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1. Introduction

Denote by 42 the family of all analytic functions in the unit disk D = {z € C:
|z| < 1}. Let & be the subfamily of functions f normailized by f(0) = f/(0)—1=0,
i.e, of the type

f(z) = ianz”, ap :=1, (1.1)
n=1

and . be the subfamily of &7 possessing univalent (schlicht) mappings.

Let k be a positive integer. A domain U € C is said to be k-fold symmetric if
a rotation of U about the origin through an angle 2?” carries U to itself. A function
h is said to be k-fold symmetric in D if h(e*F z) = e*F h(z) for every z € . If h is

regular and k-fold symmetric in D, then
h(Z) = blz —+ bk+12k+1 -+ b2k+122k+1 +eee (12)

Conversely, if h is given by (1.2), then h is k-fold symmetric inside the circle of
convergence of the series (see [1]). The k**-root transform for the mapping f in
(1.1) is

G(2) = [ (INF =2+ bpnia 2™t (1.3)

n=1
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Vamshee et al. [2] introduced and interpreted the concept of Hankel determinant
for G(z) for f in (1.1), with ¢,¢,k e N={1,2,3,...}, as

br(t—1)+1 brti1 e br(t+q—2)+1
bit+1 be(tr1yrr - bk(t+q-1)+1
Hop i (f) = : . . (by =1). (1.4)
br(trg—2)+1 Ok(trq—1)+1  * Drtr2(g—1)—1]+1

In particular, if &k = 1 in (1.4), then it reduces to Hy1(f) = Hq+(f), the Hankel
determinant defined by Pommerenke [3] for the function f given in (1.1).
The hypergeometric function o Fy(a, b;c; z) is defined for |z| < 1 by the power
series
2 (@)n(b)p 2" abz ala+ 1)b(b+1) 22
Fila.bc:2) — Wn\Umz 22 (BT TS
2F1(a,b;¢;2) ; (c)n n! - c T cle+1) 2!
It is undefined (or infinite) if ¢ equals a non-positive integer. Here (q),, is the (rising)
Pochhammer symbol, which is defined as follows:

17 7’L:07
(Q)n{q(q+1)...(q+n—1)7 n > 0.

Ali et al. [4] derived exact estimates for |bogy1 — pb7 4|, the generalized Fekete—

Szegd functional related to the function G(z), while Vamshee et al. [5] studied

certain second Hankel determinants when f is a member of specific subfamilies of S.
S. Owa [6, 7] studied the class .#g with anaytic conditions

Re {(1 -p® +ﬁf’(Z)} S0, B3>0,
which was also studied by H. Saitoh [8].

For our study in this paper we consider second Hankel determinants Ha 1 i (f)
and Ha 5 i (f) and generalized Zalcman for initial coefficient of k**-root transforma-
tion for #3.

Denote by & the collection of all functions g called Carathéodory functions [9],

of the form

9(2) =1+ e, (1.5)
t=1

holomorphic in D and such that Reg(z) > 0 for z € D. The classes #g and &
are invariant under the rotations by Carathéodory Theorem (see [10, Vol. I, p. 80,
Theorem 3]).

For the proof of our main result we need the following lemmas, which contain

the well-known formulas for ¢z (e.g., [11, p. 166]) and for c3 due to Libera and
Zlotkiewicz [12-14].

Lemma 1.1 [11]. If g € &, then |c;| < 2 for t € N; the equality is attained for
the function g(z) = 2, 2 € D.

T 1-2
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Lemma 1.2 [15,16]. If g € &2, then |¢; — pcjci—;| <2 fori,j € N, i > j, and
w € [0, 1], which is same as |cp+k — pepck| < 2 for n,k € N with p € [0,1].

Lemma 1.3 [17]. If g € &, then
|Je} — Keieg + Les| < 2(|J| + |[K —2J| + |J — K + LI).

Lemma 1.4 [18]. If g € &, then
200 = 3 +1¢,  deg = ¢+ 2¢1t¢ — ertC? + 2t(1 — [¢]*)n,
while
8y = ¢ +3cit¢ + (4= 3¢1)1¢% + cft¢® + 4t(1 — [¢1*)(1 = |nl*)¢
+ 4t (1 = |¢) (ean — exCn — (),
where t := 4 — ¢2, for some (, n and & such that || <1, |n| <1, and |¢| < 1.
Result 1.1. Suppose that ¥ : [0,2] = R, k € N, 8 > 0, and ¥(c) is defined as

L = 56" )
12 (B+1)2k% (382 + 48+ 1)(28k + k)?
(48 +1)
(362 + 48 +1)(2Bk + k)2’

Then
U(c) <0.

PROOF. We can easily see that
128+ D428 +1)*(38 + Dk*W(c) = —66%(B + 1)°c?k? — 12(48 + 1)(8 + 1)*k?
+(28+1)2(3B+1)(k*—1)c® = —[c*(12B8% +163% + 7B+ 63°k* + 183*k* + 68°k* + 1)
+ 28+ 1)(58 + 1)(12 — A)k? + 128%(48* + 138 + 5)k*] < 0;
therefore, U(c) < 0. O

2. Main Results

Theorem 2.1. If f € #3, 3> 0, then
2
(26 + 1)k’
and the result is sharp for fo(z) := 222F1(17 %; %(2 + %);22) — 2.
Proor. For f € .3, there exists a holomorphic function g € & such that

|Ha2,1,6(f)] <

z
-8 s = g2), zeD (21)
Substitute the values for f, f" and g in (2.1), then
Apt1 = n n € N. (2.2)

1+ 8n’
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For the mapping f in (1.1), a simple calculation gives

LF()1F = [ D> ]

1 1 1-k
= {Z + Eazzk+1 + {Eag + ( )ag} 22k +1

1 (1-k) (1—k)(A —2k) 5\ sk1
+{ka 2 a2a3+Ta2 z

1—-k)(1 -2k
b,
(1—k)(1 — 2k)(1 — 3k)

>1d abati ] 2
Comparing the coefficients of zF1, 22FH1 2341 and 241 in (1.2) and (2.3), we
get

L (1—k
+ {Eag, + 22 (a§ + 2a9a4) +

1

brr1 = 702
1 (1-k) ,
b2k+1 == Eag + WG%
1 1—-k 1—-k)(1-2k
b1 = [E(M + ( o )a2a3 + %GS} ) (2.4)

bar+1 = [%ar) + (12;2k) (a3 + 2aza4) + wag%
(1—k)(1 = 2k)(1 — 3k) 4]
24)4 2
From (2.2) and (2.4), we obtain
o -G b  d(l—k) N Co
FLT B DR T T 2B )%k 28+ Dk
A1 —k)(1—2k) cac1 (1 — k) cs
a1 = 6B 1P | (BrDEBL DR BB DR (2:5)

(=R 201 =3kt (1= k)1~ 2k)cter (1— k)2

AR 24(B + 1)4k4 2(1+ B)2(1 + 2B8)k®  2(2B + 1)2k2

(1 — k)clcg + C4
(B+1D)(BB8+1)k2 4B+ Dk’

"3

Now, for ¢ =2 and t = 1 in (1.4), we have

1 br+1
H = . 2.6
2,1,k(f) b1 bogin ( )
Using the values of b; (j = k + 1,2k + 1) from (2.5) in (2.6), we get
c k+1)c?
Hy 1 k() = 7 (kv 1oy 2.7)

28+ 1Dk 2(8+1)2k%
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Taking modulus on both side and applying Lemma 1.2, we have

1 o (k+1)(28+1)c2 - 2
28+ k| 2k(B+1)2 |~ 28+ Dk
For fo(z) we obtain a1 = 1, az = 0, and ag = 2/(1 + 23); further, by = 0 and
br+1 = 2/(1+ 28)k, whence the result follows. O

|Ha2,1,6(f)] =

Theorem 2.2. If f € .#3 and 3 > 0, then

4
(28k + k)?’

and the result is sharp for fo(z) given in Theorem 2.1.

|Hz,2,5(f)] <

PRrROOF. Now, for ¢ =2 and ¢t = 2 in (1.4), we get

br1 bart1

Hazilf) = bar+1 b3rt1

. (2.9)

Putting the calculated values of bji41, for j € {1,2,3} from (2.5) into (2.9), we get

c3e1 ct(k? —1) c3
(382 +48 + 1)k2  12(B + 1)*%k4 (26K + k)2

Substituting the values of ¢ and ¢ from Lemma 1.4 on the right-hand side of (2.10),

Hyok(f) =

(2.10)

it simplifies to

Ak2 -1 2.4
H2,2,k(f) _ 1( 4)4 + - 6 1 5
12(8 + 1)%k* 4362 + 45 +1)(28k + k)
2,2 1—1c2
+(4—C%) _ - ch : + 012( |C| )77 >
43652 + 458 + 1)k 2362 +45 + 1)k
4 — )2 2.2
B Gl S Fer . (2.11)
420k + k)2 2(36%2 +45+1)(2Bk + k)2
Taking modulus on both sides and then applying the triangle inequality in the above
expression, while using ¢; := ¢ € [0,2], |¢| := z € [0,1], and |n| < 1, we have
C4(k2—1) N 5204
12(6 + 1)%k*  4(36%2 + 45+ 1)(2Bk + k)2
2,.2 1 22
A=) 20510 7 2( ) 2
4362 + 46 + 1)k 2382 +45+ 1)k
(4 — c?)a? N JeRteatis )
(28k + k)2 2332 +48+1)(28k + k)2 )’

|Hz,2,5(f)] <

3
which is equivalent to
< C4(I€2 _ 1) 5204
'S RGO 16 18 D25 h?
(4 2)( c N JeRteatis
T EE T DR 2357 148 )28k 1 k)2

|H2 2.1 (f)
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(2—c)z?(68% + 83 + B%(—c) + 2))
4382 + 46 + 1)(28k + k)?
For ¢ € [0,2] and 8 > 0 all terms in RHS are positive, thus,
| - C4(k2—1) 5204
T 12(8 + )%kt 4382 + 48 + 1)(28k + k)?
+(4 - 02)( < + Fe
2382 +48+1)k%  2(382 +48+1)(2B8k + k)2
N (2—10¢)(68% + 8B+ B*(—c) + 2))
4(382 + 48 + 1)(2Bk + k)?

|Hz,2,,(f)

Ll k-1 652
12 (B+ 1)k (382 448+ 1)(28k + k)?
(=48 — 1)¢? 4 , 4 4
=v <
B3 4B @Bk ke @k ke O @Rk R S @Bk R
since ¥(c) < 0 by Result 1.1.
For fo(z) we obtain a1 = 1, as = a4 = 0, and a3 = 2/(1 + 208), then, bxr1 =
bsk+1 = 0 and br1 = 2/(1 + 28)k, whence follows the result. O

Theorem 2.3. If f € .#3 and 3 > 0, then

2
b1 — bps1b <=
| 3k+1 k+1 2k+1| ~ (35+ 1)]{3

and the result is sharp for f1(z) := 222F1(1, %; %(3 + %);23) —z.
PrROOF. Using the values of bj1 for j € {1,2,3} from (2.5) in the expression
b3k 1 — bry1bari1, we get

c3(k? -1 o c3
bak+1 — bk+1bok 1 = 3(1é+ 1)3]33 RSV RS + B3+ Dk (2.12)
Taking modulus on both sides and then applying Lemma 1.3, we have
K -1 1 2(k% -1
P41 = B baria] < 2 H 3 1ok | ‘ B+12B+ 1k 3(/§ T 1)3/13
k2 -1 1 1
" ‘3(6 TR (B DEd Dk (38 1>kH
k2 -1 48 + 332%k% +28k% + k2 + 2
B [3(5 TR T 38 128 L DR
N —64% — 58 + 64k + 1263k + 126%k% + 58k% + k% — 1} B 2
3(6+1)3(28+1)(38+1)k3 B8+ 1)k’

For f1(z) we obtaina; =1, az = a3 = 0, and aqy = 2/(14-373), while by 1 = bap11 =0
and bsg+1 = 2/(1 + 30)k, whence follows the required. O
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