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Аннотация. Исследуется однозначная разрешимость задачи типа Коши и линей-
ных обратных коэффициентных задач для эволюционного уравнения в банаховом
пространстве с интегро-дифференциальным оператором типа Римана — Лиувил-
ля первого порядка с регулярным ядром. Оператор при неизвестной функции в
уравнении предполагается замкнутым. Получены условия существования и един-
ственности решения задачи типа Коши для линейного неоднородного уравнения.
Найден критерий корректной разрешимости для обратной задачи со стационар-
ным неизвестным коэффициентом и с интегральным в смысле Римана — Стилтьеса
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ты использованы при исследовании линейных обратных начально-краевых задач
для уравнений с интегро-дифференциальным оператором типа Римана — Лиувил-
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Введение

В прикладных исследованиях часто возникают задачи для дифференциаль-

ных уравнений с неизвестными коэффициентами — так называемые обратные

коэффициентные задачи. Их практическая значимость и теоретическая новиз-

на привели к тому, что уже несколько десятилетий такие задачи вызывают
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большой интерес многих авторов [1–9]. В последние годы все большее внима-

ние исследователей обращено к обратным задачам для уравнений с различными

дробными производными: Римана — Лиувилля [10–13], Герасимова — Капуто

[14–22], Джрбашяна — Нерсесяна [23–26].

Помимо уравнений с дробными производными интерес исследователей вы-

зывают также уравнения с другими интегро-дифференциальными операторами,

которые разделим на классы операторов типа Римана — Лиувилля (композиция

оператора свертки и оператора производной целого порядка) и операторов типа

Герасимова (сначала действует оператор производной целого порядка, а затем

оператор свертки). При этом интегро-дифференциальный оператор каждого из

классов будем называть сингулярным или регулярным в зависимости от того,

имеет ядро свертки особенность в начале интервала интегрирования или нет.

Для различных классов линейных уравнений в банаховых пространствах

с сингулярными интегро-дифференциальными операторами типа Римана — Ли-

увилля и типа Герасимова исследованы прямые [27–29] и обратные задачи [30, 31].

Интерес исследователей в последние годы часто направлен на уравнения

с регулярными интегро-дифференциальными операторами (см. [32, 33] и др.).

Условия существования и единственности решения задачи Коши и линейных

обратных задач для уравнения в банаховом пространстве с производной Капу-

то — Фабрицио и ограниченным оператором при неизвестной функции изучены

в работе [34]. Вопросы однозначной разрешимости прямых и обратных коэф-

фициентных задач для эволюционных уравнений в банаховых пространствах с

регулярным интегро-дифференциальным оператором типа Римана — Лиувилля

общего вида в случае ограниченного оператора при искомой функции исследо-

ваны в [35]. В данной работе в продолжение работы [35] будет изучено урав-

нение с регулярным интегро-дифференциальным оператором типа Римана —

Лиувилля и линейным замкнутым оператором при неизвестной функции.

Коротко опишем содержание работы. В первом параграфе методами тео-

рии преобразования Лапласа получены условия существования и единственно-

сти решения задачи типа Коши для линейного неоднородного уравнения, разре-

шенного относительно регулярного интегро-дифференциального оператора ти-

па Римана — Лиувилля, действующего на искомую функцию, в случае линей-

ного замкнутого оператора при неизвестной функции в правой части уравне-

ния. Найден вид решения. Второй параграф содержит теорему о корректности

линейной обратной задачи для такого уравнения в банаховом пространстве со

стационарным неизвестным коэффициентом в уравнении. В третьем параграфе

получены условия однозначной разрешимости аналогичной задачи с нестацио-

нарным неизвестным коэффициентом, доказана оценка устойчивости решения.

Полученные абстрактные результаты в четвертом параграфе использованы при

исследовании начально-краевых задач для класса уравнений, содержащих ре-

гулярный интегро-дифференциальный оператор типа Римана — Лиувилля по
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времени и многочлены от самосопряженного эллиптического дифференциаль-

ного по пространственным переменным оператора.

§ 1. Задача типа Коши

Пусть Z , U — банаховы пространства, L (Z ; U ) — банахово простран-

ство всех линейных ограниченных операторов из Z в U , L (Z ) := L (Z ; Z ),

C l(Z ) — множество всех линейных замкнутых операторов в пространстве Z ,

область определения DA оператора A ∈ C l(Z ) снабжена нормой графика

‖ ·‖DA := ‖ ·‖Z +‖A · ‖Z , ρ(A) := {µ ∈ C : (µI−A)−1 ∈ L (Z )} — резольвентное

множество оператора A, а σ(A) = C \ ρ(A) — его спектр, R+ = {a ∈ R : a > 0},
R+ = R+ ∪ {0}, K(t) ∈ L (Z ) при t > 0. Определим оператор свертки

(JKz)(t) :=

t∫

0

K(t− s)z(s) ds := (K ∗ z)(t), t > 0,

и интегро-дифференциальный оператор типа Римана — Лиувилля

(D1,Kz)(t) := D1(JKz)(t) := D1

t∫

0

K(t− s)z(s) ds, t > 0,

где D1 — оператор производной первого порядка.

Заметим, что для K ∈ C([0, T ]; L (Z )), z ∈ L1(0, T ; Z )
∥∥∥∥∥∥

t∫

0

K(t− s)z(s) ds

∥∥∥∥∥∥
Z

≤ max
s∈[0,T ]

‖K(s)‖L (Z )‖z‖L1(0,t;Z ) → 0, t→ 0 + .

Поэтому (JKz)(0) = 0 и далее будем рассматривать именно такое начальное

условие.

Пусть A ∈ C l(Z ), f ∈ C([0, T ]; Z ), рассмотрим задачу типа Коши

(JKz)(0) = 0 (1)

для эволюционного уравнения

(D1,Kz)(t) = Az(t) + f(t), t ∈ (0, T ]. (2)

Решением задачи (1), (2) назовем такую функцию z ∈ C((0, T ];DA)∩L1(0, T ; Z ),

что JKz ∈ C([0, T ]; Z )∩C1((0, T ]; Z ), выполняются условия (1) и равенство (2)

при t ∈ (0, T ].

Теорема 1. Пусть A ∈ C l(Z ), K ∈ C1([0, T ]; L (Z )), (K(0) − A)−1 ∈
L (Z ), f ≡ 0. Тогда функция z(t) ≡ 0 является единственным решением задачи

(1), (2).

Доказательство. Пусть z — решение задачи (1), (2) при f ≡ 0, тогда

(D1,Kz)(t) = K(0)z(t) + (JK′

z)(t) = Az(t).
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Отсюда z(t) = −(K(0)−A)−1(JK′

z)(t). Рассмотрим оператор

Bz(t) = −(K(0)−A)−1(JK′

z)(t)

в пространстве L1(0, T1; Z ), T1 ≤ T . Для t ∈ [0, T1] имеем
∥∥∥∥∥∥

t∫

0

K ′(t− s)z(s) ds

∥∥∥∥∥∥
Z

≤
t∫

0

‖K ′(t− s)‖L (Z )‖z(s)‖Z ds

≤ ‖K ′‖C([0,T1];L (Z ))‖z‖L1(0,T1;Z ).

Тогда

‖Bz‖L1(0,T1;Z ) ≤ ‖(K(0)−A)−1‖L (Z )

T∫

0

∥∥∥∥∥∥

t∫

0

K ′(t− s)z(s) ds

∥∥∥∥∥∥
Z

dt

≤ T1‖(K(0)−A)−1‖L (Z )‖K ′‖C([0,T1];L (Z ))‖z‖L1(0,T1;Z ) =
1

2
‖z‖L1(0,T1;Z ),

где

T1 =
1

2‖(K(0)−A)−1‖L (Z )‖K ′‖C([0,T1];L (Z ))
.

Следовательно, оператор B является сжимающим в пространстве L1(0, T1; Z )

и единственным решением уравнения z = Bz в этом пространстве является

функция z ≡ 0. Если T1 < T , возьмем пространство LT1
1 (0, 2T1; Z ) := {y ∈

L1(0, 2T1; Z ) : y(t) = 0 почти всюду на [0, T1]}. Тогда

‖B‖
L

(
L

T1
1 (0,2T1;Z )

) ≤ (2T1 − T1)‖(K(0)−A)−1‖L (Z )‖K ′‖C([0,T1];L (Z )) =
1

2
< 1

и на отрезке [0, 2T1] получаем единственность решения уравнения z = Bz. Если

2T1 < T , рассмотрим пространство L2T1

1 (0, 3T1; Z ) := {y ∈ L1(0, 3T1; Z ) : y(t) =

0 почти всюду на [0, 2T1]} и докажем единственность тривиального решения

уравнения z = Bz на отрезке [0, 3T1]. Повторяя рассуждения, за конечное число

шагов полностью покроем отрезок [0, T ]. Значит, решение z ≡ 0 задачи (1), (2)

при f ≡ 0 единственно на отрезке [0, T ]. �

Для функции h : R+ → Z обозначим ее преобразование Лапласа через ĥ.

Далее будем предполагать выполнение следующего условия.

(K̂) Для функции K ∈ C1(R+; L (Z )) существует преобразование Лапла-

са K̂(λ), продолжимое до однозначной аналитической функции на множестве

�aK := {λ ∈ C : |λ| > aK} ∪∞, где aK > 0.

Лемма 1. Пусть A ∈ C l(Z ), K ∈ C1(R+; L (Z )), (K(0) − A)−1 ∈ L (Z ),

выполняется условие (K̂). Тогда при некотором r > aK определены и анали-

тичны оператор-функции

Z(t) =
1

2πi

∫

|λ|=r

(λK̂(λ) −A)−1eλt dλ, t ∈ C, (3)
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AZ(t) =
1

2πi

∫

|λ|=r

λK̂(λ)(λK̂(λ) −A)−1eλt dλ, t ∈ C. (4)

Доказательство. По теореме о начальном значении оригинала [36]

lim
λ→+∞

λK̂(λ) = K(0) в L (Z ). Поскольку (K(0) − A)−1 ∈ L (Z ), с учетом

условия (K̂) это означает, что существуют операторы

(λK̂(λ)−A)−1 = (K(0)−A+ λK̂(λ) −K(0))−1

= (I + (K(0)−A)−1(λK̂(λ)−K(0)))−1(K(0)−A)−1

для достаточно больших |λ| > r0 ≥ aK , для которых

‖(λK̂(λ)−K(0))‖L (Z ) <
1

2
‖(K(0)−A)−1‖−1

L (Z ).

Поэтому для C = 2‖(K(0)−A)−1‖L (Z ) > 0 при всех |λ| > r0 ≥ aK

‖(λK̂(λ)−A)−1‖L (Z ) ≤ C.

Также заметим, что

(λK̂(λ) −A)(µK̂(µ)−A)−1 = I + (λK̂(λ) − µK̂(µ))(µK̂(µ)−A)−1,

(µK̂(µ)−A)−1− (λK̂(λ)−A)−1 = (λK̂(λ)−A)−1(λK̂(λ)−µK̂(µ))(µK̂(µ)−A)−1,

‖(µK̂(µ)−A)−1 − (λK̂(λ) −A)−1‖L (Z )

≤ C‖λK̂(λ)− µK̂(µ)‖L (Z )‖(µK̂(µ) −A)−1‖L (Z ) → 0, λ→ µ.

Кроме того,

d

dµ
(µK̂(µ)−A)−1 = −(µK̂(µ)−A)−1

[
d

dµ
[µK̂(µ)]

]
(µK̂(µ)−A)−1.

Следовательно, подынтегральное выражение в (3) аналитично в �r0 , и посколь-

ку контур {|λ| = r > r0} ограничен, то функция Z(t) аналитична по t ∈ C. При

этом

AZ(t) =
1

2πi

∫

|λ|=r

(A− λK̂(λ) + λK̂(λ))(λK̂(λ)−A)−1eλt dλ

= 0 +
1

2πi

∫

|λ|=r

λK̂(λ)(λK̂(λ) −A)−1eλt dλ.

Используя опять же аналитичность подынтегрального выражения в (4) и огра-

ниченность контура, получаем требуемое. �
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Теорема 2. Пусть A ∈ C l(Z ), K ∈ C1(R+; L (Z )), (K(0)−A)−1 ∈ L (Z ),

выполняется условие (K̂), f ∈ C((0, T ]; Z ) ∩ L1(0, T ; Z ). Тогда функция

z(t) = (K(0)−A)−1f(t) +

t∫

0

Z(t− s)f(s) ds (5)

является единственным решением задачи (1), (2).

Доказательство. В силу леммы 1 функция (5) лежит в C((0, T ]; Z ) ∩
L1(0, T ; Z ), следовательно, выполнено условие (1).

Далее,

A(K(0)−A)−1f = K(0)(K(0)−A)−1f − f ∈ C((0, T ]; Z ),

A

t∫

0

Z(t− s)f(s) ds =

t∫

0

AZ(t− s)f(s) ds ∈ C([0, T ]; Z ),

поэтому z ∈ C((0, T ];DA). Кроме того,

(JKz)(t) = (K(0)−A)−1(JKf)(t)+

t∫

0

K(t−τ)
τ∫

0

Z(τ−s)f(s) dsdτ ∈ C([0, T ]; Z ),

(D1,Kz)(t) = K(0)(K(0)−A)−1f(t) + (K(0)−A)−1(JK′

f)(t)

+K(0)

t∫

0

Z(t− s)f(s) ds+

t∫

0

K ′(t− τ)
τ∫

0

Z(τ − s)f(s) dsdτ ∈ C((0, T ]; Z ).

При Reµ > r по интегральной формуле Коши получаем, с учетом положи-

тельной ориентации используемых контуров,

Ẑ(µ) =
1

2πi

∫

|λ|=r

1

µ− λ (λK̂(λ)−A)−1dλ

=
1

2πi

∫

|η|= 1
r

1

µ− 1
η

(
1

η
K̂

(
1

η

)
−A

)−1
dη

η2

=
1

2πi

∫

|η|= 1
r

1

µη
(
η − 1

µ

)
(

1

η
K̂

(
1

η

)
− A

)−1

dη = (µK̂(µ)−A)−1− (K(0)−A)−1.

Доопределим функцию f непрерывным ограниченным образом при t > T

и обозначим zf := Z ∗ f , тогда

ẑf (λ) = Ẑ(λ)f̂ (λ) = [(λK̂(λ) −A)−1 − (K(0)−A)−1]f̂(λ).

Следовательно,

ẑ(λ) = (K(0)−A)−1f̂(λ)+[(λK̂(λ)−A)−1−(K(0)−A)−1]f̂(λ) = (λK̂(λ)−A)−1f̂(λ),

D̂1,Kz(λ)− Âz(λ) = (λK̂(λ)−A)(λK̂(λ)−A)−1f̂(λ) = f̂(λ).

Применив обратное преобразование Лапласа, получим (2).

Единственность решения задачи (1), (2) следует из единственности реше-

ния соответствующей задачи типа Коши для однородного уравнения, которая

доказана в теореме 1. �
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§ 2. Линейная обратная задача

с постоянным коэффициентом

Пусть Z , U — банаховы пространства. Рассмотрим обратную задачу для

эволюционного уравнения

(D1,Kz)(t) = Az(t) +B(t)u+ g(t), t ∈ (0, T ], (6)

где K ∈ C1([0, T ]; L (Z )), D1,K — интегро-дифференциальный оператор типа

Римана — Лиувилля, A ∈ C l(Z ), B ∈ C([0, T ]; L (U ; Z )), g ∈ C([0, T ]; Z ), с

начальным условием

(JKz)(0) = 0 (7)

и условием переопределения

T∫

0

z(t) dν(t) = zT ∈ DA, (8)

где функция ν : (0, T ]→ C имеет ограниченную вариацию, в обозначениях ν ∈
BV ((0, T ];C). При этом дополнительный неизвестный элемент u в уравнении

(6) требуется найти с использованием дополнительного условия (8).

Назовем элемент u ∈ U решением задачи (6)–(8), если соответствующее

решение задачи типа Коши (6), (7) удовлетворяет условию (8). Задачу (6)–(8)

назовем корректной, если для любых zT ∈ DA, g ∈ C([0, T ]; Z ) существует

единственное решение u ∈ U задачи, при этом удовлетворяющее оценке

‖u‖U ≤ C(‖zT ‖DA + ‖g‖C([0,T ];Z )),

где C > 0 не зависит от zT , g.

В силу представления решения (5) элемент u является решением задачи

(6)–(8) тогда и только тогда, когда он удовлетворяет уравнению

χu = ψ, (9)

где χ и ψ определяются формулами

χ :=

T∫

0

(K(0)−A)−1B(t) dν(t) +

T∫

0

t∫

0

Z(t− s)B(s) dsdν(t) ∈ L (U ; Z ),

ψ := zT −
T∫

0

(K(0)−A)−1g(t) dν(t) −
T∫

0

t∫

0

Z(t− s)g(s) dsdν(t) ∈ Z .

Теорема 3. Пусть A ∈ C l(Z ), K ∈ C1(R+; L (Z )), (K(0)−A)−1 ∈ L (Z ),

выполняется условие (K̂),

g ∈ C([0, T ]; Z ), B ∈ C([0, T ]; L (U ; Z )), ν ∈ BV ((0, T ];C), zT ∈ DA.
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Тогда обратная задача (6)–(8) корректна в том и только в том случае, когда

существует обратный оператор χ−1 ∈ L (DA; U ). При этом решение задачи

имеет вид u = χ−1ψ.

Доказательство. По теореме 2 существует решение задачи типа Коши

(6), (7) с известным элементом u ∈ U , и оно имеет вид

z(t) = (K(0)−A)−1(B(t)u + g(t)) +

t∫

0

Z(t− s)(B(s)u + g(s)) ds.

Подставим это решение в условие переопределения (8) и получим (9). При этом

Aχ =

T∫

0

(A−K(0) +K(0))(K(0)−A)−1B(t) dν(t) +

T∫

0

t∫

0

AZ(t− s)B(s) dsdν(t)

=

T∫

0

K(0)(K(0)−A)−1B(t) dν(t) −
T∫

0

B(t) dν(t)

+

T∫

0

t∫

0

AZ(t− s)B(s) dsdν(t) ∈ L (U ; Z )

в силу леммы 1, поэтому χ ∈ L (U ;DA). Аналогично доказывается, что

T∫

0

(K(0)−A)−1g(t) dν(t),

T∫

0

t∫

0

Z(t− s)g(s) dsdν(t) ∈ DA.

Отсюда получаем, что корректность обратной задачи (6)–(8) равносильна су-

ществованию оператора χ−1 ∈ L (DA; U ). В таком случае

‖u‖U ≤ ‖χ−1‖L (DA;U )‖ψ‖DA

≤ ‖χ−1‖L (DA;U )(‖zT ‖DA + T 2V T
0 (ν)‖Z‖C([0,T ];DA)‖g‖C([0,T ];Z )

+ TV T
0 (ν)(‖K(0)(K(0)−A)−1‖L (Z ) + 2)‖g‖C([0,T ];Z ))

≤ C(‖zT ‖DA + ‖g‖C([0,T ];Z ))

при некотором C > 0. Здесь V T
0 (ν) — вариация функции ν на полуинтервале

(0, T ]. �

$ 3. Обратная задача с переменным коэффициентом

Рассмотрим уравнение

(D1,Kz)(t) = Az(t) +B(t)u(t) + g(t), t ∈ (0, T ], (10)

где K ∈ C1([0, T ]; L (Z )), A ∈ C l(Z ), B ∈ C([0, T ]; L (U ; Z )), g ∈ C([0, T ]; Z ).

В отличие от предыдущего параграфа здесь неизвестный элемент u зависит от

t. Снабдим уравнение (10) начальным условием

(JKz)(0) = 0 (11)
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и условием переопределения

�z(t) = �(t), t ∈ (0, T ], (12)

где � ∈ L (Z ; U ), � ∈ C((0, T ]; U ).

Назовем u ∈ C([0, T ]; U ) решением задачи (10)–(12), если соответствующее

решение задачи типа Коши (10), (11) удовлетворяет условию (12).

Теорема 4. Пусть A ∈ L (Z ), K ∈ C1(R+; L (Z )), (K(0)−A)−1 ∈ L (Z ),

выполняется условие (K̂), B ∈ C([0, T ]; L (U ; Z )), � ∈ L (Z ; U ), для всех t ∈
[0, T ] существует обратный оператор (�K(0)(K(0)− A)−1B(t))−1 ∈ L (U ), при

этом (�K(0)(K(0)− A)−1B(t))−1 ∈ C([0, T ]; L (U )), � ∈ C((0, T ]; U ), D1,K� ∈
C([0, T ]; U ). Тогда задача (10)–(12) имеет единственное решение, при этом вы-

полняется оценка

‖u‖C([0,T ];U ) ≤ C(‖g‖C([0,T ];Z ) + ‖D1,K�‖C([0,T ];U )),

где C > 0 не зависит от g, �.

Доказательство. Имеем

(D1,K�)(t) = (D1,K�z)(t) = �(D1,Kz)(t) = �(Az(t) +B(t)u(t) + g(t))

= �A(K(0)−A)−1(B(t)u(t) + g(t)) + �A

t∫

0

Z(t− s)(B(s)u(s) + g(s)) ds

+ �B(t)u(t) + �g(t) = �K(0)(K(0)−A)−1B(t)u(t) + �K(0)(K(0)−A)−1g(t)

+ �A

t∫

0

Z(t− s)(B(s)u(s) + g(s)) ds.

Отсюда получаем уравнение Вольтерры

u(t) =

t∫

0

N(t, s)u(s) ds+ h(t), (13)

где

N(t, s) = (�K(0)(K(0)−A)−1B(t))−1�AZ(t− s)B(s),

h(t) = (�K(0)(K(0)−A)−1B(t))−1(D1,K�)(t)

−(�K(0)(K(0)−A)−1B(t))−1


�K(0)(K(0)−A)−1g(t) + �A

t∫

0

Z(t− s)g(s) ds


 .

По условиям теоремы и в силу леммы 1 имеем h ∈ C([0, T ]; U ), N ∈ C(�̃; L (U )),

где �̃ := {(t, s) : t ∈ [0, T ], s ∈ [0, t]}. Поэтому по теореме 5.1.17 из [2] уравнение

Вольтерры (13) имеет единственное решение, причем

‖u‖C([0,T ];U ) ≤ C(N)‖h‖C([0,T ];U ) ≤ C(‖g‖C([0,T ];Z ) + ‖D1,K�‖C([0,T ];U )). �
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§ 4. Приложение к обратным задачам для одного

класса уравнений в частных производных

Пусть Pn(λ) =
n∑

i=0

ciλ
i, Qn(λ) =

n∑
j=0

djλ
j , ci, dj ∈ C, i = 1, 2, . . . , n, j =

1, 2, . . . , n, dn 6= 0. Пусть � ⊂ Rd — ограниченная область с гладкой границей

∂�, операторный пучок �,B1, B2, . . . , Br регулярно эллиптичен [37], где

(�w)(ξ) =
∑

|q|≤2r

aq(ξ)∂
|q|w(ξ)

∂ξq11 ∂ξ
q2
2 . . . ∂ξqdd

, aq ∈ C∞(�),

(Blw)(ξ) =
∑

|q|≤rl

blq(ξ)∂
|q|w(ξ)

∂ξq11 ∂ξ
q2
2 . . . ∂ξqdd

, blq ∈ C∞(∂�), l = 1, 2, . . . , r,

q = (q1, q2, . . . , qd) ∈ Nd
0, |q| = q1 + · · ·+ qd. Положим

X = {w ∈ H2rn(�) : Bl�
kw(ξ) = 0, k = 0, 1, . . . , n− 1, l = 1, 2, . . . , r, ξ ∈ ∂�}.

Зададим оператор �1 : D�1 → L2(�) с областью определения [37]:

D�1 = H2r
{Bl}

(�) := {w ∈ H2r(�) : Blw(ξ) = 0, l = 1, 2, . . . , r, ξ ∈ ∂�},

действующий по правилу �1u = �u. Предположим, что оператор �1 самосопря-

женный и имеет ограниченный справа спектр. Тогда спектр σ(�1) оператора

�1 является действительным, дискретным, конечнократным и сгущается толь-

ко на −∞ [37]. Пусть 0 /∈ σ(�1), {ϕk : k ∈ N} — ортонормированная в L2(�)

система собственных функций оператора �1, занумерованных по невозрастанию

соответствующих собственных значений {λk : k ∈ N} с учетом их кратности.

ВозьмемK(t) := aebtI, a, b ∈ R\{0}, определим оператор свертки и интегро-

дифференциальный оператор типа Римана — Лиувилля

(JKh)(t) := a

t∫

0

eb(t−s)h(s) ds, (D1,Kh)(t) := aD1

t∫

0

eb(t−s)h(s) ds,

тогда преобразование Лапласа K̂(λ) = a
λ−b является аналитическим в �|b|, а

значит, выполняется условие (K̂).

Рассмотрим обратную задачу с не зависящим от времени элементом u

lim
t→0+

t∫

0

eb(t−s)v(ξ, s) ds = 0, ξ ∈ �, (14)

Bl�
kv(ξ, t) = 0, k = 0, 1, . . . , n− 1, l = 1, 2, . . . , r, (ξ, t) ∈ ∂�× (0, T ], (15)

aPn(�)D1

t∫

0

eb(t−s)v(ξ, s) ds = Qn(�)v(ξ, t) + c(t)u(ξ),

(ξ, t) ∈ �× (0, T ], v(ξ, T ) = vT (ξ), ξ ∈ �,

(16)
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где vT : �→ R, c : [0, T ]→ R — заданные функции.

Пусть n0 := max{j ∈ {0, 1, . . . , n} : cj 6= 0}, Z := {w ∈ H2rn0(�) :

BlA
kw(ξ) = 0, k = 0, 1, . . . , n0, l = 1, 2, . . . , r, ξ ∈ ∂�}. Оператор Pn(�) ∈

L (Z ;L2(�)) непрерывно обратим тогда и только тогда, когда Pn(λk) 6= 0 при

всех k ∈ N. В этом случае определим на банаховом пространстве Z линейный

оператор A = Pn(�)−1Qn(�), который ограничен в Z , если n0 = n, т. е. cn 6= 0.

Если же cn = 0 и n0 < n, имеем оператор A ∈ C l(Z ) с областью определения

DA := {w ∈ H2rn(�) : BlA
kw(ξ) = 0, k = 0, 1, . . . , n, l = 1, 2, . . . , r, ξ ∈ ∂�} ⊂ Z .

Задача (14)–(16) таким образом редуцирована к задаче (6), (7).

Теорема 5. Пусть Pn(λk) 6= 0, Qn(λk) 6= aPn(λk) при всех k ∈ N, c ∈
C((0, T ];R) ∩ L1(0, T ;R), u ∈ L2(�). Тогда задача (14)–(16) имеет единственное

решение

v(ξ, t) = c(t)
∞∑

k=1

〈u, ϕk〉ϕk(ξ)

aPn(λk)−Qn(λk)

− ab
t∫

0

∞∑

k=1

Pn(λk)〈u, ϕk〉ϕk(ξ)

(Qn(λk)− aPn(λk))2
exp


b(t− s)

Qn(λk)
Pn(λk)

Qn(λk)
Pn(λk) − a


 c(s) ds.

Здесь и далее символом 〈·, ·〉 будем обозначать скалярное произведение в

пространстве L2(�).

Доказательство. Нетрудно показать, что спектр оператора

A = Pn(�1)
−1Qn(�1)

есть множество σ(A) = {Qn(λk)/Pn(λk), k ∈ N}. Следовательно, неравенство

Qn(λk) 6= aPn(λk) для всех k ∈ N означает существование обратного оператора

(K(0)−A)−1 = (aI −A)
−1 ∈ L (Z ).

Заметим, что

lim
k→∞

bQn(λk)
Pn(λk)

Qn(λk)
Pn(λk) − a

= b,

поэтому существует

sup
k∈N

∣∣∣∣∣∣
bQn(λk)
Pn(λk)

Qn(λk)
Pn(λk) − a

∣∣∣∣∣∣
.

Рассмотрим равенство при k ∈ N

1

2πi

∫

|λ|=r

eλtdλ
aλ
λ−b −

Qn(λk)
Pn(λk)

=
1

2πi

∫

|λ|=r

(λ − b)eλtdλ
(
a− Qn(λk)

Pn(λk)

)(
λ− b

Qn(λk)

Pn(λk)

Qn(λk)

Pn(λk)
−a

)

=
−ab

(Qn(λk)
Pn(λk) − a

)2 exp


 btQn(λk)

Pn(λk)

Qn(λk)
Pn(λk) − a


 , r > sup

k∈N

∣∣∣∣∣∣
bQn(λk)
Pn(λk)

Qn(λk)
Pn(λk) − a

∣∣∣∣∣∣
,
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отсюда

Z(t) = −ab
∞∑

k=1

〈·, ϕk〉ϕk(Qn(λk)
Pn(λk) − a

)2 exp


 btQn(λk)

Pn(λk)

Qn(λk)
Pn(λk) − a


 , t ∈ R.

Возьмем f(t) = c(t)Pn(�1)
−1u(·) в теореме 2 и получим требуемое утвержде-

ние. �

Теорема 6. Пусть Pn(λk) 6= 0, Qn(λk) 6= aPn(λk) для всех k ∈ N, c ∈
C([0, T ];R), vT ∈ DA. Тогда обратная задача (14)–(17) корректна, если и только

если существует такое d > 0, что при всех k ∈ N
∣∣∣∣∣∣

c(T )

aPn(λk)−Qn(λk)
− abPn(λk)

(Qn(λk)− aPn(λk))2

T∫

0

exp


b(T − s)

Qn(λk)
Pn(λk)

Qn(λk)
Pn(λk) − a


 c(s) ds

∣∣∣∣∣∣
≥ d

или∣∣∣∣∣∣
c(T )

Qn(λk)
Pn(λk)

aPn(λk)−Qn(λk)
− abQn(λk)

(Qn(λk)− aPn(λk))2

T∫

0

exp


b(T − s)

Qn(λk)
Pn(λk)

Qn(λk)
Pn(λk) − a


 c(s) ds

∣∣∣∣∣∣
≥ d.

При этом

u(ξ) =

∞∑

k=1

〈vT , ϕk〉ϕk(ξ)

c(T )
aPn(λk)−Qn(λk) −

abPn(λk)
(Qn(λk)−aPn(λk))2

T∫
0

exp

(
b(T−s)

Qn(λk)

Pn(λk)

Qn(λk)

Pn(λk)
−a

)
c(s) ds

.

Доказательство. Здесь ν — функция единичного скачка в точке t = T .

Возьмем пространство U = L2(�) и оператор-функцию B(t) = c(t)Pn(�1)
−1 ∈

C([0, T ]; L (L2(�); Z )). Таким образом, задача (14)–(17) редуцирована к обрат-

ной задаче (6)–(8). Для данной задачи получаем оператор

χ := c(T )

∞∑

k=1

〈·, ϕk〉ϕk

aPn(λk)−Qn(λk)

− ab
∞∑

k=1

Pn(λk)〈·, ϕk〉ϕk(ξ)

(Qn(λk)− aPn(λk))2

T∫

0

exp


b(T − s)

Qn(λk)
Pn(λk)

Qn(λk)
Pn(λk) − a


 c(s) ds.

Из условий данной теоремы следует, что ‖χ−1‖L (DA;L2(�)) ≤ d−1, и по теореме 3

u = χ−1vT . �

Пусть теперь уравнение имеет вид

aPn(�)D1

t∫

0

eb(t−s)v(ξ, s) ds = Qn(�)v(ξ, t) + c(ξ)u(t), (ξ, t) ∈ �× (0, T ], (18)

и снабжено условиями

v(ξ0, t) = ψ(t), t ∈ (0, T ], (19)

где c : � → R, ψ : (0, T ] → R — заданные функции, ξ0 ∈ � — фиксированная

точка.

Рассмотрим задачу (14), (15), (18), (19).
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Теорема 7. Пусть Pn(λk) 6= 0, Qn(λk) 6= aPn(λk) для всех k ∈ N, c ∈ L2(�),

ξ0 ∈ �, ψ ∈ C((0, T ];R), D1,Kψ ∈ C([0, T ];R),

∞∑

k=1

〈c, ϕk〉ϕk(ξ0)

aPn(λk)−Qn(λk)
6= 0. (20)

Тогда задача (14), (15), (18), (19) имеет единственное решение, при этом выпол-

няется оценка

‖u‖C([0,T ];R) ≤ C‖D1,Kψ‖C([0,T ];R),

где C > 0 не зависит от ψ.

Доказательство. Возьмем пространство U = R и оператор-функцию B

в виде функции умножения на Pn(�1)
−1c ∈ C([0, T ]; Z ). Задача (14), (15),

(18), (19) редуцирована к обратной задаче (10)–(12). Условие (20) означает, что

существует (�K(0)(K(0)−A)−1B)−1 ∈ R. По теореме 4 получим требуемое. �
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Abstract: The unique solvability of a Cauchy-type problem and linear inverse coeffi-
cient problems for an evolution equation in a Banach space with a first-order Riemann–
Liouville integro-differential operator with a regular kernel is investigated. The operator
at the unknown function in the equation is assumed to be closed. The conditions for the
existence and uniqueness of a solution of the Cauchy type problem for a linear inhomo-
geneous equation are obtained. A criterion of correct solvability is found for the inverse
problem with a stationary unknown coefficient and with an integral overdetermination
condition in the Riemann–Stieltjes sense, which includes the condition of final overdeter-
mination as a special case. The conditions for the solvability and stability of a solution
of the inverse problem with a nonstationary unknown coefficient and an abstract overde-
termination condition on the interval are found. The abstract results obtained are used
in the study of linear inverse initial boundary value problems for equations with a first-
order Riemann–Liouville type regular integro-differential operator in a time variable,
with polynomials with respect to a self-adjoint elliptic differential operator in spatial

variables and with an unknown coefficient.
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