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ВЫРОЖДАЮЩИЕСЯ ДИФФЕРЕНЦИАЛЬНЫЕ

УРАВНЕНИЯ С КРАТНЫМИ ХАРАКТЕРИСТИКАМИ

А. И. Кожанов, Н. Р. Спиридонова

Аннотация. Изучается разрешимость в анизотропных пространствах Соболева
различных краевых задач для некоторых классов дифференциальных уравнений с
кратными характеристиками. Целью работы является доказательство теорем су-
ществования и единственности регулярных решений – решений, имеющих все обоб-
щенные по Соболеву производные, входящие в соответствующее уравнение.

DOI: 10.25587/2411-9326-2025-3-3-14

Ключевые слова: дифференциальные уравнения с кратными характеристика-
ми, вырождение, краевые задачи, регулярные решения, существование, единствен-
ность.

Введение

Краевые задачи для дифференциальных уравнений с кратными характери-

стиками (к которым принадлежит, например, линеаризованное уравнение Кор-

тевега — де Фриза [1]) представляются достаточно хорошо изученными (см. [2–

8]). Менее изучены краевые задачи для вырождающихся дифференциальных

уравнений с кратными характеристиками [9, 10].

В настоящей работе будут изучаться краевые задачи для дифференциаль-

ного уравнения

h(t)uxxt + αuxxx + a(x, t)uxx + b(x, t)ux + c(x, t)u = f(x, t), (∗)

в котором h(t), a(x, t), b(x, t), c(x, t) и f(x, t) — заданные функции, α — дей-

ствительное число, функция h(t) может обращаться в нуль на своей области

определения. Данное уравнение можно отнести к классу уравнений составного

типа, но наличие в них слагаемого αuxxx позволяет отнести такие уравнения

и к классу уравнений с кратными характеристиками. Именно второе сообра-

жение и позволило авторам считать статью связанной с теорией уравнений с

кратными характеристиками.

Целью работы будет доказательство существования и единственности регу-

лярных решений изучаемых ниже задач — решений, имеющих все обобщенные

по Соболеву производные, входящие в соответствующее уравнение.

Работа выполнена при поддержке Минобрнауки РФ, соглашение от 11.03.2025 № 075-02-
2025-1792.

c© 2025 Кожанов А. И., Спиридонова Н. Р.
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Все построения и рассуждения будут основаны на свойствах функций из

пространств Лебега Lp и Соболева W l
p. Необходимые определения и описание

свойств функций из этих пространств можно найти в [11–13].

1. Постановки задач

Пусть Q — прямоугольник (0, 1) × (0, T ), 0 < T < +∞, переменных x и

t, h(t), a(x, t), b(x, t), c(x, t) и f(x, t) — заданные функции, определенные при

x ∈ [0, 1], t ∈ [0, T ], α — заданное действительное число. Далее будем обозначать

через L дифференциальный оператор, действие которого на заданной функции

v(x, t) определяется равенством

Lv = h(t)vxxt + αvxxx + a(x, t)vxx + b(x, t)vx + c(x, t)v.

Краевая задача I. Найти функцию u(x, t), являющуюся в прямоуголь-

нике Q решением уравнения

Lu = f(x, t) (1)

и такую, что для нее выполняется условие

u(0, t) = ux(0, t) = uxx(0, t) = 0, t ∈ (0, T ). (2)

Краевая задача II. Найти функцию u(x, t), являющуюся в прямоуголь-

нике Q решением уравнения (1) и такую, что для нее выполняются условие (2),

а также условие

u(x, 0) = 0, x ∈ (0, 1). (3)

Краевая задача III. Найти функцию u(x, t), являющуюся в прямоуголь-

нике Q решением уравнения (1) и такую, что для нее выполняются условия (2)

и (3), а также условие

u(x, T ) = 0, x ∈ (0, 1). (4)

Краевая задача IV. Найти функцию u(x, t), являющуюся в прямоуголь-

нике Q решением уравнения (1) и такую, что для нее выполняются условия

u(0, t) = ux(0, t) = 0, t ∈ (0, T ), (5)

uxx(1, t) = 0, t ∈ (0, T ). (6)

Краевая задача V. Найти функцию u(x, t), являющуюся в прямоуголь-

нике Q решением уравнения (1) и такую, что для нее выполняются условия (3),

(5) и (6).

Краевая задача VI. Найти функцию u(x, t), являющуюся в прямоуголь-

нике Q решением уравнения (1) и такую, что для нее выполняются условия (3)–

(6).

В задачах I и IV отсутствуют какие-либо условия по переменной t, в за-

дачах II и V имеется одно условие (начальное) по переменной t, в задачах III
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и VI — два условия (начальное и финальное) по переменной t. Объясняется

наличие или отсутствие условия по t свойствами функции h(t).

Определим линейное пространство

V0 =
{
v(x, t) : v(x, t) ∈ L2(Q), vxx(x, t) ∈W 1

2 (Q)
}
,

и норму в нем:

‖v‖V0 =

(∫

Q

(
v2 + v2

xx + v2
xxx + v2

xxt

)
dxdt

) 1
2

.

Пространство V0 с этой нормой будет основным пространством в настоящей

работе. Очевидно, оно банахово.

2. Разрешимость краевых задач I–III

Доказательство существования решений краевых задач I–III будет прове-

дено с помощью метода регуляризации и метода продолжения по параметру.

Пусть ε — положительное число, Lε — дифференциальный оператор, дей-

ствие которого на заданной функции v(x, t) определяется равенством

Lεv = −ε(vxxtt + vxxxx) + Lv.

Для уравнения

Lεv = f(x, t)

ниже будут предложены постановки краевых задач в зависимости от функции

h(t), и для решений этих задач будут получены априорные оценки. С помощью

этих оценок будет обоснована возможность применения метода регуляризации

и метода продолжения по параметру, и в конечном итоге будет установлена

разрешимость задач I–III в пространстве V0.

Определим линейное пространство V и норму в нем:

V =
{
v(x, t) : v(x, t) ∈ V0, vxx ∈ W 2

2 (Q)
}
,

‖v‖V =
(
‖v‖2V0

+ ‖vxx‖2W 2
2 (Q)

)1/2
.

Лемма 1. Пусть выполняются условия

a(x, t) ∈ C1(Q), b(x, t) ∈ C1(Q), h(t) ∈ C1([0, T ]); (7)

α > 0, h(0) ≤ 0, h(T ) ≥ 0; (8)

a(x, t)− 1

2
h′(t) ≥ a0 > 0, a(x, t) +

1

2
h′(t) ≥ a1 > 0 при (x, t) ∈ (Q); (9)

cxx(x, t) ≥ 0, c(x, t) +
1

2
bx(x, t) ≤ 0 при (x, t) ∈ (Q); (10)

b(1, t)ξ2 + 2c(1, t)ξη − cx(1, t)η2 ≥ 0 при t ∈ [0, T ], (ξ, η) ∈ R2. (11)
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Тогда если f(x, t) ∈ L2(Q), то при фиксированном ε для решений u(x, t) из

пространства V краевой задачи

Lεu = f(x, t), (x, t) ∈ Q, (12)

u(0, t) = ux(0, t) = uxx(0, t) = uxxx(1, t) = 0, t ∈ (0, T ), (13)

ut(x, 0) = ut(x, T ) = 0, x ∈ �, (14)

имеет место оценка

ε

∫

Q

(
u2
xxtt + u2

xxxx

)
dxdt+

∫

Q

(
u2
xxx + u2

xxt + u2
xx + u2

xt + u2
x + u2

t + u2
)
dxdt

≤M1

∫

Q

f2dxdt (15)

с постоянной M1, определяемой функциями a(x, t), b(x, t), c(x, t) и h(t), а также

числом ε.

Если дополнительно выполняется f(x, t) ∈W 1
2 (Q), f(0, t) = 0 при t ∈ [0, T ],

то для решений u(x, t) из пространства V краевой задачи (12)–(14) имеет место

оценка

ε

∫

Q

(
u2
xxtt + u2

xxxx

)
dxdt+

∫

Q

(
u2
xxx + u2

xxt + u2
xx + u2

x + u2
t + u2

)
dxdt

≤M2

∫

Q

(f2 + f2
x + f2

t ) dxdt (16)

с постоянной M2, определяемой лишь функциями a(x, t), b(x, t), c(x, t) и h(t).

Доказательство. Расcмотрим равенство
∫

Q

Lεu(x, t) · uxx(x, t) dxdt =

∫

Q

f(x, t) · uxx(x, t) dxdt.

Выполнив интегрирование по частям и используя краевые условия (13) и (14),

получим, что данное равенство преобразуется к виду

ε

∫

Q

u2
xxt(x, t) dxdt + ε

∫

Q

u2
xxx(x, t) dxdt +

∫

Q

[
a(x, t)− 1

2
h′(t)

]
u2
xx(x, t) dxdt

−
∫

Q

[
c(x, t) +

1

2
bx(x, t)

]
u2
x(x, t) dxdt +

1

2

∫

Q

cxx(x, t)u2(x, t) dxdt

+
1

2

1∫

0

h(T )u2
xx(x, T ) dx− 1

2

1∫

0

h(0)u2
xx(x, 0) dx+

α

2

T∫

0

u2
xx(1, t) dt

+
1

2

T∫

0

b(1, t)u2
x(1, t)dt−

1

2

T∫

0

cx(1, t)u
2(1, t) dt+

T∫

0

c(1, t)u(1, t)ux(1, t) dt
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=

∫

Q

f(x, t)uxx(x, t) dxdt.

Учитывая условия (7)–(11), получим, что следствием данного равенства будет

оценка

ε

∫

Q

[
u2
xxt(x, t) + u2

xxx(x, t)
]
dxdt

+

∫

Q

[
u2
xx(x, t) + u2

x(x, t) + u2(x, t)
]
dxdt ≤ K1

∫

Q

f2(x, t) dxdt (17)

с постоянной K1, определяемой лишь функциями a(x, t), b(x, t) и c(x, t).

На следующем шаге рассмотрим равенство

−
∫

Q

Lεu(x, t) · uxxxx(x, t) dxdt = −
∫

Q

f(x, t) · uxxxx(x, t) dxdt. (18)

Интегрируя по частям, вновь учитывая условия леммы и используя неравенство

Гёльдера и оценку (17), получим, что для решений u(x, t) краевой задачи (12)–

(14) выполняется вторая априорная оценка

ε

∫

Q

[
u2
xxxt(x, t) + u2

xxxx(x, t)
]
dxdt+

∫

Q

u2
xxx(x, t) dxdt ≤ K2

∫

Q

f2(x, t) dxdt, (10)

постоянная K2 в которой определяется функциями a(x, t), b(x, t), c(x, t) и h(t),

а также числом ε.

Еще одна априорная оценка

ε

∫

Q

u2
xxtt(x, t) dxdt ≤ K3

∫

Q

f2(x, t) dxdt (20)

очевидным образом вытекает из оценок (17) и (19); постояннаяK3 в этой оценке

вновь зависит лишь от функций a(x, t), b(x, t), c(x, t) и h(x, t), а также числа ε.

Оценки (17), (19) и (20) означают, что для решений u(x, t) краевой задачи

(12)–(14) из пространства V выполняется оценка (15).

Вернемся к равенству (18). Если в интеграле с функцией f(x, t) выполнить

однократное интегрирование по частям, то с использованием условий леммы и

оценки (17) нетрудно получить априорную оценку

ε

∫

Q

[
u2
xxxt(x, t) + u2

xxxx(x, t)
]
dxdt

+

∫

Q

u2
xxx(x, t) dxdt ≤ K ′2

∫

Q

[
f2(x, t) + f2

x(x, t)
]
dxdt (21)

с постоянной K ′2, не зависящей от числа ε.
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Аналогично если в равенстве

−
∫

Q

Lεu(x, t) · uxxtt(x, t) dxdt = −
∫

Q

f(x, t) · uxxtt(x, t) dxdt (22)

в интеграле с функцией f(x, t) выполнить интегрирование по частям по пере-

менной t, то нетрудно получить еще одну равномерную по ε априорную оценку,

и в сумме — требуемую оценку (16).

Лемма доказана.

Лемма 2. Пусть выполняются условия (7), (9)–(11), а также условие

α > 0, h(0) > 0, h(T ) ≥ 0. (23)

Тогда если f(x, t) ∈ L2(Q), то при фиксированном ε для решений из простран-

ства V краевой задачи для уравнения (12) с условиями (3) и (13), а также

условием

ut(x, T ) = 0, x ∈ (0, 1), (24)

выполняется оценка (15). Если дополнительно выполняется f(x, t) ∈ W 1
2 (Q),

f(0, t) = 0 при t ∈ (0, T ), f(x, 0) = 0 при x ∈ (0, 1), то для решений u(x, t)

краевой задачи (12), (3), (13), (23) из пространства V имеет место равномерная

по ε оценка (16).

Лемма 3. Пусть выполняются условия (7), (9)–(11), а также условие

α > 0, h(0) > 0, h(T ) < 0. (25)

Тогда если f(x, t) ∈ L2(Q), то при фиксированном ε для решений из простран-

ства V краевой задачи для уравнения (12) с условиями (3), (4) и (13) выполня-

ется оценка (15).

Если дополнительно выполняется f(x, t) ∈ W 1
2 (Q), f(0, t) = 0 при t ∈ (0, t),

f(x, 0) = f(x, T ) = 0 при x ∈ (0, 1), то для решений u(x, t) краевой задачи (12),

(3), (4), (13) из пространства V имеет место равномерная по ε оценка (16).

Доказательство лемм 2 и 3 проводится вполне аналогично доказательству

леммы 1.

Теорема 1. Если выполняются условия (7)–(11), то для любой функции

f(x, t) такой, что f(x, t) ∈ W 1
2 (Q), f(0, t) = 0 при t ∈ (0, T ), краевая задача I

имеет решение u(x, t), принадлежащее пространству V0, причем ровно одно.

Если выполняются условия (7), (9)–(11) и (22), то для любой функции

f(x, t) такой, что f(x, t) ∈ W 1
2 (Q), f(0, t) = 0 при t ∈ (0, T ), f(x, 0) = 0 при

x ∈ (0, 1), краевая задача II имеет решение u(x, t), принадлежащее простран-

ству V0, причем ровно одно.

Если выполняются условия (7), (9)–(11) и (24), то для любой функции

f(x, t) такой, что f(x, t) ∈W 1
2 (Q), f(0, t) = 0 при t ∈ (0, T ), f(x, 0) = f(x, T ) = 0
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при x ∈ (0, 1), краевая задача III имеет решение u(x, t), принадлежащее про-

странству V0, причем ровно одно.

Доказательство. Установим вначале разрешимость краевой задачи I

(при выполнении условий леммы 1).

Пусть λ — число из отрезка [0, 1]. Рассмотрим семейство краевых задач:

найти функцию u(x, t), являющуюся в прямоугольнике Q решением уравнения

−ε(uxxxx + uxxtt) + h(t)uxxx + a(x, t)uxx + λ[b(x, t)ux + c(x, t)u] = f(x, t) (26)

и такую, что для нее выполняются условия (13) и (14). При λ = 0 эта задача

является смешанной краевой задачей для эллиптического относительно функ-

ции v(x, t) = uxx(x, t) уравнения, причем вследствие условий теоремы для этой

задачи имеет место единственность решения в пространстве V . Следовательно,

при λ = 0 краевая задача (26), (13), (14) разрешима в пространстве V , причем

единственным образом. Далее, для решений u(x, t) краевой задачи (21), (13),

(14) при всех λ из отрезка [0, 1] и при фиксированном ε имеет место априорная

оценка (15), т. е. оценка

‖u‖V ≤M ′
1‖f‖L2(Q). (27)

Согласно теореме о методе продолжения по параметру [14 гл. III, § 14] из раз-

решимости в пространстве V краевой задачи (26), (13), (14) при λ = 0, а также

из оценки (27) следует, что данная задача будет разрешима в пространстве V

при всех λ из отрезка [0, 1], т. е. и при λ = 1.

Пусть {εm}∞m=1 — последовательность положительных чисел такая, что ε→
0 при m → ∞. Согласно проведенным выше рассуждениям краевая задача

(12)–(14) при ε = εm имеет решение um(x, t), принадлежащее пространству V .

Для семейства {um(x, t)}∞m=1 имеет место равномерная по m априорная оценка

(16). Из этой оценки и из свойства рефлексивности гильбертова пространства

следует, что существует последовательность {umk
(x, t)}∞k=1 (соответствующая

случаю ε = εmk
в задаче (12)–(14)) такая, что при k→∞

εmk

(
umkxxxx(x, t) + umkxxtt(x,t)

)
→ 0

слабо в пространстве L2(Q) и для некоторой функции u(x, t)

umk
(x, t)→ u(x, t)

слабо в пространстве V0 при k → 0.

Очевидно, что функция u(x, t) принадлежит пространству V0 и что она

является искомым решением краевой задачи I.

Единственность в пространстве V0 решений краевой задачи I очевидна.

Первая часть теоремы доказана.

Справедливость второй и третьей частей теоремы при выполнении соответ-

ствующих условий леммы 2 и 3 доказывается аналогично доказательству первой

части (меняется лишь постановка вспомогательной регуляризованной задачи).

Теорема полностью доказана.
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2. Разрешимость краевых задач IV–VI

Идея доказательства разрешимости краевых задач IV–VI вполне соответ-

ствует идее доказательства разрешимости краевых задач I–III. Это позволяет

не выделяя промежуточных этапов сразу сформулировать и доказать основной

результат.

Теорема 2. Пусть выполняются условия (7), а также условия

α > 0, h(0) ≥ 0, h(T ) ≤ 0; (28)

a(x, t)− 1

2
h′(t) ≤ −a0 < 0, a(x, t) +

1

2
h′(t) ≤ −a0 < 0 при (x, t) ∈ Q; (29)

cxx(x, t) ≤ 0, c(x, t) +
1

2
bx(x, t) ≥ 0 при (x, t) ∈ Q; (30)

b(1, t) = c(1, t) = 0, cx(1, t) ≥ 0 при t ∈ (0, T ), (31)

то для любой функции f(x, t) такой, что f(x, t) ∈ W 1
2 (Q), f(1, t) = 0 при t ∈

(0, T ), краевая задача IV имеет решение u(x, t), принадлежащее пространству

V0, причем ровно одно.

Если выполняются условия (7), (29)–(31), а также условие

α > 0, h(0) < 0, h(T ) ≤ 0, (32)

то для любой функции f(x, t) такой, что f(x, t) ∈ W 1
2 (Q), f(1, t) = 0 при

t ∈ (0, T ), f(x, 0) = 0 при x ∈ (0, 1), краевая задача V имеет решение u(x, t),

принадлежащее пространству V0, причем ровно одно.

Если выполняются условия (7), (29)–(31), а также условие

α > 0, h(0) < 0, h(T ) > 0, (33)

то для любой функции f(x, t) такой, что f(x, t) ∈ W 1
2 (Q), f(1, t) = 0 при t ∈

(0, T ), f(x, 0) = f(x, T ) = 0 при x ∈ (0, 1), краевая задача VI имеет решение

u(x, t), принадлежащее пространству V0, причем ровно одно.

Доказательство. Вновь воспользуемся методом регуляризации.

Пусть ε — положительное число. Рассмотрим задачу нахождения функции

u(x, t), являющейся в прямоугольнике Q решением уравнения

ε(uxxxx + uxxtt) + Lu = f(x, t) (34)

и такой, что для нее выполняются условия

u(0, t) = ux(0, t) = uxxx(0, t) = uxx(1, t) = 0, t ∈ (0, T ), (35)

а также условие (14) при выполнении неравенств (28), либо условия (3) и (24)

при выполнении неравенств (32), либо условия (3) и (4) при выполнении нера-

венств (33). Повторяя для каждой из этих задач рассуждения и выкладки

лемм 1–3, нетрудно показать, что для функции u(x, t) выполняются оценки

(15) и (16) (при выполнении соответствующих условий на функцию f(x, t)).
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Из этих оценок следует существование решения u(x, t) при фиксированном ε

каждой из задач (34), (35), (14), или (34), (35), (3), (24), или (34), (35), (3),

(4), принадлежащее пространству V , а также возможность выбора из семей-

ства {uε(x, t)}ε>0 последовательности, сходящейся к искомому решению соот-

ветствующих задач IV, V или VI.

Единственность решений во всех случаях очевидна.

Теорема доказана.

3. Замечания

Сделаем несколько заключительных замечаний по поводу полученных вы-

ше результатов.

1. Наряду с краевыми задачами I–III и IV–VI нетрудно изучить разреши-

мость задач с одним условием при t = T . Но такая задача легко сводится к

задачам II или V заменой τ = T − t.
2. Случай α < 0 также легко сводится к изученному случаю α > 0 заменой

y = 1− x.
3. Зависимость коэффициента α от переменных x и t, зависимость функции

h от тех же переменных не меняют существенным образом идеи доказательства

теорем существования и единственности. Соответствующие условия и выклад-

ки лишь станут более громоздкими.

4. В краевых задачах IV–VI условие (6) вполне можно заменить более

общим условием

uxx(1, t) = ϕ1(t)ux(1, t) + ϕ2(t)u(1, t), t ∈ (0, T ),

с заданными функциями ϕ1(t) и ϕ2(t). Соответствующие условия также изме-

нятся лишь в сторону громоздкости.

5. Условие (10) теорем 1 и 2 можно заменить условиями малости, используя

неравенства ∫

�

u2(x, t) dx ≤
∫

�

u2
x(x, t) dx ≤

∫

�

u2
xx(x, t) dx.

Нетрудно также заменить (10) условием, представляющим собой комбинацию

условий вида (10) и условий малости.
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Аннотация. Исследованы две нелинейные математические модели о равновесии
пластин, контактирующих с препятствиями двух видов. Предполагается, что пла-
стина содержит объемное жесткое включение, соприкасающееся с препятствием в
исходном состоянии. Первый вид препятствий ограничивает перемещения пластин
на лицевой поверхности на участке квадратной формы. Другой вид препятствия
также задается на лицевой поверхности, но имеет точечный характер, т. е. условия
типа Синьорини задаются в одной заданной точке. Доказана сходимость решений
семейства вариационных задач при стремлении к нулю параметра, задающего пло-
щадь контактной поверхности к нулю. При этом показано, что предельной функ-
цией является решение задачи, описывающей точечный контакт пластины.
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Введение. Контактные задачи механики упругих тел с односторонними

ограничениями в рамках известного подхода Синьорини представляют собой

класс нелинейных задач с граничными условиями в виде неравенств рассмот-

рены в [1–5]. Отметим работу [6], где исследована динамическая задача для

упругого тела с учетом сил трения и с условием типа Синьорини на трещине,

а также приведен обзор по динамическим задачам в рамках соответствующей

тематики. Контактные задачи для пластин, учитывающие механическое вза-

имодействие с другими твердыми телами на лицевой поверхности, изучены в

широком круге работ, например, в статьях [7–10] изучены модели о контакте c

тонкими упругими балками, в [11–13] исследовано контактное взаимодействие

двух упругих пластин. В недавних работах были предложены математические

модели для пластин, где описывается контакт с наклонными препятствиями

[14], контакт на боковой грани изучен в [15, 16]. Наличие жесткого включения в

Раздел 1 выполнен при поддержке Минобрнауки РФ в рамках государственного задания
проект № FSRG–2023–0025. Раздел 2 выполнен при поддержке Минобрнауки РФ (Соглашение

от 11.03.2025 г., проект 075–02–2025–1792).

c© 2025 Лазарев Н. П., Никифоров Д. Я., Сафонов С. В.
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упругом теле предполагает аффинную структуру перемещений на соответству-

ющем множестве [17–19]. Это свойство делает возможным исследование кон-

тактного взаимодействия точечного характера для моделей неоднородных тел

с жесткими включениями [20, 21]. Численная реализация для моделей упругих

тел с односторонними ограничениями предложена, например, в [22–24].

В [25] исследована задача оптимального управления для вариационного

неравенства относительно бигармонического оператора, в которой препятствие

принимается за управление. При этом наряду с доказательством разрешимо-

сти задачи управления была установлена непрерывная зависимость решений от

функций из класса H2, задающих препятствие. Кроме того, в [25] можно найти

краткий обзор по задачам оптимального управления с управлением, задавае-

мым препятствиями. Асимптотический анализ для контактных задач представ-

ляет собой весьма актуальное направление (см., например, [26–30]). Поскольку

для ряда прикладных задач зоны контакта (в которых искомые перемещения

соответствуют соприкасанию контактирующих поверхностей или кривых) за-

ранее неизвестны, оценки ее положения и размеров представляют интерес при

изучении свойств решений, см., например, работы, посвященные выявлению

свойств зоны контакта относительно задачи Синьорини для уравнения Пуассо-

на [31, 32], в частности, в [32] нахождение зон контакта было сведено к решению

нелинейной алгебраической задачи.

В работе изучены две нелинейные математические модели о равновесии

упругих пластин Кирхгофа — Лява, контактирующих с препятствиями двух

видов. Предполагается, что пластина содержит жесткое включение, посред-

ством которого происходит контакт с препятствием. Для первого вида препят-

ствий прогибы пластины ограничиваются сверху нулем на заданном множестве

в форме квадрата со стороной δ ∈ (0, 1]. Для второго вида препятствия также

задаются условия неположительности прогибов в одной точке (0, 0). Доказана

сильная сходимость в энергетической норме решений семейства вариационных

задач при δ → 0. При этом показано, что предельной функцией является реше-

ние задачи, описывающей точечный контакт пластины.

1. Вариационная постановка. Пусть � ⊂ R2 — ограниченная область

с достаточно гладкой границей � , которая состоит из двух кривых � = � 0 ∪ γ,

�0 ∩ γ = ∅, meas(�0) > 0. Обозначим через ν = (ν1, ν2) внешнюю нормаль к

границе � области �. Для простоты предположим, что пластина имеет равно-

мерную толщину 2h. Зададим трехмерное декартово пространство {x1, x2, z}
так, чтобы пластина соответствовала множеству �× [−h, h] ⊂ R3. Пусть одно-

связная подобласть ω ⊂ � и � таковы, что [−1, 1] × [−1, 1] ⊂ ω ⊂ �, граница

∂ω области ω принадлежит классу C1,1. При этом лицевые поверхности пла-

стины в исходном состоянии задаются множествами � × {−h}, � × {h}, для

определенности будем изучать задачу о возможном контакте с верхней лицевой

поверхностью, т. е. заданной множеством �× {h}.
Обозначим через χ = χ(x) = (W (x), w(x)) вектор перемещений точек сре-

динной поверхности (x = (x1, x2) ∈ �), через W = (w1, w2) — перемещения в
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плоскости {x1, x2}, а через w — перемещения вдоль оси z (прогибы). Тензоры

деформаций и усилий обозначаются через εij = εij(W ), σij = σij(W ) соответ-

ственно [33, 34]:

εij(W ) =
1

2

(
∂wj

∂xi
+
∂wi

∂xj

)
, σij(W ) = aijrlεrl(W ), i, j = 1, 2,

где {aijrl} — заданный тензор упругости, который предполагается симметрич-

ным и положительно определенным:

aijrl = arlij = ajirl, i, j, r, l = 1, 2, aijrl ∈ L∞(�),

aijrlξijξrl ≥ c0|ξ|2 ∀ξ, ξij = ξji, i, j = 1, 2, c0 = const > 0.

Здесь и далее используется соглашение о суммировании по повторяющимся ин-

дексам. Введем изгибающие моменты следующими формулами [33]:

mij(w) = −dijrlw,rl , i, j = 1, 2

(
w,rl =

∂2w

∂xr∂xl

)
,

где тензор {dijrl} имеет те же характеристики симметрии, ограниченности и по-

ложительной определенности, что и тензор {aijrl}. Пусть B(· , ·) — билинейная

форма, определенная равенством

B(χ, χ) =

∫

�

{σij(W )εij(W )−mij(w)w,ij } dx,

где χ = (W,w), χ = (W,w).

Введем следующие пространства Соболева:

H1
�0

(�) = {v ∈ H1(�) | v = 0 на �0},

H2
�0

(�) =

{
v ∈ H2(�) | v =

∂v

∂ν
= 0 на �0

}
,

H(�) = H1
�0

(�)2 ×H2
�0

(�), ‖χ‖ = ‖χ‖H(�) =
(
‖W‖2H1(�)2 + ‖w‖2H2(�)

)1/2
.

Функционал потенциальной энергии пластинки Кирхгофа — Лява имеет следу-

ющий вид:

�(χ) =
1

2
B(χ, χ)−

∫

�

Fχdx, χ = (W,w),

где вектор F = (f1, f2, f3) ∈ L2(�)3 описывает внешние силы [33]. Заметим,

что в силу условий на �0 имеет место следующее неравенство, обеспечивающее

коэрцитивность функционала �:

B(χ, χ) ≥ c‖χ‖2 ∀χ ∈ H(�), (1)

с константой c > 0, не зависящей от χ [33].

Замечание 1. Неравенство (1) означает, что норма в пространстве H(�)

эквивалентна норме, определенной с помощью билинейной формы B(·, ·).
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В исходном состоянии пластины жесткое включение соответствует множе-

ству ω × [−h, h], перемещения точек которого принадлежат следующему про-

странству инфинитезимальных жестких перемещений:

R(ω) = {ζ | ζ(x) = (bx2 + c1,−bx1 + c2, a0 + a1x1 + a2x2); x = (x1, x2) ∈ ω},

где b, c1, c2, a0, a1, a2 ∈ R, [34–37].

Перейдем к описанию недеформируемого препятствия и ограничений на пе-

ремещения для точек пластины, которые соприкасаются с контактной поверхно-

стью препятствия в исходном состоянии. Сначала отметим, что для пластины

Кирхгофа — Лява прогибы или вертикальные перемещения по всей толщине

пластины совпадают c прогибами точек срединной плоскости (см. [34]), т. е.

wz(x) = w(x), z ∈ [−h, h],

где wz(x) — вертикальные перемещения точек пластины, имеющих координаты

(x, z) в исходном состоянии. Для фиксированного δ ∈ (0, 1] рассмотрим модель

с недеформируемым препятствием, задаваемым множеством

(−δ, δ)× (−δ, δ)× {h},

которое ограничивает перемещения пластины со стороны верхней лицевой по-

верхности. Предположим, что для точек множества Oδ = (−δ, δ)× (−δ, δ) имеет

место неравенство

w(x) ≤ 0, x ∈ Oδ,

или в силу линейной структуры в области Oδ

a0 + a1x1 + a2x2 ≤ 0, x = (x1, x2) ∈ Oδ. (2)

Таким образом, для фиксированного значения δ ∈ (0, 1] с учетом ограниче-

ний на перемещения множество допустимых перемещений запишем в виде

Kδ = {χ = (W,w) ∈ H(�) | χ удовлетворяет (2), χ|ω = ζ, ζ ∈ R(ω)}.

Сформулируем вариационную постановку задачи равновесия. Требуется найти

функцию ξδ = (U δ, uδ) ∈ Kδ такую, что

�(ξδ) = inf
χ∈Kδ

�(χ). (3)

Теорема 1. Для каждого фиксированного δ ∈ (0, 1] задача (3) имеет един-

ственное решение ξδ.

Доказательство теоремы 1 не требует каких-либо новых по-существу

рассуждений. Для этого достаточно заметить, что множество Kδ является вы-

пуклым и замкнутым, а также применить с незначительными видоизменениями

рассуждения, приведенные в [36]. Функционал выпуклый и дифференциру-

емый, поэтому задача (3) эквивалентна следующему вариационному неравен-

ству:

ξδ ∈ Kδ, B(ξδ, χ− ξδ) ≥
∫

�

F (χ− ξδ) dx ∀χ ∈ Kδ. (4)
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Стандартным способом, от противного (см. [36]), можно доказать, что суще-

ствуют единственное решение задачи (3).

Наряду с семейством вариационных задач, зависящих от δ ∈ (0, 1], рас-

смотрим предельный случай, соответствующий δ = 0. При этом контакт может

происходить только в одной точке (0, 0). Поскольку x1 = x2 = 0, для функции

прогибов w(x1, x2) = a0 + a1x1 + a2x2 в области ω имеем

a0 ≤ 0. (5)

Соответствующее множество допустимых перемещений примет вид

K0 = {χ = (W,w) ∈ H(�) | χ удовлетворяет (5), χ|ω = ζ, ζ ∈ R(ω)}.

Задача о точечном контакте пластины запишется в следующем виде. Требуется

найти функцию ξ0 = (U0, u0) ∈ K0 такую, что

�(ξ0) = inf
χ∈K0

�(χ). (6)

Теорема 2. Задача (6) имеет единственное решение ξ0.

Несмотря на относительную новизну постановки задачи, доказательство

теоремы 2 также не представляет значительных трудностей. Заинтересованный

читатель может найти доказательства аналогичных результатов в [36]. Как и

выше, задача (6) эквивалентна следующему вариационному неравенству:

ξ0 ∈ K0, B(ξ0, χ− ξ0) ≥
∫

�

F (χ− ξ0) dx ∀χ ∈ K0. (7)

Методом от противного (см. [36]), можно установить, что решение задачи (6)

будет единственным.

2. Предельный переход при δ → 0. Установим, что задача (6) явля-

ется предельной для семейства задач (3) при δ → 0. А именно имеет место

следующее утверждение.

Теорема 3. Семейство решений {ξδ}δ∈(0,1] задач (3) сходится сильно к

решению задачи (6) ξ0 в пространстве H(�) при δ → 0.

Доказательство. Подставляя последовательно тестовые функции χ =

(0, 0, 0), χ = 2ξδ в (4), нетрудно убедиться в справедливости равенств

B(ξδ, ξδ) =

∫

�

Fξδ dx ∀δ ∈ (0, 1]. (8)

Отсюда следует равномерная оценка

‖ξδ‖ ≤ C (9)

для всех δ ∈ (0, 1]. Рефлексивность пространства Соболева и неравенство (9)

позволяют утверждать, что при δ → 0 найдутся некоторая функция ξ̃ ∈ H(�)

и последовательность (обозначенная прежним образом) {ξδ} такие, что ξδ → ξ̃
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слабо в H(�). Покажем, что ξ̃ ∈ K0. В самом деле, ограниченность норм (9)

влечет, в свою очередь, ограниченность числовых последовательностей
{
aδ0
}
,{

aδ1
}
,
{
aδ2
}
, определяющих структуру соответствующих функций последова-

тельности {ξδ}, ξδ = (U δ, uδ), в области ω:

uδ(x1, x2)|ω = aδ0 + aδ1x1 + aδ2x2, (x1, x2) ∈ ω.

Ограниченность каждой последовательности
{
aδ0
}
,
{
aδ1
}
,
{
aδ2
}

означает, что

можно выделить подпоследовательности (сохранив обозначения), сходящиеся

соответственно к числам a0
0, a

0
1, a

0
2. Рассмотрим выражения

aδ0 + aδ1x1 + aδ2x2 ≤ 0, x ∈ Oδ,

для выбранных указанным образом последовательностей чисел. Поскольку

имеют место неравенства

aδ0 −
∣∣aδ1
∣∣δ −

∣∣aδ2
∣∣δ ≤ 0

для сходящихся числовых последовательностей
{
aδ0
}
,
{
aδ1
}

,
{
aδ2
}
, получим, что

при δ → 0

a0
0 ≤ 0.

Таким образом, ξ̃ ∈ K0.

Пусть χ0 ∈ K0 — произвольная тестовая функция. Построим последова-

тельность {χδ}, сходящуюся сильно к χ0 в пространстве H(�) при δ → 0. По

условию

χ0|ω = ζ0(x1, x2) = (bx2 + c1,−bx1 + c2, a0 + a1x1 + a2x2), (x1, x2) ∈ ω,

a0 ≤ 0, для некоторых постоянных b, c1, c2, a0, a1, a2. Возьмем функцию,

построенную следующим образом:

jδ(x) = a0 − |a1|δ − |a2|δ + a1x1 + a2x2, x = (x1, x2) ∈ ω,

для фиксированного δ ∈ (0, 1]. Очевидно, что она удовлетворяет

jδ(x) ≤ 0 для всех x = (x1, x2) ∈ Oδ.

Для каждого фиксированного δ ∈ (0, 1] с помощью оператора поднятия L :

H3/2(∂ω ∪ � ) × H1/2(∂ω ∪ � ) → H2(� \ ω) (граница области � \ ω принадле-

жит классу C1,1) построим следующую функцию gδ, определенную в H2(�\ω),

такую, что gδ = L(q1δ , q
2
δ ), где

q1δ (x1, x2) = |a1|δ + |a2|δ, (x1, x2) ∈ ∂ω,

q1δ (x1, x2) = 0, (x1, x2) ∈ � ,
q2δ (x1, x2) = 0, (x1, x2) ∈ ∂ω ∪ � .

Отметим, что функции {χ̃δ}, δ ∈ (0, 1], определенные с помощью равенств

χ̃δ =

{
(0, 0, |a1|δ + |a2|δ), (x1, x2) ∈ ω,

(0, 0, gδ), (x1, x2) ∈ � \ ω,
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в силу непрерывности оператора L сходятся к нулю в пространстве H(�) при

δ → 0. Остается положить

χδ = χ0 − χ̃δ

для каждого δ ∈ (0, 1]. Поскольку для любого δ ∈ (0, 1] построенная функция

χδ принадлежит Kδ, ее можно подставить в вариационное неравенство (4) и

получить

B(ξδ, χδ − ξδ) ≥
∫

�

F (χδ − ξδ) dx. (10)

На основании сильной сходимости χδ → χ0 в пространстве H(�) при δ → 0

и слабой сходимости ξδ → ξ̃ можно перейти к пределу в неравенстве (10) при

δ → 0. В результате имеем неравенство

B(ξ̃, χ0 − ξ̃) ≥
∫

�

F (χ0 − ξ̃) dx, (11)

выполненное для произвольной функции χ0 ∈ K0. Последнее вместе с тем

фактом, что ξ̃ принадлежит K0, означает, что (11) является вариационным

неравенством. Следовательно, ввиду единственности решения заключаем, что

ξ̃ = ξ0.

Итак, ξδ → ξ0 слабо в H(�) для некоторой числовой последовательности

{δ} ⊂ (0, 1], δ → 0. Установим, что для этой же последовательности имеет

место сильная сходимость. Для этого вспомним равенства (8) и аналогичное

равенство, справедливое при δ = 0:

B(ξ0, ξ0) =

∫

�

Fξ0 dx.

Слабая сходимость гарантирует выполнение равенства

lim
δ→0

∫

�

Fξδ dx =

∫

�

Fξ0 dx,

откуда следует, что

lim
δ→0

B(ξδ, ξδ) = B(ξ0, ξ0).

Последнее согласно замечанию 1 влечет, что ‖ξδ‖ → ‖ξ0‖ при δ → 0. На осно-

вании сходимости норм и слабой сходимости ξδ → ξ0 в пространстве Соболева

H(�) при δ → 0 делаем вывод о наличии сильной сходимости ξδ → ξ0 в про-

странстве H(�).

Замечание 2. Очевидно, что в случае препятствия, расположенного со

стороны нижней лицевой поверхности, можно рассматривать условия вида

a0 + a1x1 + a2x2 ≥ 0, x = (x1, x2) ∈ Oδ,

аналогичные неравенствам (2). При этом в соответствующем точечном нера-

венстве знак также поменяется на обратный. В этом случае результаты, ана-

логичные полученным, также могут быть установлены с некоторыми несуще-

ственными изменениями. Кроме того, выбрав подходящую систему координат,
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также нетрудно обосновать выполнение аналогичного результата для препят-

ствий, расположенных с нижней стороны, при z = −h.

Исходя из рассуждений доказательств, схожие утверждения можно полу-

чить и для других семейств областей, задающих множества точек возможного

контакта, например, для семейства кругов радиуса δ и т. д.

Заключение. В работе изучена связь двух математических моделей о

равновесии пластин, контактирующих с препятствиями специальной формы.

Препятствия обуславливают ограничения на прогибы в виде неравенств (2), за-

данных на квадратных множествах Oδ = (−δ, δ)× (−δ, δ), а также неравенства

(5), заданного в одной точке (0, 0). Доказано, что вариационные задачи для

упругих пластин c жесткими включениями (3) и (6) имеют единственные реше-

ния. Доказана сильная сходимость в H(�) решений ξδ семейства вариационных

задач (3) при δ → 0. При этом показано, что предельной функцией является

решение задачи ξ0, описывающей точечный контакт пластины.
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PROBLEMS FOR PLATES WITH RIGID INCLUSIONS

CONTACTING WITH FLAT AND POINTWISE

OBSTACLES ON THE FRONT SURFACES

N. P. Lazarev, D. Ya. Nikiforov,
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Abstract: Two nonlinear mathematical models on equilibrium of plates in contact
with obstacles of two types are studied. It is assumed that the plate contains a bulk
rigid inclusion that touches the obstacle in the initial state. The first type of obstacle
limits displacements of the plates to a square-shaped section lying on the front surface.
The second type of obstacle also restricts displacements on the front surface, but has
a pointwise character, i.e. Signorini-type conditions are specified at one given point. The
convergence of solutions of a family of variational problems is proved as the parameter
that determines the area of the contact zone tends to zero. It is shown that a limit
function is the solution to the problem describing the pointwise contact of the plate.
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О ЧИСЛЕ ГРАНЕЙ МЕЧЕНО–ПОРЯДКОВЫХ

МНОГОГРАННИКОВ

Е. В. Мелихова

Аннотация. Предложен новый способ вычисления f -вектора мечено-порядкового
многогранника. А именно, для произвольного (политопального) подразбиения про-
извольного выпуклого многогранника строится коцепной комплекс (над полем вы-
четов Z2), для которого размерности его когомологий совпадают с компонентами
f -вектора исходного многогранника. Для мечено-порядкового многогранника и его
известного кубо-симплициального подразбиения этот коцепной комплекс удается
описать чисто комбинаторно, что и дает вычисление f -вектора. Независимый ин-
терес может представлять предложенное в работе комбинаторное описание выше-
упомянутого кубо-симплициального подразбиения (которое исходно было построено
геометрически).

DOI: 10.25587/2411-9326-2025-3-28-52

Ключевые слова: мечено-порядковый многогранник, f -вектор, политопальный
комплекс.

Введение

Если P = (P,�) — конечное частично-упорядоченное множество с наи-

меньшим и наибольшим элементами 0̂ и 1̂, то его порядковый многогранник

O(P) лежит в конечномерном векторном пространстве RP всех отображений x

из P в прямую. В этом пространстве он задается неравенствами x(p) ≤ x(q) для

всех p, q из P таких, что p � q, а также равенствами x(0̂) = 0, x(1̂) = 1. В ра-

боте [1] Стенли кроме прочего описал решетку граней многогранника O(P), а

также «каноническую» триангуляцию этого многогранника.

Ардила, Блим и Салазар в работе [2] рассмотрели обобщение многогранни-

ка O(P), построенное по конечному частично-упорядоченному множеству P

с отмеченными элементами (включающими все экстремальные элементы P),

на которых задана сохраняющая порядок функция λ. Таким образом появи-

лось понятие мечено-порядкового многогранника O(P, λ) (см. определение 2.1).

Одним из важных примеров мечено-порядковых многогранников являются мно-

гогранники Гельфанда — Цетлина.

Мы изучаем комбинаторику мечено-порядковых многогранников. В част-

ности, хотим описать f -вектор такого многогранника (т. е. конечную последо-

вательность (f0, f1, . . . , fn), где fi — число i-мерных граней, n — размерность

В данной научной работе использованы результаты проекта «Симметрия. Информация.
Хаос», выполненного в рамках Программы фундаментальных исследований НИУ ВШЭ в
2025 г.
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многогранника). Для решения этой задачи иногда удобнее работать с соответ-

ствующей f -вектору производящей функцией f(t) = f0 + f1 · t + · · · + fn · tn,

получившей название f -многочлена. В случае многогранников Гельфанда —

Цетлина корейскими математиками [3], а также независимо автором настоящей

работы [4] было найдено рекуррентное соотношение на f -многочлен. Случай

вершин был рассмотрен уже в работе [5] (см. также [6]).

В случае произвольных мечено-порядковых многогранников для вычисле-

ния f -вектора возможен «лобовой» подход, основанный на описании решетки

граней O(P, λ), которое дал Пегель [7]. В настоящей работе предлагается дру-

гой, менее очевидный подход. В разд. 1 для произвольного (политопального)

подразбиения K произвольного выпуклого многогранникаM мы строим коцеп-

ной комплекс C∗
K

(над Z2) такой, что размерности его когомологий совпадают

с компонентами f -вектора многогранника M (см. лемму 1.7). В случае мечено-

порядковых многогранников эту конструкцию удается довести до вычисления

f -вектора. А именно, у мечено-порядкового многогранника O(P, λ) имеется

кубо-симплициальное подразбиение KP,λ (каждый элемент этого подразбиения

является произведением симплексов), которое обобщает «каноническую» триан-

гуляцию Стенли порядкового многогранника O(P). Для многогранника Гель-

фанда — Цетлина это кубо-симплициальное подразбиение построил А. Пост-

ников [8, доказательство теоремы 15.1], а в общем случае — Лиу, Месарош и

Сен-Дизье [9, доказательство теоремы 3.4] (см. также п. 5.2). Из этих работ

можно извлечь и комбинаторное описание граней старшей размерности подраз-

биения KP,λ. В разд. 2 описаны грани всех размерностей подразбиения KP,λ

в чисто комбинаторных терминах: они соответствуют некоторым цепям вло-

женных идеалов P (см. предложение 2.12 и следствие 2.18). С использованием

этого описания KP,λ в разд. 3 дано комбинаторное описание коцепного ком-

плекса C∗
KP,λ

. Полученное комбинаторное описание C∗
KP,λ

позволяет вычис-

лить когомологии этого коцепного комплекса, размерности которых согласно

лемме 1.7 совпадают с компонентами f -вектора многогранника O(P, λ). Таким

образом, мы получаем некоторый новый способ вычисления f -вектора мечено-

порядкового многогранника O(P, λ) (см. теорему 3.8).

1. Многогранник и коцепной комплекс,

который вычисляет его f-вектор

Относительную границу многогранника Q, т. е. его границу в собственной

аффинной оболочке, будем обозначать через ∂Q, а его относительную внутрен-

ность — через
◦

Q.

В основном следуя [10], дадим несколько определений.

Определение 1.1. Политопальным комплексом K называется конечное

семейство непустых многогранников, лежащих в некотором евклидовом про-

странстве и удовлетворяющих следующим условиям:
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(1) любая грань1) многогранника из K снова принадлежит K ;

(2) пересечение любых двух многогранниковM1,M2 ∈K либо пусто, либо

является гранью каждого из них.

Множество |K | =
⋃

M∈K

M называется телом политопального комплек-

са K .

Определение 1.2. Комплексом K (M) многогранника M называется по-

литопальный комплекс его граней.

Определение 1.3. Политопальный комплекс K ′ называется подразбие-

нием политопального комплекса K , если |K ′| = |K | и каждый многогранник

комплекса K ′ содержится в некотором многограннике комплекса K .

Определение 1.4. Подразбиением выпуклого многогранника M называ-

ется политопальный комплекс K , тело которого совпадает с многогранником

M (условие, что каждый многогранник комплекса K содержится в некоторой

грани многогранника M , в данном случае выполнятся автоматически).

Нам также понадобится понятие подкомплекса.

Определение 1.5. Подмножество политопального комплекса называется

подкомплексом, если оно само является политопальным комплексом.

Пусть M — произвольный выпуклый многогранник, K ′ — некоторое под-

разбиение комплекса K (M). Заметим, что K ′ естественным образом наделяет

многогранник M структурой CW -комплекса. Открытыми клетками будут от-

носительные внутренности многогранников из K ′. Далее построим некоторый

коцепной комплекс C∗
K ′ с коэффициентами в поле Z2 такой, что размерность

Hn(C∗
K ′) совпадает с n-й компонентой f -вектора многогранника M . (Заметим,

что все коцепные комплексы в данной работе рассматриваются над Z2.)

Пусть A — произвольная грань многогранника M . Рассмотрим подком-

плекс A ′ комплекса K ′, состоящий из всех многогранников S ∈ K ′, целиком

лежащих в A. Другими словами, A ′ = {S ∈ K ′ |
◦

S ∩ A 6= ∅}. А также рас-

смотрим подкомплекс ∂A ′ комплекса A ′, состоящий из всех многогранников

T ∈ A ′, целиком лежащих в ∂A.

Пусть C∗(A ′, ∂A ′;Z2) — комплекс относительных клеточных коцепей па-

ры CW -комплексов, заданной парой политопальных комплексов (A ′, ∂A ′), с

коэффициентами в Z2. Возьмем прямую сумму таких комплексов коцепей по

всем граням многогранника M .

Определение 1.6. Положим

C∗K ′ :=
⊕

A∈K (M)

C∗(A ′, ∂A
′;Z2). (1)

Заметим, что группы коцепей комплекса C∗
K ′ такие же, как у C∗(K ′;Z2),

но кограничные гомоморфизмы у них разные.

1)Пустое множество мы не считаем гранью.
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Лемма 1.7. dimHn(C∗
K ′) = fn(M).

Доказательство. Заметим, что в силу определения 1.6 справедлива фор-

мула

Hn(C∗K ′) =
⊕

A∈K (M)

Hn(A ′, ∂A
′;Z2). (2)

Так как (A ′, ∂A ′) — конечная CW -пара, то

H∗(A ′, ∂A
′;Z2) ≃ H̃∗(A ′/∂A

′;Z2), (3)

где A ′/∂A ′ — CW -комплекс, полученный из A ′ стягиванием в точку |∂A ′|.
Заметим, что

H̃n(A ′/∂A
′;Z2) ≃ H̃n(SdimA;Z2) ≃

{
Z2, если n = dimA,

0 иначе.
(4)

Из (3) и (4) следует, что

dim H̃n(A ′, ∂A
′;Z2) =

{
1, если n = dimA,

0 иначе.
(5)

Из (2), (5) следует, что

dimHn(C∗K ′) = #{A | A ∈K (M), dimA = n} = fn(M). �

Замечание 1.9. Ничто не мешает рассмотреть и двойственный подход, с

группами цепей вместо групп коцепей. В этом случае

CK
′

∗ =
⊕

A∈K (M)

C∗(A
′, ∂A

′;Z2), dimHn(CK
′

∗ ) = fn(M).

Замечание 1.10. Как заметил М. Э. Казарян, предложенный подход к вы-

числению f -вектора многогранника тесно связан с начальными членами спек-

тральной последовательности, ассоциированной с фильтрациейM его остовами.

В самом деле, легко видеть, что

C∗K ′ ≃
m⊕

i=0

C∗(K ′
i ,K

′
i−1),

где K ′
i — подкомплекс комплекса K ′, являющийся подразбиением i-мерного

остова многогранника M , а m — размерность M . С другой стороны, с филь-

трацией ∅ = K ′
−1 ⊂ K ′

0 ⊂ · · · ⊂ K ′
m = K ′ комплекса K ′ ассоциирована

когомологическая спектральная последовательность с Ep,q
0 = Cp+q(K ′

p ,K
′
p−1)

и Ep,q
1 = Hp+q(K ′

p ,K
′
p−1) (см., например, [11]). Таким образом,

Cn
K ′ ≃

m⊕

i=0

Ei,n−i
0

и, следовательно,

Hn(C∗K ′) ≃
m⊕

i=0

Ei,n−i
1 .
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(а) (б)
Рис. 1. (а) M — треугольник V0V1V2, (б) подразбиение K ′ комплекса K (M).

Другими словами, компоненты f -вектора многогранника M можно найти, сум-

мируя размерности групп на n-й диагонали страницы E1 указанной спектраль-

ной последовательности.

Пример 1.10. Пусть M — треугольник V0V1V2 (рис. 1(а)). В качестве K ′

возьмем подразбиение (см. рис. 1(б)). Построим в этом случае коцепной ком-

плекс C∗
K ′ и вычислим вручную его когомологии.

На рис. 1 для ребер и двумерной грани треугольника V0V1V2, а также для

относительных внутренностей многогранников подразбиения K ′ введены спе-

циальные обозначения, которые мы далее будем использовать.

Действуя по определению 1.6, для каждой грани треугольника V0V1V2 по-

строим комплекс относительных клеточных коцепей соответствующей пары,

т. е. выпишем группы коцепей, а также кограничные гомоморфизмы. Вне-

сем эти данные построчно в табл. 1, чтобы потом взять нужную прямую сумму.

Далее для клетки ω через ω∗ обозначена базисная коцепь, принимающая на ω

значение 1 и нуль на остальных клетках. Прочерки в ячейках табл. 1 соответ-

ствуют нулевым кограничным гомоморфизмам.

Таблица 1

✺

 ✮
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.)30*&.4 .*&$)>,?@ .)A&0&7 4))$8&$4$8':B&7 0 %?✱ $) &4$+ 8?0-C&3 (%'00? .)A&✲

0&7✱  $ .=& .)(% ,->,?& ()3)3)%E-23?✳ ➶,&4➻3 H$- 1 ,,?& 0)4$%)>,) 8 $ "*-A'✱
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V1 〈V ∗

1
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Осталось взять прямую сумму комплексов C∗(A ′, ∂A ′) по всем граням тре-

угольника V0V1V2 и увидеть, что C0
K ′ ≃ 〈V ∗0 , V ∗1 , V ∗2 ,W ∗

0 ,W
∗
1 ,W

∗
2 〉 ≃ C0(K ′;Z2),

C1
K ′ ≃ 〈e∗1, . . . , e∗8〉 ≃ C1(K ′;Z2) и C2

K ′ ≃ 〈γ∗1 , γ∗2 , γ∗3 〉 ≃ C2(K ′;Z2) (как и следо-

вало из определения 1.6), но кограничные гомоморфизмы ненулевые только на
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базисных коцепях, двойственных тем клеткам, которые лежат в относительной

внутренности некоторой грани треугольника размерности строго большей, чем

размерность самой клетки:

H0(C∗K ′) ≃ ker δ0 ≃ 〈V ∗0 , V ∗1 , V ∗2 〉 ≃ Z3
2,

H1(C∗K ′) ≃ 〈e∗1, . . . , e∗6〉/〈e∗1 + e∗2, e
∗
3 + e∗4, e

∗
5 + e∗6〉 ≃ Z3

2,

H2(C∗K ′) ≃ 〈γ∗1 , γ∗2 , γ∗3 〉/〈γ∗1 + γ∗2 , γ
∗
2 + γ∗3 〉 ≃ Z2.

Таким образом, размерности групп когомологий коцепного комплекса C∗
K ′

совпадают с количеством граней соответствующих размерностей треугольни-

ка M .

2. Мечено-порядковый многогранник

и его кубо-симплициальное подразбиение

Пусть P = (P,�) — конечное частично упорядоченное множество (далее —

чум), P ∗ — подмножество P , содержащее все экстремальные элементы и P∗ =

(P ∗,�) — заданный им подчум P (далее — подчум отмеченных элементов), λ —

сохраняющая порядок функция P∗ → R. Векторное пространство RP функций

P → R изоморфно координатному пространству R#P ; значение функции x ∈
RP на элементе p ∈ P отождествляется с p-й координатой xp.

Определение 2.1. Мечено-порядковым многогранником O(P, λ) называ-

ется множество точек x ∈ RP таких, что xp ≤ xq, если p � q, и xa = λ(a), если

a ∈ P ∗.
Замечание 2.2. Для корректности определения мечено-порядкового мно-

гогранника чум P не обязан иметь наименьший и наибольший элемент. Огра-

ниченность O(P, λ) достигается за счет того, что P ∗ содержит все экстремаль-

ные элементы чума P.

Пример 2.3. Пусть P = {r, p, q, s, t}. Отношение частичного порядка �
зададим накрывающими соотношениями: r ≺· p ≺· q ≺· s и p ≺· t (рис. 2(а)).

В качестве P ∗ выберем трехэлементное подмножество {r, s, t}. Сохраняющую

порядок функцию λ : P∗ → R определим равенствами: λ(r) = 0, λ(s) = 2 и

λ(t) = 1 (рис. 2(б)). Выпишем систему неравенств, определяющую многогран-

ник O(P, λ), и построим его проекцию на плоскость Oxpxq (рис. 2(в)).

Согласно определению 2.1

O(P, λ) =

{
0 = xr ≤ xp ≤ xq ≤ xs = 2,

xp ≤ xt = 1.

Определение 2.4. Политопальный комплекс, в котором каждый много-

гранник является произведением симплексов, назовем кубо-симплициальным

комплексом.

В этом разделе мы увидим, что мечено-порядковый многогранник O(P, λ)

(см. определение 2.1) обладает некоторым каноническим подразбиением KP,λ,
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(а) (б) (в)

Рис. 2. (а) Диаграмма Хассе чума P из примера 2.3; (б) диаграмма Хассе чума
P из примера 2.3, в которой выделены элементы P ∗ и указаны значения функции
λ на них; (в) проекция O(P , λ) на координатную плоскость Oxpxq.

приходящим из структуры чума P. Геометрическое описание подразбиения

KP,λ было дано в [9, доказательство теоремы 3.4]. Мы дадим комбинаторное

описание подразбиения KP,λ, а также убедимся в том, что KP,λ является кубо-

симплициальным комплексом.

Для построения подразбиения KP,λ многогранника O(P, λ) понадобится

следующее стандартное

Определение 2.5. Порядковым идеалом чума P = (P,�) называется под-

множество I ⊂ P , удовлетворяющее следующему условию: если x ∈ I и y � x ,

то y ∈ I.
Замечание 2.6. Порядковые идеалы чума P также образуют чум по

включению.

Пусть P, P∗ и λ — это участвующие в определении O(P, λ) чум, подчум

отмеченных элементов и сохраняющая порядок функция из P∗ в R соответ-

ственно.

Определение 2.7. Цепь L в чуме порядковых идеалов чума P будем на-

зывать λ-допустимой или просто допустимой (когда λ ясна из контекста), если

она имеет вид ∅ = I0 ( I1 ( · · · ( Im ( Im+1 = P и удовлетворяет условию

каждое λ((Ii \ Ii−1) ∩ P ∗) пусто или равно {ti} для некоторого ti ∈ R,

причем ti < tj при условии, что i < j и как ti, так и tj определены.
(6)

Неформально условие (6) означает следующее. Представим, что мы строим

пирамиду из кубиков — элементов P , в которой этажи — это разности между

соседними идеалами Ii. Каждый этаж состоит по крайней мере из одного ку-

бика. Некоторые из наших кубиков являются отмеченными (это элементы P ∗),

на них стоит метка-число (значение функции λ). Тогда условие (6) означает,

что отмеченные кубики с одинаковыми метками должны попадать в один и тот

же этаж, а также метки добавляемых кубиков должны возрастать от этажа к

этажу.

Пусть теперь L — цепь вида ∅ = I0 ( I1 ( · · · ( Im ( Im+1 = P в чуме

порядковых идеалов чума P.
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Определение 2.8. Будем обозначать через FL = FL(λ) множество точек

x ∈ RP , для которых выполнены три условия:

x|P∗ = λ,

функция x : P → R постоянна на множествах I1 \ I0, . . . , Im+1 \ Im,

x(I1) ≤ x(I2 \ I1) ≤ · · · ≤ x(Im \ Im−1) ≤ x(P \ Im).

(7)

Лемма 2.9. Соответствие L 7→ FL между допустимыми цепями чума по-

рядковых идеалов чума P и непустыми множествами вида FL взаимно одно-

значно.

Доказательство. Сюръективность очевидна. Докажем инъективность.

Предположим, что различным допустимым цепям L и L′ соответствуют одина-

ковые множества FL = FL′ . Это может случиться только в случае, если хотя бы

в одной из рассматриваемых цепей (например в L) найдутся разности соседних

идеалов Ik \ Ik−1 и Ik+1 \ Ik, на которых функции x ∈ FL принимают одно и

то же постоянное значение, т. е. x(Ik \ Ik−1) = x(Ik+1 \ Ik) = r. Последнее

возможно лишь в случае, когда существуют отмеченные элементы a, b ∈ P ∗,

удовлетворяющие условиям a ∈ Ik \ Ik−1, b ∈ Ik+1 \ Ik и λ(a) = λ(b) = r. Но

это противоречит допустимости цепи L (условие (6) нарушено). Поэтому инъ-

ективность доказана. �

Замечание 2.10. Если функция x содержится в FL(λ) для некоторой λ-

допустимой цепи L чума порядковых идеалов чума P, то x — сохраняющая

порядок функция P → R, продолжающая λ, в частности, x ∈ O(P, λ).

Пример 2.11. Пусть P, P∗ и λ — как в примере 2.3.

Рассмотрим цепь L1 = (∅ 6= {r} ( {r, p} ( {r, p, t} ( {r, p, t, q} ( P ) в чуме

порядковых идеалов чума P. Из табл. 2 видно, что она удовлетворяет условию

(6).

Таблица 2
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Соответствующее подмножество FL1 ⊂ R5 состоит из таких точек x, что

0 = xr ≤ xp ≤ xt = 1 ≤ xq ≤ xs = 2. Проекция FL1 на плоскость Oxpxq
является квадратом 0 ≤ xp ≤ 1 ≤ xq ≤ 2.

Покажем, что цепь L = (∅ 6= {r} ( {r, p} ( {r, p, q}) не является до-

пустимой. В самом деле, λ((P \ {r, p, q}) ∩ P ∗) = λ({s, t} ∩ P ∗) = {1, 2}, что

противоречит условию (6).

Соответствующее подмножество FL ⊂ R5 окажется пустым, так как по

определению должно состоять из таких точек x, что 0 = xr ≤ xp ≤ xq ≤ xt =

1 = 2 = xs.
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Предложение 2.12. Совокупность

KP,λ := {FL | L — λ-допустимая цепь в чуме порядковых идеалов P}

является политопальным комплексом.

Доказательство. Покажем, что для λ-допустимой цепи L в чуме поряд-

ковых идеалов чума P условия (7) задают систему непротиворечивых линей-

ных неравенств и равенств в пространствеRP и тем самым определяют непустой

выпуклый полиэдр.

Пусть P состоит из элементов p1, . . . , pl. Всякой сохраняющей порядок би-

екции σ : P → {1, 2, . . . , l} соответствует линейное расширение Pσ = (P,�σ)

чума P, а именно, s �σ t, если σ(s) ≤ σ(t). Легко видеть, что это соответ-

ствие взаимно однозначно. Биекция σ задает перестановку q1, . . . , ql элементов

p1, . . . , pl, где qi = σ−1(i).

Лемма 2.13. Между множеством линейных расширений чума P и мно-

жеством цепей максимальной длины (т. е. длины l + 1) в чуме порядковых

идеалов чума P существует взаимно однозначное соответствие.

Доказательство. Действительно, пусть Pσ — линейное расширение чу-

ма P. Поставим ему в соответствие цепь Lσ = (I0 ( I1 ( . . . ( Il), где

Ii = σ−1({1, 2, . . . , i}). Обратно, пусть дана цепь максимальной длины L =

(∅ = I0 ( I1 ( . . . ( Il = P ). Тогда каждая разность Ik+1 \Ik есть одноэлемент-

ное множество {u} и поскольку Ik — порядковый идеал, для любого элемента

v ∈ Ik либо v ≺ u, либо u и v несравнимы. Поставим в соответствие цепи L

линейное расширение Pτ чума P такое, что каждое τ(Ii \ Ii−1) = {i}. �
Доказательство следующей леммы не представляет сложности.

Лемма 2.14. Цепь Lσ не является λ-допустимой в точности в следующих

двух случаях. Случай 1: функция λ не сохраняет линейный порядок �σ, т. е.

существует пара �-несравнимых элементов a, b ∈ P ∗ таких, что a �σ b, но

λ(a) > λ(b). Случай 2: λ сохраняет �σ, но существуют различные элементы из

P ∗, на которых λ принимает одинаковые значения.

Заметим, что в случае 2 цепь Lσ можно проредить, не меняя множества

FLσ , так, чтобы она стала λ-допустимой. Действительно, предположим, что qk
и qk+n из P ∗ таковы, что λ(qk) = λ(qk+n); тогда удалим из цепи Lσ идеалы с

Ik по Ik+n−1. Повторим эту процедуру для каждой пары различных элементов

из P ∗, на которых λ принимает одинаковые значения. В результате получим

λ-допустимую цепь L̃σ.

Если цепь Lσ является λ-допустимой, положим L̃σ = Lσ. Таким образом,

цепь L̃σ определена для всех λ-согласованных линейных расширений Pσ чума

P, т. е. таких, что λ сохраняет �σ.

Пусть Pσ — λ-согласованное линейное расширение P и qi = σ−1(i). То-

гда множество точек F
L̃σ

является многогранником в RP , заданным системой
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равенств и неравенств, получающейся из системы xq1 ≤ xq2 ≤ . . . ≤ xql заме-

ной некоторых знаков неравенства знаками равенства и всех координат xqi при

qi ∈ P ∗ числами λ(qi) в соответствии с условиями (7). Ограниченность F
L̃σ

следует из условия, что P ∗ содержит все экстремальные элементы чума P.

Итак, по каждому λ-согласованному линейному расширению Pσ чума P

построена λ-допустимая цепь L̃σ, определяющая многогранник F
L̃σ
∈ KP,λ.

Любая другая λ-допустимая цепь L в чуме порядковых идеалов чума P бу-

дет состоять из меньшего числа звеньев и может быть получена из L̃σ для

некоторого (возможно, не единственного) линейного расширения Pσ чума P

удалением некоторого набора идеалов. Поэтому соответствующее ей множество

точек FL является многогранником, заданным системой неравенств и равенств,

получающихся из системы, определяющей многогранник F
L̃σ

, заменой неко-

торых знаков неравенства знаками равенства в соответствии с условиями (7).

Соблюдение условия (6) гарантирует непротиворечивость полученной системы.

А это, в частности, означает, что FL является непустой гранью многогранника

F
L̃σ

. Таким образом, элементы KP,λ максимальной размерности всегда имеют

вид F
L̃σ

для некоторого линейного расширения Pσ чума P (ср. пример 2.17).

Покажем, что все грани многогранника F
L̃σ

принадлежат KP,λ.

Пусть G — непустая грань многогранника F
L̃σ

. Тогда определяющая система

неравенств и равенств для G — назовем ее SG — получается из системы, опреде-

ляющей многогранник F
L̃σ

, не приводящей к противоречию заменой некоторых

знаков неравенства знаками равенства. Заметим, что, как и раньше, система

SG получается из системы xq1 ≤ xq2 ≤ . . . ≤ xql заменой некоторых знаков

неравенства знаками равенства и всех координат xqi при qi ∈ P ∗ числами λ(qi).

Выпишем цепь L, такую, что FL = G, следующим очевидным образом: в I1
помещаем все элементы P , на которых функции x из G принимают значения,

стоящие в системе SG до первого знака неравенства (движемся слева направо);

в I2 помещаем все элементы P , на которых функции x из G принимают зна-

чения, стоящие до второго знака неравенства, и т. д. Построенная цепь будет

удовлетворять условию (6), иначе соответствующая система была бы противо-

речивой.

Для завершения доказательства остается доказать следующую лемму.

Лемма 2.15. Если пересечение λ-допустимых цепей L и L′ в чуме поряд-

ковых идеалов чума P является λ-допустимой цепью, то FL ∩ FL′ ∈ KP,λ, а

именно, FL∩FL′ = FL∩L′ , причем FL∩L′ — грань каждого из многогранников FL

и FL′ ; если пересечение L∩L′ не является λ-допустимой цепью, то пересечение

FL и FL′ пусто.

Доказательство. Пусть пересечение L ∩ L′ = (∅ = J0 ( J1 ( · · · (
Jk ( Jk+1 = P ) — λ-допустимая цепь. Заметим, что в каждой из цепей L и L′

разность Jr \ Jr−1 (где 1 ≤ r ≤ k + 1) подразбита своей цепочкой вложенных
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идеалов (рис. 3).

Рис. 3. Связь между цепями вложенных идеалов и их пересечением.

По определению 2.9 справедливы включения FL∩L′ ⊂ FL и FL∩L′ ⊂ FL′ ,

значит, FL∩L′ ⊂ FL ∩ FL′ (это включение, в частности, гарантирует непустоту

FL ∩ FL′). Докажем, что FL ∩ FL′ ⊂ FL∩L′ . Пусть x ∈ FL ∩ FL′ . Покажем, что

x ∈ FL∩L′. Согласно (7) последнее равносильно условиям (а) x|P∗ = λ, (б) x

постоянна на множествах J1 \ J0, . . . , Jk+1 \ Jk и (в) x(J1) ≤ x(J2 \ J1) ≤ · · · ≤
x(Jk \ Ik−1) ≤ x(P \ Jk). Заметим, что условия (а) и (в) выполнены очевидным

образом, так что остается проверить справедливость условия (б). Предполо-

жим, что x не постоянна на множествах J1 \ J0, . . . , Jk+1 \ Jk, т. е. найдется

разность соседних идеалов Jr \ Jr−1 цепи L ∩ L′ такая, что функция x при-

нимает на ней по крайней мере два различных значения. Допустим, значения

функции x различны на элементах p, q ∈ Jr \ Jr−1, т. е. xp = r1 6= r2 = xq. Без

потери общности можно предположить, что r1 < r2. Так как x ∈ FL ∩ FL′ , то

согласно замечанию 2.10 x — сохраняющая порядок функция P → R. Заметим,

что порядковые идеалы чума R — это лучи (−∞, r), где r — некоторое действи-

тельное число. Рассмотрим порядковый идеал (−∞; r1) чума R, назовем его I.

Полный прообраз этого идеала x−1(I) является идеалом чума P, назовем его

J (полный прообраз порядкового идеала при монотонном отображении чумов

является порядковым идеалом). По определению 2.9 идеал J содержится как в

цепи L, так и в цепи L′, а значит, принадлежит их пересечению. Заметим, что

Jr−1 ( J ( Jr. Однако мы предполагали, что идеалы Jr−1 и Jr в цепи L∩L′ —

соседние. Это противоречие доказывает, что функция x из FL ∩ FL′ постоянна

на множествах J1 \ J0, . . . , Jk+1 \ Jk. Мы показали, что любая функция x из

FL ∩ FL′ принадлежит также и FL∩L′, т. е. FL ∩ FL′ ⊂ FL∩L′ . Таким образом,

если L ∩ L′ — λ-допустимая цепь, то справедливо равенство FL ∩ FL′ = FL∩L′ .

Несложно понять, что FL∩L′ является гранью каждого из многогранников FL

и FL′ .

Теперь пусть пересечение L ∩ L′ = (∅ = J0 ( J1 ( · · · ( Jk ( Jk+1 = P ) не

является λ-допустимой цепью. Цепи L и L′ λ-допустимые, поэтому достаточно

очевидно, что L ∩ L′ может не быть λ-допустимой только в том случае, если

некоторая разность соседних идеалов Jr \ Jr−1 цепи L ∩ L′ содержит элементы

a, b ∈ P ∗ такие, что λ(a) < λ(b). Предположим, что FL ∩ FL′ непусто, т. е.

найдется функция x, которая принадлежит как FL, так и FL′ . Вновь согласно

замечанию 2.10 x — сохраняющая порядок функция из P в R, продолжающая

λ. Поэтому xa = λ(a) и xb = λ(b). В чуме R рассмотрим порядковый идеал

(−∞;λ(a)), назовем его I ′. Как мы уже знаем, полный прообраз этого идеала

x−1(I ′) является идеалом чума P, общим для цепей L и L′ (т. е. x−1(I ′) ∈ L∩L′).
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Назовем его J ′. Идеал J ′ по построению содержит идеал Jr−1, содержится в

идеале Jr и не совпадает ни с одним из них. Однако мы предполагали, что

идеалы Jr и Jr−1 в цепи L ∩ L′ соседние. Получили противоречие. Поэтому

если цепь L ∩ L′ не является λ-допустимой цепью, то пересечение FL ∩ FL′

пусто. �

На этом доказательство предложения завершено. �

Пример 2.16. Рассмотрим чум из примера 2.11. Найдем многогранни-

ки максимальной размерности комлекса KP,λ. Из доказательства предложе-

ния 2.12 мы знаем, что они всегда имеют вид F
L̃σ

для некоторого линейно-

го расширения Pσ чума P. Так как в нашем случае в чуме P всего два

несравнимых элемента, то и линейных расширений будет в точности два: Pσ1

и Pσ2 (рис. 4(a),(б)). Многогранник FLσ1
= FL1 из примера 2.11. Многогранник

FLσ2
⊂ R5 состоит из таких точек x, что 0 = xr ≤ xp ≤ xq ≤ xt = 1 ≤ xs = 2.

Проекция FLσ2
на Oxpxq является треугольником (рис. 4(в)).

(а) (б) (в)
Рис. 4. (а) Диаграмма Хассе Pσ1 ; (б) диаграмма Хассе Pσ2 ; (в) проекция под-
разбиения K P,λ многогранника O(P , λ) на плоскость Oxpxq.

Следствие 2.17. Многогранник FL является гранью FL′ , если и только

если λ-допустимая цепь L содержится в λ-допустимой цепи L′ (т. е. цепь L

получается из L′ удалением некоторого набора идеалов).

Доказательство. Пусть FL является гранью FL′ . Тогда FL ∩ FL′ = FL.

Таким образом, пересечение FL ∩ FL′ непусто. Из леммы 2.15 следует, что

L ∩ L′ является λ-допустимой цепью. Применяя снова лемму 2.15, получаем,

что FL ∩ FL′ = FL∩L′ . Стало быть, FL = FL∩L′ . Но соответствие L 7→ FL

инъективно (см. лемму 2.9), поэтому L = L ∩ L′, т. е. L содержится в L′.

Теперь пусть L ⊂ L′, тогда L ∩ L′ = L. Так как каждая из цепей L и L′

по условию является λ-допустимой, то и L ∩ L′ является λ-допустимой цепью.

В лемме 2.15 показано, что в этом случае FL ∩FL′ = FL∩L′ . Так как L∩L′ = L,

имеем FL ∩ FL′ = FL. Поэтому FL является гранью FL′ . �

Следствие 2.18. Политопальный комплекс KP,λ является подразбиени-

ем многогранника O(P, λ).

Доказательство. Нужно показать, что |KP,λ| = O(P, λ).
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Пусть Pσ — λ-согласованное линейное расширение чума P, и пусть Lσ

— соответствующая ему цепь максимальной длины в чуме порядковых иде-

алов чума P (см. начало доказательства предложения 2.12). Заметим, что

многогранник F
L̃σ
∈ KP,λ (см. доказательство предложения 2.12) по построе-

нию является мечено-порядковым многогранником O(Pσ , λ). Из определений

линейного расширения чума и мечено-порядкового многогранника (см. опре-

деление 2.1) следует, что многогранник O(Pσ , λ) высекается из многогранника

O(P, λ) набором полупространств, поэтому
⋃
σ
O(Pσ , λ) ⊂ O(P, λ) (где объеди-

нение берется по всем λ-согласованным линейным расширениям). Покажем,

что верно и обратное включение. Пусть x ∈ O(P, λ). Значения функции x

на элементах P можно упорядочить по возрастанию, а затем записать связы-

вающую их цепочку неравенств xq1 ≤ xq2 ≤ · · · ≤ xq#P
(такая цепочка может

быть не одна, если функция x принимает одинаковые значения на нескольких

элементах P ). Так как x ∈ O(P, λ), то перестановке q1, . . . , q#P элементов P со-

ответствует некоторое λ-согласованное линейное расширение Pσ. Заключаем,

что x ∈ O(Pσ , λ).

Для любого политопального комплекса верно, что его тело является объ-

единением многогранников комплекса максимальной размерности. Поэтому

|KP,λ| =
⋃
σ
F
L̃σ

. Таким образом,

|KP,λ| =
⋃

σ

F
L̃σ

=
⋃

σ

O(Pσ , λ) = O(P, λ). �

Замечание 2.19. Политопальный комплекс KP,λ является кубо-симпли-

циальным подразбиением многогранника O(P, λ), так как каждый из много-

гранников F
L̃σ

= O(Pσ , λ) является произведением симплексов.

Замечание 2.20. Подразбиение KP,λ мечено-порядкового многогранни-

ка можно описать геометрически [9, доказательство теоремы 3.4]. А именно,

исходя из всевозможных пар несравнимых элементов P, будем рассекать мно-

гогранник O(P, λ) некоторым набором гиперплоскостей. Возможны такие ва-

рианты: (а) u, v ∈ P \ P ∗ — несравнимые элементы, ни один из которых не

является отмеченным, тогда проведем гиперплоскость xu = xv, обозначим ее

через Huv; (б) s ∈ P \ P ∗ и a ∈ P ∗ — несравнимые элементы, один из которых

является отмеченным, тогда проведем гиперплоскость xs = λ(a), обозначим ее

через Has; (в) b, c ∈ P ∗ — несравнимые элементы, которые оба оказались отме-

ченными, тогда они не участвуют в дополнительных построениях. В результате

получим некоторое подразбиение K ′ многогранника O(P, λ).

Покажем, что каждый F
L̃σ

= O(Pσ , λ) принадлежит K ′. Напомним, что

в Pσ зафиксирован порядок между элементами, которые были несравнимы в

P. Поэтому каждый многогранник

O(Pσ, λ) = O(P, λ) ∩
(⋂

u,v

H≷uv

)
∩
(⋂

a,s

H≷as

)
,
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где символ H
≷
uv означает одно из двух полупространств xu ≤ xv или xu ≥

xv в зависимости от установленного порядка между элементами u и v в Pσ.

Таким образом, O(Pσ , λ) ∈ K ′. Принимая во внимание предложение 2.12 и

следствие 2.18, можно заключить, что KP,λ = K ′.

Замечание 2.21. Также в [9, § 5.2] для случая мечено-порядковых много-

гранников, построенных по строго планарному чуму с отмеченными элементами

(см. [9, определение 4.2]), приведена конструкция, которая позволяет, поэтапно

преобразуя исходный чум, получить цепи с отмеченными элементами, мечено-

порядковые многогранники которых суть многогранники F
L̃σ

.

3. Вычисление f-вектора многогранника O(P, λ)

Пусть снова P, P∗ и λ — участвующие в определении 2.1 чум, подчум

отмеченных элементов и сохраняющая порядок функция из P∗ в R соответ-

ственно. В этом разделе мы хотим описать коцепной комплекс C∗
KP,λ

в чисто

комбинаторных терминах, т. е. напрямую в терминах чума P и сохраняющего

порядок отображения λ, без ссылок на какие-либо многогранники.

Для того чтобы описать в комбинаторных терминах группы коцепей ком-

плекса C∗
KP,λ

, сначала опишем в комбинаторных терминах размерность много-

гранника FL (см. 2.8) для всякой λ-допустимой цепи L (см. определение 2.7).

Определение 3.1. Назовем размерностью λ-допустимой цепи L = (∅ =

I0 ( I1 ( · · · ( Im ( Im+1 = P ) количество таких разностей соседних идеалов

Ii \ Ii−1, которые не пересекаются с P ∗. Обозначение: dimL.

Легко видеть, что dimFL = dimL.

Заметим, что dimL+ 3 для λ-допустимой цепи L не превосходит длины L,

т. е. количества входящих в L идеалов; равенство достигается, например, если

P ∗ содержит только наименьший и наибольший элементы P (в этом случае

количество таких разностей соседних идеалов Ii \Ii−1, которые не пересекаются

с P ∗, равно m− 1, что в точности на 3 меньше длины цепи L).

Несложно описать в комбинаторных терминах и размерность всего много-

гранника O(P, λ).

Определение 3.2. Назовем размерностью пары (P, λ) максимум размер-

ностей λ-допустимых цепей в чуме порядковых идеалов чума P. Обозначение:

dim(P, λ).

Легко видеть, что dim(P, λ) = dimO(P, λ).

Для того чтобы описать в комбинаторных терминах коцепной гомомор-

физм комплекса C∗
KP,λ

, нам нужно сначала научиться для произвольной λ-

допустимой цепи L выписывать все содержащие ее λ-допустимые цепи на еди-

ницу большей размерности.

Определение 3.3. Будем говорить, что λ-допустимая цепь Lk получена

Ik-уплотнением из λ-допустимой цепи

L = (∅ = I0 ( I1 ( · · · ( Im ( Im+1 = P ),
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Рис. 5. Ik-Уплотнение λ-допустимой цепи L.

если Lk получена из L добавлением единственного идеала Jk такого, что Ik−1 (
Jk ( Ik (рис. 5).

Покажем, что всякое Ik-уплотнение увеличивает размерность λ-допустимой

цепи ровно на единицу.

Лемма 3.4. dimLk = dimL+ 1.

Доказательство. Будем использовать обозначения рис. 5. Заметим, что

Ik \ Ik−1 = (Jk \ Jk−1) ∪ (Jk+1 \ Jk). Все остальные разности соседних идеалов

у цепей L и Lk совпадают. Возможны два случая.

Случай А: Ik \ Ik−1 содержит отмеченные элементы a1, . . . , an (все, на

которых λ принимает одно и то же значение; n ≥ 1). Так как Lk является по

определению λ-допустимой цепью, то по условию (6) либо Jk \ Jk−1 содержит

все отмеченные элементы a1, . . . , an (тогда Jk+1 \ Jk не содержит отмеченных

элементов), либо Jk+1 \ Jk содержит все отмеченные элементы a1, . . . , an (тогда

Jk \Jk−1 не содержит отмеченных элементов). Поэтому в цепи Lk ровно на одну

больше разностей соседних идеалов, не пересекающихся с P ∗.

Случай Б: Ik \ Ik−1 не содержит отмеченные элементы. Тогда, очевидно,

Jk \ Jk−1 и Jk+1 \ Jk также не содержат отмеченных элементов. И размерность

цепи Lk снова на единицу больше размерности L. �

Следствие 3.5. Пусть L и L′ — λ-допустимые цепи, L ⊂ L′ и dimL′ =

dimL+ 1. Тогда L′ получена из L некоторым Ik-уплотнением.

Доказательство. Всякое Ik-уплотнение λ-допустимой цепи — это мини-

мально возможное увеличение цепи (ровно на один идеал). Предположим, что

L содержится в L′ и они отличаются на r идеалов. Несложно понять, что в этом

случае существует последовательность вложенных цепей L ( L1 ( · · · ( Lr−1 (
L′ такая, что каждая следующая цепь получается из предыдущей некоторым

Ik-уплотнением. Согласно лемме 3.4 dimL′ = dimL + r. По условию r = 1,

поэтому L′ получена из L некоторым Ik-уплотнением. �

Замечание 3.6. В общем случае в λ-допустимой цепи L могут встретиться

как идеалы Ik такие, что L нельзя Ik-уплотнить, так и идеалы такие, что L

можно Ik-уплотнить более чем одним способом.

Определение 3.7. Будем говорить, что λ-допустимые цепи L′ и L′′ Ik-

сопряжены, если они получены Ik-уплотнением из некоторой λ-допустимой це-

пи L и справедливы равенства Jk+1 \ Jk = J ′k \ J ′k−1 и Jk \ Jk−1 = J ′k+1 \ J ′k2).

2)Другими словами, разность идеалов Ik \ Ik−1 распадается на две части (Ik \ Ik−1 =
A ∪ B), которые, присоединяясь в разном порядке, приводят к образованию L′ и L′′. Имеем
Jk = Ik−1 ∪ A = Ik \B и J ′

k
= Ik−1 ∪ B = Ik \A.



О числе граней мечено-порядковых многогранников 43

Пусть Ci(P, λ) — векторное пространство над Z2 с базисом, состоящим из

всех λ-допустимых цепей размерности i в чуме порядковых идеалов чума P.

Для λ-допустимой цепи L = (∅ = I0 ( I1 ( · · · ( Im = P ) положим

δ(L) = �1(L) + · · ·+ �m(L), (8)

где �k(L) — формальная сумма всех Ik-уплотнений L, имеющих Ik-сопряжен-

ное. Заметим, что δ(L) ∈ Ci+1(P, λ), так как всякое Ik-уплотнение увеличивает

размерность λ-допустимой цепи на единицу (см. лемму 3.4). Продолжив δ по

линейности, получим линейные отображения δ : Ci(P, λ)→ Ci+1(P, λ). Поло-

жим

C∗(P, λ) = (C0(P, λ)
δ→ . . .

δ→ Cn(P, λ)), где n = dim(P, λ).

Теорема 3.8. C∗(P, λ) является коцепным комплексом (т. е. δ ◦ δ = 0) и

изоморфен комплексу C∗
KP,λ

.

Доказательство. Для начала построим изоморфизм градуированных

векторных пространств
dim(P,λ)⊕

i=0

Ci(P, λ) и
dimO(P,λ)⊕

i=0

Ci
KP,λ

(напомним, что раз-

мерность пары (P, λ) совпадает с размерностью многогранника O(P, λ), см.

определение 3.2). Как уже упоминалось после определения 1.6, группы коцепей

комплекса C∗
KP,λ

такие же, как у C∗(KP,λ;Z2) (действительно, каждая клетка

CW -комплекса, соответствующего подразбиению выпуклого многогранника, со-

держится в относительной внутренности единственной грани этого многогран-

ника). Поэтому Ci
KP,λ

— векторное пространство над Z2 с базисом, состоящим

из коцепей, принимающих значение 1 на внутренностях
◦

FL всех i-мерных мно-

гогранников вида FL и 0 на остальных клетках. Далее в нашем рассуждении

будем отождествлять базисные коцепи Ci
KP,λ

с соответствующими многогран-

никами FL, если это не отражается на строгости изложения.

Мы знаем, что соответствие φ : L 7→ FL между λ-допустимыми цепями в

чуме порядковых идеалов чума P и непустыми многогранниками вида FL вза-

имно однозначно (см. лемму 2.9), причем dimL = dimFL (см. определение 3.1).

Продолжив φ по линейности для каждого i, получим градуированный изомор-

физм

φ :

dim(P,λ)⊕

i=0

Ci(P, λ)→
dimO(P,λ)⊕

i=0

Ci
KP,λ

.

Рассмотрим диаграмму

Ci(P, λ)
δ−−−−→ Ci+1(P, λ)

φ

y
yφ

Ci
KP,λ

d−−−−→ Ci+1
KP,λ

,

(9)

где через d обозначен коцепной гомоморфизм комплекса C∗
KP,λ

.
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Доказав коммутативность (9), т. е. справедливость равенства φ ◦ δ = d ◦ φ,

получим сразу и δ ◦ δ = 0, и изоморфизм рассматриваемых коцепных комплек-

сов.

Опишем композицию φ◦δ. Пусть L— λ-допустимая цепь размерности i. Мы

определили δ(L) = �1(L) + · · ·+�m(L), где �k(L) — сумма всех Ik-уплотнений

L, имеющих Ik-сопряженное. Заметим, что �k(L) разбивается на пары Ik-

сопряженных друг другу цепей: �k(L) =
(
L1
k +

(
L1
k

)′)
+ · · · +

(
Llk
k +

(
Llk
k

)′)
,

где Lj
k и

(
Lj
k

)′
являются Ik-сопряженными. Поэтому δ(L) можно переписать в

виде

δ(L) =

m∑

k=1

((
L1
k +

(
L1
k

)′)
+ · · ·+

(
Llk
k +

(
Llk
k

)′))
.

Таким образом,

φ(δ(L)) =

m∑

k=1

((FL1
k

+ F(L1
k
)′) + · · ·+ (F

L
lk
k

+ F
(L

lk
k

)′
)). (10)

Заметим, что все многогранники из правой части формулы (10) имеют размер-

ность dimFL + 1 (так как dimFLj
k

= dimLj
k), содержат FL (см. следствие 2.17)

и соответствуют Ik-уплотнениям цепи L, имеющим Ik-сопряженное для некото-

рого 1 ≤ k ≤ m. Более того, все многогранники подразбиения KP,λ с перечис-

ленными свойствами входят в правую часть формулы (10).

Теперь опишем композицию d ◦ φ. Пусть снова L — λ-допустимая цепь

размерности i, тогда φ(L) = FL, где FL ∈ KP,λ и dimFL = i. Таким образом,

d(φ(L)) = d(FL) и остается доказать, что d(FL) совпадает с правой частью

формулы (10).

Согласно определению 1.6 d(FL) — формальная сумма с коэффициентами

из Z2 многогранников Q ∈KP,λ таких, что выполнены три условия:

(а) FL ⊂ Q (другими словами, FL является гранью Q),
(б) dimQ = dimFL + 1,

(в)
◦

FL и
◦

Q лежат в относительной внутренности одной

и той же грани A многогранника O(P, λ).

(11)

Мы уже знаем из следствий 2.17 и 3.5, что условия (11(а),(б)) означают, что

Q = FLk
, где Lk — λ-допустимая цепь, которая получена из L некоторым Ik-

уплотнением. Напомним, что согласно определению 2.8 FL состоит из функций

x ∈ RP , для которых выполнены условия:

(А) x|P∗ = λ,

(Б) x постоянна на множествах I1 \ I0, . . . , Im \ Im−1,

(В) x(I1) ≤ x(I2 \ I1) ≤ · · · ≤ x(Ik \ Ik−1) ≤ · · · ≤ x(P \ Im−1).

Согласно определению 3.3 цепь Lk получена из L добавлением единствен-

ного идеала Jk такого, что Ik−1 ( Jk ( Ik. Соответственно FLk
состоит из

функций x ∈ RP , для которых выполнены условия:

(А) x|P∗ = λ,

(Б′) x постоянна на множествах I1 \ I0, . . . , Jk \ Ik−1, Ik \ Jk, . . . , Im \ Im−1,



О числе граней мечено-порядковых многогранников 45

(В′) x(I1) ≤ x(I2 \ I1) ≤ · · · ≤ x(Jk \ Ik−1) ≤ x(Ik \ Jk) ≤ · · · ≤ x(P \ Im−1).

Таким образом, система (В′) отличается от (В) тем, что значения функ-

ции x на множествах Jk \ Ik−1 и Ik \ Jk не совпадают, а связаны неравен-

ством x(Jk \ Ik−1) ≤ x(Ik \ Jk). Так как FL ⊂ FLk
, то и для аффинных

оболочек выполнено Aff(FL) ⊂ Aff(FLk
). Заметим, что аффинные оболочки

Aff(FL) и Aff(FLk
) задаются системами равенств из условий (Б) и (Б′). Пусть

p ∈ Jk \ Ik−1, q ∈ Ik \ Jk, Hpq — гиперплоскость, заданная равенством xp = xq,

и H≤pq — полупространство, заданное неравенством xp ≤ xq . Несложно видеть,

что Aff(FL) = Aff(FLk
) ∩Hpq и FLk

⊂ Aff(FLk
) ∩H≤pq.

Также несложно видеть, что Aff(FL) делит Aff(FLk
) на два полупростран-

ства Aff(FLk
) ∩H<

pq и Aff(FLk
) ∩H>

pq. Рассмотрим произвольную точку y ∈
◦

FL.

В малой окрестности U точки y, целиком лежащей в Aff(FLk
), есть как точ-

ки
◦

FLk
, которые содержатся в Aff(FLk

) ∩ H<
pq, так и точки дополнительного

полупространства Aff(FLk
) ∩ H>

pq. Что можно сказать про точки U , которые

оказались в дополнительном полупространстве Aff(FLk
) ∩ H>

pq? Согласно гео-

метрическому описанию подразбиения KP,λ (см. замечание 2.20) они либо не

принадлежат O(P, λ), либо содержатся в относительной внутренности неко-

торой грани FL′
k

нашего разбиения такой, что Aff FL′
k

= Aff FLk
. Однако мы

знаем, что
◦

FL и
◦

FLk
лежат в относительной внутренности одной и той же грани

A многогранника O(P, λ) (см. условие 11(в)). Поэтому в рассматриваемом слу-

чае общие точки окрестности U и полупространства Aff(FLk
)∩H>

pq содержатся

в относительной внутренности некоторой грани FL′
k

нашего разбиения.

Покажем, что FL′
k

состоит из функций x ∈ RP , для которых выполнены

условия:

(А) x|P∗ = λ,

(Б′) x постоянна на множествах I1 \ I0, . . . , Jk \ Ik−1, Ik \ Jk, . . . , Im \ Im−1,

(В′′) x(I1) ≤ x(I2 \ I1) ≤ · · · ≤ x(Ik \ Jk) ≤ x(Jk \ Ik−1) ≤ · · · ≤ x(P \ Im−1).

Действительно, (A) выполнено очевидным образом; (Б′) выполнено, так

как Aff FL′
k

= Aff FLk
; (В′′) выполнено, так как FL′

k
⊂ Aff FLk

∩H≥pq и FLk
∩FL′

k
=

FL (p ∈ Jk \ Ik−1, q ∈ Ik \ Jk и H≥pq — полупространство, заданное неравенством

xp ≥ xq).
Заметим, что согласно лемме 2.9 и определению 3.7 L′k и Lk являются Ik-

сопряженными и для грани FL′
k

по построению выполнены условия (11). Мы

доказали, что если многогранник Q ∈ KP,λ входит в d(FL) с ненулевым коэф-

фициентом, то Q = FLk
, где Lk — λ-допустимая цепь, полученная из L неко-

торым Ik-уплотнением и имеющая Ik-сопряженное, а именно L′k. Причем FL′
k

также входит в d(FL) с ненулевым коэффициентом.

Таким образом, доказано, что все многогранники, входящие в d(FL) с нену-

левым коэффициентом, входят и в правую часть формулы (10). Обратно, пусть

Lk — λ-допустимая цепь, полученная из L некоторым Ik-уплотнением и имею-

щая Ik-сопряженное (обозначим его через L′k). Благодаря проделанной работе

легко видеть, что FLk
и FL′

k
удовлетворяют условиям (11). Следовательно, FLk
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входит в d(FL) с ненулевым коэффициентом. �

Пример 3.9. Изменим немного чум из примера 2.3. Пусть P = {r, p, q, s, t}.
Отношение частичного порядка � зададим накрывающими соотношениями:

r ≺ · p ≺ · q ≺ · s (рис. 6(а) — крайний левый чум). В качестве P ∗ выбе-

рем трехэлементное подмножество {r, s, t}. Сохраняющую порядок функцию

λ : P∗ → R определим равенствами: λ(r) = 0, λ(s) = 2 и λ(t) = 1 (рис. 6(а) —

второй слева чум). Согласно определению (2.1)

O(P, λ) =

{
0 = xr ≤ xp ≤ xq ≤ xs = 2,

xt = 1.

Построим проекцию O(P, λ) на плоскостьOxpxq и проведем прямые xp = 1

и xq = 1, чтобы получить проекцию подразбиения KP,λ на ту же плоскость (см.

замечание 2.20, рис.6(б)).

(а) (б)

Рис. 6. (а) Слева направо: диаграмма Хассе чума P из примера 3.9; диаграмма
Хассе чума P из примера 3.9, в которой выделены элементы P ∗ и указаны значения
функции λ на них; диаграммы Хассе линейных расширений Pσ1 , Pσ2 и Pσ3 чума
P из примера 3.9; (б) проекция K P,λ на координатную плоскость Oxpxq для чума
P из примера 3.9.

Вычислим f -вектор O(P, λ) с помощью теоремы 3.8 и леммы 1.7. Для

этого выпишем коцепной комплекс C∗(P, λ) и вычислим его когомологии.

Мы знаем, что Ci(P, λ) — векторное пространство над Z2 с базисом, состо-

ящим из всех λ-допустимых цепей размерности i в чуме порядковых идеалов

чума P. Выпишем базисные λ-допустимые цепи для каждого i.

Начнем с λ-допустимых цепей старшей размерности. Из доказательства

предложения 2.12 мы знаем, что такие λ-допустимые цепи приходят из линей-

ных расширений чума P. В нашем примере λ-допустимые цепи максимальной

размерности соответствуют линейным расширениям Pσ1 , Pσ2 и Pσ3 , представ-

ленным на рис. 6. В табл. 3 эти цепи выписаны и обозначены соответственно

Lσ1 , Lσ2 и Lσ3 . Всюду далее при написании λ-допустимых цепей рассматривае-

мого чума P мы на месте отмеченных элементов будем писать значение функ-

ции λ на них. В табл. 4 выписаны λ-допустимые цепи, на единицу меньшей

размерности.
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Таблица 3

✶✾

✭✷✳✶✮✱

&'()*'+, -*'./0+1 23 -4'(/'()5 + -*'6.7➻, -*9,:. +

✱ ;)'<: -'4=;+)5 -*'./0+1 -'7*3><+.2+9 23 )= ?. -4'(/'()5 ✭(,✳ >3,.;32+.

✷✳✷✶✱ *+(✳ ✻<✮✳

3✮

<✮

 !"✳ ✻✳ 3✮ A4.63 23-*36'✿ 7+3C*3,,3 D3((. ;=,3 +> -*+,.*3 ✸✳✾❀

7+3C*3,,3 D3((. ;=,3 +> -*+,.*3 ✸✳✾✱ 6 /')'*'H 6:7.4.2: I4.✲

,.2): + =/3>32: >23;.2+9 K=2/0++ 23 2+L❀ 7+3C*3,,: D3((.

4+2.H2:L *3(M+*.2+H ✱ + ;=,3 +> -*+,.*3 ✸✳✾❀ <✮ -*'✲

./0+9 23 /''*7+23)2=1 -4'(/'()5 749 ;=,3 +> -*+,.*3

✸✳✾✳

➶:;+(4+, ✲6./)'* ( -','O51 ).'*.,: ✸✳✽ + 4.,,: ✶✳✼✳ ➘49 I)'C' 6:✲

-+M., /'0.-2'H /',-4./( + 6:;+(4+, .C' /'C','4'C++✳

❒: >23.,✱ ;)' ✖ 6./)'*2'. -*'()*32()6' 237 ( <3>+(',✱ ('()'9O+,

+> 6(.L ✲7'-=()+,:L 0.-.H *3>,.*2'()+ 6 ;=,. -'*97/'6:L +7.34'6 ;=,3 ✳

➶:-+M., <3>+(2:. ✲7'-=()+,:. 0.-+ 749 /3?7'C' ✳

❮3;2➻, ( ✲7'-=()+,:L 0.-.H ()3*M.H *3>,.*2'()+✳ ➮> 7'/3>3).45()63 -*.74'✲

?.2+9 ✷✳✶✸ ,: >23.,✱ ;)' )3/+. ✲7'-=()+,:. 0.-+ -*+L'79) +> 4+2.H2:L *3(M+✲

*.2+H ;=,3 ✳ ➶ 23M., -*+,.*. ✲7'-=()+,:. 0.-+ ,3/(+,3452'H *3>,.*2'()+

('')6.)()6=1) 4+2.H2:, *3(M+*.2+9, ✱ + ✱ -*.7()364.22:, 23 *+(✳ ✻✳

➶:-+M., I)+ 0.-+ + '<'>23;+, ('')6.)()6.22' ✱ + ✱ (,✳ )3<4+0= 2+?.✳

✭➶(17= 734.. -*+ 23-+(32++ ✲7'-=()+,:L 0.-.H *3((,3)*+63.,'C' ;=,3 ,: 23

,.(). '),.;.22:L I4.,.2)'6 <=7., -+(3)5 >23;.2+. K=2/0++ 23 2+L✳✮

L dimL FL

Lσ1
=

(

∅ 6= {0} ( {0, p} ( {0, p, q} ( {0, p, q, 1} ( P
)

2 V1W1W0 : 0 ≤ xp ≤ xq ≤ 1

Lσ2
=

(

∅ 6= {0} ( {0, p} ( {0, p, 1} ( {0, p, 1, q} ( P
)

2 W0W1W2V0 : 0 ≤ xp ≤ 1 ≤ xq ≤ 2

Lσ3
=

(

∅ 6= {0} ( {0, 1} ( {0, 1, p} ( {0, 1, p, q} ( P
)

2 W1V2W2 : 1 ≤ xp ≤ xq ≤ 2

Таблица 4

✷✵

 !"!#$ %&"'(!) ✲+,"-./')&! 0!"' 12 !+'1'0- )!1$(!3 #24)!#1,./'✱ .)✳ /27✲

8'0- 1'9!✳

L dimL FL

L1 =

(

∅ 6= {0, p} ( {0, p, 1} ( {0, p, 1, q} ( P
)

1 W0V0 : 0 = xp ≤ 1 ≤ xq ≤ 2

L2 =

(

∅ 6= {0, p} ( {0, p, q} ( {0, p, q, 1} ( P
)

1 V1W0 : 0 = xp ≤ xq ≤ 1

L3 =

(

∅ 6= {0} ( {0, p, q} ( {0, p, q, 1} ( P
)

1 V1W1 : 0 ≤ xp = xq ≤ 1

L4 =

(

∅ 6= {0} ( {0, 1} ( {0, 1, p, q} ( P
)

1 W1V2 : 1 ≤ xp = xq ≤ 2

L5 =

(

∅ 6= {0} ( {0, 1} ( {0, 1, p} ( P
)

1 V2W2 : 1 ≤ xp ≤ xq = 2

L6 =

(

∅ 6= {0} ( {0, p} ( {0, p, 1} ( P
)

1 W2V0 : 0 ≤ xp ≤ 1 ≤ xq = 2

L7 =

(

∅ 6= {0} ( {0, p, 1} ( {0, p, 1, q} ( P
)

1 W1W2 : 0 ≤ xp = 1 ≤ xq ≤ 2

L8 =

(

∅ 6= {0} ( {0, p} ( {0, p, q, 1} ( P
)

1 W1W0 : 0 ≤ xp ≤ xq = 1

❰./28,.$ %&"'.2/$ 1-8$)!#1&! ✲+,"-./')&! 0!"'✳ ;+!82!) </,✳

 2=') ,7#24,)✱

 !"!#$ %&>'.8') =,0!"1,3 ?,),),#@'4) 12 724'.1&A <8!)!1/2A ?#-"" ✳

➪-+!) +!3./%,%2/$ .,?82.1, "#2%'8- ✭✽✮✳

F2..),/#') ✲+,"-./')-G 0!"$ ✳ ❒& ),✲

9!) ✲-"8,/1'/$ !+'1./%!11&) .",.,7,)✿ ",8->')

✱ 2 /2=9! ✲-"8,/1'/$ !+'1./%!11&) .",.,7,)✿ ",8->')

✳  2=') ,7#24,)✱ 1' ,+1, '4 ✲-"8,/1!1'3

1! ')!!/ ✲.,"#J9➻11,!✱ 2 412>'/ ✳

В табл. 5 выписаны нульмерные λ-допустимые цепи.

Таблица 5

✷✵

 !"!#$ %&"'(!) ✲+,"-./')&! 0!"' 12 !+'1'0- )!1$(!3 #24)!#1,./'✱ .)✳ /27✲

8'0- 1'9!✳

❰./28,.$ %&"'.2/$ 1-8$)!#1&! ✲+,"-./')&! 0!"'✳ ;+!82!) </,✳

L dimL FL

Lv0 =

(

∅ 6= {0, p} ( {0, p, 1} ( P
)

0 V0 : 0 = xp ≤ 1 ≤ xq = 2

Lv1 =

(

∅ 6= {0, p, q} ( {0, p, q, 1} ( P
)

0 V1 : 0 = xp = xq ≤ 1

Lv2 =

(

∅ 6= {0} ( {0, 1} ( P
)

0 V2 : 1 ≤ xp = xq = 2

Lw0
=

(

∅ 6= {0, p} ( {0, p, q, 1} ( P
)

0 W0 : 0 = xp ≤ xq = 1

Lw1
=

(

∅ 6= {0} ( {0, p, q, 1} ( P
)

0 W1 : 0 ≤ xp = xq = 1

Lw2
=

(

∅ 6= {0} ( {0, p, 1} ( P
)

0 W2 : 0 ≤ xp = 1 ≤ xq = 2

 2=') ,7#24,)✱

 !"!#$ %&>'.8') =,0!"1,3 ?,),),#@'4) 12 724'.1&A <8!)!1/2A ?#-"" ✳

➪-+!) +!3./%,%2/$ .,?82.1, "#2%'8- ✭✽✮✳

F2..),/#') ✲+,"-./')-G 0!"$ ✳ ❒& ),✲

9!) ✲-"8,/1'/$ !+'1./%!11&) .",.,7,)✿ ",8->')

✱ 2 /2=9! ✲-"8,/1'/$ !+'1./%!11&) .",.,7,)✿ ",8->')

✳  2=') ,7#24,)✱ 1' ,+1, '4 ✲-"8,/1!1'3

1! ')!!/ ✲.,"#J9➻11,!✱ 2 412>'/ ✳

Таким образом,

C2(P, λ) = 〈Lσ1 , Lσ2 , Lσ3〉;
C1(P, λ) = 〈L1, L2, L3, L4, L5, L6, L7, L8〉;
C0(P, λ) = 〈Lv0 , Lv1 , Lv2 , Lw0 , Lw1 , Lw2〉.

Теперь вычислим коцепной гомоморфизм на базисных элементах групп

Ci(P, λ). Будем действовать согласно правилу (8).

Рассмотрим λ-допустимую цепь Lv0 = (∅ 6= {0, p} ( {0, p, 1} ( P ). Мы

можем I1-уплотнить Lv0 единственным способом: получим L6 = (∅ 6= {0} (
{0, p} ( {0, p, 1} ( P ), а также I3-уплотнить Lv0 единственным способом: полу-

чим L1 = (∅ 6= {0, p} ( {0, p, 1} ( {0, p, 1, q} ( P ). Таким образом, ни одно из

Ik-уплотнений Lv0 не имеет Ik-сопряженное, а значит, δ0(Lv0) = 0.
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Рассмотрим λ-допустимую цепь Lw0 = (∅ 6= {0, p} ( {0, p, q, 1} ( P ). Вновь

мы можем I1-уплотнить рассматриваемую цепь только единственным образом:

получим L8 = (∅ 6= {0} ( {0, p} ( {0, p, q, 1} ( P ), однако возможны два

различных I2-уплотнения. Сведения об I2-уплотнениях Lw0 занесем в табл. 6.

Таблица 6

✷✶

 !""#$%&'# ✲)$*+"%'#+, -.*/ ✳ ➶2$3/ #4

#$5.# ✲+*6$%2'%/ &!""#!%&'3!.#+, -.*/ %$6/7$ .)'2"%3.224# $8&!9$#✿ *$6+✲

;'# ✱ $)2!7$ 3$9#$524 )3! &!96';24=

✲+*6$%2.2'>✳ ?3.).2'> $8 ✲+*6$%2.2'>= 9!2."➻# 3 2.8$6/A+, %!86'-+✿

I2✲+*6$%2.2'> Lw0
=

(

∅ 6= {0, p} ( {0, p, q, 1} ( P
)

J2 \ J1 J3 \ J2

L1 =
(

∅ 6= {r, p} ( {r, p, 1} ( {r, p, t, q} ( P
)

{1} {q}

L2 =
(

∅ 6= {0, p} ( {0, p, q} ( {0, p, q, 1} ( P
)

{q} {1}

B!7'# $8&!9$#✱ ' ✱ "$C6!"2$ $*&.).6.2', ✸✳✼✱ >36>,%"> ✲"$*&>5➻224#'✱

*$F%$#+ ✳

 !""#$%&'# ✲)$*+"%'#+, -.*/ ✳

❒4 #$5.# ✲+*6$%2'%/ .)'2"%3.224# "*$"$8$#✿ *$6+;'#

✳ B!7'# $8&!9$#✱ '#..% .)'2"%3.22$.

+*6$%2.2'. ' ✳

 !""#$%&'# ✲)$*+"%'#+, -.*/ ✳ ❒4

#$5.# ✲+*6$%2'%/ .➻ )3+#> &!96';24#' "*$"$8!#'✳ ?3.).2'> $8 ✲+*6$%2.2'>=

9!2."➻# 3 2.8$6/A+, %!86'-+✿

✲+*6$%2.2'>

B!7'# $8&!9$#✱ ' ✱ "$C6!"2$ $*&.).6.2', ✸✳✼✱ >36>,%"> ✲"$*&>5➻224#'✱

*$F%$#+ ✳

➘6> $"%!6/24= 8!9'"24= F6.#.2%$3 C&+** 34;'"6.2'> #$52$ 34*$62'%/

!2!6$C';2$✳ I'%!%.6, *&.)$"%!36>.%"> 3$9#$52$"%/ *&$3."%' '= "!#$"%$>%.6/2$

' "&!32'%/ *$6+;.224. &.9+6/%!%4 " %.#'✱ 7$%$&4. 34*'"!24 3 %!86'-.✿

Таким образом, L1 и L2 согласно определению 3.7 являются I2-сопряжен-

ными, поэтому δ0(Lw0) = L1 + L2.

Рассмотрим λ-допустимую цепь L1 = (∅ 6= {0, p} ( {0, p, 1} ( {0, p, 1, q} (
P ). Мы можем I1-уплотнить L1 единственным способом: получим Lσ2 = (∅ 6=
{0} ( {0, p} ( {0, p, 1} ( {0, p, 1, q} ( P ). Таким образом, L1 имеет единственное

Ik уплотнение и δ1(L1) = 0.

Рассмотрим λ-допустимую цепь L7 = (∅ 6= {0} ( {0, p, 1} ( {0, p, 1, q} ( P ).

Мы можем I2-уплотнить ее двумя различными способами. Сведения об I2-

уплотнениях L7 занесем в табл. 7.

Таблица 7

✷✶

 !""#$%&'# ✲)$*+"%'#+, -.*/ ✳ ➶2$3/ #4

#$5.# ✲+*6$%2'%/ &!""#!%&'3!.#+, -.*/ %$6/7$ .)'2"%3.224# $8&!9$#✿ *$6+✲

;'# ✱ $)2!7$ 3$9#$524 )3! &!96';24=

✲+*6$%2.2'>✳ ?3.).2'> $8 ✲+*6$%2.2'>= 9!2."➻# 3 2.8$6/A+, %!86'-+✿

✲+*6$%2.2'>

B!7'# $8&!9$#✱ ' ✱ "$C6!"2$ $*&.).6.2', ✸✳✼✱ >36>,%"> ✲"$*&>5➻224#'✱

*$F%$#+ ✳

 !""#$%&'# ✲)$*+"%'#+, -.*/ ✳

❒4 #$5.# ✲+*6$%2'%/ .)'2"%3.224# "*$"$8$#✿ *$6+;'#

✳ B!7'# $8&!9$#✱ '#..% .)'2"%3.22$.

+*6$%2.2'. ' ✳

 !""#$%&'# ✲)$*+"%'#+, -.*/ ✳ ❒4

#$5.# ✲+*6$%2'%/ .➻ )3+#> &!96';24#' "*$"$8!#'✳ ?3.).2'> $8 ✲+*6$%2.2'>=

9!2."➻# 3 2.8$6/A+, %!86'-+✿

I2✲+*6$%2.2'> L7 =
(

∅ 6= {0} ( {0, p, 1} ( {0, p, 1, q} ( P
)

J2 \ J1 J3 \ J2

Lσ2
=

(

∅ 6= {0} ( {0, p} ( {0, p, 1} ( {0, p, 1, q} ( P
)

{p} {1}

Lσ3
=

(

∅ 6= {0} ( {0, 1} ( {0, 1, p} ( {0, 1, p, q} ( P
)

{1} {p}

B!7'# $8&!9$#✱ ' ✱ "$C6!"2$ $*&.).6.2', ✸✳✼✱ >36>,%"> ✲"$*&>5➻224#'✱

*$F%$#+ ✳

➘6> $"%!6/24= 8!9'"24= F6.#.2%$3 C&+** 34;'"6.2'> #$52$ 34*$62'%/

!2!6$C';2$✳ I'%!%.6, *&.)$"%!36>.%"> 3$9#$52$"%/ *&$3."%' '= "!#$"%$>%.6/2$

' "&!32'%/ *$6+;.224. &.9+6/%!%4 " %.#'✱ 7$%$&4. 34*'"!24 3 %!86'-.✿

Стало быть, Lσ2 и Lσ3 согласно определению 3.7 являются I2-сопряженны-

ми, поэтому δ1(L7) = Lσ2 + Lσ3 .

Для остальных базисных элементов групп Ci(P, λ) вычисления можно вы-

полнить аналогично. Читателю предоставляется возможность провести их са-

мостоятельно и сравнить полученные результаты с теми, которые выписаны в

табл. 8.

Таблица 8

✷✶

 !""#$%&'# ✲)$*+"%'#+, -.*/ ✳ ➶2$3/ #4

#$5.# ✲+*6$%2'%/ &!""#!%&'3!.#+, -.*/ %$6/7$ .)'2"%3.224# $8&!9$#✿ *$6+✲

;'# ✱ $)2!7$ 3$9#$524 )3! &!96';24=

✲+*6$%2.2'>✳ ?3.).2'> $8 ✲+*6$%2.2'>= 9!2."➻# 3 2.8$6/A+, %!86'-+✿

✲+*6$%2.2'>

B!7'# $8&!9$#✱ ' ✱ "$C6!"2$ $*&.).6.2', ✸✳✼✱ >36>,%"> ✲"$*&>5➻224#'✱

*$F%$#+ ✳

 !""#$%&'# ✲)$*+"%'#+, -.*/ ✳

❒4 #$5.# ✲+*6$%2'%/ .)'2"%3.224# "*$"$8$#✿ *$6+;'#

✳ B!7'# $8&!9$#✱ '#..% .)'2"%3.22$.

+*6$%2.2'. ' ✳

 !""#$%&'# ✲)$*+"%'#+, -.*/ ✳ ❒4

#$5.# ✲+*6$%2'%/ .➻ )3+#> &!96';24#' "*$"$8!#'✳ ?3.).2'> $8 ✲+*6$%2.2'>=

9!2."➻# 3 2.8$6/A+, %!86'-+✿

✲+*6$%2.2'>

B!7'# $8&!9$#✱ ' ✱ "$C6!"2$ $*&.).6.2', ✸✳✼✱ >36>,%"> ✲"$*&>5➻224#'✱

*$F%$#+ ✳

➘6> $"%!6/24= 8!9'"24= F6.#.2%$3 C&+** 34;'"6.2'> #$52$ 34*$62'%/

!2!6$C';2$✳ I'%!%.6, *&.)$"%!36>.%"> 3$9#$52$"%/ *&$3."%' '= "!#$"%$>%.6/2$

' "&!32'%/ *$6+;.224. &.9+6/%!%4 " %.#'✱ 7$%$&4. 34*'"!24 3 %!86'-.✿

C0(P, λ) C1(P, λ) C2(P, λ) δ0 δ1

Lv0 L1 Lσ1
δ0(Lv0) = 0 δ1(L1) = 0

Lv1 L2 Lσ2
δ0(Lv1) = 0 δ1(L2) = 0

Lv2 L3 Lσ3
δ0(Lv2) = 0 δ1(L3) = 0

Lw0
L4 − δ0(Lw0

) = L1 + L2 δ1(L4) = 0

Lw1
L5 − δ0(Lw1

) = L3 + L4 δ1(L5) = 0

Lw2
L6 − δ0(Lw2

) = L5 + L6 δ1(L6) = 0

− L7 − − δ1(L7) = Lσ2
+ Lσ3

− L8 − − δ1(L8) = Lσ1
+ Lσ2
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H0(C∗(P, λ)) ≃ ker δ0 ≃ 〈Lv0 , Lv1 , Lv2〉 ≃ Z3
2,

H1(C∗(P, λ)) ≃ 〈L1, . . . , L6〉/〈L1 + L2, L3 + L4, L5 + L6〉 ≃ Z3
2,

H2(C∗(P, λ)) ≃ 〈Lσ1 , Lσ2 , Lσ3〉/〈Lσ1 + Lσ2 , Lσ2 + Lσ3〉 ≃ Z2.

Согласно лемме 1.7 и теореме 3.8

f0(O(P, λ)) = dimH0(C∗(P, λ)) = 3,

f1(O(P, λ)) = dimH1(C∗(P, λ)) = 3,

f2(O(P, λ)) = dimH2(C∗(P, λ)) = 1.

В завершение данного примера заметим, что коцепной комплекс C∗
KP,λ

для

рассматриваемого многогранника O(P, λ) выписан в примере 1.10. Несложно

видеть, что коцепные комплексы примеров 1.10 и 3.9 связывает изоморфизм,

построенный в доказательстве теоремы 3.8.
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9. Liu R. I., Mészáros, K., and St. Dizier A., “Gelfand–Tsetlin polytopes: a story of flow and
order polytopes,” SIAM J. Discrete Math., 33, No. 4, 2394–2415 (2019).

10. Ziegler G. M., Lectures on Polytopes, Springer, New York (1995) (Grad. Texts Math.; vol. 152).

11. Fomenko A. T. and Fuchs D. B., Homotopical Topology, Springer, New York (2016) (Grad.

c© 2025 E. V. Melikhova



52 E. V. Melikhova

Texts Math.; vol. 273).

Submitted April 16, 2025

Revised July 24, 2025

Accepted August 29, 2025

Ekaterina V. Melikhova
National Research University “Higher School of Economics”,
Faculty of Mathematics,
6 Usachev Street, Moscow 119048, Russia



Математические заметки СВФУ
Июль—сентябрь, 2025. Том 32, № 3

УДК 517.955

РАЗРЕШИМОСТЬ ЗАДАЧИ КОШИ

ДЛЯ ОДНОЙ ПСЕВДОГИПЕРБОЛИЧЕСКОЙ
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Аннотация. Рассматривается задача Коши для одной системы, не разрешенной
относительно старшей производной по времени. Эта система является псевдоги-
перболической. Доказана однозначная разрешимость задачи Коши в соболевских
пространствах, получены оценки решения.

DOI: 10.25587/2411-9326-2025-3-53-60

Ключевые слова: система, не разрешенная относительно старшей производной,
псевдогиперболическая система, задача Коши, изгибно-крутильные колебания.

1. Введение

В работе рассматривается задача Коши для системы уравнений с постоян-

ными вещественными коэффициентами

L (Dt, Dx)U = F (t, x), t > 0, x ∈ R, (1.1)

L (Dt, Dx) имеет вид

L (Dt, Dx) = L0(Dx)D
2
t + L1D

4
x, (1.2)

здесь

L0(Dx) =



I − α1D

2
x 0 ε1

0 I − α2D
2
x −ε2

ε1 −ε2 I − α3D
2
x


 , L1 =



l11 l12 l13
l12 l22 l23
l13 l23 l33


 ,

где 0 < ε21 + ε22 < 1, αj > 0, j = 1, 2, 3, и матрица L1 положительно определена.

Впервые система вида (1.1), где lij = 0, i 6= j, рассматривалась в [1] при

описании поперечных изгибно-крутильных колебании упругого стержня.

Система (1.1) является не разрешенной относительно старшей производной

по времени и входит в класс псевдогиперболических систем (см. [2]). В моногра-

фии [2] был введен класс псевдогиперболических уравнений и изучена задача

Коши для него. Дальнейшие исследования разрешимости задачи Коши для

Исследование выполнено за счет гранта Российского научного фонда № 24-21-00370,
https://rscf.ru/project/24-21-00370/.

c© 2025 Мингнаров С. Б.



54 С. Б. Мингнаров

псевдогиперболических уравнений проводились в [3–5] и др. Для псевдогипер-

болических систем общей теории разрешимости задачи Коши нет. В литературе

разрешимость задачи Коши изучалась для конкретных систем (см., например,

[6, 7]). В данной работе будет исследован более общий вид псевдогиперболиче-

ских систем четвертого порядка.

2. Формулировка результатов

Рассмотрим задачу Коши для псевдогиперболической системы:

L (Dt, Dx)U = F (t, x), t > 0, x ∈ R,
U |t=0 = �(x), DtU |t=0 = �(x),

(2.1)

где L (Dt, Dx) из (1.2),

U(t, x) = (u(t, x), v(t, x), θ(t, x))T , F (t, x) = (f1(t, x), f2(t, x), f3(t, x))T ,

�(x) = (ϕ1(x), ϕ2(x), ϕ3(x))T , �(x) = (ψ1(x), ψ2(x), ψ3(x))T .

Дадим определения анизотропных соболевских пространств (см., напри-

мер, [2]), которые понадобятся при доказательстве разрешимости задачи (2.1).

Определение 1. Функция u(t, x) ∈ L2(G) принадлежит анизотропному

соболевскому пространству W l1,l2
2 (G), G ⊆ R2, l1, l2 ∈ N , если существуют

обобщенные производные

Dα1
t Dα2

x u(t, x), α1/l1 + α2/l2 ≤ 1,

в области G, при этом Dα1
t Dα2

x u(t, x) ∈ L2(G). Введем норму

∥∥u,W l1,l2
2 (G)

∥∥ =
∑

α1/l1+α2/l2≤1

∥∥Dα1
t Dα2

x u, L2(G)
∥∥.

Определение 2. Функция u(t, x) принадлежит анизотропному соболев-

скому пространству с экспоненциальным весом W l1,l2
2,γ (G), γ > 0, если

e−γtu(t, x) ∈ W l1,l2
2 (G). Полагаем

∥∥u(t, x),W l1,l2
2,γ (G)

∥∥ =
∥∥e−γtu(t, x),W l1,l2

2 (G)
∥∥.

Определение 3. Функция f(t, x) принадлежит анизотропному соболев-

скому пространству W 0,1
2,γ (G), γ > 0, если e−γtf(t, x) ∈ L2(G), существует обоб-

щенная производная Dxf(t, x) в G, при этом e−γtDxf(t, x) ∈ L2(G). Полагаем
∥∥f(t, x),W 0,1

2,γ

(
R2

+

)∥∥ = ‖e−γtf(t, x), L2(G)‖+ ‖e−γtDxf(t, x), L2(G)‖.

Будем говорить, что V (t, x) = (v1(t, x), v2(t, x), v3(t, x))T принадлежит

W l1,l2
2,γ (G), если vj(t, x) ∈ W l1,l2

2,γ (G), j = 1, 2, 3. Полагаем

∥∥V (t, x),W l1,l2
2,γ (G)

∥∥ =

3∑

j=1

∥∥vj(t, x),W l1,l2
2,γ (G)

∥∥.

В работе доказаны следующие теоремы.



Разрешимость задачи Коши 55

Теорема 1. Для любой вектор-функции U(t, x) ∈ W 2,4
2,γ (R2), γ > 0, такой,

что D2
tD

2
xU(t, x) ∈ L2,γ(R2), имеет место оценка

γ‖(1 + ξ2)(|η|+ γ + |ξ|)Ûγ(η, ξ), L2(R
2)‖ ≤ c‖L (Dt, Dx)U(t, x), L2,γ(R2)‖ (2.2)

с константой c > 0, не зависящей от U(t, x). Здесь L (Dt, Dx) из (1.2), Ûγ(η, ξ)

— преобразование Фурье вектор-функции Uγ(t, x) = e−γtU(t, x).

Теорема 2. Пусть F (t, x) ∈ W 0,1
2,γ (R2

+), γ > 0, �(x) ∈ W 4
2 (R), �(x) ∈

W 3
2 (R). Тогда задача Коши (2.1) однозначно разрешима в классе вектор-функ-

ций U(t, x) из W 2,4
2,γ (R2

+) таких, что D2
tD

2
xU ∈ L2,γ(R2

+), для решения имеет

место оценка
∥∥U(t, x),W 2,4

2,γ

(
R2

+

)∥∥+
∥∥D2

tD
2
xU(t, x), L2,γ

(
R2

+

)∥∥

≤ c(γ)
(∥∥�(x),W 4

2 (R)
∥∥+

∥∥�(x),W 3
2 (R)

∥∥+
∥∥F (t, x),W 0,1

2,γ

(
R2

+

)∥∥), (2.3)

где c(γ) — константа, зависящая от коэффициентов системы и γ.

3. Энергетические оценки

Рассмотрим форму

MU = − Im

∫

R2

e−γt
L (Dt, Dx)U(t, x)(e−γtL 1(Dt, Dx)U(t, x)) dz, z = (t, x),

(3.1)

где

L
1(Dt, Dx) = 2iL0(Dx)Dt.

Используя свойства преобразования Фурье, (3.1) можно записать в виде

MU = − Im

∫

R2

L (Dt + γI,Dx)Uγ(t, x)(L 1(Dt + γI,Dx)Uγ(t, x))dz

= − Im

∫

R2

L (iη + γ, iξ)Ûγ(η, ξ)(L 1(iη + γ, iξ)Ûγ(η, ξ)) dζ, ζ = (η, ξ).

Запишем матрицы L (iη + γ, iξ) и L 1(iη + γ, iξ) в виде

L (iη + γ, iξ) = (iη + γ)2L0(iξ) + ξ4L1, L
1(iη + γ, iξ) = 2i(iη + γ)L0(iξ).

Проводя вычисления, получим следующую форму:

MU = 2γ

∫

R2

((η2 + γ2)L0(iξ) + ξ4L1)Ûγ(η, ξ)L0(iξ)Ûγ dζ. (3.2)

Учитывая (1.2), (3.2), для любой вектор-функции U(t, x) ∈ C∞0 (R2) можно по-

лучить двухстороннюю оценку

2c1γ

∫

R2

(
1 + ξ2

)2
(η2 + γ2 + ξ2)|Ûγ(η, ξ)|2 dζ

≤MU ≤ 2c2γ

∫

R2

(1 + ξ2)2(η2 + γ2 + ξ2)|Ûγ(η, ξ)|2 dζ. (3.3)
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Из неравенства (3.3), очевидно, следует оценка (2.2) для псевдогиперболи-

ческого оператора L (Dt, Dx). Оценка (2.2) является аналогом энергетической

оценки [2]. Из теоремы 1 вытекает единственность решения задачи Коши для

псевдогиперболической системы с постоянными коэффициентами в соболевском

пространстве W 2,4
2,γ (R2

+), γ > 0.

4. Разрешимость задачи Коши

Применим оператор преобразования Фурье по x к задаче (2.1).

L0(iξ)D
2
t Û + L1ξ

4Û = F̂ (t, ξ), t ∈ R+, ξ ∈ R,
Û |t=0 = �̂(ξ), DtÛ |t=0 = �̂(ξ),

(4.1)

где

L0(iξ) =




1 + α1ξ
2 0 ε1

0 1 + α2ξ
2 −ε2

ε1 −ε2 1 + α3ξ
2


 .

Можно записать L0(iξ) в следующем виде:

L0(iξ) = S



λ1 0 0

0 λ2 0

0 0 λ3


S−1, S−1 = S∗, λj = λj(ξ).

При ε21 + ε22 < 1 несложно получить следующую оценку:

q1(1 + ξ2)|ν|2 < 〈L0(iξ)ν, ν〉 ≤ q2(1 + ξ2)|ν|2, q1 > 0. (4.2)

Поскольку все собственные значения λj матрицы L0(iξ) положительны, то опре-

делена матрица

M(iξ) =
√
L0(iξ) = S



√
λ1 0 0

0
√
λ2 0

0 0
√
λ3


S−1. (4.3)

Поэтому систему из (4.1) можно записать в виде

M(iξ)M(iξ)D2
t Û + ξ4L1Û = F̂ (t, ξ),

или

M(iξ)D2
t (M(iξ)Û) + ξ4L1(M(iξ))−1M(iξ)Û = F̂ (t, ξ).

Сделаем замену

V (t, ξ) = M(iξ)Û(t, ξ),

D2
tV +B(iξ)V = (M(iξ))−1F̂ (t, ξ), (4.4)

где B(iξ) = ξ4(M(iξ))−1L1(M(iξ))−1 — эрмитова матрица, при этом

(B(iξ))∗ = B(iξ) > 0, ξ ∈ R \ {0}, B(0) = 0.
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Тогда B(iξ) матрицу можно записать в виде

B(iξ) = T



τ1 0 0

0 τ2 0

0 0 τ3


T−1 = TJT−1,

где τj = τj(ξ) ≥ 0, j = 1, 2, 3, T−1 = T ∗. Поэтому система (4.4) эквивалентна

следующей:

D2
tV + TJT−1V = (M(iξ))−1F̂ (t, ξ),

или после замены W (t, ξ) = T−1V (t, ξ)

D2
tW + JW = T−1(M(iξ))−1F̂ (t, ξ).

Следовательно, задача Коши (4.1) эквивалента следующей:

D2
tW + JW = T−1(M(iξ))−1F̂ (t, ξ),

W |t=0 = T−1M(iξ)�̂(ξ), DtW |t=0 = T−1M(iξ)�̂(ξ).
(4.5)

Поэтому решение задачи Коши (4.1) имеет вид Û(t, ξ) = (M(iξ))−1TW (t, ξ), т. е.

Û(t, ξ) = Û1(t, ξ) + Û2(t, ξ) + Û3(t, ξ),

где

Û1(t, ξ) = (M(iξ))−1TH1(t, ξ)T
−1M(iξ)�̂(ξ), (4.6)

H1(t, ξ) =




cos(k1t) 0 0

0 cos(k2t) 0

0 0 cos(k3t)


 , kj = kj(ξ) =

√
τj(ξ),

Û2(t, ξ) = (M(iξ))−1TH2(t, ξ)T
−1M(iξ)�̂(ξ), (4.7)

H2(t, ξ) =




sin(k1t)
k1

0 0

0
sin(k2t)

k2
0

0 0
sin(k3t)

k3


 ,

Û3(t, ξ) =

t∫

0

(M(iξ))−1TH2(t− s, ξ)T−1(M(iξ))−1F̂ (s, ξ) ds. (4.8)

При получении оценок вектор-функции Û(t, ξ), j = 1, 2, 3, будем использовать

следующие неравенства:

1◦) c1|ξ| ≤ |kj(ξ)| ≤ c2|ξ|, c1 > 0, j = 1, 2, 3,

2◦) ‖M(iξ)‖ ≤
√
q2(1 + ξ2),

3◦) ‖(M(iξ))−1‖ ≤ 1√
q1(1+ξ2)

,

4◦) ‖H1(t, ξ)‖ ≤ 1,

5◦) ‖H2(t, ξ)‖ ≤ max
{∣∣ sin(kj(ξ)t)

kj(ξ)

∣∣}.
Учитывая (4.6), 2◦–4◦, имеем

∥∥Û1(t, ξ), L2,γ

(
R2

+

)∥∥ ≤ c3(γ)‖�̂(ξ), L2(R)‖. (4.9)
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В силу 1◦ получим
∣∣∣∣
sin(kj(ξ)t)

kj(ξ)

∣∣∣∣ ≤
c4
|ξ| , |ξ| ≥ 1, (4.10)

и поскольку

sin(kj(ξ)t) = kj(ξ)t

1∫

0

cos(skj(ξ)t) ds,

то ∣∣∣∣
sin(kj(ξ)t)

kj(ξ)

∣∣∣∣ ≤ t, |ξ| < 1. (4.11)

Из оценок (4.10), (4.11) вытекает неравенство
∣∣∣∣
sin(kj(ξ)t)

kj(ξ)

∣∣∣∣ ≤
c5(t+ 1)

1 + |ξ| , ξ ∈ R, j = 1, 2, 3. (4.12)

Поэтому из формулы (4.7) в силу 2◦, 3◦, 5◦, (4.12) получим

∥∥Û2(t, ξ), L2,γ

(
R2

+

)∥∥ ≤ c6(γ)‖�̂(ξ), L2(R)‖, (4.13)

∥∥ξ4Û2(t, ξ), L2,γ

(
R2

+

)∥∥ ≤ c7(γ)‖|ξ|3�̂(ξ), L2(R)‖. (4.14)

Рассуждая аналогично и используя (4.14) и равенство Парсеваля, будем

иметь

2∑

j=1

(∥∥D2
t Ûj(t, ξ), L2,γ

(
R2

+

)∥∥+
∥∥D2

t |ξ|2Ûj(t, ξ), L2,γ

(
R2

+

)∥∥)

≤ c8(γ)
(∥∥�(x),W 4

2

(
R2

+

)∥∥+
∥∥�(x),W 3

2

(
R2

+

)∥∥). (4.15)

Проведем оценку третьего слагаемого из Û(t, ξ). Учитывая (4.8) и исполь-

зуя функцию Хевисайда θ(t), в силу неравенства Юнга получим

∑

β≤4

∥∥|ξ|βÛ3(t, ξ), L2,γ

(
R2

+

)∥∥ =
∑

β≤4

∥∥∥∥∥∥
|ξ|β

+∞∫

−∞

θ(t− s)e−γ(t−s)

× (M(iξ))−1TH2(t− s, ξ)T−1(M(iξ))−1e−γsθ(s)F̂ (s, ξ)ds, L2(R
2)

∥∥∥∥∥∥

≤
∑

β≤4



∫

R2

|ξ|2β
∥∥∥∥∥∥

+∞∫

−∞

θ(t− s)e−γ(t−s)(M(iξ))−1TH2(t− s, ξ)T−1(M(iξ))−1

× e−γsθ(s)F̂ (s, ξ) ds

∥∥∥∥∥∥

2

dz




1
2

≤
∑

β≤4



∫

R

|ξ|2β



+∞∫

−∞

θ(t)e−γt‖(M(iξ))−1‖‖T ‖‖H2(t− s, ξ)‖‖T−1‖‖(M(iξ))−1‖ dt
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×
(∫

R

(e−2γtθ(t)‖F̂ (t, ξ)‖)2 dt
) 1

2




2

dξ




1
2

.

Используя 1◦–3◦, 5◦, (4.12), будем иметь

∑

β≤4

∥∥|ξ|βÛ3(t, ξ), L2,γ

(
R2

+

)∥∥ ≤ c9(γ)
∥∥F (t, x),W 0,1

2,γ

(
R2

+

)∥∥. (4.16)

Аналогичным образом можно получить следующую оценку:

∥∥D2
t Û3(t, ξ), L2,γ

(
R2

+

)∥∥+
∥∥|ξ|2D2

t Û3(t, ξ), L2,γ

(
R2

+

)∥∥

≤ c10(γ)
∥∥F (t, x),W 0,1

2,γ

(
R2

+

)∥∥, (4.17)

где константы c9(γ), c10(γ) > 0 зависят от γ.

Из проведенных рассуждений, вытекает, что вектор-функции

U(t, x) = F−1[Û ](t, x) ∈ W 2,4
2,γ (R2

+)

является решением задачи Коши (2.1).

Из неравенств (4.9), (4.13), (4.15)–(4.17) и равенства Парсеваля для этой

вектор-функции следует оценка (2.3).
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Аннотация. Методами компактности для функций из шкалы банаховых про-
странств доказана разрешимость задачи с нелинейной скрытой теплотой плавления
вещества в условиях Стефана. Предварительно исследуется начальная краевая за-
дача в нецилиндрической области с заданной криволинейной границей класса W 1

2 .

Для нее получены равномерные оценки, необходимые для использования в основ-
ной задаче. Затем рассматривается задача, для которой в условии на неизвестной
границе коэффициент скрытой удельной теплоты плавления является функцией
размера зоны протаивания s(t). Эта техника может быть применена к более общим
уравнениям. Изучаемая задача описывает процессы перехода вещества из одного
состояния в другое. В результате установлена регулярная глобальная по време-
ни разрешимость однофазной задачи Стефана для нелинейного параболического
уравнения. Начальные данные принадлежат только классу W 1

2 , а граница фазово-

го перехода, определяемая вместе с решением, принадлежит пространству W 1
4 .

DOI: 10.25587/2411-9326-2025-3-61-81

Ключевые слова: задача Стефана, относительная компактность, нецилиндриче-
ская область, неизвестная граница.

Введение

Основное отличие задач с подвижными (неизвестными) границами от обыч-

ных начально-краевых задач состоит в том, что с течением времени меняется

область, где протекает описываемый уравнением процесс, и она также подле-

жит определению. Это приводит к существенной нелинейности задачи, даже

если уравнение остается линейным.

Некоторые результаты и обзоры современного состояния этого типа задач

изложены в работах [1–8]. Имеются также классические работы А. Фридмана,

Л. Рубинштейна, А. М. Мейрманова.

Наиболее распространенный подход (см., например, работы А. М. Мейр-

манова) к исследованию задач с неизвестной границей состоит в том, чтобы,

Работа выполнена в рамках государственного задания ИПМ ДВО РАН № 075–00459–25–
00. Работа выполнена в Дальневосточном центре математических исследований при финансо-
вой поддержке Минобрнауки России, соглашение от 28 февраля 2024 г. № 075–02–2024–1432
по реализации программ развития региональных научно-образовательных математических
центров.

c© 2025 Подгаев А. Г., Кулеш Т. Д.
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используя замену переменных, задачу в неизвестной области свести к начально-

краевой задаче для параболического уравнения в известной цилиндрической об-

ласти, но с неизвестными коэффициентами в уравнении. Эти коэффициенты

находят по дополнительному краевому условию. Но чтобы их найти, необходи-

мо построить нелинейный оператор, неподвижные точки которого определяют

решение исходной задачи. Некоторые свойства этого оператора опираются на

свойства решений краевых задач в цилиндрических областях. Этот подход,

как правило, приводил к некоторым требованиям малости (обычно промежут-

ка времени) и более жестким требованиям (по сравнению с предлагаемыми в

работе) на гладкость искомой границы.

Другой подход, основанный на введенном С. Л. Каменомостской и О. А. Олей-

ник понятии обобщенного решения задачи Стефана, оказался эффективным

при рассмотрении многомерных задач. Дюво предложил способ сведения за-

дачи Стефана к вариационному неравенству. Однако эти подходы, обладая

большой общностью, теряют значительную часть сведений: не остается ни-

какой информации о структуре раздела фаз, о принадлежности неизвестной

границы какому-либо классу. Предлагаемый в работе подход гарантирует су-

ществование решения с искомой границей, принадлежащей лишь классу типа

W 1
p . Он позволяет также рассматривать условие Стефана на неизвестной гра-

нице с величиной L значительно более общего вида, например, L(s(t), s′(t)), где

коэффициент скрытой удельной теплоты плавления является функцией, зави-

сящей не только от положения свободной границы, как в рассматриваемой нами

задаче, но и от скорости ее передвижения. Этот случай рассмотрен в [3] для

одномерного линейного уравнения теплопроводности в области без начально-

го условия и заключается в построении явных решений задачи. Значительная

библиография и обзор работ по задачам с подвижной границей имеется также в

[8]. Развитию методов компактности, ориентированных на задачи с неизвестной

границей, посвящена работа [9]

Основная цель исследования — доказать глобальную разрешимость зада-

чи для указанного нелинейного уравнения с коэффициентом скрытой удельной

теплоты плавления в условии Стефана, зависящим от глубины зоны протаива-

ния и при начальном условии из класса W 1
2 .

Один из шагов используемого здесь метода требует проводить исследования

нестационарных задач в нецилиндрических областях. Этот вопрос решался в

ряде старых исследований, но интерес к нему в связи с новыми идеями и целями

возникает и сейчас постоянно. В частности, будем использовать абстрактные

методы из [10, 11] и результаты работы [12] по разрешимости краевой задачи в

заданной нецилиндрической области.

1. Постановка задачи

Рассматривается одномерная задача с неизвестной границей x = s(t) (та-

кой, что s(0) = 1) для нелинейного уравнения теплопроводности

ut = a(u)uxx при t > 0, 0 < x < s(t), t ∈ (0, T ). (1)
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Уравнение (1) дополняется начальным условием

u(x, 0) = u0(x), 0 ≤ x ≤ 1, u0 ≥ 0, u0 ∈W 1
2 , u0(1) = 0. (2)

Неотрицательность означает, что в начальный момент времени рассматри-

ваемый слой вещества находился в жидком или переходном состоянии.

На границе x = 0 в каждый момент времени задается плотность потока

тепла (для простоты берем случай отсутствия потока):

(A(u))x = a(u)ux = 0 при x = 0, t ∈ (0, T ], (3)

где A(η) =
η∫
0

a(ξ) dξ — первообразная для a. На неизвестной границе фазо-

вого перехода x = s(t) задается постоянная температура плавления вещества,

которую считаем равной нулю:

u = 0 при x = s(t), t > 0, (4)

а также условие Стефана

a(u)ux = −Ls′(t) при x = s(t), t > 0. (5)

В отличие от обычного условия Стефана, в котором L — постоянная вели-

чина, показывающая (при ρ = 1, c = 1 и k = 1), какое минимальное количе-

ство теплоты необходимо для того, чтобы перевести единицу массы вещества

из твердого состояния в жидкое при неизменной температуре, равной темпе-

ратуре плавления, мы предполагаем, что L = ϕ(s) — заданная непрерывная

функция, т. е. L зависит от положения свободной границы. Физически это

может означать, что твердая часть вещества с удалением от начала координат

изменяет свои характеристики (связь между плотностью ρ, теплопроводностью

k и скрытой теплотой L) по некоторому известному закону. Действительно, s

есть расстояние от начала координат до границы раздела твердой и жидкой

фаз, а ϕ(s) описывает закон изменения. Задачи с подобным условием в послед-

нее время привлекают исследователей, см. библиографию в [8], содержащую в

основном результаты по построению (при специальных граничных и начальных

условиях и функциях ϕ(s)) явных решений задачи.

Уравнение (1), рассматриваемое на промежутке (0, T ), преобразуется к ви-

ду

ut = (A(u))xx − a′(u)(ux)2 при t > 0, 0 < x < s(t), t ∈ (0, T ), s(0) = 1, (6)

а начально-краевые условия для нахождения решения u(x, t) и границы раздела

фаз s(t) — к виду

u(x, 0) = u0(x), 0 ≤ x ≤ 1, u0 = 0 при x = 1, (7)

(A(u))x = 0 при x = 0, t ∈ (0, T ) , (8)

u = 0 при x = s(t), t ∈ [0, T ], (9)
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(A(u))x = −ϕ(s)s′(t) при x = s(t), t ∈ (0, T ). (10)

В работе будем предполагать, что функции a′(ξ) и ϕ(ξ) непрерывны для

всех ξ (конкретно для задачи Стефана дополнительно будем считать, что

supa′′(u) конечен на промежутке, определяемом начальной функцией), а также

что

a(ξ) ≥ δ, ξa′(ξ) ≥ 0, ϕ(ξ) ≥ δ > 0. (11)

Введем нецилиндрическую область Qt = {(x, τ) : 0 < x < s(τ), τ ∈ (0, t)}.
При предположении, что u0(x) ≥ 0, u0 ∈ W 1

2 , u0(1) = 0, будет установлено, что

искомая функция s(t) не убывает, s(t) ∈W 1
4 (0, T ) и, следовательно, непрерывна

по Гёльдеру.

Используя (9), запишем уравнение (10) в виде

ϕ(s)s′(t) = −a(0)ux(s(t), (t)), t ∈ (0, T ).

Интегрируя, выведем эквивалентное соотношение
t∫

0

(�(s(τ))) dτ = −a(0)

t∫

0

ux(s(τ), τ) dτ, t ∈ (0, T ], (12)

где

�(η) =

η∫

0

ϕ(ξ) dξ

— первообразная для ϕ.

Задачи (6)–(10) и (6)–(9), (12) эквивалентны.

Однако фактически будем использовать эквивалентное (12) и дающее до-

полнительную информацию соотношение

�(s(t)) = �(s(0))− a(0)




s(t)∫

0

B(u(ξ, t)) dξ −
s(0)∫

0

B(u0(ξ)) dξ


 , B(u) =

u∫

0

dη

a(η)
.

(13)

Оно получается, если в (12) выразить ux(s(t), t) через
s(t)∫
0

uxx(ξ, t) dξ, заменить

uxx на ut

a(u) и проинтегрировать по t, используя (9).

2. Краевая задача в заданной

нецилиндрической области

Пусть s(t) — заданная функция из класса W 1
2 (0, T ) такая, что d

dts(t) ≥ 0,

s(0) = 1. По ней определим функцию u(x, t) как решение следующей краевой

задачи в заданной нецилиндрической области QT = {(x, t) : 0 < x < s(t), t ∈
(0, T )}:

ut = (A(u))xx − a′(u)(ux)2, 0 < x < s(t), t ∈ (0, T ),

u(x, 0) = u0(x), 0 ≤ x ≤ 1, u0 ≥ 0, u0(1) = 0, u0 ∈W 1
2 (0, 1),

(A(u))x = 0, при x = 0, t ∈ (0, T ),

u = 0 при x = s(t), t ∈ (0, T ).

(14)
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3. Построение приближенных решений задачи (14)

и равномерные оценки их производных по x

Приближенные решения задачи (14) будем искать в виде

um =

m∑

k=0

cmk (t)ωk(x, t), где ωk(x, t) =
√

2 cos

[(π
2

+ πk
) x

s(t)

]

исходя из требований

s(t)∫

0

umt(x, t)ωj(x, t) dx +

s(t)∫

0

(A(um))′ωjx(x, t) dx

+

s(t)∫

0

a′(um)u2
mxωj(x, t) dx = 0, j = 0, 1, 2, . . . ,m, (15)

cmk (0) = ck =

1∫

0

u0(x)ωk(x, 0) dx, um(x, 0) =

m∑

k=0

ckωk(x, 0).

Заметим, что для всех t ∈ [0, T ] система функций {ωk(x, t)}∞k=0 ортогональ-

на и полна как в пространстве L2(0, s(t)), так и в пространстве функций из

W 1
2 (0, s(t)), равных нулю при x = s(t). При этом

s(t)∫

0

ωk(x, t)ωj(x, t) dx = δjks(t).

Отсюда, в частности, следует, что для коэффициентов Фурье ck функции u0(x)

∈W 1
2 (0, 1) такой, что u(1) = 0, будем иметь

um(x, 0) =

m∑

k=0

ckωk(x, 0)→ u0(x)

в L2(0, 1) и в W 1
2 (0, 1).

Важно заметить, что

∂um
∂t

=

m∑

k=0

(
dcmk
dt

ωk(x, t) + cmk (t)
∂ωk

∂t
(x, t)

)
, (16)

∂ωk

∂t
=
√

2
(π

2
+ πk

) x

(s(t))2
s′(t) sin

[(π
2

+ πk
) x

s(t)

]
. (17)

В силу ортогональности в L2(0, s(t)) системы {ωk(x, t)}∞k=0 система обык-

новенных дифференциальных уравнений (15) эквивалентна нормальной форме

(s(t))
dcmj (t)

dt
= −

m∑

k=0

cmk (t)

s(t)∫

0

ωkt(x, t)ωj(x, t) dx

−
s(t)∫

0

[
(A(um))xωjx(x, t) + a′(um)u2

mxωj(x, t)
]
dx,
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cmj (0) = cj , j = 0, 1, 2, . . . ,m.

В силу непрерывности a′(ξ) и леммы из [12], обобщающей лемму Виши-

ка — Дубинского (прямая ссылка на которую невозможна в силу появления в

первом слагаемом правой части системы дифференциальных уравнений мно-

жителя s′(t) ∈ L2(0, T ), не являющегося непрерывной функцией), задача Коши

для этой системы имеет решение из класса W 1
2 (0, T ), так как основное условие

леммы следует из полученной ниже оценки.

Преобразуя равенство (15) стандартным образом, получим

1

2

d

dt

s(t)∫

0

u2
m dx+

s(t)∫

0

[a(um) + a′(um)um]u2
mx dx = 0. (18)

Интегрирование равенства (18) от 0 до t дает

s(t)∫

0

u2
m dx+ 2

t∫

0

s(τ)∫

0

[a(um) + a′(um)um]u2
mx dxdτ

=

s(0)∫

0

(
m∑

k=0

ckωk(x, 0)

)2

dx =

1∫

0

m∑

k=0

c2k · 1 dx =

m∑

k=0

c2k ≤
∞∑

k=0

c2k = ‖u0‖2L2
= c20.
(19)

Для получения второй группы оценок умножим левую и правую части ра-

венства (15) на −
( π

2 +πj

s(t)

)2
cmj (t) и просуммируем по j от 0 до m. После некоторых

преобразований, используя равенства um(s(t), t) = 0, umx(0, t) = 0, umt(s(t), t) =

−umx(s(t), t)s
′(t), а также s′(t) ≥ 0, получим

1

2

d

dt

s(t)∫

0

u2
mx dx+

1

2
u2
mx(s(t), t)s′(t) +

s(t)∫

0

a(u)u2
xx dx = 0. (20)

Проинтегрируем последнее равенство от 0 до t. Получаем

s(t)∫

0

u2
mx dx+

t∫

0

u2
mx(s(τ), τ)s

′(τ)dτ +2e.lta

t∫

0

s(τ)∫

0

u2
mxx dxdτ ≤

1∫

0

u2
mx(x, 0) dx ≤ c21.

(21)

Здесь c21 =
1∫
0

u2
0x(x) dx. Из этой оценки, в частности, следует, что

|um(x, t)|2 = 2

∣∣∣∣∣∣

x∫

s(t)

um(ξ, t)umx(ξ, t) dξ

∣∣∣∣∣∣
≤ 2c0c1.

4. Оценка производной

по времени у решений задачи (14)

Очевидно, что
m∑

k=0

dcmk
dt

ωk(x, t) =
∂um

∂t
+
∂um

∂x

x

s(t)
s′(t). (22)
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Умножим (15) на
dcmj
dt и просуммируем по j от 0 до m. В результате, учитывая

(22), получим равенство

s(t)∫

0

umt

(
umt + umx

x

s(t)
s′(t)

)
dx =

s(t)∫

0

a(u)umxx

(
umt + umx

x

s(t)
s′(t)

)
dx.

Перепишем последнее тождество в виде

s(t)∫

0

u2
mt dx+

s′(t)

s(t)

s(t)∫

0

umtumxxdx

=

s(t)∫

0

a(u)umxxumt dx+
s′(t)

s(t)

s(t)∫

0

a(um)umxxumxxdx.

Оценим второе слагаемое слева и оба в правой части равенства, используя

непрерывность a, равномерную ограниченность um, (21), а также что x
s(t) ≤ 1:

∣∣∣∣∣∣∣
−s
′(t)

s(t)

s(t)∫

0

umtumxxdx

∣∣∣∣∣∣∣
≤ ε

s(t)∫

0

u2
mt dx+ c(ε)s′2(t),

s(t)∫

0

a(um)umxxumt dx ≤ ε
s(t)∫

0

u2
mt dx + c(ε)

s(t)∫

0

a(um)u2
mxx dx,

s′(t)

s(t)

s(t)∫

0

a(um)umxxumxxdx ≤ cs′2(t) + c

s(t)∫

0

a(um)u2
mxx dx.

Подставляя выведенные оценки в последнее тождество, получаем

(1− 2ε)

s(t)∫

0

u2
mt dx ≤ c(ε)s′2(t)

+ c(ε)

s(t)∫

0

a(um)u2
mxx dx+ cs′2(t) + c

s(t)∫

0

a(um)u2
mxx dx.

Выбирая ε = 1
3 и интегрируя неравенство от 0 до t, получим равномерную по

m оценку

t∫

0

s(τ)∫

0

u2
mt dxdτ ≤ c̃




T∫

0

s′2(τ)dτ + 1


 . (23)
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5. Об одном результате о компактности

Для обоснования перехода к пределу по m нам понадобится обоснование

возможности применения одного результата о компактности. Возьмем в [10] в

качестве семейства пространств Bt
1 (t пробегает все значения от 0 до T ) про-

странства L2(0, s(t)), а в качестве Bt — пространства W 1
p (0, s(t)), 1 < p ≤ 2, а

норму зададим формулой

‖v‖Bt =




s(t)∫

0

(|v(x)|p + |vx(x)|p) dx




1
p

.

Неубывание s(t), t ∈ (0, T ), дает Bt1 ⊂ Bt2 , Bt1
1 ⊂ Bt2

1 при t1 > t2 .

Далее, определим St как подмножество пространстваBt, снабженное функ-

цией Mt(·) : St → R+, где

Mt(v) =

s(t)∫

0

(
v2(x) + v2

x(x) + v2
xx(x)

)
dx, t ∈ [0, T ].

Введем обозначение St
a = {θ(x) ∈ St : Mt(θ) ≤ a} и отметим, что для любого

a < ∞ множество St
a относительно компактно в Bt при любом t ∈ [0, T ] [13,

лемма 2].

В силу неубывания s(t) выполняется Mt2(v) ≤ Mt1(v) при t1 > t2 для всех

v из St1 .

Через F1 обозначается подмножество абстрактных функций v(t) таких, что

при t ∈ [0, T ] и v(t) ∈ Bt выполнены неравенства

vrai max
t∈[0,T ]

‖v(t)‖Bt ≤ c2;
T∫

0

Mt(v(t)) dt ≤ c3, (24)

где c2 и c3 — общие постоянные для всех v(t) ∈ F1.

Для использования указанной в [10] теоремы необходимо доказать суще-

ствование такой функции η(t1, t2), что для всех пар элементов u, v ∈ F1 и всех

t1 ≥ t2
| ‖u(t1)− v(t1)‖Bt2 − ‖u(t1)− v(t1)‖Bt1 |≤ η(t1, t2)→ 0

при t1 − t2 → 0. Здесь η не зависит от u, v из F1. Для построенной нами после-

довательности это означает, что

| ‖um1(x, t1)− um2(x, t1)‖Bt2 − ‖um1(x, t1)− um2(x, t1)‖Bt1 |≤ η(t1, t2)→ 0

и доказывается из свойства гёльдеровости s(t) и полученных оценок аналогично

приведенному примеру в [13].
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6. Предельный переход.

Существование решения задачи (14)

Пусть bi(t), i = 0, 1, 2, . . . , образуют полную систему в L2[0, T ]. Умножая

все члены (15) на bi(t), суммируя по j, i от 0 до M , M ≤ m, и интегрируя по t,

для FM (x, t) =
M∑

i,j=0

bi(t)ωj(x, t) получим

T∫

0

s(t)∫

0

umt FM dxdt+

T∫

0

s(t)∫

0

(A(um))′FMx dxdt

+

T∫

0

s(t)∫

0

a′(um)u2
mxFM dxdt = 0, M ≤ m. (25)

Теорема компактности из [10] и полученные оценки позволяют выделить

подпоследовательность {umr}, которая сходится в нормах

(
T∫
0

‖u‖p1

Bt dt

) 1
p1

, p1 ∈
[1, 2), и можно считать, что {umrx} сходится почти всюду. Тогда из оценки

u4
mx(x, t) =




x∫

0

∂u2
mx(x, t)

∂x
dx




2

≤ 4

x∫

0

u2
mx dx

x∫

0

u2
mxx dx ≤ 4c21

x∫

0

u2
mxx dx (26)

следует, что семейство
{
u2
mx

}
равномерно ограничено в норме L2(QT ). Лем-

ма 3.2 в [16, с. 80] позволяет считать, что u2
mrx сходится в Lq(QT ), q < 2.

Из вложения W 1
2 (QT ) ∩ L∞

(
0, T ; W̃ 1

2 (0, s(t))
)
⊂ C

1/2,1/4
x,t (QT ), [13, лемма 1],

где W̃ 1
2 (0, s(t)) =

{
v ∈ W 1

2 (0, s(t)) : v(s(t)) = 0
}
, следует, что можно считать

последовательность {umr} равномерно сходящейся. Вместе с предыдущей схо-

димостью это позволяет перейти к пределу в нелинейных членах a(umr)umrx,

a′(umr)u
2
mrx соответствующего интегрального тождества (25). Переходя к пре-

делу при mr →∞, получим

T∫

0

s(t)∫

0

utFM dxdt+

T∫

0

s(t)∫

0

(A(u))′FMx dxdt +

T∫

0

s(t)∫

0

a′(u)u2
x dxdtFM = 0, M ≤ m.

После этого, переходя к пределу при M →∞, получаем выполнение равенства

(25) для любой F ∈ L2

(
0, T ;W 1

2 (0, s(t))
)

с условием F (s(t), t) = 0. Поэтому

T∫

0

s(t)∫

0

utF dxdt +

T∫

0

s(t)∫

0

(A(u))′Fx dxdt+

T∫

0

s(t)∫

0

a′(u)u2
xF dxdt = 0. (27)

Стандартно можно установить, что предельная функция u = limumr имеет

вторую по x обобщенную производную, суммируемую с квадратом, что выпол-

нено уравнение (14) (и (1)) и условия задачи (14), в частности, след ux при x = 0
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равен 0. Кроме того, из уравнения (1) получается оценка в L2(QT ) производной

по t (не зависящая от s(t)), зависящая только от ‖u0‖L2(0,1) + ‖u0x‖L2(0,1).

Таким образом, установлена разрешимость краевой задачи (14) для квази-

линейного параболического уравнения в области с фиксированной нецилиндри-

ческой правой границей x = s(t) из класса W 1
2 неубывающих функций.

Из принципа максимума (доказанного в [14]) следует, что при u0(x) ≥ 0,

u0 ∈ W 1
2 (0, 1), u0(1) = 0 решение задачи (14) неотрицательно в QT = {(x, t) :

0 < x < s(t), t ∈ (0, T )}. Отсюда легко выводим, что unx(s(t), t) ≤ 0.

7. Основной оператор задачи и его свойства

Исходная задача Стефана будет решена, если подобрать функцию s(t), за-

дающую правую границу, из описанного выше класса, определяющую решение

u(x, t) задачи (14), для которых будет выполнено условие Стефана (10). По-

следнее, как показано, эквивалентно каждому из условий (12) или (13). Полагая

s(0) = 1, (13) перепишем в виде

s(t) = �−1(α − a(0)

s(t)∫

0

B(u(ξ, t)) dξ),

B(u) =

u∫

0

dη

a(η)
, α = �(1) + a(0)

1∫

0

B(u0(ξ)) dξ.

(28)

Определим оператор

G(s(t)) = �−1(α − a(0)

s(t)∫

0

B(u(ξ, t)) dξ), (29)

действующий на подмножестве S пространства C[0, T ], S =
{
s(t) ∈ W 1

2 (0, T ) :

s(0) = 1, s′(t) ≥ 0, ‖s′‖L2(0,T ) ≤ b1
}
. Его неподвижная точка даст искомую

функцию s(t). Очевидно, что S — выпуклое и замкнутое подмножество про-

странства C[0, T ]. Из вложения W 1
2 (0, T ) в C

1
2 [0, T ] следует компактность S в

C[0, T ]. Кроме того,

dG(s(t))

dt
=

1

�′(G(s(t)))


−a(0)

s(t)∫

0

d

dt
B(u(ξ, t)) dξ




=
1

�′(G(s(t)))


−a(0)

s(t)∫

0

ut
a(u)

dξ




= − a(0)

�′(G(s(t)))

s(t)∫

0

uxx dξ = − a(0)

ϕ(G(s(t)))
ux(s(t), t) ≥ 0. (30)
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В частности,

dG(s(t))

dt
=

a(0)

ϕ(G(s(t)))
|ux(s(t), t)| ≤

a(0)

δ
|ux(s(t), t)|.

Оценим ux(s(t), t), используя (21):

u2
x(s(t), t) =

s(t)∫

0

∂

∂ξ
u2
x dξ = 2

s(t)∫

0

uxuxx dξ ≤ 2c1




s(t)∫

0

u2
xx dξ




1
2

, c1 = ‖u0x‖L2(0,T ).

Поэтому, используя вторую часть (21), имеем

T∫

0

u2
x(s(t), t) dt ≤ 2c1

T∫

0




s(t)∫

0

u2
xx dξ




1
2

dt ≤ c21
√

2T

δ
.

Таким образом,

∥∥∥∥
dG(s(t))

dt

∥∥∥∥
L2(0,T )

≤ a(0)

δ
c1

(
2T

δ

) 1
4 def

= b1. (31)

Постоянная b1 не зависит от s(t) и именно она входит в определение множе-

ства S.

Формулы (29), (30) и равенство G(s(t))|t=0 = �−1(�(1)) = 1 показывают,

что оператор G переводит S в себя. Докажем его непрерывность в пространстве

C[0, T ].

Будем обозначать через u(x, t; s) решение задачи (14) с заданной правой

границей x = s(t), а через un(x, t; sn) — задачи (14) с правой границей x =

sn(t). Будем считать, что s(t) и sn(t) принадлежат множеству S и γn(t) =

min(s(t), sn(t)). Для дальнейшего отметим, что γn(t) ∈ W 1
2 (0, T ) и ‖γ′n‖L2(0,T )

равномерно по n ограничена.

Теорема 1. Пусть функции a, a′, ϕ непрерывны на R, a ≥ δ > 0, ϕ ≥ δ > 0,

u0 ∈ W 1
2 (0, 1), u0(0) = 1 и sup a′′(u) ограничен при u ≤ 2‖u0‖L2(0,1)‖u0x‖L2(0,1).

Тогда оператор G : C[0, T ] → C[0, T ] с областью определения W 1
2 (0, T ) непре-

рывен на S.

Надо установить, что если sn(t) ∈ S и sn(t)→ s(t) в C[0, T ], то G(sn(t))→
G(s(t)) в банаховом пространстве C[0, T ].

Из определения � и B легко получить

|G(sn)−G(s)|

= |�−1(α− a(0)

sn(t)∫

0

B(un(ξ, t; sn)) dξ) − �−1(α− a(0)

s(t)∫

0

B(u(ξ, t; s)) dξ)|

≤ a(0)

δ

∣∣∣∣∣∣∣

sn(t)∫

0

B(un(ξ, t; sn)) dξ −
s(t)∫

0

B(u(ξ, t; s)) dξ)

∣∣∣∣∣∣∣
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≤ a(0)

δ

∣∣∣∣∣∣∣

γn(t)∫

0

B(un) dξ −
γn(t)∫

0

B(u) dξ

∣∣∣∣∣∣∣
+
a(0)

δ

∣∣∣∣∣∣∣

sn(t)∫

γn(t)

B(un) dξ −
s(t)∫

γn(t)

B(u) dξ

∣∣∣∣∣∣∣
.

В силу равномерной ограниченности un, u и непрерывности B второе слагаемое

справа не превосходит

c(|sn(t)− γn(t)|+ |s(t)− γn(t)|) = c|sn(t)− s(t)|.

Первое слагаемое не превосходит

a(0)

δ

γn(t)∫

0

|B(un)−B(u)| dξ ≤ a(0)

δ2

γn(t)∫

0

|un − u| dξ.

Поскольку

γn(t)∫

0

|un − u| dξ ≤




γn(t)∫

0

|un − u|2 dξ)
1
2 (1 + b1T

1
2




1
2

,

теорема 1 будет доказана, если установить, что

max
t∈[0,T ]

γn(t)∫

0

|un(ξ, t; sn)− u(ξ, t; s)|2 dξ → 0 при n→∞.

Для этого рассмотрим уравнения для u и для un в виде (1) в общей области

определения 0 < x < γn(t), 0 < t < T , умножим разность этих уравнений на

u− un и проинтегрируем по ξ от 0 до γn(t):

γn(t)∫

0

(u(ξ, t; s)− un(ξ, t; sn))t(u − un) dξ =

γn(t)∫

0

a(u)(uxx − unxx)(u− un) dξ

+

γn(t)∫

0

(a(u)− a(un))unxx(u− un) dξ.

Интегрируя по частям, получим равенство

1

2

d

dt

γn(t)∫

0

(u − un)2 dξ +

γn(t)∫

0

a(u)(ux − unx)2 dξ = γ′n(t)
(u − un)2

2

∣∣∣∣
x=γn(t)

−
γn(t)∫

0

a′(u)ux(ux − unx)(u − un) dξ + [a(u)(ux − unx)(u − un)]|x=γn(t)

+

γn(t)∫

0

(a(u)− a(un))unxx(u− un) dξ. (32)
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Для дальнейшего заметим, что u и un удовлетворяют условию Гёльдера по x:

|u(x1, t)− u(x2, t)| =

∣∣∣∣∣∣

x2∫

x1

ux(ξ, t) dξ

∣∣∣∣∣∣
≤




s(t)∫

0

u2
x dξ




1
2

|x1 − x2|
1
2 ≤ c1|x1 − x2|

1
2 .

Поэтому

|u− un|x=γn(t) = |u(γn(t), t) − u(s(t), t) + un(sn(t), t)− un(sn(t), t)|
≤ |u(γn(t), t)− u(s(t), t)|+ |un(sn(t), t)− un(γn(t), t)|

≤ c1|γn(t)− s(t)| 12 + c1|sn(t)− γn(t)| 12 = c1|sn(t)− s(t)| 12 .

Обозначим

ca =
1

2
max( sup

0≤u≤2c0c1

|a′′(u)|, max
0≤u≤2c0c1

|a′(u)|), c̃a = max
0≤u≤2c0c1

a(u).

Оценим каждое слагаемое в правой части равенства (32), используя равномер-

ную оценку un и u через 2c0c1 и краевые условия при x = s(t) и x = sn(t):

∣∣∣∣γ′n(t)
(u − un)2

2

∣∣∣∣
x=γn(t)

≤ 1

2
c21|γ′n(t)||sn(t)− s(t)| ≤ δn|γ′n(t)|, (33)

где δn = 1
2 c

2
1 max
t∈[0,T ]

|sn(t)− s(t)| → 0 при n→∞;

−
γn(t)∫

0

a′(u)ux(ux − unx)(u − un) dξ =
1

2

γn(t)∫

0

(a′′(u)u2
x + a′(u)uxx)(u − un)2 dξ

− 1

2
a′(u)ux(u− un)2|x=γn(t) ≤ ca

γn(t)∫

0

(u2
x + |uxx|)(u − un)2 dξ + 2caδn

γn(t)∫

0

|uxx| dξ

≤ ca






γn(t)∫

0

u4
x dξ




1
2

+




γn(t)∫

0

u2
xx dξ




1
2





γn(t)∫

0

(u− un)4 dξ




1
2

+ 2caδn
√
γ̃n




γn(t)∫

0

|uxx|2 dξ




1
2

≤ ca(2
√
c1γ̃n + 1)




γn(t)∫

0

u2
xx dξ




1
2



γn(t)∫

0

(u− un)4 dξ




1
2

+ 2caδn
√
γ̃n




γn(t)∫

0

|uxx|2 dξ




1
2

. (34)
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В последнем неравенстве использовалась оценка (26), а

γ̃n = max
0≤t≤T

γn(t) ≤ 1 +
√
Tb1.

Оцениваем третье и четвертое:

|a(u)(ux − unx)(u − un)|x=γn(t) ≤ c̃a(|ux|+ |unx|)|x=γn(t)

√
2δn

≤ c̃a
√

2δn



∣∣∣∣∣∣

γn(t)∫

0

uxx(ξ, t) dξ

∣∣∣∣∣∣
+

∣∣∣∣∣∣

γn(t)∫

0

unxx(ξ, t) dξ

∣∣∣∣∣∣




≤ c̃a
√

2δnγ̃n






γn(t)∫

0

u2
xx(ξ, t) dξ




1
2

+




γn(t)∫

0

u2
nxx(ξ, t) dξ




1
2

; (35)

∣∣∣∣∣∣∣

γn(t)∫

0

(a(u)− a(un))unxx(u− un) dξ

∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣

γn(t)∫

0

a′(ũn)unxx(u− un)2 dξ

∣∣∣∣∣∣∣

≤ ca




γn(t)∫

0

|unxx|2 dξ




1
2



γn(t)∫

0

|u− un|4 dξ




1
2

. (36)

Оценки интегралов с uxx и unxx в (34) и в (36) одинаковы и основаны на равен-

стве и неравенстве:

(u− un)2 =

x∫

γn(t)

∂(u− un)2

∂ξ
dξ + (u− un)2|x=γn(t),

max
0≤x≤γn(t)

|u− un| ≤
√

2




γn(t)∫

0

v2
nx dξ




1
4



γn(t)∫

0

v2
n dξ




1
4

+
√

2δn, (37)

где vn = |u − un|. Используя их и (21), получим, например, для интеграла с

unxx:




γn(t)∫

0

|unxx|2 dξ




1
2



γn(t)∫

0

v4
n dξ




1
2

≤




γn(t)∫

0

|unxx|2 dξ




1
2

√
2




γn(t)∫

0

v2
nx dξ




1
4



γn(t)∫

0

v2
n dξ




3
4

+ 2
√

2δnc1




γn(t)∫

0

|unxx|2 dξ




1
2

. (38)
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Подставим эти оценки в (34) и (36) и проинтегрируем по τ от 0 до t правые

части каждого оцененного слагаемого. Получим соответственно для первого

δn

∣∣∣∣∣∣

t∫

0

γ′n(τ)

∣∣∣∣∣∣
dτ ≤ 2δn

t∫

0

(s′(τ) + s′n(τ)) dτ ≤ 4δnb1
√
t.

Здесь использовали представление минимума через срезки функций, диффе-

ренцируемость последних [16, леммы 3.3, 3.4], монотонность и принадлежность

s и sn классу S и оценку (31).

Далее учтем равномерную ограниченность γ̃n и в дальнейших оценках од-

ной буквой c будем обозначать различные константы, зависящие только от вход-

ных данных задачи. Будем только следить за степенями δn. Продолжим оцен-

ку для проинтегрированного по t слагаемого (34) (и аналогично в (36)) и учтем

(37):

c

t∫

0




γn(τ)∫

0

u2
xx dξ




1
2



γn(τ)∫

0

(u− un)4 dξ




1
2

dτ + cδn

t∫

0




γn(τ)∫

0

|uxx|2 dξ




1
2

dτ

≤ c
t∫

0




γn(τ)∫

0

u2
xx dξ




1
2





γn(τ)∫

0

v2
nx dξ




1
4



γn(τ)∫

0

v2
n dξ




1
4

+
√
δn




×




γn(τ)∫

0

v2
n dξ




1
2

dτ + cδn

t∫

0




γn(τ)∫

0

u2
xx dξ




1
2

dτ

≤ c




t∫

0

γn(τ)∫

0

|uxx|2 dξdτ




1
2



t∫

0




γn(τ)∫

0

v2
nx dξ




1
2



γn(τ)∫

0

v2
n dξ




3
2

dτ




1
2

+ c
√
δn




t∫

0

γn(τ)∫

0

|uxx|2 dξdτ




1
2



t∫

0

γn(τ)∫

0

v2
n dξdτ




1
2

+ δn
√
t




t∫

0

γn(τ)∫

0

u2
xx dξdτ




1
2

≤ c




t∫

0




γn(τ)∫

0

v2
nx dξ




1
2



γn(τ)∫

0

v2
n dξ




3
2

dτ




1
2

+ c
√
δn.

Здесь использована ограниченность интегралов от u2
xx v

2
n.

Аналогично интеграл по t от оценки третьего слагаемого в (35) даст оценку

c
√
δn






t∫

0

γn(τ)∫

0

u2
nxx dξdτ




1
2

+




t∫

0

γn(τ)∫

0

u2
xx dξdτ




1
2

 ≤ c

√
δn.

Интегрирование (32) по t и использование полученных оценок дает

γn(t)∫

0

|u− un|2 dξ + 2

t∫

0

γn(τ∫

0

a(u)|ux − unx|2 dξdτ
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≤ c




t∫

0




γn(τ)∫

0

|ux − unx|2 dξ




1
2



γn(τ)∫

0

|u− un|2 dξ




3
2

dτ




1
2

+ c
√
δn

≤ c




t∫

0

γn(τ)∫

0

|ux − unx|2 dξdτ




1
4



t∫

0




γn(τ)∫

0

|u− un|2 dξ




3

dτ




1
4

+ c
√
δn.

Воспользуемся неравенством с ε:

ab ≤ εa4 +
3

4

(
1

4ε

) 1
3

b
4
3 ,

и продолжим, оценивая произведение под интегралом по t:

≤ cε
t∫

0

γn(τ)∫

0

|ux − unx|2 dξdτ + c(ε)




t∫

0




γn(τ)∫

0

|u− un|2 dξ




3

dτ




1
3

+ c
√
δn.

Так как a(u) > δ, выбрав ε = ε0 такое, что cε0 < δ, получим неравенство

γn(t)∫

0

|u− un|2 dξ ≤ c(ε0)




t∫

0




γn(τ)∫

0

|u− un|2 dξ




3

dτ




1
3

+ c
√
δn. (39)

Возведение в куб дает




γn(t)∫

0

|u− un|2 dξ




3

≤ c̃(ε0)
t∫

0




γn(τ)∫

0

|u− un|2 dξ




3

dτ + c̃(δn)
3
2 .

Из неравенства Гронуолла с c̃0 = c̃(ε0) следует, что

γn(t)∫

0

|u− un|2 dξ ≤ c̃
1
3 exp

(
c̃0T

3

)
(δn)

1
2 .

Окончательно получаем, что

max
t∈[0,T ]

γn(t)∫

0

|u− un|2 dξ ≤ c max
t∈[0,T ]

|s(t)− sn(t)| 12 → 0. (40)

Теорема 1 доказана.

Обозначим 1 +
√
Tb1 = b2, Q̃T = [0, T ]× [0, b2], где b2 — величина, которую

не может превысить ни одна из функций s(t) класса S. Тогда соответствующие

решения задачи (14) u(x, t; s), продолженные нулем за кривую x = s(t), будут

принадлежать пространству L∞
(
0, T ;W 1

2 (0, b2)
)
∩ C 1

4 (Q̃T ). Указанные продол-

жения обозначим через U = U(x, t; s), Un = U(x, t; sn).
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Следствие 1. При предположениях теоремы оператор, ставящий в соот-

ветствие каждой функции s(t) ∈ S решение краевой задачи (14), непрерывен

как оператор из C[0, T ] в C[Q̃T ]. При этом имеет место квалифицированная

непрерывность:

‖U − Un‖C(Q̃T )
≤ c‖s− sn‖

1
8

C[0,T ]. (41)

Доказательство. При x ≤ γn(t) имеем U = u, Un = un и используя (40)

получим

|u− un| =




x∫

γn(t)

∂(u− un)2

∂ξ
dξ + (u− un)2|x=γn(t)




1
2

≤


2




γn(t)∫

0

(ux − unx)2 dξ




1
2



γn(t)∫

0

(u− un)2 dξ




1
2

+ c|s− sn|




1
2

≤
(
c‖s− sn‖

1
4

C[0,T ] + c|s− sn|
1
2

) 1
2 ≤ c‖s− sn‖

1
8

C[0,T ].

При γn(t) ≤ x ≤ jn(t) = max(sn(t), s(t)) выводим, используя граничные условия

и гёльдеровость по x порядка 1
2 :

|U − Un| = |U(x, t; s)− U(s(t), t) + Un(sn(t), t)− Un(x, t; sn)|
≤ |U(x, t; s)−U(s(t), t)|+ |Un(sn(t), t)−Un(x, t; sn)| ≤ c(|x− s(t)| 12 + |x− sn(t)| 12 )

= c|s(t)− sn(t)| 12 ≤ c‖s(t)− sn(t)‖
1
2

C[0,T ].

Из полученных неравенств для каждой из областей получаем утверждение след-

ствия 1.

Следствие 2. При предположениях теоремы 1 краевая задача (14) с за-

данной правой границей s(t) классаW 1
2 (0, T ) в пространствеL∞

(
0, T ;W 1

2 (0, s(t))
)

∩L2

(
0, T ;W 2

2 (0, s(t))
)

имеет единственное решение.

Действительно, предположив, что для одной и той же s(t) при одном и том

же начальном условии u0(x) задача имеет два решения из неравенства (40) (или

(41)) получим единственность.

Полученные выше результаты позволяют обосновать важное для задачи

Стефана свойство.

Теорема 2. При предположениях теоремы 1 оператор G имеет в множе-

стве S неподвижную точку.

Действительно, мы доказали, что оператор G с областью определения

W 1
2 (0, T ) является непрерывным в банаховом пространстве C[0, T ] и переводит

ограниченное замкнутое выпуклое множество S в себя. А так как S компакт-

но в C[0, T ], то он вполне непрерывен на S. По теореме Шаудера он имеет

неподвижную точку в S, т. е. для этого s(t) выполнено (28).

Построив по s(t) соответствующее решение задачи (14) u(x, t; s), получим

пару функций u, s, являющуюся решением рассматриваемой задачи (1)–(4),

(10). Таким образом, установлена
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Теорема 3. При предположениях теоремы 1 задача Стефана (1)–(4), (10)

имеет решение из класса u ∈ L∞
(
0, T ;W 1

2 (0, s(t))
)
∩ L2

(
0, T ;W 2

2 (0, s(t))
)
, s ∈

W 1
2 (0, T ).

Замечание. Из оценки (26) и равенства (30) видно, что фактически най-

денная функция s(t) принадлежит W 1
4 (0, T ). Это было упомянуто в преамбуле.

Поэтому s(t) ∈ C 3
4 [0, T ].
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Аннотация. Рассматриваются вопросы корректности в пространствах Соболева
обратных задач определения коэффициента теплопередачи по набору интегралов
по границе этой области. Показано, что при определенных условиях на данные
решение задачи существует локально по времени, единственно и непрерывно зави-
сит от данных задачи. Метод является конструктивным и на основе предложенного
подхода возможно построение численных методов решения задачи. Доказательство
использует априорные оценки и теорему о неподвижной точке.
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Ключевые слова: параболическое уравнение, коэффициент теплопередачи, об-
ратная задача, существование, единственность.

Введение

Рассматривается параболическое уравнение второго порядка вида

Mu = ut − Lu = f(x, t), (x, t) ∈ Q = G× (0, T ), (1)

где

Lu =

n∑

i,j=1

aijuxixj −
n∑

i=1

aiuxi − a0u,

G ⊂ Rn — ограниченная область с границей � , S = (0, T ) × � . Уравнение (1)

дополняется начально-краевыми условиями

Ru|S = g, u(x, 0) = u0(x), (2)

где

Ru =

n∑

i,j=1

aij(x, t)νi
∂u

∂xj
+ σ0(x, t)(u − u),

~ν — единичный вектор внешней нормали и u — заданная функция. Коэффици-

ент σ0 в (2) имеет вид

σ0 =

r∑

i=1

αi(t)�i(t, x),

Работа выполнена при финансовой поддержке Российского научного фонда и правитель-
ства Ханты-Мансийского автономного округа-ЮГРЫ (грант № 25-11-20026).
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где функции αi подлежат определению, а функции {�i} известны и по сути это

некоторый базис. Условия на них сформулируем ниже. Условия для определе-

ния этих функций имеют вид
∫

�

∂u

∂N
ϕj(x) d� = ψj(t), j = 1, 2, . . . , r. (3)

Задача состоит в нахождении решения уравнения (1), удовлетворяющего усло-

виям (2), (3), и функций {αi(t)}.
Обратные задачи об определении граничных режимов встречаются в раз-

ных областях математической физики, в частности, при моделировании процес-

сов теплообмена на поверхностях твердых тел, оценки термического состояния

мерзлых грунтов в задачах геокриологии, моделирования свойств и тепловых

режимов композитных материалов (см. [1–3]). Основное внимание уделено до-

казательству корректности конкретных прикладных задач. Наиболее часто в

приложениях встречаются задачи с точечным условием переопределения, т. е.

с условием вида u(t, bi) = ψj , i = 1, 2, . . . , r. Теорема существования и един-

ственности решений таких задач в классах Соболева была получена, например,

в [4] и многих других работах. Следует отметить известные работы [5, 6], где в

модельном случае была получена теорема единственности классических реше-

ний об определении коэффициента теплопередачи вида σ(t) как по точечному

условию вида u(t, x0) = α(t), так и по интегральному условию вида
∫

�0

u(t, x)ϕi(x) d�0 = ψi(t), i = 1, 2, . . . , r.

Точечное условие переопределения используется в работе [7] в случае n = 1 в

задаче определения коэффициента σ(t) в граничном условии вида

−ux + σ(t)u(t, 0) = f1, −ux + σ(t)u(t, 1) = f2, x ∈ (0, 1), t ≥ 0. (4)

Интегральные условия переопределения вида
∫

�

u(t, x)ϕi(x) d� = ψi(t), i = 1, 2, . . . , r,

могут быть использованы как некоторые приближения точечных условий пере-

определения (это отмечается в [8, 9]), в том числе и при построении численного

решения задачи. В одномерном случае интегральные условия вида
∫

�

u(t, x)ϕi(x) d� = ψi(t), i = 1, 2, . . . , r,

заменялись другими условиями, в частности, в работе [10] (граничные условия

имеют вид (4)) условием вида γ0u(t, 0) + γ1u(1, t) = β(t), а в [11] — условием

вида u2(t, 0) + u2(1, t) = β(t). Также известны случаи, когда возникали задачи

с нелинейными условиями вида

Bu =
∂u

∂N
+ σ(t)g(u),
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где определению подлежит функция σ(t) и часто условия переопределения вида
∫

�

u(t, x)ϕi(x) d� = ψi(t), i = 1, 2, . . . , r,

заменялись нелинейными вида

∫

�

F (u) d� = ψ(t), F (u) =

u∫

0

g(ξ) dξ

(см. [12]) или вида F (u)(0, t)+F (u)(1, t) = E(t) в случае n = 1 (см. [13]). Стоит

также отметить работы [8, 9, 14–17], где граничное условие представлено в виде

Bu =
∂u

∂N
+ g(u),

условие переопределения в виде

F (u) =

u∫

0

g(ξ) dξ = ψ(t),

а определению подлежит функция g. Довольно полную библиографию можно

найти в работе [9]. Стандартный подход к задачам, близким к задаче (1)–(3),

состоит в том, что задача сводится к задаче управления и минимизация соответ-

ствующего функционала осуществляется в классах знакоопределенных фунций

σ0. Например, в работе [8], условие переопределения есть интеграл от решения,

умноженного на некоторую весовую функцию ω. В этом случае полученные

оценки позволяют осуществить предельный переход и показать разрешимость

задачи управления. Однако эта задача не эквивалентна исходной обратной за-

даче. Единственной работой, где в случае интегральных условий переопределе-

ния вида ∫

�0

u(t, x)ϕi(x) d�0 = ψi(t), i = 1, 2, . . . , r,

(линейных или нелинейных) есть эквивалентность и разрешимость обратной

задачи показана, является работа [13], в которой n = 1 и интеграл по границе

заменяется суммой F (u(0, t)) + F (u(l, t)) = E(t) (x ∈ (0, l), t > 0). Условия

вида (3), где интеграл берется не по части границы, а по области G, были рас-

смотрены в [18, 19], где восстанавливалась функция g, а не коэффициент теп-

лопередачи σ0. Вопросы корректности задачи определения коэффициента σ0

по дополнительным данным в виде наборов интегралов от решения по области

G были рассмотрены в [4]. Условие переопределения вида (3) используется в

[20], где рассмотрены вопросы существования и единственности решений обрат-

ных задач об определении младших коэффициентов в параболической системе

уравнений. По всей видимости, ранее теорем существования и единственности

решений для задачи (1)–(3) об определении коэффициента теплопередачи не

было. В данной работе при определенных условиях на данные показана кор-

ректность задачи (1)–(3) в пространствах Соболева.
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1. Определения и вспомогательные результаты

Пусть E — банахово пространство. Через Lp(G;E) (G — область в Rn)

обозначается пространство измеримых функций, определенных на G, со зна-

чениями в E, снабженное конечной нормой ‖‖u(x)‖E‖Lp(G) [21]. Обозначе-

ния для пространств Соболева W s
p (G;E), W s

p (Q;E) и т. д. стандартные (см.

[21, 22]). Если E = C или E = Cn, то последнее пространство обозначаем

просто через W s
p (Q). Таким образом, включение u ∈ W s

p (G) для данной вектор-

функции u = (u1, u2, . . . , uk) означает, что каждая из компонент ui принадле-

жит пространству W s
p (G). В этом случае под нормой вектора понимаем сум-

му норм координат. Для данного интервала J = (0, T ) положим W s,r
p (Q) =

W s
p (J ;Lp(G))∩Lp

(
J ;W r

p (G)
)
. Пусть � — гладкая поверхность размерности n−1

и S = (0, T )× � . Тогда соответственно W s,r
p (S) = W s

p (J ;Lp(� )) ∩ Lp

(
J ;W r

p (� )
)
.

Определения пространств Гёльдера Cα,β(Q), Cα,β(S) могут быть найдены, на-

пример, в [23]. Пусть (u, v) =
∫
G

u(x)v(x)dx. Все пространства и коэффициенты

уравнений предполагаются вещественными.

ПоложимQγ = (0, γ)×G, Qα,β = (α, β)×G, Sγ = (0, γ)×∂G. Далее считаем,

что � ∈ C2. Будем использовать в пространстве W s
p (α, β;E) (s ∈ (0, 1), E —

банахово пространство) норму

‖q(t)‖W s
p (α,β;E) =

(
‖q‖pLp(α,β;E) + 〈q〉ps,p

)1/p
,

〈q〉ps,p =

β∫

α

β∫

α

‖q(t1)− q(t2)‖pE
|t1 − t2|1+sp

dt1dt2.

Если E = C, то получим обычное пространство W s
p (α, β). При s ∈ (0, 1) поло-

жим

W̃ s
p (α, β;E) =

{
q ∈ W s

p (α, β;E) : (t− α)−sq(t) ∈ Lp(α, β;E)
}
.

Это банахово пространство с нормой

‖q(t)‖p
W̃ s

p (α,β;E)
=

∥∥∥∥
q

(t− α)s

∥∥∥∥
p

Lp(α,β;E)

+ 〈q〉ps,p.

Если s > 1/p, то все функции q из этого пространства обладают тем свойством,

что q(α) = 0 и при s 6= 1/p эта норма и обычная норма ‖·‖W s
p (α,β;E) эквивалентны

для функций q(t) таких, что q(α) = 0, если s > 1/p (см., например, лемму 1

п. 3.2.6 в [21]). Пространства

W̃ s
p (α, β;Lp(G)), W̃ s,2s

p (Qα,β) = W̃ s
p (α, β;Lp(G)) ∩ Lp

(
α, β;W 2s

p (G)
)

при s 6= 1/p состоят из функций v(t, x) из W s
p (α, β;Lp(G)) и W s,2s

p (Qα,β) со-

ответственно таких, что v(α, x) = 0, если s > 1/p. Нормы ‖ · ‖
W̃ s,2s

p (Qα,β)
,
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‖ · ‖
W̃ s

p (α,β;Lp(G))
определяются естественным образом с использованием выше-

приведенной нормы в W̃ s
p (α, β;E). Имеем

‖u‖p
W̃ s,2s

p (Qα,β)
=



∫

G

β∫

α

|u(x, t)|p
(t− α)sp

dtdx

+

∫

G

β∫

α

β∫

α

|u(x, t)− u(x, τ)|p
|t− τ |1+sp

dtdτdx + ‖u‖pLp(α,β;W 2s
p (G))




1/p

.

Аналогично определяем пространства W̃ s
p (α, β;Lp(� )), W̃ s,2s

p (Sγ). Далее во всем

тексте, если не оговорено противное, считаем, что � ∈ C2 и p > n + 2. Такой

выбор параметра p связан с тем, что все формулировки и доказательства значи-

тельно упрощаются, другие значения параметра p ∈ (1,∞) вполне допустимы

и результаты имеют место.

Лемма 1 [24, лемма 2]. Существует постоянная C, не зависящая от φ ∈
(0, T ], такая, что

‖v‖
W̃

s1,2s1
p (Sφ)

≤ C‖v‖W 1,2
p (Qφ), s1 = 1− 1/2p,

∥∥∥∥
∂v

∂ν

∥∥∥∥
W̃

s0,2s0
p (Sφ)

≤ C‖v‖W 1,2
p (Qφ), s0 = 1/2− 1/2p,

(5)

для всех v ∈ W 1,2
p (Qφ) таких, что v(0, x) = 0. Здесь ∂v

∂ν — производная по

внешней нормали к Sφ.

Лемма 2 [25, лемма 2]. Пусть s ∈ ((n + 2)/2p, 1). Тогда справедливы

следующие утверждения. Произведение q · v функций класса W s,2s
p (Qφ) (τ ∈

(0, T ]) принадлежит W s,2s
p (Qφ), а если q ∈ W̃ s,2s

p (Qφ) и v ∈ W s,2s
p (Qφ), то qv ∈

W̃ s,2s
p (Qφ) и справедлива оценка

‖qv‖
W̃ s,2s

p (Qφ)
≤ c0‖q‖W̃ s,2s

p (Qφ)
(‖v‖W s,2s

p (Qφ) + ‖v‖L∞(Qφ)).

Если v ∈W s,2s
p (Q), то последнее неравенство можно переписать в виде

‖qv‖
W̃ s,2s

p (Qφ)
≤ c1‖q‖W̃ s,2s

p (Qφ)
‖v‖W s,2s

p (Q),

а если v ∈ W̃ s,2s
p (Qφ), то в виде

‖qv‖
W̃ s,2s

p (Qφ)
≤ c2‖q‖W̃ s,2s

p (Qφ)
‖v‖

W̃ s,2s
p (Qφ)

,

где постоянные ci, i = 0, 1, 2, не зависит от q, v и φ ∈ (0, T ]. Множество Qφ

в этих утверждениях может быть заменено на Sφ (в этом случае считаем, что

1 > s > (n+ 1)/2p). Если q зависит только от одной переменной t, то норма q в

W̃ s,2s
p (Qφ) в этих неравенствах заменяется нормой q в W̃ s

p (0, φ).

Рассмотрим вспомогательную задачу

Mu = ut − Lu = f, Lu =

n∑

i,j=1

aijuxixj −
n∑

i,j=1

aiuxi − a0u; (6)
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Ru|S = g, u(x, 0) = u0(x), (7)

где

Ru =
∂u

∂N
(t, x) + σ0(x, t)(u − u),

∂u

∂N
(t, x) =

n∑

i,j=1

aij(t, x)νi
∂u

∂xj

и u(t, x) — некоторая заданная функция. Считаем, что

aij ∈ C(G), aij |S ∈W s0,2s0
p (S), i, j = 1, . . . , n, p > n+ 2; (8)

u0(x) ∈W 2−2/p
p (G), f ∈ Lp(Q), u, g ∈W s0,2s0

p (S), ak ∈ Lp(Q), k = 0, . . . , n. (9)

Матрица {aij} симметрична и найдется постоянная δ0 > 0 такая, что

n∑

i,j=1

aijξiξj ≥ δ0|~ξ|2 ∀~ξ ∈ Rn, (t, x) ∈ Q.

Будем искать решение задачи (6), (7), т. е. функцию u, в классе u ∈ W 1,2
p (Q).

Запишем условия согласования:

Ru0(x)|� = g(0, x). (10)

Теорема 1. Пусть выполнены условия (8)–(10) и σ0 ∈ W s0,2s0
p (S). Тогда

существует единственное решение u задачи (6), (7) такое, что u ∈ W 1,2
p (Q).

Решение удовлетворяет оценке

‖u‖W 1,2
p (Q) ≤ c(‖f‖Lp(Q) + ‖g‖

W
s0,2s0
p (S)

+ ‖u‖
W

s0,2s2
p (S)

+ ‖u0‖W 2−2/p
p (G)

).

Если u0 = 0, u = 0, то на любом промежутке (0, τ) (τ ≤ T ) решение удовлетво-

ряет оценке

‖u‖W 1,2
p (Qτ ) ≤ c(‖f‖Lp(Qτ ) + ‖g‖

W̃
s0,2s0
p (Sτ )

),

где постоянная c не зависит от τ ∈ (0, T ] и f, g.

Утверждение теоремы 1 вытекает из теоремы 1 работы [4].

2. Основные результаты

Считаем, что выполнены условия

�i ∈ W s0,2s0
p (S), (11)

∫

�

∂u0

∂N
ϕi d� = ψj(0), ψj(t) ∈ W s0

p (0, T ), j = 1, 2, . . . , r. (12)

Пусть B0 — матрица с элементами

φij =

∫

�

�j(0, x)(u0 − u)(0, x)ϕi(x) d� , i, j = 1, 2, . . . , r,

причем

| detB0| > 0, ϕk ∈ Lp′(� ), k = 1, . . . , r, p′ = p/(p− 1). (13)
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Рассмотрим граничное условие (7) Ru|S = g(t, x). Умножим это равенство,

взятое в точке t = 0, на ϕj(x) и проинтегрируем по � . Получим

r∑

i=1

αi(0)

∫

�

�i(0, x)(u0 − u)(0, x)ϕj(x) d�

= −
∫

�

∂u0

∂N
(0, x)ϕj(x) d� +

∫

�

g(0, x)ϕj(x) d� , j ≤ r.

В силу условия (13) система имеет единственное решение и можем записать

~α(0) = B−1
0
~F0, где ~F0 = (F01, . . . , F0r)

T , ~α(t) = (α1(t), . . . , αr(t))
T и

F0j =

∫

�

g(0, x)ϕj d� − ψj(0).

Таким образом, если решаем обратную задачу (1)–(3), то данные задачи позво-

ляют однозначно определить ~α(0). Тогда условия согласования при t = 0, x ∈ �
записываются в виде

∂u0

∂N
(0, x) + σ0(0, x)(u0 − u)(0, x) = g(0, x) (x ∈ � ),

σ0(0, x) =

r∑

i=1

αi(0)�(0, x).
(14)

Теорема 2. Пусть выполнены условия (8), (9), (11)–(14). Тогда найдется

число γ0 такое, что на промежутке [0, γ0] существует единственное решение

задачи (1)–(3) такое, что u ∈ W 1,2
p (Qγ0), αi ∈W s0,2s0

p (0, γ0), i = 1, 2, . . . , r.

Доказательcтво. Приведем задачу к более простому виду. Положим

β =

r∑

i=1

βi�i, σ̃0 =

r∑

i=1

αi(0)�i(t, x), βi = αi(t)− αi(0).

Используя теорему 1, построим решение v задачи (6), (7), где возьмем в качестве

функции σ0 функцию σ̃0. Тогда функция w = u− v есть решение задачи

Mw = wt − Lw = 0, w|t=0 = 0, (15)

∂w

∂N
+ σ̃0w|S = −(βw + β(v − u))|S , (16)

∫

�

∂w(t, x)

∂N
ϕi(x) d� = ψi(t)−

∫

�

∂v(t, x)

∂N
ϕi(x) d� = ψ̃i(t), i = 1, 2, . . . , r. (17)

Далее сведем нашу обратную задачу к некоторому (фактически интегральному)

уравнению. Умножим (16) на ϕj(x) и проинтегрируем по области � . Получим

равенство

∫

�

ϕjβ(v−u) d� =

r∑

i=1

βi

∫

�

ϕj�i(v−u) d� = −ψ̃j−
∫

�

ϕj σ̃0w d�−
∫

�

ϕjβw d� . (18)
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Всё можем записать в виде

B~β = ~S, ~S = (S1, . . . , Sr)
T , Sj = −ψ̃j −

∫

�

ϕj σ̃0w d� −
∫

�

ϕjβw d� ,

где матрица B имеет элементы bij =
∫
�

�jϕi(v − u) d� . Имеем

B(0) = B0, detB0 6= 0, bij |t=0 =

∫

�

�j(0, x)ϕ(x)(u0 − u(0, x)) d� .

Обращая матрицу B, получим ~β = B−1~S, где ~S зависит от w — решения за-

дачи (15), (16), которое, в свою очередь, зависит от ~β. Таким образом, имеем

уравнение
~β = B−1~S(β) = ~S0(β). (19)

НайдемB−1~S(0). Если ~β = 0, то w = 0 и Sj = −ψ̃j , т. е. ~S = (−ψ̃1,−ψ̃2, . . . ,−ψ̃r).

Возьмем R0 = 2‖B−1~S(0)‖. Далее считаем, что ~β ∈ BR0,γ = {~β : ‖~β‖W s0
p (0,γ) ≤

R0}. Получим оценки и докажем, что уравнение (19) имеет решение на неко-

тором промежутке (0, γ). Используя лемму 2 и теорему 1, запишем оценки для

функции ~w:

‖w‖W 1,2
p (Qγ ) ≤ c‖β‖W̃ s0,2s0

p (Sγ)
(‖w‖

W̃
s0,2s0
p (Sγ)

+ ‖v − u‖
W

s0,2s0
p (S)

), (20)

где постоянная c не зависит от γ ∈ (0, T ]. Непосредственно из определения

нормы и леммы 1 вытекает, что

‖w‖
W̃

s0
p (0,γ;Lp(� ))

≤ c1γ1/2‖w‖
W̃

s1
p (0,γ;Lp(� ))

≤ c2γ1/2‖w‖
W̃ 1,2

p (Qγ)
. (21)

Далее, используя интерполяционное неравенство [19]

‖w‖W s
p (G) ≤ c0‖w‖θW s1

p (G)‖w‖
1−θ
W

s2
p (G)

, s1θ + s2(1− θ) = s, s2 < s < s1, (22)

и теоремы вложения, имеем

‖w‖
Lp(0,γ;W

2s0
p (� ))

≤ c3‖w‖Lp(0,γ;W 1
p (G)) ≤ c4‖w‖1/2Lp(0,γ;W 2

p (G))‖w‖
1/2
Lp(Qγ ). (23)

Из неравенств (21), (23) и очевидного неравенства

‖w‖Lp(0,γ;Lp(G)) ≤ γ‖wt‖Lp(0,γ;Lp(G)), w(0, x) = 0, (24)

вытекающего из формулы Ньютона — Лейбница, имеем

‖w‖
W̃

s0,2s0
p (Sγ)

≤ c5γ1/2‖w‖W 1,2
p (Qγ). (25)

Тогда неравенство (20) и лемма 1 влекут, что

‖w‖W 1,2
p (Qγ) ≤ c6γ1/2‖β‖

W̃
s0,2s0
p (Sγ)

‖w‖
W̃ 1,2

p (Qγ)
+c7‖β‖W̃ s0,2s0

p (Sγ)
‖v−u‖

W̃
s0,2s0
p (S)

.

(26)

Отметим, что в силу леммы 2

‖β‖
W̃

s0,2s0
p (Sγ)

≤ c8‖~β‖W̃ s0
p (0,γ)

≤ c8R0. (27)
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где постоянная c8 не зависит от γ. Выберем γ0 такое, что c6c8γ
1/2
0 R0 = 1/2.

Тогда неравенство (26) запишется в виде

‖w‖W 1,2
p (Qγ ) ≤ 2c7c8‖~β‖W̃ s0,2s0

p (Sγ)
‖v − u‖

W
s0,2s0
p (S)

, ~β ∈ BR0,γ , γ ≤ γ0. (28)

Пусть ~βi ∈ BR0,γ (γ ≤ γ0), ~β
i = (βi

1, . . . , β
i
r)

T , i = 1, 2. Обозначим соответ-

ствующие им функции через β1, β2, а решения задачи (15), (16) — через w1, w2.

Получим оценки нормы разности S0(~β
1)− S0(~β

2).

Вычитая равенства (15), (16) для w1, w2, получим, что w0 = w1 − w2 —

решение задачи

Mv = w0t − Lw0 = 0, w0|t=0 = 0, (29)

∂w0

∂N
+ σ̃0w0|�

= −
[
(β1 − β2)

(w1 + w2)

2
+

(β1 + β2)

2
(w1 − w2) + (β1 − β2)(v − u)

]
|� .

Повторяя раcсуждения из вывода оценки (28), при всех γ ≤ γ2 получим аналог

этой оценки, но для функции w0, т. е. оценку

‖w1 − w2‖W 1,2
p (Qγ ) ≤ ‖~β1 − ~β2‖W̃ s0,2s0

p (Sγ)
(2c7c8‖v − u‖W s0,2s0

p (S)

+ c9‖w1 + w2‖W̃ s0,2s0
p (Sγ)

), ~β ∈ BR0,γ , γ ≤ γ2, (30)

где постоянные ci не зависят от γ. Для оценки последнего слагаемого исполь-

зуем оценки (28), записанные для функций wi. Получим оценку

‖w1 − w2‖W 1,2
p (Qγ) ≤ ‖~β1 − ~β2‖W̃ s0,2s0

p (Sγ)
(2c7c8‖v − u‖W s0,2s0

p (S)
+ c10R0). (31)

Оценим ‖B−1S(~β1) − B−1S(~β2)‖W̃ s0
p (0,γ)

. Найдется число γ1 ≤ γ0 такое, что

| detB(t)| ≥ δ0/2 > 0 на [0, γ1]. В силу леммы 2 и неравенства Гёльдера имеем

‖B−1S( ~β1)−B−1S( ~β2)‖W̃ s0
p (0,γ)

≤ C‖S( ~β1)− S( ~β2)‖W̃ s0
p (0,γ)

≤
r∑

j=1

∥∥∥∥
∫

�

σ̃0(w1 − w2)ϕj d�

∥∥∥∥
W̃

s0
p (0,γ)

+

∥∥∥∥
∫

�

(β1w1 − β2w2)ϕj d�

∥∥∥∥
W̃

s0
p (0,γ)

≤ c11(‖σ̃0(w1 − w2)‖Lp(� ;W̃
s0
p (0,γ))

+ ‖(β1 − β2)(w1 + w2)‖Lp(� ;W̃
s0
p (0,γ))

+ ‖(β1 + β2)(w1 − w2)‖Lp(� ;W̃
s0
p (0,γ))

). (32)

Используя лемму 2 и оценки (25), (27) для функций βi, w1 ± w2, оценку (28),

записанную для функций wi и (32), получим, что правая часть оценивается

через c12γ
1/2‖~β1 − ~β2‖W̃ s0

p (0,γ))
. Таким образом,

‖B−1S( ~β1)−B−1S( ~β2)‖W̃ s0
p (0,γ)

≤ c12‖~β1 − ~β2‖W̃ s0
p (0,γ)

γ1/2,

где β > 0, γ ∈ (0, T ] и постоянная c12 не зависит от τ . Выберем γ2 ≤ γ1 так, что

c12γ
1/2
2 ≤ 1

2 , тогда при γ ≤ γ2 уравнение (19) имеет единственное решение в шаре
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BR0,γ . Покажем, что условия (17) выполнены. По условию вектор-функция ~β

есть решение уравнения (19), т. е.

∫

�

ϕjβ(v − u) d� = −ψ̃i −
∫

�

σ̃0wϕj d� −
∫

�

βwϕj d� . (33)

Умножим равенство (16) на ϕj и проинтегрируем по � . Получим

∫

�

∂w

∂N
ϕj d� = −

∫

�

σ̃0wϕj d� −
∫

�

ϕj(βw + β(v − u)) d� .

Вычитая это равенство из (33), имеем

∫

�

∂w

∂N
ϕj d� = ψ̃j .

Единственность решений вытекает из оценок, полученных в процессе доказа-

тельства. Теорема доказана.
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pp. 237–246, Birkhäuser, Basel (1998) (Int. Ser. Numer. Math.; vol. 126).

16. Rösch A., “A Gauss–Newton method for the identification of nonlinear heat transfer laws,”
in: Optimal Control of Complex Structures, pp. 217–230, Birkhäuser, Basel (2002) (Int. Ser.
Numer. Math.; vol. 139).

17. Onyango T. T. M., Ingham D. B., and Lesnic D., “Reconstruction of boundary condition laws
in heat conduction using the boundary element method,” Comput. Math. Appl., 57, 153–168
(2009).

18. Kozhanov A. I., “Linear inverse for some classes of nonlinear nonstationary equations,” Sib.
Electron. Math. Rep., 12, 264–275 (2015).

19. Verzhbitskii M. A. and Pyatkov S. G., “On some inverse problems of determining boundary
regimes [in Russian],” Mat. Zamet. SVFU, 23, No. 2, 3–18 (2016).

20. Ding M. H., Liu H., and Zheng G. H., ‘On inverse problems for several coupled PDE systems
arising in mathematical biology,” J. Math. Biol., 87, No. 86 (2023).

21. Triebel H., Interpolation Theory, Function Spaces, Differential Operators, Deutsch. Verl.
Wiss., Berlin (1978).

22. Amann H., “Compact embeddings of vector-valued Sobolev and Besov spaces,” Glas. Mat.,
35, No. 1, 161–177 (2000).

23. Ladyzhenskaya O. A., Solonnikov V. A., and Ural’tseva N. N., Linear and Quasi-Linear Equa-
tions of Parabolic Type, Amer. Math. Soc., Providence, RI (1968) (Transl. Math. Monogr.;
vol. 23).

24. Belonogov V. A. and Pyatkov S. G., “On solvability of some classes of transmission problems
in a cylindrical space domain,” Sib. Electron. Math. Rep., 18, No. 1, 176–206 (2021).

25. Belonogov V. A. and Pyatkov S. G., “On some classes of inverse problems of recovering the
heat transfer coefficient in stratified media,” Sib. Math. J., 63, No. 2, 206–223 (2022).

Submitted May 13, 2025

Revised June 14, 2025

Accepted August 29, 2025

Oleg A. Soldatov
Yugra State University,
16 Chekhov Street, 628012 Khanty-Mansiisk, Russia
Oleg.soldatov.97@bk.ru



Математические заметки СВФУ
Июль—сентябрь, 2025. Том 32, № 3

УДК 517.9
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ЗАДАЧИ ДЛЯ УРАВНЕНИЙ С РЕГУЛЯРНЫМ

ИНТЕГРО–ДИФФЕРЕНЦИАЛЬНЫМ

ОПЕРАТОРОМ ТИПА РИМАНА –––

ЛИУВИЛЛЯ И ЗАМКНУТЫМ ОПЕРАТОРОМ

В. Е. Федоров, А. В. Нагуманова,

А. О. Сагимбаева

Аннотация. Исследуется однозначная разрешимость задачи типа Коши и линей-
ных обратных коэффициентных задач для эволюционного уравнения в банаховом
пространстве с интегро-дифференциальным оператором типа Римана — Лиувил-
ля первого порядка с регулярным ядром. Оператор при неизвестной функции в
уравнении предполагается замкнутым. Получены условия существования и един-
ственности решения задачи типа Коши для линейного неоднородного уравнения.
Найден критерий корректной разрешимости для обратной задачи со стационар-
ным неизвестным коэффициентом и с интегральным в смысле Римана — Стилтьеса
условием переопределения, включающим в себя условие финального переопределе-
ния как частный случай. Найдены условия разрешимости и устойчивости решения
обратной задачи с нестационарным неизвестным коэффициентом и абстрактным
условием переопределения на полуинтервале. Полученные абстрактные результа-
ты использованы при исследовании линейных обратных начально-краевых задач
для уравнений с интегро-дифференциальным оператором типа Римана — Лиувил-
ля первого порядка по временно́й переменной, с многочленами от самосопряженного
эллиптического дифференциального оператора по пространственным переменным
и с неизвестным коэффициентом в правой части.

DOI: 10.25587/2411-9326-2025-3-95-112

Ключевые слова: интегро-дифференциальный оператор типа Римана — Лиувил-
ля, линейное эволюционное уравнение в банаховом пространстве, задача типа Ко-
ши, линейная обратная коэффициентная задача, начально-краевая задача.

Введение

В прикладных исследованиях часто возникают задачи для дифференциаль-

ных уравнений с неизвестными коэффициентами — так называемые обратные

коэффициентные задачи. Их практическая значимость и теоретическая новиз-

на привели к тому, что уже несколько десятилетий такие задачи вызывают

Исследование выполнено за счет гранта Российского научного фонда и Правительства
Челябинской области № 24-21-20015, https://rscf.ru/project/24-21-20015/.
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большой интерес многих авторов [1–9]. В последние годы все большее внима-

ние исследователей обращено к обратным задачам для уравнений с различными

дробными производными: Римана — Лиувилля [10–13], Герасимова — Капуто

[14–22], Джрбашяна — Нерсесяна [23–26].

Помимо уравнений с дробными производными интерес исследователей вы-

зывают также уравнения с другими интегро-дифференциальными операторами,

которые разделим на классы операторов типа Римана — Лиувилля (композиция

оператора свертки и оператора производной целого порядка) и операторов типа

Герасимова (сначала действует оператор производной целого порядка, а затем

оператор свертки). При этом интегро-дифференциальный оператор каждого из

классов будем называть сингулярным или регулярным в зависимости от того,

имеет ядро свертки особенность в начале интервала интегрирования или нет.

Для различных классов линейных уравнений в банаховых пространствах

с сингулярными интегро-дифференциальными операторами типа Римана — Ли-

увилля и типа Герасимова исследованы прямые [27–29] и обратные задачи [30, 31].

Интерес исследователей в последние годы часто направлен на уравнения

с регулярными интегро-дифференциальными операторами (см. [32, 33] и др.).

Условия существования и единственности решения задачи Коши и линейных

обратных задач для уравнения в банаховом пространстве с производной Капу-

то — Фабрицио и ограниченным оператором при неизвестной функции изучены

в работе [34]. Вопросы однозначной разрешимости прямых и обратных коэф-

фициентных задач для эволюционных уравнений в банаховых пространствах с

регулярным интегро-дифференциальным оператором типа Римана — Лиувилля

общего вида в случае ограниченного оператора при искомой функции исследо-

ваны в [35]. В данной работе в продолжение работы [35] будет изучено урав-

нение с регулярным интегро-дифференциальным оператором типа Римана —

Лиувилля и линейным замкнутым оператором при неизвестной функции.

Коротко опишем содержание работы. В первом параграфе методами тео-

рии преобразования Лапласа получены условия существования и единственно-

сти решения задачи типа Коши для линейного неоднородного уравнения, разре-

шенного относительно регулярного интегро-дифференциального оператора ти-

па Римана — Лиувилля, действующего на искомую функцию, в случае линей-

ного замкнутого оператора при неизвестной функции в правой части уравне-

ния. Найден вид решения. Второй параграф содержит теорему о корректности

линейной обратной задачи для такого уравнения в банаховом пространстве со

стационарным неизвестным коэффициентом в уравнении. В третьем параграфе

получены условия однозначной разрешимости аналогичной задачи с нестацио-

нарным неизвестным коэффициентом, доказана оценка устойчивости решения.

Полученные абстрактные результаты в четвертом параграфе использованы при

исследовании начально-краевых задач для класса уравнений, содержащих ре-

гулярный интегро-дифференциальный оператор типа Римана — Лиувилля по
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времени и многочлены от самосопряженного эллиптического дифференциаль-

ного по пространственным переменным оператора.

§ 1. Задача типа Коши

Пусть Z , U — банаховы пространства, L (Z ; U ) — банахово простран-

ство всех линейных ограниченных операторов из Z в U , L (Z ) := L (Z ; Z ),

C l(Z ) — множество всех линейных замкнутых операторов в пространстве Z ,

область определения DA оператора A ∈ C l(Z ) снабжена нормой графика

‖ ·‖DA := ‖ ·‖Z +‖A · ‖Z , ρ(A) := {µ ∈ C : (µI−A)−1 ∈ L (Z )} — резольвентное

множество оператора A, а σ(A) = C \ ρ(A) — его спектр, R+ = {a ∈ R : a > 0},
R+ = R+ ∪ {0}, K(t) ∈ L (Z ) при t > 0. Определим оператор свертки

(JKz)(t) :=

t∫

0

K(t− s)z(s) ds := (K ∗ z)(t), t > 0,

и интегро-дифференциальный оператор типа Римана — Лиувилля

(D1,Kz)(t) := D1(JKz)(t) := D1

t∫

0

K(t− s)z(s) ds, t > 0,

где D1 — оператор производной первого порядка.

Заметим, что для K ∈ C([0, T ]; L (Z )), z ∈ L1(0, T ; Z )
∥∥∥∥∥∥

t∫

0

K(t− s)z(s) ds

∥∥∥∥∥∥
Z

≤ max
s∈[0,T ]

‖K(s)‖L (Z )‖z‖L1(0,t;Z ) → 0, t→ 0 + .

Поэтому (JKz)(0) = 0 и далее будем рассматривать именно такое начальное

условие.

Пусть A ∈ C l(Z ), f ∈ C([0, T ]; Z ), рассмотрим задачу типа Коши

(JKz)(0) = 0 (1)

для эволюционного уравнения

(D1,Kz)(t) = Az(t) + f(t), t ∈ (0, T ]. (2)

Решением задачи (1), (2) назовем такую функцию z ∈ C((0, T ];DA)∩L1(0, T ; Z ),

что JKz ∈ C([0, T ]; Z )∩C1((0, T ]; Z ), выполняются условия (1) и равенство (2)

при t ∈ (0, T ].

Теорема 1. Пусть A ∈ C l(Z ), K ∈ C1([0, T ]; L (Z )), (K(0) − A)−1 ∈
L (Z ), f ≡ 0. Тогда функция z(t) ≡ 0 является единственным решением задачи

(1), (2).

Доказательство. Пусть z — решение задачи (1), (2) при f ≡ 0, тогда

(D1,Kz)(t) = K(0)z(t) + (JK′

z)(t) = Az(t).



98 В. Е. Федоров, А. В. Нагуманова, А. О. Сагимбаева

Отсюда z(t) = −(K(0)−A)−1(JK′

z)(t). Рассмотрим оператор

Bz(t) = −(K(0)−A)−1(JK′

z)(t)

в пространстве L1(0, T1; Z ), T1 ≤ T . Для t ∈ [0, T1] имеем
∥∥∥∥∥∥

t∫

0

K ′(t− s)z(s) ds

∥∥∥∥∥∥
Z

≤
t∫

0

‖K ′(t− s)‖L (Z )‖z(s)‖Z ds

≤ ‖K ′‖C([0,T1];L (Z ))‖z‖L1(0,T1;Z ).

Тогда

‖Bz‖L1(0,T1;Z ) ≤ ‖(K(0)−A)−1‖L (Z )

T∫

0

∥∥∥∥∥∥

t∫

0

K ′(t− s)z(s) ds

∥∥∥∥∥∥
Z

dt

≤ T1‖(K(0)−A)−1‖L (Z )‖K ′‖C([0,T1];L (Z ))‖z‖L1(0,T1;Z ) =
1

2
‖z‖L1(0,T1;Z ),

где

T1 =
1

2‖(K(0)−A)−1‖L (Z )‖K ′‖C([0,T1];L (Z ))
.

Следовательно, оператор B является сжимающим в пространстве L1(0, T1; Z )

и единственным решением уравнения z = Bz в этом пространстве является

функция z ≡ 0. Если T1 < T , возьмем пространство LT1
1 (0, 2T1; Z ) := {y ∈

L1(0, 2T1; Z ) : y(t) = 0 почти всюду на [0, T1]}. Тогда

‖B‖
L

(
L

T1
1 (0,2T1;Z )

) ≤ (2T1 − T1)‖(K(0)−A)−1‖L (Z )‖K ′‖C([0,T1];L (Z )) =
1

2
< 1

и на отрезке [0, 2T1] получаем единственность решения уравнения z = Bz. Если

2T1 < T , рассмотрим пространство L2T1

1 (0, 3T1; Z ) := {y ∈ L1(0, 3T1; Z ) : y(t) =

0 почти всюду на [0, 2T1]} и докажем единственность тривиального решения

уравнения z = Bz на отрезке [0, 3T1]. Повторяя рассуждения, за конечное число

шагов полностью покроем отрезок [0, T ]. Значит, решение z ≡ 0 задачи (1), (2)

при f ≡ 0 единственно на отрезке [0, T ]. �

Для функции h : R+ → Z обозначим ее преобразование Лапласа через ĥ.

Далее будем предполагать выполнение следующего условия.

(K̂) Для функции K ∈ C1(R+; L (Z )) существует преобразование Лапла-

са K̂(λ), продолжимое до однозначной аналитической функции на множестве

�aK := {λ ∈ C : |λ| > aK} ∪∞, где aK > 0.

Лемма 1. Пусть A ∈ C l(Z ), K ∈ C1(R+; L (Z )), (K(0) − A)−1 ∈ L (Z ),

выполняется условие (K̂). Тогда при некотором r > aK определены и анали-

тичны оператор-функции

Z(t) =
1

2πi

∫

|λ|=r

(λK̂(λ) −A)−1eλt dλ, t ∈ C, (3)
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AZ(t) =
1

2πi

∫

|λ|=r

λK̂(λ)(λK̂(λ) −A)−1eλt dλ, t ∈ C. (4)

Доказательство. По теореме о начальном значении оригинала [36]

lim
λ→+∞

λK̂(λ) = K(0) в L (Z ). Поскольку (K(0) − A)−1 ∈ L (Z ), с учетом

условия (K̂) это означает, что существуют операторы

(λK̂(λ)−A)−1 = (K(0)−A+ λK̂(λ) −K(0))−1

= (I + (K(0)−A)−1(λK̂(λ)−K(0)))−1(K(0)−A)−1

для достаточно больших |λ| > r0 ≥ aK , для которых

‖(λK̂(λ)−K(0))‖L (Z ) <
1

2
‖(K(0)−A)−1‖−1

L (Z ).

Поэтому для C = 2‖(K(0)−A)−1‖L (Z ) > 0 при всех |λ| > r0 ≥ aK

‖(λK̂(λ)−A)−1‖L (Z ) ≤ C.

Также заметим, что

(λK̂(λ) −A)(µK̂(µ)−A)−1 = I + (λK̂(λ) − µK̂(µ))(µK̂(µ)−A)−1,

(µK̂(µ)−A)−1− (λK̂(λ)−A)−1 = (λK̂(λ)−A)−1(λK̂(λ)−µK̂(µ))(µK̂(µ)−A)−1,

‖(µK̂(µ)−A)−1 − (λK̂(λ) −A)−1‖L (Z )

≤ C‖λK̂(λ)− µK̂(µ)‖L (Z )‖(µK̂(µ) −A)−1‖L (Z ) → 0, λ→ µ.

Кроме того,

d

dµ
(µK̂(µ)−A)−1 = −(µK̂(µ)−A)−1

[
d

dµ
[µK̂(µ)]

]
(µK̂(µ)−A)−1.

Следовательно, подынтегральное выражение в (3) аналитично в �r0 , и посколь-

ку контур {|λ| = r > r0} ограничен, то функция Z(t) аналитична по t ∈ C. При

этом

AZ(t) =
1

2πi

∫

|λ|=r

(A− λK̂(λ) + λK̂(λ))(λK̂(λ)−A)−1eλt dλ

= 0 +
1

2πi

∫

|λ|=r

λK̂(λ)(λK̂(λ) −A)−1eλt dλ.

Используя опять же аналитичность подынтегрального выражения в (4) и огра-

ниченность контура, получаем требуемое. �
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Теорема 2. Пусть A ∈ C l(Z ), K ∈ C1(R+; L (Z )), (K(0)−A)−1 ∈ L (Z ),

выполняется условие (K̂), f ∈ C((0, T ]; Z ) ∩ L1(0, T ; Z ). Тогда функция

z(t) = (K(0)−A)−1f(t) +

t∫

0

Z(t− s)f(s) ds (5)

является единственным решением задачи (1), (2).

Доказательство. В силу леммы 1 функция (5) лежит в C((0, T ]; Z ) ∩
L1(0, T ; Z ), следовательно, выполнено условие (1).

Далее,

A(K(0)−A)−1f = K(0)(K(0)−A)−1f − f ∈ C((0, T ]; Z ),

A

t∫

0

Z(t− s)f(s) ds =

t∫

0

AZ(t− s)f(s) ds ∈ C([0, T ]; Z ),

поэтому z ∈ C((0, T ];DA). Кроме того,

(JKz)(t) = (K(0)−A)−1(JKf)(t)+

t∫

0

K(t−τ)
τ∫

0

Z(τ−s)f(s) dsdτ ∈ C([0, T ]; Z ),

(D1,Kz)(t) = K(0)(K(0)−A)−1f(t) + (K(0)−A)−1(JK′

f)(t)

+K(0)

t∫

0

Z(t− s)f(s) ds+

t∫

0

K ′(t− τ)
τ∫

0

Z(τ − s)f(s) dsdτ ∈ C((0, T ]; Z ).

При Reµ > r по интегральной формуле Коши получаем, с учетом положи-

тельной ориентации используемых контуров,

Ẑ(µ) =
1

2πi

∫

|λ|=r

1

µ− λ (λK̂(λ)−A)−1dλ

=
1

2πi

∫

|η|= 1
r

1

µ− 1
η

(
1

η
K̂

(
1

η

)
−A

)−1
dη

η2

=
1

2πi

∫

|η|= 1
r

1

µη
(
η − 1

µ

)
(

1

η
K̂

(
1

η

)
− A

)−1

dη = (µK̂(µ)−A)−1− (K(0)−A)−1.

Доопределим функцию f непрерывным ограниченным образом при t > T

и обозначим zf := Z ∗ f , тогда

ẑf (λ) = Ẑ(λ)f̂ (λ) = [(λK̂(λ) −A)−1 − (K(0)−A)−1]f̂(λ).

Следовательно,

ẑ(λ) = (K(0)−A)−1f̂(λ)+[(λK̂(λ)−A)−1−(K(0)−A)−1]f̂(λ) = (λK̂(λ)−A)−1f̂(λ),

D̂1,Kz(λ)− Âz(λ) = (λK̂(λ)−A)(λK̂(λ)−A)−1f̂(λ) = f̂(λ).

Применив обратное преобразование Лапласа, получим (2).

Единственность решения задачи (1), (2) следует из единственности реше-

ния соответствующей задачи типа Коши для однородного уравнения, которая

доказана в теореме 1. �
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§ 2. Линейная обратная задача

с постоянным коэффициентом

Пусть Z , U — банаховы пространства. Рассмотрим обратную задачу для

эволюционного уравнения

(D1,Kz)(t) = Az(t) +B(t)u+ g(t), t ∈ (0, T ], (6)

где K ∈ C1([0, T ]; L (Z )), D1,K — интегро-дифференциальный оператор типа

Римана — Лиувилля, A ∈ C l(Z ), B ∈ C([0, T ]; L (U ; Z )), g ∈ C([0, T ]; Z ), с

начальным условием

(JKz)(0) = 0 (7)

и условием переопределения

T∫

0

z(t) dν(t) = zT ∈ DA, (8)

где функция ν : (0, T ]→ C имеет ограниченную вариацию, в обозначениях ν ∈
BV ((0, T ];C). При этом дополнительный неизвестный элемент u в уравнении

(6) требуется найти с использованием дополнительного условия (8).

Назовем элемент u ∈ U решением задачи (6)–(8), если соответствующее

решение задачи типа Коши (6), (7) удовлетворяет условию (8). Задачу (6)–(8)

назовем корректной, если для любых zT ∈ DA, g ∈ C([0, T ]; Z ) существует

единственное решение u ∈ U задачи, при этом удовлетворяющее оценке

‖u‖U ≤ C(‖zT ‖DA + ‖g‖C([0,T ];Z )),

где C > 0 не зависит от zT , g.

В силу представления решения (5) элемент u является решением задачи

(6)–(8) тогда и только тогда, когда он удовлетворяет уравнению

χu = ψ, (9)

где χ и ψ определяются формулами

χ :=

T∫

0

(K(0)−A)−1B(t) dν(t) +

T∫

0

t∫

0

Z(t− s)B(s) dsdν(t) ∈ L (U ; Z ),

ψ := zT −
T∫

0

(K(0)−A)−1g(t) dν(t) −
T∫

0

t∫

0

Z(t− s)g(s) dsdν(t) ∈ Z .

Теорема 3. Пусть A ∈ C l(Z ), K ∈ C1(R+; L (Z )), (K(0)−A)−1 ∈ L (Z ),

выполняется условие (K̂),

g ∈ C([0, T ]; Z ), B ∈ C([0, T ]; L (U ; Z )), ν ∈ BV ((0, T ];C), zT ∈ DA.
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Тогда обратная задача (6)–(8) корректна в том и только в том случае, когда

существует обратный оператор χ−1 ∈ L (DA; U ). При этом решение задачи

имеет вид u = χ−1ψ.

Доказательство. По теореме 2 существует решение задачи типа Коши

(6), (7) с известным элементом u ∈ U , и оно имеет вид

z(t) = (K(0)−A)−1(B(t)u + g(t)) +

t∫

0

Z(t− s)(B(s)u + g(s)) ds.

Подставим это решение в условие переопределения (8) и получим (9). При этом

Aχ =

T∫

0

(A−K(0) +K(0))(K(0)−A)−1B(t) dν(t) +

T∫

0

t∫

0

AZ(t− s)B(s) dsdν(t)

=

T∫

0

K(0)(K(0)−A)−1B(t) dν(t) −
T∫

0

B(t) dν(t)

+

T∫

0

t∫

0

AZ(t− s)B(s) dsdν(t) ∈ L (U ; Z )

в силу леммы 1, поэтому χ ∈ L (U ;DA). Аналогично доказывается, что

T∫

0

(K(0)−A)−1g(t) dν(t),

T∫

0

t∫

0

Z(t− s)g(s) dsdν(t) ∈ DA.

Отсюда получаем, что корректность обратной задачи (6)–(8) равносильна су-

ществованию оператора χ−1 ∈ L (DA; U ). В таком случае

‖u‖U ≤ ‖χ−1‖L (DA;U )‖ψ‖DA

≤ ‖χ−1‖L (DA;U )(‖zT ‖DA + T 2V T
0 (ν)‖Z‖C([0,T ];DA)‖g‖C([0,T ];Z )

+ TV T
0 (ν)(‖K(0)(K(0)−A)−1‖L (Z ) + 2)‖g‖C([0,T ];Z ))

≤ C(‖zT ‖DA + ‖g‖C([0,T ];Z ))

при некотором C > 0. Здесь V T
0 (ν) — вариация функции ν на полуинтервале

(0, T ]. �

$ 3. Обратная задача с переменным коэффициентом

Рассмотрим уравнение

(D1,Kz)(t) = Az(t) +B(t)u(t) + g(t), t ∈ (0, T ], (10)

где K ∈ C1([0, T ]; L (Z )), A ∈ C l(Z ), B ∈ C([0, T ]; L (U ; Z )), g ∈ C([0, T ]; Z ).

В отличие от предыдущего параграфа здесь неизвестный элемент u зависит от

t. Снабдим уравнение (10) начальным условием

(JKz)(0) = 0 (11)
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и условием переопределения

�z(t) = �(t), t ∈ (0, T ], (12)

где � ∈ L (Z ; U ), � ∈ C((0, T ]; U ).

Назовем u ∈ C([0, T ]; U ) решением задачи (10)–(12), если соответствующее

решение задачи типа Коши (10), (11) удовлетворяет условию (12).

Теорема 4. Пусть A ∈ L (Z ), K ∈ C1(R+; L (Z )), (K(0)−A)−1 ∈ L (Z ),

выполняется условие (K̂), B ∈ C([0, T ]; L (U ; Z )), � ∈ L (Z ; U ), для всех t ∈
[0, T ] существует обратный оператор (�K(0)(K(0)− A)−1B(t))−1 ∈ L (U ), при

этом (�K(0)(K(0)− A)−1B(t))−1 ∈ C([0, T ]; L (U )), � ∈ C((0, T ]; U ), D1,K� ∈
C([0, T ]; U ). Тогда задача (10)–(12) имеет единственное решение, при этом вы-

полняется оценка

‖u‖C([0,T ];U ) ≤ C(‖g‖C([0,T ];Z ) + ‖D1,K�‖C([0,T ];U )),

где C > 0 не зависит от g, �.

Доказательство. Имеем

(D1,K�)(t) = (D1,K�z)(t) = �(D1,Kz)(t) = �(Az(t) +B(t)u(t) + g(t))

= �A(K(0)−A)−1(B(t)u(t) + g(t)) + �A

t∫

0

Z(t− s)(B(s)u(s) + g(s)) ds

+ �B(t)u(t) + �g(t) = �K(0)(K(0)−A)−1B(t)u(t) + �K(0)(K(0)−A)−1g(t)

+ �A

t∫

0

Z(t− s)(B(s)u(s) + g(s)) ds.

Отсюда получаем уравнение Вольтерры

u(t) =

t∫

0

N(t, s)u(s) ds+ h(t), (13)

где

N(t, s) = (�K(0)(K(0)−A)−1B(t))−1�AZ(t− s)B(s),

h(t) = (�K(0)(K(0)−A)−1B(t))−1(D1,K�)(t)

−(�K(0)(K(0)−A)−1B(t))−1


�K(0)(K(0)−A)−1g(t) + �A

t∫

0

Z(t− s)g(s) ds


 .

По условиям теоремы и в силу леммы 1 имеем h ∈ C([0, T ]; U ), N ∈ C(�̃; L (U )),

где �̃ := {(t, s) : t ∈ [0, T ], s ∈ [0, t]}. Поэтому по теореме 5.1.17 из [2] уравнение

Вольтерры (13) имеет единственное решение, причем

‖u‖C([0,T ];U ) ≤ C(N)‖h‖C([0,T ];U ) ≤ C(‖g‖C([0,T ];Z ) + ‖D1,K�‖C([0,T ];U )). �
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§ 4. Приложение к обратным задачам для одного

класса уравнений в частных производных

Пусть Pn(λ) =
n∑

i=0

ciλ
i, Qn(λ) =

n∑
j=0

djλ
j , ci, dj ∈ C, i = 1, 2, . . . , n, j =

1, 2, . . . , n, dn 6= 0. Пусть � ⊂ Rd — ограниченная область с гладкой границей

∂�, операторный пучок �,B1, B2, . . . , Br регулярно эллиптичен [37], где

(�w)(ξ) =
∑

|q|≤2r

aq(ξ)∂
|q|w(ξ)

∂ξq11 ∂ξ
q2
2 . . . ∂ξqdd

, aq ∈ C∞(�),

(Blw)(ξ) =
∑

|q|≤rl

blq(ξ)∂
|q|w(ξ)

∂ξq11 ∂ξ
q2
2 . . . ∂ξqdd

, blq ∈ C∞(∂�), l = 1, 2, . . . , r,

q = (q1, q2, . . . , qd) ∈ Nd
0, |q| = q1 + · · ·+ qd. Положим

X = {w ∈ H2rn(�) : Bl�
kw(ξ) = 0, k = 0, 1, . . . , n− 1, l = 1, 2, . . . , r, ξ ∈ ∂�}.

Зададим оператор �1 : D�1 → L2(�) с областью определения [37]:

D�1 = H2r
{Bl}

(�) := {w ∈ H2r(�) : Blw(ξ) = 0, l = 1, 2, . . . , r, ξ ∈ ∂�},

действующий по правилу �1u = �u. Предположим, что оператор �1 самосопря-

женный и имеет ограниченный справа спектр. Тогда спектр σ(�1) оператора

�1 является действительным, дискретным, конечнократным и сгущается толь-

ко на −∞ [37]. Пусть 0 /∈ σ(�1), {ϕk : k ∈ N} — ортонормированная в L2(�)

система собственных функций оператора �1, занумерованных по невозрастанию

соответствующих собственных значений {λk : k ∈ N} с учетом их кратности.

ВозьмемK(t) := aebtI, a, b ∈ R\{0}, определим оператор свертки и интегро-

дифференциальный оператор типа Римана — Лиувилля

(JKh)(t) := a

t∫

0

eb(t−s)h(s) ds, (D1,Kh)(t) := aD1

t∫

0

eb(t−s)h(s) ds,

тогда преобразование Лапласа K̂(λ) = a
λ−b является аналитическим в �|b|, а

значит, выполняется условие (K̂).

Рассмотрим обратную задачу с не зависящим от времени элементом u

lim
t→0+

t∫

0

eb(t−s)v(ξ, s) ds = 0, ξ ∈ �, (14)

Bl�
kv(ξ, t) = 0, k = 0, 1, . . . , n− 1, l = 1, 2, . . . , r, (ξ, t) ∈ ∂�× (0, T ], (15)

aPn(�)D1

t∫

0

eb(t−s)v(ξ, s) ds = Qn(�)v(ξ, t) + c(t)u(ξ),

(ξ, t) ∈ �× (0, T ], v(ξ, T ) = vT (ξ), ξ ∈ �,

(16)
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где vT : �→ R, c : [0, T ]→ R — заданные функции.

Пусть n0 := max{j ∈ {0, 1, . . . , n} : cj 6= 0}, Z := {w ∈ H2rn0(�) :

BlA
kw(ξ) = 0, k = 0, 1, . . . , n0, l = 1, 2, . . . , r, ξ ∈ ∂�}. Оператор Pn(�) ∈

L (Z ;L2(�)) непрерывно обратим тогда и только тогда, когда Pn(λk) 6= 0 при

всех k ∈ N. В этом случае определим на банаховом пространстве Z линейный

оператор A = Pn(�)−1Qn(�), который ограничен в Z , если n0 = n, т. е. cn 6= 0.

Если же cn = 0 и n0 < n, имеем оператор A ∈ C l(Z ) с областью определения

DA := {w ∈ H2rn(�) : BlA
kw(ξ) = 0, k = 0, 1, . . . , n, l = 1, 2, . . . , r, ξ ∈ ∂�} ⊂ Z .

Задача (14)–(16) таким образом редуцирована к задаче (6), (7).

Теорема 5. Пусть Pn(λk) 6= 0, Qn(λk) 6= aPn(λk) при всех k ∈ N, c ∈
C((0, T ];R) ∩ L1(0, T ;R), u ∈ L2(�). Тогда задача (14)–(16) имеет единственное

решение

v(ξ, t) = c(t)
∞∑

k=1

〈u, ϕk〉ϕk(ξ)

aPn(λk)−Qn(λk)

− ab
t∫

0

∞∑

k=1

Pn(λk)〈u, ϕk〉ϕk(ξ)

(Qn(λk)− aPn(λk))2
exp


b(t− s)

Qn(λk)
Pn(λk)

Qn(λk)
Pn(λk) − a


 c(s) ds.

Здесь и далее символом 〈·, ·〉 будем обозначать скалярное произведение в

пространстве L2(�).

Доказательство. Нетрудно показать, что спектр оператора

A = Pn(�1)
−1Qn(�1)

есть множество σ(A) = {Qn(λk)/Pn(λk), k ∈ N}. Следовательно, неравенство

Qn(λk) 6= aPn(λk) для всех k ∈ N означает существование обратного оператора

(K(0)−A)−1 = (aI −A)
−1 ∈ L (Z ).

Заметим, что

lim
k→∞

bQn(λk)
Pn(λk)

Qn(λk)
Pn(λk) − a

= b,

поэтому существует

sup
k∈N

∣∣∣∣∣∣
bQn(λk)
Pn(λk)

Qn(λk)
Pn(λk) − a

∣∣∣∣∣∣
.

Рассмотрим равенство при k ∈ N

1

2πi

∫

|λ|=r

eλtdλ
aλ
λ−b −

Qn(λk)
Pn(λk)

=
1

2πi

∫

|λ|=r

(λ − b)eλtdλ
(
a− Qn(λk)

Pn(λk)

)(
λ− b

Qn(λk)

Pn(λk)

Qn(λk)

Pn(λk)
−a

)

=
−ab

(Qn(λk)
Pn(λk) − a

)2 exp


 btQn(λk)

Pn(λk)

Qn(λk)
Pn(λk) − a


 , r > sup

k∈N

∣∣∣∣∣∣
bQn(λk)
Pn(λk)

Qn(λk)
Pn(λk) − a

∣∣∣∣∣∣
,
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отсюда

Z(t) = −ab
∞∑

k=1

〈·, ϕk〉ϕk(Qn(λk)
Pn(λk) − a

)2 exp


 btQn(λk)

Pn(λk)

Qn(λk)
Pn(λk) − a


 , t ∈ R.

Возьмем f(t) = c(t)Pn(�1)
−1u(·) в теореме 2 и получим требуемое утвержде-

ние. �

Теорема 6. Пусть Pn(λk) 6= 0, Qn(λk) 6= aPn(λk) для всех k ∈ N, c ∈
C([0, T ];R), vT ∈ DA. Тогда обратная задача (14)–(17) корректна, если и только

если существует такое d > 0, что при всех k ∈ N
∣∣∣∣∣∣

c(T )

aPn(λk)−Qn(λk)
− abPn(λk)

(Qn(λk)− aPn(λk))2

T∫

0

exp


b(T − s)

Qn(λk)
Pn(λk)

Qn(λk)
Pn(λk) − a


 c(s) ds

∣∣∣∣∣∣
≥ d

или∣∣∣∣∣∣
c(T )

Qn(λk)
Pn(λk)

aPn(λk)−Qn(λk)
− abQn(λk)

(Qn(λk)− aPn(λk))2

T∫

0

exp


b(T − s)

Qn(λk)
Pn(λk)

Qn(λk)
Pn(λk) − a


 c(s) ds

∣∣∣∣∣∣
≥ d.

При этом

u(ξ) =

∞∑

k=1

〈vT , ϕk〉ϕk(ξ)

c(T )
aPn(λk)−Qn(λk) −

abPn(λk)
(Qn(λk)−aPn(λk))2

T∫
0

exp

(
b(T−s)

Qn(λk)

Pn(λk)

Qn(λk)

Pn(λk)
−a

)
c(s) ds

.

Доказательство. Здесь ν — функция единичного скачка в точке t = T .

Возьмем пространство U = L2(�) и оператор-функцию B(t) = c(t)Pn(�1)
−1 ∈

C([0, T ]; L (L2(�); Z )). Таким образом, задача (14)–(17) редуцирована к обрат-

ной задаче (6)–(8). Для данной задачи получаем оператор

χ := c(T )

∞∑

k=1

〈·, ϕk〉ϕk

aPn(λk)−Qn(λk)

− ab
∞∑

k=1

Pn(λk)〈·, ϕk〉ϕk(ξ)

(Qn(λk)− aPn(λk))2

T∫

0

exp


b(T − s)

Qn(λk)
Pn(λk)

Qn(λk)
Pn(λk) − a


 c(s) ds.

Из условий данной теоремы следует, что ‖χ−1‖L (DA;L2(�)) ≤ d−1, и по теореме 3

u = χ−1vT . �

Пусть теперь уравнение имеет вид

aPn(�)D1

t∫

0

eb(t−s)v(ξ, s) ds = Qn(�)v(ξ, t) + c(ξ)u(t), (ξ, t) ∈ �× (0, T ], (18)

и снабжено условиями

v(ξ0, t) = ψ(t), t ∈ (0, T ], (19)

где c : � → R, ψ : (0, T ] → R — заданные функции, ξ0 ∈ � — фиксированная

точка.

Рассмотрим задачу (14), (15), (18), (19).
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Теорема 7. Пусть Pn(λk) 6= 0, Qn(λk) 6= aPn(λk) для всех k ∈ N, c ∈ L2(�),

ξ0 ∈ �, ψ ∈ C((0, T ];R), D1,Kψ ∈ C([0, T ];R),

∞∑

k=1

〈c, ϕk〉ϕk(ξ0)

aPn(λk)−Qn(λk)
6= 0. (20)

Тогда задача (14), (15), (18), (19) имеет единственное решение, при этом выпол-

няется оценка

‖u‖C([0,T ];R) ≤ C‖D1,Kψ‖C([0,T ];R),

где C > 0 не зависит от ψ.

Доказательство. Возьмем пространство U = R и оператор-функцию B

в виде функции умножения на Pn(�1)
−1c ∈ C([0, T ]; Z ). Задача (14), (15),

(18), (19) редуцирована к обратной задаче (10)–(12). Условие (20) означает, что

существует (�K(0)(K(0)−A)−1B)−1 ∈ R. По теореме 4 получим требуемое. �
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cient problems for an evolution equation in a Banach space with a first-order Riemann–
Liouville integro-differential operator with a regular kernel is investigated. The operator
at the unknown function in the equation is assumed to be closed. The conditions for the
existence and uniqueness of a solution of the Cauchy type problem for a linear inhomo-
geneous equation are obtained. A criterion of correct solvability is found for the inverse
problem with a stationary unknown coefficient and with an integral overdetermination
condition in the Riemann–Stieltjes sense, which includes the condition of final overdeter-
mination as a special case. The conditions for the solvability and stability of a solution
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Аннотация. Рассматривается адаптация к кусочно-гладкой системе Чуа разрабо-
танного ранее высокоточного численного метода построения приближений к неустой-
чивым решениям динамических систем с квадратичными нелинейностями на их
аттракторах. Также получена модификация алгоритма Бенеттина — Вольфа для
вычисления характеристических показателей Ляпунова рассматриваемой кусочно-
гладкой системы для рассматриваемого режима. Разработан способ, основанный на
методе наименьших квадратов, позволяющий вычислить усредненную оценку стар-
шего показателя Ляпунова на основе данных о поведении линеаризованной динами-
ческой системы с использованием высокоточного метода на больших промежутках
времени. Для скрытых аттракторов в системе Чуа получены следующие резуль-
таты: 1) фрактальная размерность скрытого хаотического аттрактора на основе
статистики возвратов Пуанкаре, 2) значения характеристических показателей Ля-
пунова для устойчивого цикла и хаотического аттрактора с помощью разработан-

ной модификации алгоритма Бенеттина — Вольфа; повышена его эффективность
за счет использования параллельных вычислений.
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1. Введение

Рассмотрим кусочно-гладкую динамическую систему Чуа [1–3]




ẋ1 = α(x2 − µx1)− αψ(x1),

ẋ2 = x1 − x2 + x3,

ẋ3 = −βx2 − γx3,

(1)

где

ψ(x1) =
a

2
(|x1 + 1| − |x1 − 1|), (2)

α, µ = m1 + 1, β, γ, a = m0 −m1, m0 и m1 — параметры системы.

Заметим, что по виду функции ψ(x1) систему (1) можно назвать системой

с преобразователем типа упора [4, с. 23, 24].

Для локализации скрытых аттракторов системы (1) в работах [1–3] исполь-

зуется метод описывающей функции. При этом приведены значения начальных

условий, дающих приближения к этим аттракторам.

c© 2025 Пчелинцев А. Н.



114 А. Н. Пчелинцев

При оценке характеристик аттракторов динамических систем (например,

спектра показателей Ляпунова, фрактальных размерностей и др.) важно иметь

высокоточные методы построения приближений к их решениям на больших про-

межутках времени из-за неустойчивости решений таких систем на аттракторах.

Классические численные методы могут давать большие накопления ошибок из-

за конечной точности представления вещественных чисел в ЭВМ и погрешно-

стей численного интегрирования. Заметим, что для системы Чуа на сегодня

существует не так много работ, посвященных особенностям численного инте-

грирования системы. Поскольку функция ψ(x1) не является всюду гладкой,

применение классических численных методов также усложнено тем, что перехо-

ды через плоскости x1 = ±1 вызывают скачок погрешности метода. Например,

для дифференциальных уравнений с разрывной правой частью можно исполь-

зовать [5–8] метод Рунге-Кутты 4-го порядка точности в областях гладкости с

последующим склеиванием приближенных решений на границе. Однако ошиб-

ка определения момента времени, когда траектория пересекает такую границу,

дает свой вклад в накопление общей ошибки интегрирования, которая со вре-

менем нарастает, если точное решение системы в некоторых областях неустой-

чиво. Заметим, что данная проблема в известной литературе достаточно редко

рассматривается [6, 9, 10]. Пример системы уравнений с кусочно-гладкой пра-

вой частью лоренцева типа, для которой решения на аттракторе неустойчивы

и имеют место скользящие режимы, приведен в статье [11]. В статье [12] пред-

ставлена схема алгоритма численного решения систем обыкновенных диффе-

ренциальных уравнений с произвольным количеством поверхностей разрыва в

виде конечного автомата, с помощью которой можно построить приближенные

решения таких систем в общем виде. Данная схема предусматривает скользя-

щие режимы.

Отметим, что в современной литературе (см., например, [13]) для кусочно-

гладких систем некоторые исследователи применяют высокоточные модифика-

ции метода гармонического баланса для отыскания приближений к периодиче-

ским решениям, являющегося численно-аналитическим и достаточно трудоем-

ким по алгоритмической реализации в общем случае.

В последние годы появилось несколько работ [14–19] автора, посвящен-

ных разработке высокоточного численного метода построения приближений к

неустойчивым решениям динамических систем с квадратичными нелинейностя-

ми на их аттракторах на базе метода степенных рядов и локализации вертикаль-

ных асимптот динамических систем взрывного типа [19]. В статье [19] также

была предложена идея переноса разработанного метода на негладкий случай

системы (1). Заметим, что данный метод может быть применен и для проверки

точности найденного приближения к неустойчивому периодическому решению

системы Лоренца [20].

Для применения рассматриваемых численных схем нужно описать следу-
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ющие моменты. Введем обозначение:

F (x1, x2, x3) =



α(x2 − µx1)− αψ(x1)

x1 − x2 + x3

−βx2 − γx3


 .

Перепишем систему (1) в векторной форме:

Ẋ = F (X),

где X(t) = [x1(t) x2(t) x3(t)]
⊤.

Заметим, что функция ψ(x1) глобально липшицева:

|ψ(x1)− ψ(y1)| ≤
|a|
2
|(|x1 + 1| − |y1 + 1|)− (|x1 − 1| − |y1 − 1|)|

≤ |a|
2

(||x1 + 1| − |y1 + 1||+ ||x1 − 1| − |y1 − 1||),

по свойству модуля ||r| − |w|| ≤ |r − w| имеем

|ψ(x1)− ψ(y1)| ≤
|a|
2

(|x1 − y1|+ |x1 − y1|) ≤ l|x1 − y1|

с константой Липшица l = |a|.
Поскольку остальные компоненты векторной функции F (x1, x2, x3) линей-

ны, то функция F удовлетворяет условию Липшица. Тогда решение системы

(1) существует и единственно для любых начальных условий [21].

По свойству функции ψ(x1)

|ψ(x1)| ≤ |a||x1|

имеем оценку

|α(x2−µx1)−αψ(x1)| ≤ ((|αµ|+ |a|)|x1|+ |α||x2|) ≤ n1(|x1|+ |x2|+ |x3|) = n1‖X‖1,

где n1 = max{|αµ|+ |a|, |α|, 1}. Аналогично

|x1 − x2 + x3| ≤ ‖X‖1, | − βx2 − γx3| ≤ n3‖X‖1,

где n3 = max{1, |β|, |γ|}. Тогда

‖F (X)‖1 ≤ (n1 + 1 + n3)‖X‖1 = L(‖X‖1),

причем функция L(ϕ) удовлетворяет условию Осгуда [22]. Таким образом, все

решения системы (1) нелокально продолжаемы вправо.

В настоящей статье будем исследовать два скрытых аттрактора в системе

(1), существование которых доказано в статье [1]. Также в статье [1] приведены

начальные условия, близкие к скрытым аттракторам, и доказан их тип для

значений параметров α = 8.4, β = 12, γ = −0.005, m0 = −1.2 и m1 = −0.05.

1. Устойчивый цикл с циклической частотой

ω ≈ 3.2396 (3)
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и приближение к его начальным условиям:

X(0) =




11.7546

9.7044

−16.7367


 . (4)

2. Хаотический аттрактор:

X(0) =




1.5187

0.0926

−2.1682


 . (5)

Целью настоящей статьи является адаптация высокоточного численного

метода для систем с квадратичной правой частью к кусочно-гладкой системе

(1). На базе данного метода провести исследования режимов (4) и (5) и решить

следующие задачи.

1. Модифицировать алгоритм Бенеттина — Вольфа для гладких систем

при вычислении характеристических показателей Ляпунова системы (1) для

рассматриваемого режима.

2. Разработать способ, основанный на методе наименьших квадратов, поз-

воляющий вычислить усредненную оценку старшего показателя Ляпунова на

основе данных о поведении линеаризованной динамической системы на боль-

ших промежутках времени.

3. Вычислить фрактальную размерность для режима (5) на основе стати-

стики возвратов Пуанкаре.

4. Вычислить значения характеристических показателей Ляпунова для ре-

жимов (4) и (5) с помощью разработанной модификации алгоритма Бенетти-

на — Вольфа; повысить его эффективность за счет использования параллель-

ных вычислений.

2. Описание численного метода

Модули, стоящие в правой части первого уравнения системы (1), определя-

ют три области, разделенные плоскостями с уравнениями

x1 = 1 (6)

и

x1 = −1, (7)

которым будут соответствовать свои гладкие системы. Введем номер области j:

1) j = 0 при x1 < −1,

2) j = 1 при x1 ∈ [−1, 1],

3) j = 2 при x1 > 1.

Перепишем систему (1) в общем виде для введенных областей:




ẋ1 = qj + pjx1 + αx2 ≡ w1(x1, x2, x3),

ẋ2 = x1 − x2 + x3,

ẋ3 = −βx2 − γx3,

(8)
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где q0 = c, p0 = d, q1 = 0, p1 = b, q2 = −c, p2 = d; b = −α(m0 + 1), c = aα,

d = −µα.

Представим решение системы (8) в области с номером j в виде степенных

рядов:

x1(t) = ξ
(j)
1,0 +

∞∑

i=1

ξ
(j)
1,i t

i, x2(t) = ξ
(j)
2,0 +

∞∑

i=1

ξ
(j)
2,i t

i, x3(t) = ξ
(j)
3,0 +

∞∑

i=1

ξ
(j)
3,i t

i, (9)

сходящихся на некотором отрезке времени [−τ, τ ]. В общем случае значение τ

ограничено и зависит от выбора начальных условий [14, 19].

Отметим, что, исходя из формул (9), ξ
(j)
1,0, ξ

(j)
2,0 и ξ

(j)
3,0 — заданные значения

начальных условий для системы (8) в рассматриваемой области с номером j.

Коэффициенты разложения в ряды (9) имеют вид [16, 17]

ξ
(j)
1,1 = qj + pjξ

(j)
1,0 + αξ

(j)
2,0, ξ

(j)
2,1 = ξ

(j)
1,0 − ξ

(j)
2,0 + ξ

(j)
3,0, (10)

ξ
(j)
3,1 = −βξ(j)2,0 − γξ

(j)
3,0; (11)

при i ≥ 2

ξ
(j)
1,i =

pjξ
(j)
1,i−1 + αξ

(j)
2,i−1

i
, ξ

(j)
2,i =

ξ
(j)
1,i−1 − ξ

(j)
2,i−1 + ξ

(j)
3,i−1

i
, (12)

ξ
(j)
3,i =

−βξ(j)2,i−1 − γξ
(j)
3,i−1

i
. (13)

Чтобы при вычислениях оперировать положительными (или отрицатель-

ными) шагами по времени, необходимо иметь гарантированную оценку величи-

ны τ . Поэтому перепишем систему (8) в векторной форме [16, 17]:

Ẋ = A
(j)
0 +A

(j)
1 X,

где

A
(j)
0 = [qj 0 0]⊤,

A
(j)
1 =



pj α 0

1 −1 1

0 −β −γ


 . (14)

Затем вычисляем значения функций

h1

(
ξ
(j)
1,0, ξ

(j)
2,0, ξ

(j)
3,0

)
=
∣∣ξ(j)1,0

∣∣+
∣∣ξ(j)2,0

∣∣+
∣∣ξ(j)3,0

∣∣, (15)

h2

(
ξ
(j)
1,0, ξ

(j)
2,0, ξ

(j)
3,0

)
=

{ ∥∥A(j)
0

∥∥+
∥∥A(j)

1

∥∥ · h1

(
ξ
(j)
1,0, ξ

(j)
2,0, ξ

(j)
3,0

)
, если h1 > 1,

∥∥A(j)
0

∥∥+
∥∥A(j)

1

∥∥ в противном случае,
(16)

τ
(
ξ
(j)
1,0, ξ

(j)
2,0, ξ

(j)
3,0

)
=

1

h2

(
ξ
(j)
1,0, ξ

(j)
2,0, ξ

(j)
3,0

)
+ δpw

, (17)

где

∥∥A(j)
0

∥∥ =
∥∥A(j)

0

∥∥
1

= |qj |,
∥∥A(j)

1

∥∥ =
∥∥A(j)

1

∥∥
1

= max{|pj|+ 1, |α|+ |β|+ 1, |γ|+ 1},
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δpw — любое положительное число.

Алгоритм построения дуги траектории системы [8] подробно описан в тези-

сах [23] с использованием высокоточных вычислений на базе библиотеки MPFR

C++ [24] в случае, когда дуга траектории на рассматриваемом отрезке време-

ни целиком находится в области с номером j. Отметим, что метод аналогичен

методам Рунге-Кутты, но с гибким изменением порядка и выбором шага, обес-

печивающим сходимость рядов (9).

Далее рассмотрим модификацию данного алгоритма с учетом кусочно-глад-

кой правой части системы (1).

Введем векторы

�
(j)
i =

[
ξ
(j)
1,i ξ

(j)
2,i ξ

(j)
3,i

]⊤
.

Пусть T — длина отрезка интегрирования. Зададим такое представление веще-

ственного числа, чтобы

εm ≪ εpw,

где εm — машинный эпсилон и εpw — точность оценки общего члена ряда (9).

Таким образом, суммирование при использовании формулы (9) прекращается

при таком значении i = i∗, когда
∥∥�(j)

i∗

∥∥ · |�t|i∗ < εpw, (18)

где �t — шаг интегрирования. Отметим, что для сходимости ряда величину �t

нужно выбирать так:

0 < �t ≤ τ
(
�

(j)
0

)
.

Рассмотрим более подробно алгоритм построения дуги траектории системы

(1) на отрезке времени [0, T ]. В начале алгоритма по начальному условию для

координаты x1 определяем, в какой части фазового пространства мы находимся,

т. е. номер j. Далее делаем шаг по времени �t = τ
(
�

(j)
0

)
вперед. При этом

нужно запомнить полученные полиномы x̃1(t), x̃2(t) и x̃3(t), аппроксимирующие

соответствующие фазовые координаты x1(t), x2(t) и x3(t) на отрезке времени

[0, �t].

Если x̃1(�t) не принадлежит текущей части фазового пространства, то

необходимо с высокой точностью найти момент времени t = �tnew, когда тра-

ектория пересекает одну из плоскостей (6) или (7). Для этого методом секущих

численно решается уравнение

x̃1(t)− g = 0, (19)

где g = 1 или g = −1, с заданной погрешностью δsec. Заметим, что под дости-

жением величины δsec в итерационном процессе

�t[k], k = 0, 1, . . . , (20)

поиска приближений к корню �tnew уравнения (19) понимается достижение

такого номера k = k∗, когда

|�t[k∗] −�t[k∗−1]| < δsec.
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Далее вектор начальных условий принимается равным

�
(jnew)
0 = [g x̃2(�t

[k∗]) x̃3(�t
[k∗])]⊤,

где jnew — номер новой области, в которую мы попали, и поскольку система (8)

динамическая, начальный момент времени принимается равным нулю.

Преимущества метода секущих при решении данной задачи:

1) для достижения точности εsec этим методом требуется O(ln ln(1/εsec))

итераций, как и в методе Ньютона [25, с. 335, 336];

2) не требуется построения выражений и вычисления производной функции

x̃1(t);

3) перед началом итерационного процесса (20) имеем отрезок [0, �t] лока-

лизации корня.

Отметим, что в работах [6, 10] во избежание скачка погрешности прибли-

женного решения в методе Рунге-Кутты 4-го порядка точности для корректи-

ровки шага интегрирования используются интерполяционные полиномы с ин-

терполяцией назад и метод Ньютона для численного решения уравнения от-

носительно шага с экстраполяцией до поверхности границы раздела областей,

чтобы не вычислять значения правой части системы в другой области. В нашем

случае аппроксимирующие полиномы фазовые координаты x1(t), x2(t) и x3(t)

строятся по коэффициентам рядов (9).

Описанный алгоритм является базовым для всех дальнейших исследований

характеристик аттракторов в системе (1). Сначала рассмотрим его применение

для вычислений спектра показателей Ляпунова.

3. Модификация алгоритма Бенеттина —

Вольфа для вычисления оценок значений

характеристических показателей Ляпунова

Для вычисления оценок значений характеристических показателей Ляпу-

нова на практике обычно используют алгоритм Бенеттина — Вольфа [26, 27].

Однако его применение напрямую к системе (1) осложнено тем, что она не яв-

ляется гладкой. Поэтому осуществим следующую процедуру.

Рассмотрим разностный аналог частной производной функции w1 и матри-

цы Якоби для системы (8)

∂w1

∂x1
≃ qjnew + pjnew (x1 +�) + αx2 − qj − pjx1 − αx2

�

= pjnew +
qjnew − qj + (pjnew − pj)x1

�
,

J̃j 7−→jnew (x1) =



pjnew +

qjnew−qj+(pjnew−pj)x1

� , α 0

1 −1 1

0 −β −γ


 , (21)

где � — достаточно малая величина, pjnew и qjnew — значения коэффициентов

системы (8) в новой области фазового пространства с номером jnew, j 7−→ jnew
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означает переход из текущей области с номером j в область с номером jnew.

Заметим, что когда jnew = j, матрица в формуле (21) совпадает с матрицей в

(14).

Выбор величины � осуществляется следующим образом. Пусть δx1 > 0 —

заданная малая величина. Если jnew < j, то � = −δx1 (идет движение в сторо-

ну уменьшения координаты x1); иначе � = δx1 . В нашем случае направление

возрастания нумерации областей фазового пространства совпадает с направле-

нием возрастания координаты x1.

Пусть x4(t), x5(t) и x6(t) — возмущения для координат x1(t), x2(t) и x3(t)

соответственно. Тогда уравнения относительно данных возмущений имеют вид

ẋ4 =

(
pjnew +

qjnew − qj + (pjnew − pj)x1

�

)
x4 + αx5, (22)

ẋ5 = x4 − x5 + x6,

ẋ6 = −βx5 − γx6.

Перепишем уравнение (22), выделив в нем линейную и квадратичную ча-

сти:

ẋ4 =

(
pjnew +

qjnew − qj
�

)
x4 + αx5 +

pjnew − pj
�

x1x4.

По аналогии с подходом, используемым в работах автора [17, 18], расширим

систему (8), дополнив ее уравнениями для фазовых координат возмущений.

При этом введем вектор

X̂(t) = [x1(t) . . . x6(t)]
⊤

и матрицы

Â
(j)
0 = [qj 0 0 0 0 0]⊤,

Â
(j)
1 =




pj α 0 0 0 0

1 −1 1 0 0 0

0 −β −γ 0 0 0

0 0 0 pjnew +
qjnew−qj

� α 0

0 0 0 1 −1 1

0 0 0 0 −β −γ



,

Q̂
(j)
1 = Q̂

(j)
2 = Q̂

(j)
3 = Q̂

(j)
5 = Q̂

(j)
6 = O,

Q̂
(j)
4 =




0 0 0
pjnew−pj

� 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0



.

Расширенная динамическая система имеет вид

dX̂/dt = Â
(j)
0 + Â

(j)
1 X̂ + �(X̂), (23)
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где

�(X̂) = [ϕ1(X̂) . . . ϕ6(X̂)]⊤, ϕp(X̂) = 〈QpX̂, X̂〉, p = 1, . . . , 6.

Получим [17, 18] рекуррентные соотношения для вычисления коэффициен-

тов рядов возмущений

x4(t) = ξ
(j)
4,0 +

∞∑

i=1

ξ
(j)
4,i t

i, x5(t) = ξ
(j)
5,0 +

∞∑

i=1

ξ
(j)
5,i t

i, x6(t) = ξ
(j)
6,0 +

∞∑

i=1

ξ
(j)
6,i t

i, (24)

ξ
(j)
4,i =

(
pjnew +

qjnew−qj
�

)
ξ
(j)
4,i−1 + αξ

(j)
5,i−1 +

pjnew−pj

�

i∑
k=0

ξ
(j)
1,kξ

(j)
4,i−k

i
, (25)

ξ
(j)
5,i =

ξ
(j)
4,i−1 − ξ

(j)
5,i−1 + ξ

(j)
6,i−1

i
, (26)

ξ
(j)
6,i =

−βξ(j)5,i−1 − γξ
(j)
6,i−1

i
. (27)

Формулы (25)–(27) являются дополнением формул (10)–(13).

Значение числа τ , определяющего отрезок сходимости степенных рядов (9)

и (24), вычисляется следующим образом:

∥∥Â(j)
0

∥∥ =
∥∥Â(j)

0

∥∥
1

= |qj |,
∥∥Â(j)

1

∥∥ =
∥∥Â(j)

1

∥∥
1

= max

{
|pj |+ 1, |α|+ |β|+ 1, |γ|+ 1,

∣∣∣∣pjnew +
qjnew − qj

�

∣∣∣∣+ 1

}
,

∥∥Q̂(j)
1

∥∥ =
∥∥Q̂(j)

2

∥∥ =
∥∥Q̂(j)

3

∥∥ =
∥∥Q̂(j)

5

∥∥ =
∥∥Q̂(j)

6

∥∥ = 0,

∥∥Q̂(j)
4

∥∥ =

∣∣∣∣
pjnew − pj

�

∣∣∣∣ ,

µ = 6 max
p=1,... ,6

∥∥Q̂(j)
p

∥∥ = 6

∣∣∣∣
pjnew − pj

�

∣∣∣∣ ,

h1

(
ξ
(j)
1,0, . . . , ξ

(j)
6,0

)
=
∥∥�(j)

i

∥∥ =
∥∥�(j)

i

∥∥
1

=

6∑

p=1

∣∣ξ(j)p,0

∣∣,

h2

(
ξ
(j)
1,0, . . . , ξ

(j)
6,0

)
=

{
µh2

1 +
(∥∥Â(j)

1

∥∥+ 2µ
)
h1 +

∥∥Â(j)
0

∥∥, если h1 > 1,
∥∥Â(j)

0

∥∥+
∥∥Â(j)

1

∥∥+ µ в противном случае,

τ
(
ξ
(j)
1,0, . . . , ξ

(j)
6,0

)
=

1

h2 + δpw
. (28)

Применение алгоритма Бенеттина — Вольфа для вычисления оценок λ̃1, λ̃2

и λ̃3 характеристических показателей Ляпунова в случае систем с квадратичной

правой частью подробно описано в статье [18]. Напомним, что заданный отре-

зок времени [0, TL] (обычно достаточно большой), на котором мы будем искать

оценки показателей, делится на отрезки одинаковой длины

τM =
TL
M
,
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где M — количество таких отрезков. Далее, используя процесс Грама — Шмид-

та (ГШ) [26; 27, с. 163–165; 28, с. 126–132], формируем три начальных условия

для системы (23), у которых три первые координаты совпадают соответствен-

но — они являются координатами точки, близкой к аттрактору. Остальные

координаты — это нормированные и ортогонализованные возмущения.

Выбор значения M — это отдельная проблема. В [26, с. 294, 297] указано,

что имеется некоторая неустойчивость в значениях самого младшего отрица-

тельного показателя λ3, так как «элементы объема, включающие отрицатель-

ные направления экспоненты, затухают экспоненциально быстро», и рекоменду-

ется отслеживать установившиеся оценки показателей Ляпунова в зависимости

от изменения τM . Поэтому вычисление младшего показателя лучше реализо-

вывать для малых значений τM .

В случае хаотического аттрактора для системы третьего порядка частое

применение ГШ-процесса (при малых значениях τM ) вызывает потерю ориен-

тации в фазовом пространстве [26, с. 299], внося шум в получаемое значение

оценки старшего λ̃1 > 0 показателя. При больших значениях τM элементы

объема фазового пространства становятся слишком большими, демонстрируя

экспоненциальный рост во времени. Это дает возможность улучшить оценку

λ̃1, но применение классических численных методов с малыми фиксированны-

ми порядками точности и стандартного представления вещественных чисел в

ЭВМ (например, в языке C) приведет к большим ошибкам интегрирования и

переполнению используемых переменных в программном коде.

Использование описанной высокоточной численной схемы на базе метода

степенных рядов совместно с библиотекой MPFR C++ [24, 29] для представ-

ления чисел произвольной точности (тип данных mpreal с перегруженными

арифметическими операциями и дружественными математическими функци-

ями) позволяет избежать переполнений и контролировать накопление ошибки

численного интегрирования при варьировании точности εpw оценки общего чле-

на рядов (9) и (24). Таким образом, мы можем увеличить значение τM для

уменьшения шума в получаемом значении λ̃1.

При переходе из одной области фазового пространства в другую (измене-

ние номера j) по алгоритму, описанному в разд. 2, вычисляется приближенное

значение шага �tnew по времени, когда траектория системы (1) пересечет од-

ну из плоскостей (6) или (7). При достижении данной границы, система (23)

будет иметь квадратичную правую часть (внутри области она линейна), при

этом значение jnew — это индекс новой области. Из-за малости величины δx1

значения коэффициентов данной системы очень велики, но полученная оценка

длины (28) отрезка сходимости рядов (9) и (24) в работе [16] гарантирует их схо-

димость на шаге интегрирования �t = τ . Взрывной рост фазовых координат

при этом невозможен, поскольку из формулы (28) следует, что

�t = O
(∥∥�(j)

0

∥∥−2)
(29)

при
∥∥�(j)

0

∥∥→∞, т. е. величина �t будет достаточно малой, а после перехода в
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новую область система (23) станет линейной. Периодическое применение ГШ-

процесса также останавливает резкий рост фазовых координат возмущений.

Стоит отметить следующую особенность описанной схемы вычислений оце-

нок значений характеристических показателей Ляпунова. Исходя из оценки

(29), экспоненциальный рост фазовых координат дает экспоненциальное зату-

хание значения шага по времени, что ведет к резкому росту времени вычис-

лений. Поскольку для системы третьего порядка необходимо три раза решать

систему (23) между ГШ-процессами, данную процедуру можно распараллелить.

Как было описано выше, организация вычислений происходит с использовани-

ем вещественных чисел произвольной точности, что делает невозможным на

данный момент применение GPU. Поскольку мы имеем три независимых про-

цесса, использующих небольшой объем вычислительных ресурсов, параллель-

ные вычисления можно организовать в рамках одной ЭВМ на CPU, например,

в многопоточном режиме. Заметим, что параллельные вычисления на GPU на

сегодняшний день используются при анализе нескольких предельных решений

ОДУ, в том числе скрытых аттракторов (например, в работах [30, 31]).

Чтобы проверить точность найденных оценок λ̃1, λ̃2 и λ̃3, воспользуемся

следующим соотношением [32, с. 136]:

λ1 + λ2 + λ3 = 〈div F 〉, (30)

где

〈div F 〉 = lim
T→∞

1

T

T∫

0

divF (x1(t)) dt,

при этом

divF (x1) = −αµ− αψ′x1
− 1− γ.

Тогда вычисление правой части равенства (30) сводится к вычислению сред-

него значения 〈ψ′x1
〉 функции ψ′x1

(x1(t)) на отрезке времени [0, T ] при больших

значениях T .

Исходя из графика функции ψ(x1), значения

ψ′x1
(x1) =

{
a, если x1 ∈ (−1, 1),

0, если x1 ∈ (−∞,−1) ∪ (1,+∞).

Поскольку в алгоритме, описанном в разд. 2, рассчитывается такое значе-

ние шага по времени, когда траектория пересечет одну из плоскостей (6) или

(7), а также по виду частей, составляющих функцию ψ′x1
(x1(t)), для реализа-

ции вычисления 〈ψ′x1
〉 используется метод левых прямоугольников с перемен-

ным шагом интегрирования таким же, какой используется в данном алгоритме.

Следовательно, внутри шага не произойдет скачка значения ψ′x1
(x1(t)).

4. Результаты вычислений значений λ̃1, λ̃2

и λ̃3 для скрытых аттракторов системы (1)

Пусть bm — число бит под мантиссу вещественного числа. Для вычислений

были подобраны такие точности, что у получаемых значений показателей верны
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Рис. 1. Траектория системы (1), соответствующая скрытому хаотическому ат-
трактору.

первые 4 знака в дробной части:

bm = 300, тогда εm = 9.8 · 10−91;

δpw = 10−10, εpw = 10−80, δsec = 10−60, δx1 = 10−2.

Отметим, что уменьшение величины δx1 не дает значительного эффекта в

результатах вычислений.

Для начальных условий (5) была получена точка, более близкая к скрытому

хаотическому аттрактору в системе (1), по алгоритму, описанному в разд. 2:

X(0) =




0.242607564664894625733914154575786941050105924448969850851

−0.129154013908900093933869116916933583688948511046159634882

0.265287927489326246666551239611062113982412884174965132271


 .

(31)

Таблица 1. Результаты вычислений оценок λ̃1,

λ̃2 и λ̃3 для различных значений числа M

M λ̃1 λ̃2 λ̃3

20000 0.2121 −0.0266 −4.1824

10000 0.1964 −0.0123 −4.1950

5000 0.1834 −0.0126 −4.1987

2000 0.1760 −0.0039 −4.2011

500 0.1610 −0.0028 −3.5639

200 0.1614 0.0036 −1.6694

100 0.1634 0.0013 −0.8706

50 0.1621 0.0017 −0.4860

29 0.1638 0.0020 −0.3221
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Используя описанную выше модификацию алгоритма Бенеттина — Воль-

фа, при TL = 1000 для точки (31) при разных значениях числа M усредненные

значения оценок λ̃1, λ̃2 и λ̃3 сведены в табл. 1, откуда видна стабилизация пока-

зателя λ̃1 при уменьшении значения M . Также можно отметить стабильность в

значениях λ̃3 при больших значения числа M , что и было указано в разд. 3 дан-

ной статьи. Тогда можно сделать вывод о том, что для скрытого хаотического

аттрактора, представленного на рис. 1, значения

λ̃1 ≈ 0.16, λ̃2 ≈ 0, λ̃3 ≈ −4.2, λ̃1 + λ̃2 + λ̃3 ≈ −4.04.

При этом для T = TL средние значения

〈ψ′x1
〉 ≈ −0.6, 〈divF 〉 ≈ −3.93.

Таким образом, в равенстве (30) левая и правая части отличаются пример-

но на 0.11, что говорит о приемлемой точности вычисления оценок значений

характеристических показателей Ляпунова.

Применение параллельных вычислений для расчета оценок показателей

Ляпунова дает следующие результаты. В многопоточном режиме (использу-

емая операционная система — Ubuntu Linux) время вычислений при M = 29 со-

ставляет 47 мин на процессоре AMD Ryzen 7 5700G (4.67 ГГц, 16-ти потоковый),

температура процессора достигает 70◦C, загрузка — два-три ядра (обычный

режим работы процессора, при котором нет вычислительных задач, — 40◦C).

Контроль температуры осуществлялся в приложении Psensor. Время вычисле-

ний для последовательного алгоритма (загружено одно ядро, температура —

64◦C) — 71 мин; с использованием библиотеки libopenmpi (технология Open

MPI) (загрузка — 4 ядра, максимальная температура процессора составляет

78◦C) — 59 мин. Увеличение загрузки процессора и времени вычислений свя-

зано с тем, при работе с MPI-приложениями происходит запуск нескольких

процессов на одном (если позволяют ресурсы) или нескольких компьютерах.

В многопоточном же режиме параллельные вычисления выполняются в виде

нескольких потоков (нитей) в одном процессе, при этом операционная система

может оптимизировать загрузку ядер в рамках данного процесса, в отличие от

многопроцессного режима работы, где синхронизация процессов выполняется

программно.

Поскольку рассматриваемый метод оценки характеристических показате-

лей Ляпунова позволяет увеличить отрезок между ГШ-процессами, мы можем

построить график зависимости нормы ‖X̂‖2 от времени, например, на первом

шаге по алгоритму, описанному в разд. 2. При TL = 1000 и M = 29 величина

τM ≈ 34.48. Данный график представлен на рис. 2. Также на этом рисунке

построен график усредненной зависимости ‖X̂‖2 от t

‖X̂‖2 = b0 + b1e
λ̃1at,

где коэффициенты b0, b1 и λ̃1a определяются по методу наименьших квадратов

в математическом пакете Maxima [33]:

b0 ≈ 8.4, b1 ≈ 0.26, λ̃1a ≈ 0.272.
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Рис. 2. График зависимости нормы ‖X̂‖2 от t и усредненная кривая для вычис-

ления λ̃1a.

Рис. 3. Траектория системы (1), соответствующая скрытому аттрактору — пре-
дельному циклу.

Таким образом, получена еще одна оценка λ̃1a старшего показателя Ляпу-

нова. При этом значение

λ̃1a + λ̃2 + λ̃3 ≈ −3.928,

которое более близко к величине 〈div F 〉.
Отметим, что достоинство данного способа вычисления старшего показа-

теля Ляпунова по сравнению с алгоритмом Бенеттина — Вольфа в том, что

получаемое значение показателя учитывает значения фазовых координат на

отрезке времени [0, τM ], а не только в конечный момент времени.

По аналогии была получена точка, более близкая к предельному циклу, чем
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(4):

X(0) =




10.9947740082418782801240113997819195633739779444994538757

9.61981334895099741414351646822521979405421000896426828936

−11.8170827045443885649065273583176924298515470429370283924


 .

(32)

Расчеты для данного скрытого аттрактора проводилось для значения TL =

194.2, кратного периоду цикла (данная величина будет далее определена). При

M = 10 значение λ̃1 ≈ 0.0068 ≈ 0. Значения остальных показателей определя-

лось при M = 20000, поскольку они отрицательные:

λ̃2 ≈ −0.042, λ̃3 ≈ −8.43.

Тогда

λ̃1 + λ̃2 + λ̃3 ≈ −8.472.

Значение

〈divF 〉 ≈ −8.457,

что обеспечивает достоверность найденных оценок.

Исследуемая траектория показана на рис. 3.

5. Устойчивость по Пуассону

точек скрытых аттракторов

В работах [15, 16] численно исследованы точки предельных решений на

устойчивость по Пуассону, что позволило понять, имеем ли мы квазиперио-

дический или хаотический режим.

Напомним [21], что точка y фазового пространства называется положи-

тельно устойчивой по Пуассону (обозначение P+), если для любой окрестно-

сти U точки y и для любого TP > 0 найдется такое значение времени t ≥ TP ,

что траектория динамической системы попадет в окрестность U . Аналогично

если найдется такое t ≤ −TP , при котором траектория попадет в окрестность

U , то точка y отрицательно устойчива по Пуассону (обозначение P−). Точка,

устойчивая P+ и P−, называется просто устойчивой по Пуассону. Если каж-

дая точка траектории устойчива по Пуассону, то такая траектория называется

устойчивой по Пуассону.

Из ограниченности предельных решений диссипативных систем следует

[21, 27], что любой установившийся режим колебаний описывается устойчивыми

по Пуассону траекториями. Данное утверждение относится и к динамическому

хаосу. Если рассматривается траектория, отличная от положения равновесия,

то устойчивой по Пуассону она будет в том случае, если обладает свойством

возвращаться в сколь угодно малую ε-окрестность каждой своей точки беско-

нечное число раз. Такие возвраты называют возвратами Пуанкаре. В [27,

с. 146] указано, что «изучение статистики возвратов Пуанкаре — мощное сред-

ство анализа и классификации динамических режимов. По-видимому, потенци-

альные возможности этого подхода еще не полностью исчерпаны в современной
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нелинейной динамике». Например, для периодических режимов возвраты сле-

дуют друг за другом регулярно. Тогда [27, с. 145] «динамический хаос — это

такая ситуация, когда возвраты Пуанкаре в ε-окрестность стартовой точки не

проявляют регулярности, интервал времени между двумя последовательными

возвратами оказывается каждый раз другим и возникает некоторое статисти-

ческое распределение времен возврата». Пример анализа возвратов Пуанкаре,

основанного на теореме Каца [34, с. 67], для дискретных и непрерывных дина-

мических систем с хаотическими аттракторами приведен в работах [35, 36].

Для исследования возвратов Пуанкаре разработана программа [37], кото-

рая собирает статистику возвратов. Алгоритм ее работы следующий.

Пусть X0 = X(0) — начальная точка для системы (1), соответствующая

исследуемой, в частности, близкая к скрытому аттрактору. Отслеживание воз-

вратов необходимо производить не сразу, а через некоторый заданный момент

времени ts, чтобы выйти из ε-окрестности точки X0. Значения ε < 1 при этом

перебираются из некоторого убывающего конечного набора

ε0, . . . , εK

вещественных чисел. Для каждого значения εm (m = 0, . . . ,K) организуется

цикл по времени от t = ts до некоторого большого значения T с заданным

малым шагом�τ вычисления приближенных значений фазовых координатX(t)

системы (1) по алгоритму, описанному в разд. 2, в момент времени t, причем

фиксируются такие моменты t = tk, когда

‖X(tk)−X0‖2 < εm,

где k = 1, . . . , kmax. Заметим, что в данном случае фиксируются моменты вхож-

дения в εm-окрестность [36].

После этого вычисляется среднее время возврата [35, с. 5]

τ(εm) =
1

kmax

kmax∑

k=1

(tk+1 − tk) =
tkmax − t1
kmax

.

В случае хаотического аттрактора высокоточные вычисления важны для

получения более точной статистики возвратов.

По следствию из теоремы Каца [35, с. 4]

τ(ε) = Cε−d,

где C — некоторая постоянная, d — фрактальная размерность аттрактора.

Для начальной точки (31) получена статистика возвратов в ее окрестность

по описанному алгоритму. При этом

ts = 0.5, ε0 = 0.1, T = TL, εm =
ε0
m

для m ≥ 1. Далее по методу наименьших квадратов в математическом пакете

Maxima определяются коэффициенты C и d:

C = 0.424, d = 0.877.
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Рис. 4. Зависимость среднего времени возврата от радиуса отслеживаемой окрест-
ности.

Коэффициент детерминации R2 = 99%, что говорит о хорошем качестве ап-

проксимации. На рис. 4 показаны полученные точки, соответствующие радиусу

отслеживаемой окрестности и среднему времени возврата, а также аппрокси-

мирующая кривая.

Для регулярного режима, соответствующего точке (32), определены сред-

ние времена возвратов в окрестности точки X0. Оказалось, что

τ(ε0) = . . . = τ(εK) = 1.942,

откуда можно сделать вывод о том, что данное значение равно периоду Tp пре-

дельного цикла.

Полученное число соответствует циклической частоте (3):

ωp =
2π

Tp
≈ 3.235 ≈ ω.

6. Заключение

В данной статье рассмотрен численный метод решения кусочно-гладкой си-

стемы обыкновенных дифференциальных уравнений Чуа с использованием вы-

сокоточных вычислений, который может быть применен для сбора статистики

возвратов Пуанкаре с целью оценки фрактальной размерности рассматривае-

мого аттрактора. Описана реализация модификации алгоритма Бенеттина —

Вольфа для данной системы, в основу которой положена рассматриваемая чис-

ленная схема решения систем дифференциальных уравнений на базе метода

степенных рядов, реализованная с использованием параллельных алгоритмов

и арифметики произвольной точности на больших отрезках разбиения задан-

ного промежутка времени. Программный комплекс разработан на языке C++,

получено свидетельство о его регистрации [37].



130 А. Н. Пчелинцев

Замечено, что полученные характеристики аттракторов зависят от приме-

няемых алгоритмов, которые опираются на важные теоретические результа-

ты. Например, на зависимость оценки области сходимости рядов в описанном

высокоточном численном методе для выбора шага интегрирования от началь-

ных условий (формула (29)) и теорему Каца для исследования устойчивости по

Пуассону приведенных точек. Также отметим, что показатели Ляпунова могут

отличаться для разных траекторий аттракторов.
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29. Fousse L., Guillaume H., Lefèvre V., Pélissier P., Zimmermann P. MPFR: A multiple-precision

binary floating-point library with correct rounding // ACM Trans. Math. Softw. (TOMS).
2007. V. 33, N 2. 13.

30. Ostrovskii V. Yu., Rybin V. G., Karimov A. I., Butusov D. N. Inducing multistability in
discrete chaotic systems using numerical integration with variable symmetry // Chaos Solitons
Fractals. 2022. V. 165. 112794.

31. Yan H., Jiang J., Hong L. The birth of a hidden attractor through boundary crisis // Int. J.
Bifurcation Chaos. 2022. V. 32, N 2. 2230005.

32. Гринченко В. Т., Мацыпура В. Т., Снарский А. А. Введение в нелинейную динамику:
Хаос и фракталы. М.: ЛЕНАНД, 2019.

33. Maxima computer algebra system http://maxima.sourceforge.net/ru/.

34. Kac M., Uhlenbeck G. E., Hibbs A. R., Pol B. V. D., Gillis J. Probability and related topics
in physical sciences. New York: Intersci., 1959.

35. Anishchenko V. S., Boev Y. I., Semenova N. I., Strelkova G. I. Local and global approaches
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ON A HIGHLY ACCURATE NUMERICAL METHOD

FOR STUDYING OF THE HIDDEN ATTRACTORS

IN THE PIECEWISE SMOOTH CHUA SYSTEM

A. N. Pchelintsev

Abstract: We consider an adaptation to the piecewise smooth Chua system of the
previously developed high-precision numerical method for constructing approximations
to unstable solutions of dynamic systems with quadratic nonlinearities on their attrac-
tors. Also, a modification of the Benettin–Wolf algorithm for calculating the character-
istic Lyapunov exponents of the considered piecewise smooth system is obtained for
the mode under consideration. A method based on the least squares method is devel-
oped, which makes possible to calculate the averaged estimate of the highest Lyapunov
exponent based on the data on the behavior of the linearized dynamic system using a
high-precision method over large time intervals. The following results are obtained for
hidden attractors in the Chua system: 1) the fractal dimension of the hidden chaotic
attractor based on the Poincaré return statistics, 2) the values of the characteristic Lya-
punov exponents for a stable cycle and a chaotic attractor with the use of the developed
modification of the Benettin–Wolf algorithm; its efficiency is increased due to parallel
computing.
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Keywords: Chua system, Lyapunov characteristic exponents, high-precision numerical
method, piecewise smooth system, Poincaré returns, parallel computing.
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Математическая жизнь — конференция

C 18 по 22 августа в Республике Бурятия была проведена Международная

конференция «Дифференциальные уравнения и математическое моделирова-

ние», посвященная 80-летию со дня рождения профессора Владимира Николае-

вича Врагова, ректора Новосибирского государственного университета

в 1993–1997 гг. Непосредственными организаторами конференции были Бу-

рятский государственный университет и Новосибирский государственный уни-

верситет, содействие и поддержку в организации конференции оказали Мате-

матический центр в Академгородке и Газпромбанк.

Открытие конференции состоялось 18 августа в Бурятском государствен-

ном университете, заседания проводились на базе отдыха на берегу Байкала.

В конференции приняли участие свыше 150 участников из Москвы, Но-

восибирска, Челябинска, Воронежа, Якутска, Владивостока и других городов

России, а также из Китая, Монголии, Узбекистана, Киргизии, Таджикистана.

Тематика конференции охватывала многие вопросы фундаментальных раз-

делов теории дифференциальных уравнений — вопросы существования и един-

ственности решений, качественных свойств решений, теории операторно-диф-

ференциальных уравнений. Значительное место в программе конференции за-

нимали доклады, связанные с вычислительной математикой и математическим

моделированием механических, физических и химических процессов, процессов

экологии и экономики.

Высокий уровень докладов, сделанных на конференции, позволил Про-

граммному и Организационному комитетам обратиться к редакциям журналов

"Journal of Mathematical Scienses" и "Computer Mathematics and Modelling" с

предложениями подготовить спецвыпуск трудов, и эти предложения были при-

няты.

Безусловно, проведению конференции способствовала прекрасная природа

Байкала и Бурятии.



ВНИМАНИЮ АВТОРОВ

1. К публикации в журнале «Математические заметки СВФУ» принима-
ются статьи, содержащие новые результаты в области математики, механики и
информатики. Статьи, опубликованные ранее, а также направленные в другие
издания, редакцией не рассматриваются. Редакционный совет вправе воздер-
жаться от принятия статьи к рассмотрению, если она не соответствует профилю
журнала.

2. Направляя статью в редакцию журнала, автор (соавторы) на безвоз-
мездной основе передает(ют) издателю на срок действия авторского права по
действующему законодательству РФ исключительное право на использование
статьи или отдельной ее части (в случае принятия статьи к опубликованию) на
территории всех государств, где авторские права в силу международных дого-
воров Российской Федерации являются охраняемыми, в том числе следующие
права: на воспроизведение, на распространение, на публичный показ, на дове-
дение до всеобщего сведения, на перевод на иностранные языки (и исключи-
тельное право на использование переведенного произведения вышеуказанными
способами), на предоставление всех вышеперечисленных прав другим лицам.
Одновременно со статьей автор (соавторы) направляет в редакцию подписан-
ный лицензионный договор на право использования научного произведения в
журнале. Образец договора высылается авторам по электронной почте вместе
с сообщением о принятии статьи к печати.

3. Для рассмотрения статьи на предмет ее публикации в журнале в ре-
дакцию представляются текст статьи объемом не более 1,5 авторских листов
(18 страниц журнального текста), написанной на русском или, по согласованию
с редакцией, на английском языке, а также сопроводительное письмо, в кото-
ром сообщается, что статья направляется именно в журнал «Математические
заметки СВФУ», и информация об авторе (коллективе авторов) с указанием
фамилии, имени и отчества, полного почтового адреса для переписки, места
работы, подробного служебного адреса, адреса электронной почты и номера
телефона. Статьи объемом более 1,5 авторских листов, как правило, не рас-
сматриваются и могут быть приняты к рассмотрению и опубликованы лишь по
специальному решению редакционного совета.

4. Статья должна быть подготовлена с использованием текстового редак-
тора LaTeX и представлена в виде файлов форматов pdf и tex.

5. В начале статьи указывается индекс УДК и/или MSC. Статья сопро-
вождается аннотацией объемом не менее 100 слов, желательно без формул, и
списком ключевых слов. Аннотация и список должны быть представлены на
русском и английском языках.

6. Список литературы печатается в конце текста. Ссылки на литературу
в тексте нумеруются в порядке их появления и даются в квадратных скобках.
Ссылки на неопубликованные работы нежелательны. Оформление литературы
должно соответствовать требованиям стандартов (примеры библиографических
описаний см. в последних номерах журнала).

7. Издание осуществляет рецензирование всех поступающих в редакцию
материалов, соответствующих ее тематике, с целью их экспертной оценки. Все
рецензенты являются признанными специалистами по тематике рецензируемых
материалов и имеют в течение последних 3 лет публикации по тематике рецен-
зируемой статьи. Рецензии хранятся в редакции издания в течение 5 лет.



Вниманию авторов 137

8. Принятая к рассмотрению статья направляется на анонимное рецензи-
рование. На основании рецензии редсовет принимает решение о возможности
публикации статьи, которое сообщается автору. Автор вправе сообщить свои
замечания и возражения к рецензии. Повторное решение редсовета по статье
является окончательным.

9. Редакция издания направляет авторам представленных материалов ко-
пии рецензий или мотивированный отказ, а также обязуется направлять копии
рецензий в Министерство науки и высшего образования Российской Федерации
при поступлении в редакцию издания соответствующего запроса.

10. После редакционной подготовки непосредственно перед публикацией
автору высылается корректура. По возможности в наиболее короткие сроки
необходимо ее прочесть, внести исправления (правка против авторского ориги-
нала нежелательна) и направить в редакцию. Статья выходит в свет только
после получения от автора (коллектива авторов) авторской корректуры, под-
писанной автором (всеми соавторами) в печать.

11. В соответствии с международными законами об авторском праве Ре-
дакция уведомляет авторов журнала об их ответственности за получение ими в
случае необходимости письменного разрешения на использование охраняемых
авторским правом материалов, таких, как цитаты, воспроизведение данных, ил-
люстраций и любых иных материалов, которые могут быть использованы в их
публикациях, а также о том, что вытекающая отсюда ответственность за на-
рушение таких авторских прав лежит на авторах. Плата за опубликование с
авторов или учреждений, где работают авторы, не взимается, и опубликованные
статьи не оплачиваются.

12. Права авторов на использование материалов статей и переводов статей

из журнала «Математические заметки СВФУ» в иных публикациях определя-

ются общими международными и российскими законами об авторских правах.



Журнал зарегистрирован в Федеральной службе по надзору в сфере связи,
информационных технологий и массовых коммуникаций

Свидетельство о регистрации № ПИ № ФС 77–59001 от 11.08.2014 г.

Учредитель: ФГАОУ ВО «Северо-Восточный
федеральный университет имени М. К. Аммосова»

ул. Белинского, 58, Якутск 677000

Подписано в печать 03.10.2025. Формат 70× 108/16.
Печать цифровая. Усл. печ. л. 15,8. Уч.-изд. л. 9,3. Тираж 50 экз. Заказ №188.

Издательский дом Северо-Восточного федерального университета,
677891, г. Якутск, ул. Петровского, 5.

Отпечатано с готового оригинал-макета в типографии ИД СВФУ.
Свободная цена.


	secp2503
	1-134
	sem2503
	VN1802
	data2503

