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1. Introduction

Denote by H the family of all analytic functions in the unit disk D = {z ∈ C :

|z| < 1}. Let A be the subfamily of functions f normailized by f(0) = f ′(0)−1 = 0,

i.e, of the type

f(z) =

∞∑

n=1

anz
n, a1 := 1, (1.1)

and S be the subfamily of A possessing univalent (schlicht) mappings.

Let k be a positive integer. A domain U ∈ C is said to be k-fold symmetric if

a rotation of U about the origin through an angle 2π
k carries U to itself. A function

h is said to be k-fold symmetric in D if h(e
2πi
k z) = e

2πi
k h(z) for every z ∈ D. If h is

regular and k-fold symmetric in D, then

h(z) = b1z + bk+1z
k+1 + b2k+1z

2k+1 + · · · . (1.2)

Conversely, if h is given by (1.2), then h is k-fold symmetric inside the circle of

convergence of the series (see [1]). The kth-root transform for the mapping f in

(1.1) is

G(z) := [f(zk)]
1
k = z +

∞∑

n=1

bkn+1z
kn+1. (1.3)
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Vamshee et al. [2] introduced and interpreted the concept of Hankel determinant

for G(z) for f in (1.1), with q, t, k ∈ N = {1, 2, 3, . . .}, as

Hq,t,k(f) =

∣∣∣∣∣∣∣∣∣

bk(t−1)+1 bkt+1 · · · bk(t+q−2)+1

bkt+1 bk(t+1)+1 · · · bk(t+q−1)+1

...
...

...
...

bk(t+q−2)+1 bk(t+q−1)+1 · · · bk[t+2(q−1)−1]+1

∣∣∣∣∣∣∣∣∣
(b1 = 1). (1.4)

In particular, if k = 1 in (1.4), then it reduces to Hq,t,1(f) = Hq,t(f), the Hankel

determinant defined by Pommerenke [3] for the function f given in (1.1).

The hypergeometric function 2F1(a, b; c; z) is defined for |z| ≤ 1 by the power

series

2F1(a, b; c; z) =

∞∑

n=0

(a)n(b)n
(c)n

zn

n!
= 1 +

ab

c

z

1!
+
a(a+ 1)b(b+ 1)

c(c+ 1)

z2

2!
+ · · · .

It is undefined (or infinite) if c equals a non-positive integer. Here (q)n is the (rising)

Pochhammer symbol, which is defined as follows:

(q)n =

{
1, n = 0,

q(q + 1) · · · (q + n− 1), n > 0.

Ali et al. [4] derived exact estimates for |b2k+1 − µb2k+1|, the generalized Fekete–

Szegö functional related to the function G(z), while Vamshee et al. [5] studied

certain second Hankel determinants when f is a member of specific subfamilies of S.

S. Owa [6, 7] studied the class Iβ with anaytic conditions

Re

{
(1− β)

f(z)

z
+ βf ′(z)

}
> 0, β ≥ 0,

which was also studied by H. Saitoh [8].

For our study in this paper we consider second Hankel determinants H2,1,k(f)

and H2,2,k(f) and generalized Zalcman for initial coefficient of kth-root transforma-

tion for Iβ .

Denote by P the collection of all functions g called Carathéodory functions [9],

of the form

g(z) = 1 +

∞∑

t=1

ctz
t, (1.5)

holomorphic in D and such that Re g(z) > 0 for z ∈ D. The classes Iβ and P

are invariant under the rotations by Carathéodory Theorem (see [10, Vol. I, p. 80,

Theorem 3]).

For the proof of our main result we need the following lemmas, which contain

the well-known formulas for c2 (e.g., [11, p. 166]) and for c3 due to Libera and

Zlotkiewicz [12–14].

Lemma 1.1 [11]. If g ∈P, then |ct| ≤ 2 for t ∈ N; the equality is attained for

the function g(z) = 1+z
1−z , z ∈ D.
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Lemma 1.2 [15, 16]. If g ∈P, then |ci − µcjci−j | ≤ 2 for i, j ∈ N, i > j, and

µ ∈ [0, 1], which is same as |cn+k − µcnck| ≤ 2 for n, k ∈ N with µ ∈ [0, 1].

Lemma 1.3 [17]. If g ∈P, then
∣∣Jc31 −Kc1c2 + Lc3

∣∣ ≤ 2(|J |+ |K − 2J |+ |J −K + L|).

Lemma 1.4 [18]. If g ∈P, then

2c2 = c21 + tζ, 4c3 = c31 + 2c1tζ − c1tζ2 + 2t(1− |ζ|2)η,

while

8c4 = c41 + 3c21tζ +
(
4− 3c21

)
tζ2 + c21tζ

3 + 4t(1− |ζ|2)(1− |η|2)ξ
+ 4t(1− |ζ|2)(c1η − c1ζη − ζη2),

where t := 4− c21, for some ζ, η and ξ such that |ζ| ≤ 1, |η| ≤ 1, and |ξ| ≤ 1.

Result 1.1. Suppose that � : [0, 2]→ R, k ∈ N, β ≥ 0, and �(c) is defined as

�(c) =
1

12
c2
(

k2 − 1

(β + 1)4k4
− 6β2

(3β2 + 4β + 1)(2βk + k)2

)

− (4β + 1)

(3β2 + 4β + 1)(2βk + k)2
.

Then

�(c) ≤ 0.

Proof. We can easily see that

12(β + 1)4(2β + 1)2(3β + 1)k4�(c) = −6β2(β + 1)3c2k2 − 12(4β + 1)(β + 1)3k2

+(2β+1)2(3β+1)(k2−1)c2 = −[c2(12β3 +16β2 +7β+6β5k2 +18β4k2 +6β3k2 +1)

+ (2β + 1)(5β + 1)(12− c2)k2 + 12β2(4β2 + 13β + 5)k2] ≤ 0;

therefore, �(c) ≤ 0. �

2. Main Results

Theorem 2.1. If f ∈ Iβ , β ≥ 0, then

|H2,1,k(f)| ≤ 2

(2β + 1)k
,

and the result is sharp for f0(z) := 2z2F1

(
1, 1

2β ; 1
2

(
2 + 1

β

)
; z2
)
− z.

Proof. For f ∈ Iβ , there exists a holomorphic function g ∈P such that

(1− β)
f(z)

z
+ βf ′(z) = g(z), z ∈ D. (2.1)

Substitute the values for f, f ′ and g in (2.1), then

an+1 =
cn

1 + βn
, n ∈ N. (2.2)



84 K. S. Kumar, B. Rath, D. V. Krishna, and G. K. S. Viswanadh

For the mapping f in (1.1), a simple calculation gives

[f(zk)]
1
k =

[
zk +

∞∑

n=2

anz
nk

] 1
k

=

[
z +

1

k
a2z

k+1 +

{
1

k
a3 +

(1− k)
2k2

a2
2

}
z2k+1

+

{
1

k
a4 +

(1− k)
k2

a2a3 +
(1− k)(1 − 2k)

6k3
a3
2

}
z3k+1

+

{
1

k
a5 +

(1 − k)
2k2

(a2
3 + 2a2a4) +

(1− k)(1 − 2k)

2k3
a2
2a3

+
(1− k)(1− 2k)(1− 3k)

24k4
a4
2

}
z4k+1 + · · ·

]
. (2.3)

Comparing the coefficients of zk+1, z2k+1, z3k+1, and z4k+1 in (1.2) and (2.3), we

get

bk+1 =
1

k
a2,

b2k+1 =
1

k
a3 +

(1− k)
2k2

a2
2,

b3k+1 =

[
1

k
a4 +

(1− k)
k2

a2a3 +
(1− k)(1 − 2k)

6k3
a3
2

]
, (2.4)

b4k+1 =

[
1

k
a5 +

(1− k)
2k2

(
a2
3 + 2a2a4

)
+

(1− k)(1 − 2k)

2k3
a2
2a3

+
(1− k)(1 − 2k)(1− 3k)

24k4
a4
2

]
.

From (2.2) and (2.4), we obtain

bk+1 =
c1

(β + 1)k
, b2k+1 =

c21(1− k)
2(β + 1)2k2

+
c2

(2β + 1)k
,

b3k+1 =
c31(1− k)(1− 2k)

6(β + 1)3k3
+

c2c1(1− k)
(β + 1)(2β + 1)k2

+
c3

(3β + 1)k
, (2.5)

b4k+1 =
(1− k)(1− 2k)(1− 3k)c41

24(β + 1)4k4
+

(1− k)(1− 2k)c21c2
2(1 + β)2(1 + 2β)k3

+
(1− k)c22

2(2β + 1)2k2

+
(1− k)c1c3

2(β + 1)(3β + 1)k2
+

c4
(4β + 1)k

.

Now, for q = 2 and t = 1 in (1.4), we have

H2,1,k(f) =

∣∣∣∣
1 bk+1

bk+1 b2k+1

∣∣∣∣ . (2.6)

Using the values of bj (j = k + 1, 2k + 1) from (2.5) in (2.6), we get

H2,1,k(f) =
c2

(2β + 1)k
− (k + 1)c21

2(β + 1)2k2
. (2.7)
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Taking modulus on both side and applying Lemma 1.2, we have

|H2,1,k(f)| = 1

(2β + 1)k

∣∣∣∣c2 −
(k + 1)(2β + 1)c21

2k(β + 1)2

∣∣∣∣ ≤
2

(2β + 1)k
. (2.8)

For f0(z) we obtain a1 = 1, a2 = 0, and a3 = 2/(1 + 2β); further, bk+1 = 0 and

bk+1 = 2/(1 + 2β)k, whence the result follows. �

Theorem 2.2. If f ∈ Iβ and β ≥ 0, then

|H2,2,k(f)| ≤ 4

(2βk + k)2
,

and the result is sharp for f0(z) given in Theorem 2.1.

Proof. Now, for q = 2 and t = 2 in (1.4), we get

H2,2,k(f) =

∣∣∣∣
bk+1 b2k+1

b2k+1 b3k+1

∣∣∣∣ . (2.9)

Putting the calculated values of bjk+1, for j ∈ {1, 2, 3} from (2.5) into (2.9), we get

H2,2,k(f) =
c3c1

(3β2 + 4β + 1)k2
+

c41(k
2 − 1)

12(β + 1)4k4
− c22

(2βk + k)2
. (2.10)

Substituting the values of c2 and c3 from Lemma 1.4 on the right-hand side of (2.10),

it simplifies to

H2,2,k(f) =
c41(k

2 − 1)

12(β + 1)4k4
+

β2c41
4(3β2 + 4β + 1)(2βk + k)2

+ (4− c21)
(
− c21ζ

2

4(3β2 + 4β + 1)k2
+

c1(1− |ζ|2)η
2(3β2 + 4β + 1)k2

−
(
4− c21

)
ζ2

4(2βk + k)2
+

β2c21ζ

2(3β2 + 4β + 1)(2βk + k)2

)
. (2.11)

Taking modulus on both sides and then applying the triangle inequality in the above

expression, while using c1 := c ∈ [0, 2], |ζ| := x ∈ [0, 1], and |η| ≤ 1, we have

|H2,2,k(f)| ≤ c4(k2 − 1)

12(β + 1)4k4
+

β2c4

4(3β2 + 4β + 1)(2βk + k)2

+ (4− c2)
(

c2x2

4(3β2 + 4β + 1)k2
+

c(1− x2)

2(3β2 + 4β + 1)k2

+
(4− c2)x2

4(2βk + k)2
+

β2c2x

2(3β2 + 4β + 1)(2βk + k)2

)
,

which is equivalent to

|H2,2,k(f)| ≤ c4(k2 − 1)

12(β + 1)4k4
+

β2c4

4(3β2 + 4β + 1)(2βk + k)2

+ (4− c2)
(

c

2(3β2 + 4β + 1)k2
+

β2c2x

2(3β2 + 4β + 1)(2βk + k)2
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+
(2− c)x2(6β2 + 8β + β2(−c) + 2)

4(3β2 + 4β + 1)(2βk + k)2

)
.

For c ∈ [0, 2] and β ≥ 0 all terms in RHS are positive, thus,

|H2,2,k(f)| ≤ c4(k2 − 1)

12(β + 1)4k4
+

β2c4

4(3β2 + 4β + 1)(2βk + k)2

+ (4− c2)
(

c

2(3β2 + 4β + 1)k2
+

β2c2

2(3β2 + 4β + 1)(2βk + k)2

+
(2− c)(6β2 + 8β + β2(−c) + 2)

4(3β2 + 4β + 1)(2βk + k)2

)

=
1

12
c4
(

k2 − 1

(β + 1)4k4
− 6β2

(3β2 + 4β + 1)(2βk + k)2

)

(−4β − 1)c2

(3β2 + 4β + 1)(2βk + k)2
+

4

(2βk + k)2
= �(c)c2 +

4

(2βk + k)2
≤ 4

(2βk + k)2
,

since �(c) ≤ 0 by Result 1.1.

For f0(z) we obtain a1 = 1, a2 = a4 = 0, and a3 = 2/(1 + 2β), then, bk+1 =

b3k+1 = 0 and bk+1 = 2/(1 + 2β)k, whence follows the result. �

Theorem 2.3. If f ∈ Iβ and β ≥ 0, then

|b3k+1 − bk+1b2k+1| ≤
2

(3β + 1)k
,

and the result is sharp for f1(z) := 2z2F1

(
1, 1

3β ; 1
3

(
3 + 1

β

)
; z3
)
− z.

Proof. Using the values of bjk+1 for j ∈ {1, 2, 3} from (2.5) in the expression

b3k+1 − bk+1b2k+1, we get

b3k+1 − bk+1b2k+1 =
c31(k

2 − 1)

3(β + 1)3k3
− c2c1

(β + 1)(2β + 1)k
+

c3
(3β + 1)k

. (2.12)

Taking modulus on both sides and then applying Lemma 1.3, we have

|b3k+1 − bk+1b2k+1| ≤ 2

[∣∣∣∣
k2 − 1

3(β + 1)3k3

∣∣∣∣+
∣∣∣∣

1

(β + 1)(2β + 1)k
− 2(k2 − 1)

3(β + 1)3k3

∣∣∣∣

+

∣∣∣∣
k2 − 1

3(β + 1)3k3
− 1

(β + 1)(2β + 1)k
+

1

(3β + 1)k

∣∣∣∣
]

= 2

[
k2 − 1

3(β + 1)3k3
+

4β + 3β2k2 + 2βk2 + k2 + 2

3(β + 1)3(2β + 1)k3

+
−6β2 − 5β + 6β4k2 + 12β3k2 + 12β2k2 + 5βk2 + k2 − 1

3(β + 1)3(2β + 1)(3β + 1)k3

]
=

2

(3β + 1)k
.

For f1(z) we obtain a1 = 1, a2 = a3 = 0, and a4 = 2/(1+3β), while bk+1 = b2k+1 = 0

and b3k+1 = 2/(1 + 3β)k, whence follows the required. �
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