университета.
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Заключение. Таким образом, в настоящей работе разработан новый метод

идентификации параметром системы диффернциальных уравнений математи-

ческой модели ползучести, проведена его апробация на большом массиве экспе-

риментальных данных данных и разработано программное обеспечение для его

реализации.
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О СУЩЕСТВОВАНИИ И ЕДИНСТВЕННОСТИ

ГЛОБАЛЬНОГО РЕШЕНИЯ КВАЗИЛИНЕЙНОГО

УРАВНЕНИЯ С ДРОБНЫМИ ПРОИЗВОДНЫМИ

ГЕРАСИМОВА ––– КАПУТО
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Аннотация. Исследуются вопросы глобальной однозначной разрешимости задачи
Коши для класса квазилинейных уравнений в банаховых пространствах. Уравне-
ния содержат несколько дробных производных Герасимова — Капуто в линейных и
нелинейной частях. Используется условие секториальности пучка операторов при
производных в линейной части.
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Введение. В работе получена однозначная разрешимость задачи Коши

для квазилинейного уравнения с дробными производными Герасимова — Капу-

то при условии секториальности пучка операторов при производных в линейной

части и липшицевости нелинейного оператора.

Глобальная разрешимость квазилинейного уравнения. Будем рас-

сматривать дробные интегралы Римана — Лиувилля Jβ и дробные производные

Герасимова — Капуто Dα с началом в точке t0 ∈ R.

Пусть Z — банахово пространство, A1, . . . , An — линейные замкнутые опе-

раторы с областями определения DA1 , . . . , DAn соответственно, r, n ∈ N, α1 <

· · · < αn < α, m − 1 < α ≤ m ∈ N, γ1 < · · · < γr < α, B : [t0, T ] × Z r → Z .

Обозначим

D :=

n⋂

k=1

DAk
, Rλ :=

(
λαI −

n∑

k=1

λαkAk

)−1

: Z → D .

Рассмотрим задачу Коши

z(l)(t0) = zl, l = 0, 1, . . . ,m− 1, (1)

Dα
t z(t) =

n∑

k=1

AkD
αk
t z(t) +B(t,Dγ1

t z(t), D
γ2

t z(t), . . . , D
γr

t z(t)). (2)

Исследование выполнено за счет гранта Российского научного фонда и Правительства
Челябинской области № 24-11-20002.
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Решением задачи (1), (2) на отрезке [t0, T ] назовем такую z ∈ Cm−1([t0, T ]; Z ),

для которой Dα
t z ∈ C((t0, T ]; Z ) ∩ L1(t0, T ; Z ),

n∑
k=1

AkD
αk
t z ∈ C((t0, T ]; Z ),

Dγi

t z ∈ C([t0, T ]; Z ), i = 1, 2, . . . , r, выполняются равенство (2) для всех t ∈
(t0, T ] и условия (1).

Определение. Набор операторов (A1, A2, . . . , An) принадлежит классу

A n
α,G(θ0, a0) при некоторых θ0 ∈ (π/2, π), a0 ≥ 0, если

(i) при всех λ ∈ Sθ0,a0 := {µ ∈ C : | arg(µ−a0)| < θ0, µ 6= a0}, l = 0, 1, . . . ,m− 1

существуют операторы Rλ ·
(
I −

n∑
k=nl

λαk−αAk

)
∈ L (Z );

(ii) при любых θ ∈ (π/2, θ0), a > a0 существует такое K(θ, a) > 0, что для

всех λ ∈ Sθ,a, l = 0, 1, . . . ,m− 1

∥∥∥∥∥Rλ

(
I −

n∑

k=nl

λαk−αAk

)∥∥∥∥∥
L (Z )

≤ K(θ, a)

|λ− a||λ|α−1
.

Теорема [1]. Пусть α1 < α2 < · · · < αn ≤ m − 1 < α ≤ m ∈ N, n, r ∈ N,

γ1 < · · · < γr < α, (A1, A2, . . . , An) ∈ A n
α,G(θ0, a0), zl ∈ D , l = 0, 1, . . . ,m − 1,

отображение B ∈ C([t0, T ] × Z r; Z ) липшицево по x̄ = (x1, x2, . . . , xr). Тогда

задача (1), (2) имеет единственное решение на отрезке [t0, T ].
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АСИМПТОТИЧЕСКОЕ

ПРЕДСТАВЛЕНИЕ В МОДЕЛЯХ

СТОХАСТИЧЕСКОЙ ВОЛАТИЛЬНОСТИ

К. В. Буслова

Аннотация. Проведено обобщение на случай многомерной модели Хестона асимп-
тотической оценки функции плотности на бесконечности, доказанной ранее для
случая однофакторной модели. Доказательство основано на аффинности модели
Хестона, преобразовании Меллина и оценки полученных интегралов при помощи
метода перевала.
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Рассматриваем следующую многофакторную модель Хестона:

dXt = XtTr[
√
�tdZt],

d�t = (AAT +B�t + �tB
T )dt+

√
�tdWtC + CT (dWt)

T
√
�t,

где Xt — цена актива, Tr — след оператора, Zt,Wt ∈ Mn (множество квадрат-

ных матриц размера n× n) — матрицы броуновского движения при нейтраль-

ной к риску мере. Волатильность �t принадлежит множеству симметричных

n×n положительно определенных матриц, A,B,C ∈Mn — диагонализируемые

коммутирующие матрицы, матрица A обратима. Предполагаем, что матри-

цы броуновского движения Wt и Zt имеют диагональную матрицу корреляции

R = (ρj)j=1,··· ,n ∈Mn. В [1] получена формула, характеризующая асимптотику

цен акций в однофакторной модели Хестона. В настоящей работе представлена

теорема, которая характеризует асимптотическое поведение плотности распре-

деления стоимости акции в многофакторной модели Хестона.

Теорема. Для каждого T > 0 существуют положительные константы A1,

A2, A3 такие, что для плотности распределения DT цены акций XT в много-

мерной модели Хестона справедлива следующая асимптотическая формула:

DT (x) = A1x
−A3eA2

√
ln x(ln x)

− 3
4+
∑

n
j=1

a2
j

4c2
j (1 +O((ln x)−

1
2 )), x→∞,

где aj , cj — элементы соответствующих диагональных матриц коэффициентов

A′ и C′ (результаты диагонализации соответствующих матриц коэффициентов

A и C).

Используя те же идеи, что и в случае x→∞, можно получить аналогичные

асимптотические формулы при x→ 0.
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Аннотация. Рассматривается начально-краевая задача для нелокального парабо-
лического уравнения с нелокальным граничным условием и неотрицательной на-
чальной функцией. Найдены условия, гарантирующие глобальное существование
решений, а также обращение решений в бесконечность за конечное время.
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Рассматривается начально-краевая задача для нелокального параболиче-

ского уравнения

ut = �u+ aup
∫

�

uq(y, t) dy − bum, x ∈ �, t > 0, (1)

с нелокальным граничным условием

∂u(x, t)

∂ν
=

∫

�

k(x, y, t)ul(y, t) dy, x ∈ ∂�, t > 0, (2)

и начальной функцией

u(x, 0) = u0(x), x ∈ �, (3)

где a, b, p, q, m, l — положительные числа, � — ограниченная область в RN при

N ≥ 1 с гладкой границей ∂�, ν — единичная внешняя нормаль к ∂�.

Относительно функций k(x, y, t) и u0(x) предполагается следующее:

k(x, y, t) ∈ C(∂�× �× [0,+∞)), k(x, y, t) ≥ 0;

u0(x) ∈ C1(�), u0(x) ≥ 0 в �,
∂u0(x)

∂ν
=

∫

�

k(x, y, 0)ul0(y) dy на ∂�.

Работа поддержана государственной программой фундаментальных исследований Бела-
руси (грант 1.2.03.1).
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Начально-краевая задача для уравнения (1) с нелокальным граничным

условием

u(x, t) =

∫

�

k(x, y, t)ul(y, t) dy, x ∈ ∂�, t > 0,

изучалась в [1, 2].

Для задачи (1)–(3) получены следующие результаты о глобальном суще-

ствовании решений и об обращении их в бесконечность за конечное время.

Теорема 1. Пусть max(p+ q, l) ≤ 1 или 1 < max(p+ q, l) < m. Тогда любое

решение задачи (1)–(3) существовует глобально.

Теорема 2. Пусть p+ q > max(m, 1) или l > max(m, 1) и

inf
�

∫

∂�

k(x, y, 0) dSx > 0.

Тогда решения задачи (1)–(3) обращаются в бесконечность за конечное время

при достаточно больших начальных данных.

Результаты доклада опубликованы в статье [3].
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ПРИМЕНЕНИЕ НЕУСТОЙЧИВЫХ

ИНВАРИАНТНЫХ МНОГООБРАЗИЙ

В МОДЕЛИРОВАНИИ КРИТИЧЕСКИХ ЯВЛЕНИЙ

Е. С. Долгова

Аннотация. Данная работа посвящена решению задачи о критических условиях
для модели автокаталитического горения с учетом расхода реагента и окислителя.
Для моделирования критических явлений используются асимптотические методы
и техника склевания инвариантных многообразий.
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Введение. Критические явления представляют большой интерес при ис-

следовании различных прикладных задач. В горении существует так называ-

емый критический режим, разделяющий медленное горение и тепловой взрыв

[1, 2]. Его важной особенностью является то, что температура в реакторе до-

стигает высоких значений с контролируемой скоростью.

1. Динамическая модель горения. Рассмотрена безразмерная модель

горения газовой смеси с учетом расхода реагента и окислителя [3]:

γ
dθ

dτ
= η2 (1 + η0 − η)2 (ξ0 − η + 1) exp

(
θ

1 + βθ

)
− α(θ − θr),

dη

dτ
= −η2 (1 + η0 − η)2 (ξ0 − η + 1) exp

(
θ

1 + βθ

)
,

с начальными условиями θ(0) = 0, η(0) = 1.

Здесь η и ξ — безразмерные концентрации реагента и топлива соответствен-

но, θ — безразмерная температура реагента, θr — безразмерная температура

окружающей среды, α — параметр, характеризующий теплоотвод из реакцион-

ной фазы, γ и β — малые параметры.

2. Моделирование критических явлений. В зависимости от значений

параметров решение данной системы будет отвечать либо случаю медленного

горения, либо случаю теплового взрыва. С математической точки зрения пер-

вый случай наблюдается, когда фазовая точка дифференциальной системы дви-

жется по устойчивому медленному инвариантному многообразию, не доходя до

границы смены устойчивости. Во втором случае фазовая точка, дойдя до этой
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границы, срывается с медленного инвариантного многообразия. Центральное

внимание в работе уделено критическому случаю, являющемуся переходным

между этими двумя. Показано, что критическому случаю отвечает движение

фазовой точки и по неустойчивому медленному инвариантному многообразию.

Критический режим моделируется за счет выбора значения управляющего

параметра, в качестве которого рассмотрен параметр, характеризующий теп-

лоотвод из реакционной фазы. Критическое значение параметра определяется

так, чтобы обеспечить склеивание устойчивого и неустойчивого инвариантных

многообразий.
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ОБРАТНАЯ ЗАДАЧА АКТИВАЦИИ

ГЕТЕРОПЕРЕХОДНОГО ПРЕОБРАЗОВАТЕЛЯ

М. В. Долгополов, А. С. Чипура

Аннотация. Представлена математическая модель и проведена оптимизация бета-
вольтаического элемента с пленкой из карбида кремния, активируемой радионукли-
дом 14C. Особое внимание уделено дифференциальным уравнениям, описывающим
неравновесные процессы инжекции и динамику плотностей тока в гетеропереходе
SiC/Si. Решая систему уравнений, возможно определить зависимости параметров
от удельной активности и распределения источника активности, поставив обратную
задачу.
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В гетеропереходных бетавольтаических элементах, активированных ради-

онуклидом 14C, основным уравнением для описания распределения заряда яв-

ляется уравнение Пуассона

∇ ·D = ρ(x). (1)

Данное уравнение описывает распределение электрического поля в полупровод-

нике в зависимости от плотности заряда. Динамика носителей заряда в полу-

проводнике описывается уравнениями непрерывности для концентраций элек-

тронов (n) и дырок (p):

∂n

∂t
=

1

q
∇ · Jn +Gn −Rn,

∂p

∂t
=

1

q
∇ · Jp +Gp −Rp, (2)

где q — элементарный заряд, Jn и Jp — плотности токов электронов и дырок

соответственно, Gn и Gp — скорости генерации электронов и дырок, Rn и Rp —

скорости рекомбинации электронов и дырок [1]. Эти уравнения учитывают ге-

нерацию и рекомбинацию носителей заряда, а также их токи. В нашем случае

граничные условия между материалами гетероперехода записываются следую-

щим образом:

E1(0
−)ε1 = E2(0

+)ε2 −Q, (3)

где E1 и E2 — электрические поля в разных материалах на границе, ε1 и ε2 —

диэлектрические проницаемости материалов, Q — поверхностная плотность за-

ряда на границе. Плотности токов электронов и дырок:

Jn = qµnE + qDn∇n, Jp = qµppE − qDp∇p, (4)

c© 2025 Долгополов М. В., Чипура А. С.



Обратная задача активации гетеропереходного преобразователя 107

где µn и µp — подвижности электронов и дырок соответственно, Dn и Dp — ко-

эффициенты диффузии электронов и дырок. Данные уравнения показывают,

что плотность тока включает в себя дрейфовую и диффузионную составляю-

щие. Для зависимости плотностей тока от квазиуровней Ферми удобна форма

записи, показывающая связь плотности тока с градиентом квазиуровня Ферми

[2]. Это позволяет учитывать динамику носителей заряда и влияние различных

физических процессов, таких как диффузия, дрейф и рекомбинация:

Jn = qµnnE + qDn
dn

dx
= qµn

(
nE +

kT

q

dn

dx

)
= µnn

dEFn

dx
, (5)

Jp = qµppE − qDp
dp

dx
= qµp

(
pE − kT

q

dp

dx

)
= µpp

dEFp

dx
, (6)

где k — постоянная Больцмана, T — температура, EFn и EFp — уровни Ферми

для электронов и дырок соответственно.

Обратная задача заключается в определении распределения активности

изотопа 14C на основе измеренных значений электрохимической разности по-

тенциалов или плотности тока [3]. Это возможно выразить через уравнение

Пуассона:

AN = −ε
q
∇2φ, (7)

где A — активность изотопа, N — концентрация изотопа, φ — электрический

потенциал. В выходных электрических характеристиках батареи напряжение

холостого хода и ток короткого замыкания являются двумя наиболее важны-

ми параметрами, определяющими является ли батарея эффективной или нет

[4]. В обобщенном случае ток короткого замыкания выражается следующим

уравнением:

Iβ = IP + ID + IN = e · 1

3Eg
·




Lp∫

0

Eβ(x)fe(Lp − x) dx

+

Lp+W∫

Lp

Eβ(x) dx +

Lp+W+Ln∫

Lp+W

Eβ(x)fh(x − Lp −W ) dx


. (8)

Определение основных свободных и управляющих параметров моделиро-

вания, таких как температура, концентрация примесей легирования, толщина

пленки SiC и другие факторы, которые могут влиять на концентрацию и ква-

зиуровни Ферми, является начальной задачей оптимизации. Требуется учет

рекомбинации и диффузии, которые могут влиять на концентрацию носителей

заряда и квазиуровни Ферми в гетеропереходе. В данной работе описана по-

становка задачи определения зависимости параметров от удельной активности

и распределения источника активности. В докладе представляется решение

задачи, систематизация и выбор оптимальных сценариев.
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О СПЕКТРАЛЬНОЙ ЗАДАЧЕ С УСЛОВИЕМ

ИОНКИНА ––– САМАРСКОГО

ДЛЯ ЭЛЛИПТИЧЕСКОГО УРАВНЕНИЯ

В ЦИЛИНДРИЧЕСКОЙ ОБЛАСТИ

А. В. Дюжева

Аннотация. Изучается вопрос разрешимости спектральной нелокальной задачи
Ионкина — Самарского для эллиптического уравнения второго порядка. Приведе-
ны некоторые свойства собственных чисел для эллиптических задач с нелокальны-
ми условиями Ионкина — Самарского. Для исследования использовался классиче-
ский метод разделения переменных.
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Ключевые слова: эллиптическое уравнение, нелокальная задача, условие Ион-
кина — Самарского, спектральная задача, собственные числа, метод разделения

переменных.

Одной из отправных работ изучения нелокальных задач для эллиптических

уравнений является работа А. В. Бицадзе и А. А. Самарского [1], опубликован-

ная в 1969 г. Также следует отметить работу Н. И. Ионкина [2], в которой был

предложен метод, основанный на разложении решения по специальной биорто-

гональной системе функций. Позже была опубликована работа А. А. Самарско-

го [3], в которой были предложены условия, обобщающие условия по простран-

ственной переменной условия, включающие в себя и классическую постановку

начально-краевых задач, и задачу Н. И. Ионкина.

В настоящей работе изучался аналог спектральной задачи Ионкина — Са-

марского для модельного эллиптического уравнения второго порядка.

Пусть x — точка интервала (0, 1), y = (y1, . . . , yn) — точка ограниченной

области � пространства Rn, Q — цилиндр (0, 1)× �, S = (0, 1)× ∂� — боковая

граница Q. Далее, пусть c(x, y), f(x, y) и γ(y) — заданные функции, определен-

ные при x ∈ [0, 1], y ∈ �, (�y — оператор Лапласа по переменным y1, . . . , yn).

Нелокальная задача. Найти числа λ и γ, для которых задача

uxx +�yu = λu, (x, y) ∈ Q, (1)

u|S = 0, (2)

u(0, y) = γu(1, y), ux(1, y) = 0, y ∈ �, (3)

имеет нетривиальное решение u(x, y), принадлежащее пространству W 2
2 (Q).
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Теорема. Действительное число λ будет собственным числом спектраль-

ной задачи, если выполняется одно из условий

1) λ ≤ β1, γ = cos
√
βk − λ для некоторого натурального числа k такого,

что 1 ≤ k ≤ k0(λ);

2) λ ≤ β1, γ = 1
2 (e
√

λ−βk + e−
√

λ−βk) для некоторого натурального числа k

такого, что k ≥ k0(λ) + 1;

3) λ > β1, γ = 1
2 (e
√

λ−βk − e−
√

λ−βk) для некоторого натурального числа k.

Исследование разрешимости спектральной задачи проведено с помощью

классического метода разделения переменных.
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ON THE SPECTRAL PROBLEM WITH THE IONKIN–SAMARSKY CONDITION
FOR AN ELLIPTIC EQUATION IN A CYLINDRICAL DOMAIN

A. V. Dyujeva

Abstract: The paper studies the solvability of the spectral nonlocal Ionkin-Samarsky prob-
lem for an elliptic equation of the second order. Some properties of eigenvalues are given for elliptic
problems with non-local Samarsky-Ionkin conditions. The classical method of separating variables
was used for the study.

Keywords: elliptic equation, non-local problem, Ionkin-Samarsky condition, spectral prob-
lem, eigenvalues, method of separation of variables.

Aleksandra V. Dyujeva
Samara State Technical University,
244 Molodogvardeyskaya St., Samara 443100, Russia



Математические заметки СВФУ
Январь—март, 2025. Том 32, № 1

УДК 517.95

РЕГУЛЯРНАЯ РАЗРЕШИМОСТЬ

ПЕРВОЙ НАЧАЛЬНО–КРАЕВОЙ ЗАДАЧИ

ДЛЯ КВАЗИГИДРОДИНАМИЧЕСКОЙ СИСТЕМЫ

УРАВНЕНИЙ В ПРИБЛИЖЕНИИ МЕЛКОЙ ВОДЫ

Ф. А. Евсеев

Аннотация. Рассматривается разрешимость аналога первой начальной краевой
задачи для квазигидродинамической системы уравнений в приближении мелкой
воды. При определенных условиях на данные показано, что существует единствен-
ное регулярное решение задачи локально по времени.
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Ключевые слова: начально-краевая задача, квазигидродинамическая система,
регулярное решение, уравнение мелкой воды.

Рассмотрим систему квазигидродинамических уравнений в приближении

мелкой воды:

∂h

∂t
+ div(h~u) = div(h~w), ~w = τ((~u,∇)~u + g∇h),

∂(h~u)

∂t
+ div(h~u⊗ ~u) + g∇

(
h2

2

)
= 2 div(νhσ̂(~u)) + div(h~w ⊗ ~u+ h~u⊗ ~w),

(t, x) ∈ Q = (0, T )×G, G ⊂ R2,

(1)

где тензор скоростей деформации σ̂ имеет вид

σ̂(~u) = σ̂ =
1

2
[(∇⊗ ~u) + (∇⊗ ~u)T ], σij =

1

2
(uixj + ujxi),

G — ограниченная область с границей � ∈ C2, коэффициент кинематической

вязкости жидкости ν, характерное время релаксации τ считаются заданными

положительными константам. Пусть S = (0, T ) × � . Вектор ~u = (u1(t, x1, x2),

u2(t, x1, x2)) — усредненная по высоте скорость течения. Величина h = h(t, x1, x2)

интерпретируется как расстояние по вертикали от ровного дна водоема, распо-

ложенного в плоскости x1Ox2, до свободной поверхности жидкости. Система

включает константу Галилея g = 9.8 (m/c2), равную модулю ускорения свобод-

ного падения в гравитационном поле Земли.

Система (1) дополняется начально-краевыми условиями:

~u|S = 0, (~w · ~n)|S = 0, ~u|t=0 = ~u0(x1, x2), h|t=0 = h0(x1, x2), (2)

c© 2025 Евсеев Ф. А.
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где ~n — вектор внешней единичной нормали к � .

Система (1) представляет собой регуляризованную систему Сен-Венана,

аналогом которой в газовой динамике является квазигазодинамическая систе-

ма уравнений, выведенная в [1]. Детальный анализ свойств регуляризованных

уравнений Сен-Венана представлен в [2]. Ранее вопросы регулярной разреши-

мости задачи (1), (2) не рассматривались.

В настоящей работе показано, что в каждом из случаев при определенных

условиях на данные задача (1), (2) локально по времени имеет единственное

решение, принадлежащее классу W 1,2
p (Q).
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IN THE SHALLOW WATER APPROXIMATION
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Abstract: In this paper we consider the solvability of the analog of the first initial boundary
value problem for the quasihydrodynamic system of equations in the shallow water approximation.
Under certain conditions on the data, it is shown that there exists a single regular solution of the
problem locally in time.
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НЕПОЛНАЯ ЗАДАЧА ТИПА КОШИ

ДЛЯ КВАЗИЛИНЕЙНОГО ДРОБНОГО УРАВНЕНИЯ

Т. А. Захарова, В. Е. Федоров

Аннотация. С использованием теории дробных степеней секториального опера-
тора доказано существование единственного решения неполной задачи типа Коши
для квазилинейного дифференциального уравнения в банаховом пространстве, раз-
решенного относительно старшей производной Римана — Лиувилля.

DOI: 10.25587/2411-9326-2025-1-113-114
Ключевые слова: квазилинейное уравнение, задача типа Коши, дефект задачи

типа Коши, комплексная степень оператора.

Введение. Рассматривается квазилинейное уравнение в банаховом про-

странстве

Dαz(t) +Az(t) = B(Dα1z(t), . . . , Dαnz(t), Dα−m−rz(t), . . . , Dα−1z(t)) (1)

с дробными производными Римана — Лиувилля Dβz при β > 0 и дробными

интегралами Римана — Лиувилля Dβz при β ≤ 0. Здесь m − 1 < α ≤ m ∈ N,

r, n ∈ N0 := N ∪ {0}, α1 < α2 < · · · < αn < α − 1, ml − 1 < αl ≤ ml ∈ Z,
αl−ml 6= α−m, l = 1, 2, . . . , n. Обозначим α := max{αk : αk −mk < α−m, k =

1, 2, . . . , n}, m := ⌈α⌉, α := max{αk : αk−mk > α−m, k = 1, 2, . . . , n}, m := ⌈α⌉,
m∗ := max{m,m+ 1, 0}. Рассмотрим задачу

Dα−m+kz(t0) = 0, k = 0, 1, . . . ,m∗ − 1, Dα−m+kz(t0) = zk, k = m∗, . . . ,m− 1;

(2)

Пусть Z — банахово пространство, γ ∈ (0, 1), Zγ := DAγ — банахово про-

странство с нормой ‖ · ‖γ := ‖Aγ · ‖Z [1]. Пусть U — открытое подмноже-

ство R × Z n+m+r
γ , задано B : U → Z , для каждого (t, x1, x2, . . . , xn+m+r) ∈

U существуют окрестность V ⊂ U , C > 0, δ ∈ (0, 1] такие, что для всех

(t, y1, y2, . . . , yn+m+r), (s, v1, v2, . . . , vn+m+r) ∈ V

‖B(t, y1, . . . , yn+m+r)−B(s, v1, . . . , vn+m+r)‖Z

≤ C|t− s|δ + C
n+m+r∑

k=1

‖yk − vk‖γ . (3)

Работа поддержана грантом Российского научного фонда и Правительства Челябинской
области № 24-21-20015.
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Теорема. Пусть α > 0, α1 < α2 < · · · < αn < α − 1, −A ∈ Aα(θ0, 0),

0 ∈ ρ(A), отображение B : U → Z удовлетворяет условию (3), γ > 1 − 1/α,

(t0, 0, . . . , 0, zm∗ , zm∗+1, . . . , zm−1) ∈ U , zk ∈ Z1+γ , k = m∗,m∗ + 1, . . . ,m − 1.

Тогда для некоторого t1 > t0 существует единственное решение задачи (1), (2)

на [t0, t1].

Абстрактный результат применяется к исследованию начально-краевых за-

дач с нелинейной частью, содержащей частные производные по пространствен-

ным переменным.
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INCOMPLECT CAUCHY TYPE PROBLEM
FOR QUASILINEAR FRACTIONAL EQUATIONS

T. A. Zakharova, V. E. Fedorov

Abstract: Using the theory of fractional powers of the sectorial operator, the existence of
a unique solution to an incomplete Cauchy-type problem for a quasi-linear differential equation in
Banach space resolved with respect to the highest Riemann–Liouville derivative is proved.
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СМЕНА УСТОЙЧИВОСТИ

В ДИНАМИЧЕСКОЙ МОДЕЛИ ЛАЗЕРА

О. С. Кипкаева

Аннотация. Работа посвящена исследованию модели лазерного диода с оптоэлек-
тронной обратной связью, представляющей собой сингулярно возмущенную систе-
му. Установлена смена устойчивости инвариантного многообразия системы, кото-
рая может протекать по разным сценариям.
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Ключевые слова: сингулярные возмущения, инвариантные многообразия, затя-
гивание потери устойчивости, траектории-утки, модель лазера.

Введение. Рассматривается модель лазерного диода с оптоэлектронной

обратной связью, представляющей собой сингулярно возмущенную систему. По-

казано, что в системе могут наблюдаться различные сценарии смены устойчиво-

сти медленного инвариантного многообразия. Один из таких сценариев связан

с возникновением траекторий-уток [1, 2], т. е. одномерных медленных инвари-

антных многообразий со сменой устойчивости. Обычно траектории-утки воз-

никают, когда одно из собственных значений матрицы линеаризации быстрой

подсистемы меняет знак и становится положительным. Второй сценарий смены

устойчивости является сравнительно новым и связан с одновременным обнуле-

нием коэффициентов мнимых и вещественных частей собственных значений

матрицы линеаризации быстрой подсистемы [3].

Модель лазерного диода. Модель лазерного диода с оптоэлектронной

обратной связью в безразмерном виде описывается системой [4]

εẋ = x(y − 1), εẏ = γ

[
δ0 − y + α

w + x

1 + s(w + x)
− xy

]
, ẇ = −(w + x), (1)

где x, y — нормированные плотности фотонов и плотности инверсии населенно-

стей, γ — соотношение между временами жизни фотонов и носителя.

В зависимости от значений малых параметров ε и γ в системе (1) происхо-

дят различные сценарии смены устойчивости медленного инвариантного мно-

гообразия. В случае, когда малые параметры одного порядка малости, система

имеет точное инвариантное многообразие x ≡ 0, которое делится линией y = 1

на устойчивую и неустойчивую части. Наличие точного инвариантного много-

образия играет роль организующего начала для траекторий системы, которые

являются тректориями-утками.
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Для случая ε≪ γ в системе могут наблюдаться два разных сценария смены

устойчивости. Дополнительно к уже рассмотренному сценарию, связанному с

траекториями-утками, появляется сценарий смены устойчивости, при котором у

пары комплексно-сопряженных собственных значений матрицы Якоби быстрой

подсистемы с отрицательной вещественной частью при критическом значении

параметра обнуляются и вещественные части, и коэффициенты при мнимых

частях, после чего собственные значения становятся вещественными разных

знаков.

Заключение. В работе рассмотрены сценарии смены устойчивости инва-

риантных многообразий сингулярно возмущенных систем на примере модели

лазерного диода с оптоэлектронной обратной связью.
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Abstract: The paper is devoted to the study of a laser diode model with optoelectronic
feedback, described by a singularly perturbed system. The change of stability of the invariant
manifold of the system, which can proceed according to different scenarios, is established.
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НЕЛОКАЛЬНЫЕ ЗАДАЧИ С ЧАСТИЧНО

ИНТЕГРАЛЬНЫМИ УСЛОВИЯМИ

ДЛЯ ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ

СОБОЛЕВСКОГО ТИПА ЧЕТВЕРТОГО ПОРЯДКА

А. И. Кожанов

Аннотация. Излагаются результаты о разрешимости нелокальных задач с инте-
гральными по выделенной переменной t условиями для дифференциальных урав-
нений (

∂2

∂t2
+ a(t)

)
�u + b(t)u = f(x, t) (∗)

(� — оператор Лапласа по пространственным переменным x1, . . . , xn). Суть ре-
зультатов — в нахождении достаточных условий существования и единствености
регулярных решений (т. е. решений, имеющих все обобщенные по С. Л. Соболеву
производные, входящие в уравнение (∗)).

DOI: 10.25587/2411-9326-2025-1-117-118
Ключевые слова: дифференциальное уравнение соболевского типа, нелокальная
задача.

Пусть�— ограниченная область из пространстваRn переменных x1, . . . , xn
с гладкой границей � , Q — цилиндр � × (0, T ), 0 < T < +∞, S = � × (0, T ) —

боковая граница Q. Далее, пусть f(x, t), a(t), b(t) и N(t) — заданные функции,

определенные при x ∈ �, t ∈ [0, T ], � есть оператор Лапласа по переменным

x1, . . . , xn.

Нелокальная задача I. Найти функцию u(x, t), являющуюся в цилиндре

Q решением уравнения(
∂2

∂t2
+ a(t)

)
�u+ b(t)u = f(x, t) (1)

и такую, что для нее выполняются условия

u(x, t)|S = 0, (2)

u(x, 0) = 0, x ∈ �, (3)
T∫

0

N(t)u(x, t) dt = 0, x ∈ �. (4)

Исследование выполнено в рамках государственного задания Министерства науки и выс-
шего образования РФ (тема «Аналитическое и численное исследование обратных задач об
определении параметров источников атмосферного или водного загрязнения и (или) пара-
метров среды», код темы FENG-2023-0004.)

c© 2025 Кожанов А. И.



118 А. И. Кожанов

Нелокальная задача II. Найти функцию u(x, t), являющуюся в цилин-

дре Q решением уравнения (1) и такую, что для нее выполняются условия (2)

и (4), а также условие

ut(x, 0) = 0.

Уравнения вида (1) в мировой математике в последнее время называют

уравнениями соболевского типа.

Определим пространство V :

V =

{
v(x, t) :

∂mv(x, t)

∂tm
∈ L2

(
0, T ;W 2

2 (�) ∩
◦
W

1
2(�)

)
, m = 0, 1, 2

}
.

Для изучаемых нелокальных задач I и II доказываются теоремы разреши-

мости в пространстве V . Указываются также некоторые возможные обобщения

полученных результатов.

Кожанов Александр Иванович
Интститут математики им. С. Л. Соболева
пр. Академика Коптюга, 4, Новосибирск 630090
kozhanov@math.nsc.ru

NONLOCAL PROBLEMS WITH PARTIALLY INTEGRAL CONDITIONS
FOR DIFFERENT EQUATIONS OF THE FOURTH ORDER

SOBOLEV TYPES

A. I. Kozhanov

Abstract: The report presents results on the solvability of non-local problems with integral
conditions with respect to the selected variable t for differential equations

(
∂2

∂t2
+ a(t)

)
�u + b(t)u = f(x, t) (∗)

(� is the Laplace operator in spatial variables x1, . . . , xn). The essence of the results is to find
sufficient conditions for the existence and uniqueness of regular solutions (i.e. solutions that have
all derivatives generalized according to S. L. Sobolev, included in the equation (∗)).

Keywords: Sobolev type equations, nonlocal problem.

Aleksandr I. Kozhanov
Sobolev Institute of Mathematics,
4 Koptyug Avenue, 630090 Novosibirsk, Russia
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КОЭФФИЦИЕНТАМИ В ОКРЕСТНОСТИ

ИРРЕГУЛЯРНЫХ ОСОБЫХ ТОЧЕК

М. В. Коровина

Аннотация. Работа посвящена проблеме Пуанкаре в аналитической теории диф-
ференциальных уравнений, а именно построению асимптотик решений обыкновен-
ных дифференциальных уравнений с голоморфными или мероморфными коэффи-
циентами в окрестности иррегулярных особых точек в пространствах функций k-
экспоненциального роста. В работе получен общий вид асимптотик решений диф-
ференциальных уравнений с мероморфными коэффициентами в окрестности их ир-
регулярных особых точек.

DOI: 10.25587/2411-9326-2025-1-119-121

Ключевые слова: иррегулярные особые точки.

Проблема построения равномерных асимптотик решений дифференциаль-

ных уравнений с голоморфными коэффициентами в окрестности иррегулярных

особых точек, в том числе бесконечности, является классической задачей анали-

тической теории дифференциальных уравнений и в общем виде была сформули-

рована Пуанкаре в [1, 2]. В этих работах Пуанкаре сформулировал вопрос об об-

щем виде асимптотических разложений в окрестности иррегулярной особой точ-

ки. Ответ на этот вопрос дается в настоящей работе. В данной работе построим

общий вид этих асимптотик в пространстве функций k-экспоненциального ро-

ста.

Без ограничения общности будем считать, что особой точкой уравнения

является нуль. Рассмотрим уравнение

an(x)

(
d

dx

)n

u (x) + an−1 (x)

(
d

dx

)n−1

u(x)+

· · ·+ ai(x)

(
d

dx

)i

u(x) + · · ·+ a0(x)u(x) = 0. (1)

Здесь an(x) — функции, голоморфные в некоторой окрестности нуля.

Целью нашего исследования является построение асимптотик решений урав-

нения (1) при x→ 0 в предположении, что x = 0 является иррегулярной особой

c© 2025 Коровина М. В.
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точкой. Общий вид асимптотик в окрестности регулярных особых точек хорошо

известен, это конормальные асимптотики.

Как показано в работе [3], уравнение (1) с иррегулярной особенностью в

нуле может быть записано в виде

Ĥu(x) =

(
−1

k
xk+1 d

dx

)n

u(x) +

n−1∑

i=0

a0
i (x)

(
−1

k
xk+1 d

dx

)i

u(x) = 0, (2)

где k ∈ N , a0
i (x) — функции, голоморфные в окрестности нуля. В [3] найдено

минимальное натуральное k. Заметим, что тот же результат будет и в случае,

когда коэффициенты ai(x) будут иметь мероморфную особенность в нуле.

Определение. Символом дифференциального оператора Ĥ называется функ-

ция

H(r, p) = pn +

n−1∑

i=0

a0
i (r)p

i.

Основным символом оператора Ĥ называется полином

H0(p) = H(0, p) = pn +

n−1∑

i=0

a0
i (0)pi.

Вопрос о виде равномерной асимптотики в окрестности иррегулярной осо-

бой точки проще всего решается в случае, когда корни основного символа H0(p)

являются простыми. В [4, 5] доказано, что асимптотики в этом случае имеют

вид
n∑

i=1

ePi(
1
x )xσi

∞∑

k=0

Ak
i x

k,

где Pi(y) = λiy
k + αk−1

i yk−1 + · · · + α1
i y, σi — некоторые комплексные числа,

∞∑
k=0

Ak
i x

k — асимптотический ряд. Простому j-му корню полинома H0(p) будет

соответствовать асимптотический член вида ePj(
1
x )xσj

∞∑
k=0

Ak
j x

k, j = 1, . . . , n.

В случае кратных корней задача построения асимптотик значительно сложнее.

В работах [6, 7] построены асимптотики решений в окрестности бесконечности

в пространствах функций экспоненциального роста для уравнения (1) в слу-

чае, когда an(x) = 1. Заметим, что бесконечность, вообще говоря, является

иррегулярной особой точкой. В общем случае на вопрос о виде асимптотик в

окрестности произвольной иррегулярной особой точки отвечает

Теорема. Любая асимптотика, соответствующая нулевому корню основ-

ного символа уравнения (2) в пространстве функций k-экспоненциального ро-

ста, представима в виде суммы асимптотических членов вида

ui(x) ≈ exp(Pi(x
− 1

li ))xσi

∞∑

k=0

aikx
k
li , i = 1, . . . , n,
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где li ∈ N , σi — комплексные числа, Pi(x) является полиномом, степень кото-

рого не превышает (k − 1)li,
∞∑
k=0

aikx
i — асимптотический ряд.

Заметим, что корень основного символа pi 6= 0 сдвигается в нуль с помощью

экспоненциальной подстановки u(x) = exp pi

xk ui(x).

Теорема доказана с помощью применения методов ресургентного анали-

за и метода повторного квантования, основой которого является интегральное

представление Лапласа — Бореля [8].
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Межгородской научно-исследовательский семинар

«Неклассические задачи математической физики»

21 декабря 2024 г.

«Об однозначной разрешимости нелокальных задач с интегральным усло-

вием для уравнения третьего порядка».

Докладчики: О. Зикиров, М. Сагдуллаева (Национальный университет Уз-

бекистана имени Мирзо Улугбека, Ташкент, Узбекистан).

Разрешимость смешанных задач с интегральными условиями для уравне-

ний в частных производных третьего порядка представляет собой важную об-

ласть исследования в теории дифференциальных уравнений и их приложениях.

Такие задачи возникают в различных областях физики, механики сплошных

сред, теории колебаний и других дисциплинах. В докладе рассматривается

нелокальная задача с интегральным условием для уравнения в частных про-

изводных третьего порядка с оператором теплопроводности в главной части.

Доказаны теоремы существования и единственности решения изучаемой нело-

кальной задачи. При доказательстве разрешимости задачи применяются мето-

ды теории дифференциальных уравнений, функции Грина и теории интеграль-

ных уравнений. Изучаемая задача сводится к эквивалентному интегральному

уравнению Вольтерра второго рода, которое безусловно разрешимо.

1 февраля 2025 г.

«Краевые задачи с условиями третьего рода для уравнений диффузии дроб-

ного порядка».

Докладчик: Ф. Г. Хуштова (Институт прикладной математики и автома-

тизации — филиал Федерального научного центра «Кабардино-Балкарский на-

учный центр Российской академии наук», г. Нальчик, Россия).

В докладе рассмотрены краевые задачи в ограниченной и неограниченной

областях с условиями третьего рода для уравнения диффузии дробного порядка

и уравнения диффузии с оператором Бесселя. Доказаны теоремы существова-

ния и единственности. Исследованы некоторые свойства функций Грина рас-

сматриваемых задач. Показано, что в случае, когда в рассматриваемых задачах

условие третьего рода вырождается в условие второго рода, полученные резуль-

таты согласуются с известными результатами для задач с краевыми условиями

второго рода.
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15 февраля 2025 г.

«Единственность решения линейной обратной задачи для эволюционного

дифференциального уравнения произвольного натурального порядка».

Докладчики: И. В. Тихонов (Московский государственный университет,

Москва, Россия), А. Муатаз (МТУСИ, Москва, Россия).

В банаховом пространстве исследуется линейная обратная задача для эво-

люционного дифференциального уравнения произвольного натурального по-

рядка n. Стационарное неоднородное слагаемое в уравнении предполагается

неизвестным. В начальный момент времени заданы условия Коши, к которым

добавлено дополнительное финальное переопределение вида u(q)(T ) = 0. Для

поставленной задачи найден критерий единственности решения. Он выражен в

спектральных терминах — через нули специальной целой функции типа Миттаг-

Леффлера. Выбор последней зависит от взятых параметров n, q. Результат

носит универсальный характер и не требует ограничений на тип дифференци-

ального уравнения. Отдельно обсуждаются возможные следствия.

Доклад раскрывает общий подход, возможный при изучении неклассиче-

ских задач математической физики. Особый интерес, на наш взгляд, представ-

ляет связь этого подхода с известными результатами из теории целых функций.

1 марта 2025 г.

«Линейные и квазилинейные эволюционные уравнения с распределенной

производной Герасимова — Капуто».

Докладчик: Н. В. Филин (Челябинский государственный университет, Ин-

ститут математики и механики им. Н. Н. Красовского УрО РАН, Челябинск,

Россия).

В докладе рассматриваются вопросы однозначной разрешимости задачи

Коши для некоторых классов эволюционных уравнений в банаховых простран-

ствах, разрешенных относительно распределенной дробной производной Гера-

симова — Капуто. Распределенная производная задается интегралом Римана —

Стилтьеса и включает в себя, в частности, непрерывно распределенный и дис-

кретно распределенный случаи. Найдены необходимые и достаточные условия

существования сильно непрерывных разрешающих семейств операторов, а так-

же аналитических в секторе разрешающих семейств операторов для линейных

уравнений в банаховых пространствах с распределенной дробной производной

Герасимова — Капуто. Для соответствующих неоднородных уравнений полу-

чены условия разрешимости задачи Коши. Исследованы вопросы однозначной

разрешимости задачи Коши для квазилинейных уравнений, линейная часть ко-

торых порождает аналитическое разрешающее семейство. Нелинейный опера-

тор в таком уравнении зависит от конечного набора распределенных производ-

ных «младшего» порядка. Полученные абстрактные результаты применены к

изучению начально-краевых задач для уравнений и систем уравнений в частных

производных с распределенной производной Герасимова — Капуто по времени.



124 Математическая жизнь

15 марта 2025 г.

«Метод линеаризации и пороговые явления для радиально-симметричных

многомерных уравнений Эйлера — Пуассона».

Докладчик: О. С. Розанова (Московский государственный университет,

Москва, Россия).

Исследуется вопрос о строгом выделении класса радиально-симметричных

гладких начальных данных задачи Коши, соответствующих глобально гладко-

му решению, для достаточно широкого класса уравнений, связанных с урав-

нениями Эйлера — Пуассона без давления в случае многих пространственных

переменных. При выходе из этого класса у соответствующего решения в тече-

ние конечного времени образуется особенность. Для случая одной простран-

ственной переменной задача решена в статье S. Engelberg, H. Liu, E. Tadmor,

Critical thresholds in Euler–Poisson equations, Indiana Univ. Math. J., 2001,

для радиально симметричного случая окончательного решения нет, несмотря

на многочисленные попытки. Рассказано о самом недавнем прогрессе в этой

задаче. А именно показано, что вопрос о критерии образования особенности

может быть сведен к исследованию свойств решений некоторого линейного од-

нородного обыкновенного дифференциального уравнения для вспомогательной

функции. В некоторых случаях такой критерий может быть получен в терминах

начальных данных. В остальных случаях можно построить простую численную

процедуру, на основе которой может быть решен вопрос о сохранении гладкости

для любого набора начальных данных.
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дение до всеобщего сведения, на перевод на иностранные языки (и исключи-
тельное право на использование переведенного произведения вышеуказанными
способами), на предоставление всех вышеперечисленных прав другим лицам.
Одновременно со статьей автор (соавторы) направляет в редакцию подписан-
ный лицензионный договор на право использования научного произведения в
журнале. Образец договора высылается авторам по электронной почте вместе
с сообщением о принятии статьи к печати.

3. Для рассмотрения статьи на предмет ее публикации в журнале в ре-
дакцию представляются текст статьи объемом не более 1,5 авторских листов
(18 страниц журнального текста), написанной на русском или, по согласованию
с редакцией, на английском языке, а также сопроводительное письмо, в кото-
ром сообщается, что статья направляется именно в журнал «Математические
заметки СВФУ», и информация об авторе (коллективе авторов) с указанием
фамилии, имени и отчества, полного почтового адреса для переписки, места
работы, подробного служебного адреса, адреса электронной почты и номера
телефона. Статьи объемом более 1,5 авторских листов, как правило, не рас-
сматриваются и могут быть приняты к рассмотрению и опубликованы лишь по
специальному решению редакционного совета.

4. Статья должна быть подготовлена с использованием текстового редак-
тора LaTeX и представлена в виде файлов форматов pdf и tex.

5. В начале статьи указывается индекс УДК и/или MSC. Статья сопро-
вождается аннотацией объемом не менее 100 слов, желательно без формул, и
списком ключевых слов. Аннотация и список должны быть представлены на
русском и английском языках.

6. Список литературы печатается в конце текста. Ссылки на литературу
в тексте нумеруются в порядке их появления и даются в квадратных скобках.
Ссылки на неопубликованные работы нежелательны. Оформление литературы
должно соответствовать требованиям стандартов (примеры библиографических
описаний см. в последних номерах журнала).

7. Издание осуществляет рецензирование всех поступающих в редакцию
материалов, соответствующих ее тематике, с целью их экспертной оценки. Все
рецензенты являются признанными специалистами по тематике рецензируемых
материалов и имеют в течение последних 3 лет публикации по тематике рецен-
зируемой статьи. Рецензии хранятся в редакции издания в течение 5 лет.
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8. Принятая к рассмотрению статья направляется на анонимное рецензи-
рование. На основании рецензии редсовет принимает решение о возможности
публикации статьи, которое сообщается автору. Автор вправе сообщить свои
замечания и возражения к рецензии. Повторное решение редсовета по статье
является окончательным.

9. Редакция издания направляет авторам представленных материалов ко-
пии рецензий или мотивированный отказ, а также обязуется направлять копии
рецензий в Министерство науки и высшего образования Российской Федерации
при поступлении в редакцию издания соответствующего запроса.

10. После редакционной подготовки непосредственно перед публикацией
автору высылается корректура. По возможности в наиболее короткие сроки
необходимо ее прочесть, внести исправления (правка против авторского ориги-
нала нежелательна) и направить в редакцию. Статья выходит в свет только
после получения от автора (коллектива авторов) авторской корректуры, под-
писанной автором (всеми соавторами) в печать.

11. В соответствии с международными законами об авторском праве Ре-
дакция уведомляет авторов журнала об их ответственности за получение ими в
случае необходимости письменного разрешения на использование охраняемых
авторским правом материалов, таких, как цитаты, воспроизведение данных, ил-
люстраций и любых иных материалов, которые могут быть использованы в их
публикациях, а также о том, что вытекающая отсюда ответственность за на-
рушение таких авторских прав лежит на авторах. Плата за опубликование с
авторов или учреждений, где работают авторы, не взимается, и опубликованные
статьи не оплачиваются.

12. Права авторов на использование материалов статей и переводов статей

из журнала «Математические заметки СВФУ» в иных публикациях определя-

ются общими международными и российскими законами об авторских правах.
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