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Введение

Изучаемые в работе задачи относятся к классу нелинейных обратных ко-

эффициентных задач временного типа для параболических уравнений (термин

«временного типа» в данном случае означает, что неизвестный коэффициент за-

висит лишь от одной выделенной — временной — переменной). Степень новиз-

ны полученных ниже результатов определяется прежде всего тем, что основное

уравнение в данной работе вырождающееся. Обратные коэффициентные зада-

чи для параболических уравнений представляются достаточно хорошо изучен-

ными (см. монографии [1–4], статьи [5–8]); как наиболее близкую по постановке

и применяемым методом выделим статью [8]. Вместе с тем заметим, что обрат-

ные коэффициентные задачи для вырождающихся параболических уравнений

изучены мало.

В ряде работ (см. [2, 9–12]) изучалась разрешимость обратных коэффи-

циентных задач для вырождающихся параболических уравнений, но характер

вырождения в них был иной, нежели в настоящей работе. Близкие по характеру
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вырождения уравнения и соответственно обратные задачи для них изучались в

[13, 14], но вид вырождения в них также был иной.

Таким образом, полученные ниже результаты новые.

Заметим следующее. Изучаемые в работе задачи имеют модельный вид.

Возможные усиления и обобщения полученных в работе результатов описаны в

конце статьи.

1. Постановка задач

Пусть � ⊂ Rn — ограниченная область с гладкой (для простоты бесконеч-

но дифференцируемой) границей � , Q — цилиндр � × (0, T ) конечной высоты

T , S = � × (0, T ) — боковая граница Q, ϕ(t), N(x), h(t) и f(x, t) — заданные

функции, определенные при x ∈ �, t ∈ [0, T ].

Обратная задача I. Найти функции u(x, t) и q(t), связанные в цилиндре

Q уравнением

ut − ϕ(t)�u + q(t)u = f(x, t) (1)

при выполнении для функции u(x, t) условий

u(x, 0) = u0(x), x ∈ �, (2)

∂u(x, t)

∂ν

∣∣∣∣
S

= 0 (3)

(ν — вектор внутренней нормали и � в текущей точке x),

∫

�

N(x)u(x, t) dx = h(t), t ∈ (0, T ). (4)

Обратная задача II. Найти функции u(x, t) и q(t), связанные в цилиндре

Q уравнением (1), при выполнении для функции u(x, t) условий и (2), (3), а

также условия ∫

�

N(x)u(x, t) dSx = h(t), t ∈ (0, T ). (5)

В обратных задачах I и II будет предполагаться, что функция ϕ(t) неотри-

цательна при t ∈ [0, T ]. Именно это предположение и означает, что уравнение

(1) может вырождаться. Далее условия (2) и (3) представляются условиями

обычной второй начально-краевой задачи для параболических уравнений второ-

го порядка (условие (3) есть хорошо известное условие непротекания), условия

(4) и (5) являются условиями интегрального переопределения, соответственно

внутреннего интегрального переопределения и граничного интегрального пере-

определения.
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2. Разрешимость обратной задачи I

Положим

g1(t) =

∫

�

N(x)f(x, t) dx − h′(t), m1 = vraimin
[0,T ]

g1(t), ϕ0 = max
[0,T ]

ϕ(t),

M1 =

n∑

i=1

∫

Q

ϕ−1(t)f2
xi

(x, t) dxdt + ‖�u0‖2L2(�),

M2 = T ‖�f‖L2(Q) +
(
T 2‖�f‖2L2(Q) + T ‖�u0‖2L2(�)

)1/2
,

M3 = ‖�u0‖2L2(�) + 2M2‖�f‖L2(Q).

Теорема 1. Пусть выполняются условия

ϕ(t) ∈ C([0, T ]), ϕ(t) ≥ 0 при t ∈ [0, T ];

N(x) ∈ L2(�);

h(t) ∈ C1([0, T ]), h(t) ≥ h0 > 0 при t ∈ [0, T ];

u0(x) ∈W 4
2 (�),

∂u0(x)

∂ν
=
∂�u0(x)

∂ν
= 0 при x ∈ � ,

∫

�

N(x)u0(x)dx = h(0),

а также одно из следующих условий

(а) f(x, t) ∈ L∞(0, T ;L2(�)), ϕ−
1
2 (t)fxi

(x, t) ∈ L2(Q), i = 1, . . . , n,

ϕ0M
1
2

1 ‖N‖L2(�) ≤ m1

или

(б) f(x, t) ∈ L2

(
0, T ;W 2

2 (�)
)
, ∂f(x,t)

∂ν

∣∣
S

= 0, ϕ0M
1
2

3 ‖N‖L2(�) ≤ m1.

Тогда обратная задача I имеет решение {u(x, t), q(t)} такое, что

u(x, t) ∈ L∞
(
0, T ;W 2

2 (�)
)
, ϕ

1
2 (t)�u(x, t) ∈ L2

(
0, T ;W 1

2 (�)
)
,

ut(x, t) ∈ L2(Q), q(t) ∈ L∞([0, T ]), q(t) ≥ 0 при t ∈ [0, T ].

Доказательство. Воспользуемся методом регуляризации и методом сре-

зок. Пусть

G(ξ) =





ξ, если |ξ| ≤ m1,

m1, если ξ > m1,

−m1, если ξ < −m1.

Для положительного числа ε рассмотрим задачу: найти функцию u(x, t),

являющуюся в прямоугольнике Q решением уравнения

Lεu ≡ ut + ε�2u− ϕ(t)�u +
1

h(t)

[
g1(t) + ϕ(t)G

(∫

�

N(x)�u(x, t) dx

)]
u = f(x, t)

(6)

и такую, что для нее выполняются условия (2) и (3), а также условие

∂�u(x, t)

∂ν

∣∣∣∣
S

= 0. (7)
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Данная задача представляет собой вторую начально-краевую задачу для нели-

нейного «нагруженного» [15, 16] параболического уравнения четвертого поряд-

ка. Поскольку в этом уравнении для функции G(ξ) выполняется условие Лип-

щица, краевая задача (6), (2), (3), (7) при фиксированном ε и принадлеж-

ности функции f(x, t) пространству L2(Q) имеет решение u(x, t) такое, что

u(x, t) ∈ L2

(
0, T ;W 4

2 (�)
)
, ut(x, t) ∈ L2(Q). Покажем, что при выполнении усло-

вий теоремы для решений имеют место равномерные по ε оценки, позволяющие

в семействе задач (6), (2), (3), (7) организовать процедуру предельного перехо-

да.

Рассмотрим равенство

t∫

0

∫

�

Lεu(x, τ)�2u(x, τ) dxdτ =

t∫

0

∫

�

f(x, τ)�2u(x, τ) dxdτ.

Интегрируя по частям, это равенство нетрудно преобразовать к виду

1

2

∫

�

[�u(x, t)]2 dx− 1

2

∫

�

[�u0(x)]
2 dx+

n∑

i=1

t∫

0

∫

�

ϕ(τ)[�uxi
(x, τ)]2 dxdτ

+

t∫

0

∫

�

1

h(τ)

[
g1(τ) + ϕ(t)G

(∫

�

N(x)�u(x, τ) dx

)]
[�u(x, τ)]2 dxdτ

+ ε

t∫

0

∫

�

[�2u(x, τ)]2 dxdτ =

t∫

0

∫

�

f(x, τ)�2u(x, τ) dxdτ. (8)

Заметим, что предпоследнее слагаемое в левой части (8) неотрицательно.

Если выполняется условие (а), то вследствие равенства

t∫

0

∫

�

f(x, τ)�2u(x, τ) dxdτ = −
n∑

i=1

t∫

0

∫

�

ϕ−1/2(τ)fxi
(x, τ)ϕ1/2(τ)�uxi

(x, τ) dxdτ

из (8) вытекает оценка

∫

�

[�u(x, t)]2 dx+

n∑

i=1

t∫

0

∫

�

ϕ(τ)[�uxi
(x, τ)]2 dxdτ + ε

t∫

0

∫

�

[�2u(x, τ)]2 dxdτ ≤M1.

(9)

Далее, если выполняется условие (б), то имеет место равенство

t∫

0

∫

�

f(x, τ)�2u(x, τ) dxdτ =

t∫

0

∫

�

�f(x, τ)�u(x, τ) dxdτ ;

с помощью этого равенства из (8) нетрудно вывести оценки

(∫

Q

[�u(x, t)]2 dxdt

)1/2

≤M2, (10)
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∫

�

[�u(x, t)]2 dx ≤M3, (11)

n∑

i=1

t∫

0

∫

�

ϕ(τ)[�uxi
(x, τ)]2 dxdτ + ε

t∫

0

∫

�

[�2u(x, τ)]2 dxdτ ≤ 1

2
M3. (12)

Из оценки (9) при выполнении условия (а) или из оценок (10)–(12) при

выполнении условия (б) вытекает последняя требуемая оценка

t∫

0

∫

�

u2
τ (x, τ) dxdτ ≤M4, (13)

постоянная M4 в которой определяется постоянной M1 или постоянными M2 и

M3.

Из оценок (9) или (11), а также из последнего неравенства условий (а) или

(б) следует, что выполняется равенство

G

(∫

�

N(x)�u(x, t) dx

)
=

∫

�

N(x)�u(x, t) dx. (14)

Далее, полученные априорные оценки (9)–(13), равенство (14) и свойства

рефлексивности гильбертова пространства позволяют найти последовательность

{εm}∞m=1 положительных чисел такую, что εm → 0 при m→∞, последователь-

ность {um(x, t)}∞m=1 решений краевой задачи (6), (2), (3), (7) с ε = εm, а также

функцию u(x, t) такие, что при m → ∞ имеет место слабая в пространстве

L2(Q) сходимость

Lεmum → ut − ϕ(t)�u +
1

h(t)

[
g1(t) + ϕ(t)

∫

�

N(x)�u(x, t) dx

]
u.

Очевидно, что функция u(x, t) будет принадлежать требуемому в теореме клас-

су и что функции u(x, t) и q(t), определенная равенством

q(t) =
1

h(t)

[
g1(t) + ϕ(t)

∫

�

N(x)�u(x, t) dx

]
,

будут связаны в цилиндре Q уравнением (1).

Принадлежность найденной функции q(t) классу L∞([0, T ]) и ее неотрица-

тельность очевидны.

Наконец, выполнение для функции u(x, t) условия переопределения (4) по-

казывается стандартным образом (см., например, [8]).

Все сказанное выше и означает, что пара {u(x, t), q(t)} представляет собой

искомое решение обратной задачи I.

Теорема доказана.

Обсудим вопрос о единственности решений обратной задачи I.

Обозначим через W1 множество функций {u(x, t), q(t)} таких, что u(x, t) ∈
L∞
(
0, T ;W 1

2 (�)
)
∩ L2

(
0, T ;W 2

2 (�)
)
, q(t) ∈ L∞([0, T ]), q(t) ≥ 0 при t ∈ [0, T ].
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Теорема 2. Пусть выполняются условия

ϕ(t) ∈ C([0, T ]), ϕ(t) ≥ 0 при t ∈ [0, T ]; N(x) ∈W 1
2 (�).

Тогда любые два решения {u1(x, t), q1(t)} и {u2(x, t), q2(t)} обратной задачи I,

принадлежащие множеству W1, совпадают.

Доказательство. Обозначим ω(x, t) = u1(x, t) − u2(x, t). Для функции

qi(t), i = 1, 2, имеют место равенства

qi(t) =
1

h(t)

[
g1(t)− ϕ(t)

n∑

j=1

∫

�

Nyj
(y)uiyj

(y) dy

]
.

Следовательно, для функции ω(x, t) выполняется уравнение

ωt − ϕ(t)�ω + q1(t)ω =
ϕ(t)

h(t)

(
n∑

j=1

∫

�

Nyj
(y)ωyj

(y, t) dy

)
u2(x, t).

Умножим это уравнение на функцию −�ω и проинтегрируем по простран-

ственным переменным по области � и по временной переменной от 0 до текущей

точки. Получим равенство

n∑

k=1

∫

�

ω2
xk

(x, t) dx+

t∫

0

∫

�

ϕ(τ)[�ω(x, τ)]2 dxdτ +

n∑

k=1

t∫

0

∫

�

q1(τ)ω
2
xk

(x, τ) dxdτ

=

n∑

k=1

t∫

0

∫

�

[
ϕ(τ)

h(τ)
u2xk

(x, τ)ωxk
(x, τ)

(
n∑

j=1

∫

�

Nyj
(y)ωyk

(y, τ)

)
dy

]
dxdτ.

Оценивая правую часть этого равенства с помощью неравенства Гёльдера,

придем к оценке

n∑

k=1

∫

�

ω2
xk

(x, t) dx ≤M0

n∑

k=1

t∫

0

∫

�

ω2
xk

(x, τ) dxdτ,

в которой число M0 определяется функциями ϕ(t), N(x), h(t) и u2(x, t). Из

этой оценки и леммы Гронуолла вытекает, что функция u1(x, t) совпадает с

функцией u2(x, t). Но тогда и функция q1(t) совпадает с функцией q2(t), а это

и означает, что для обратной задачи I имеет место свойство единственности

решений.

Теорема доказана.

3. Разрешимость обратной задачи II

Исследование разрешимости обратной задачи II в целом проводится вполне

аналогично тому, как проводилось исследование разрешимости обратной зада-

чи I, т. е. с помощью метода регуляризации, метода срезок и априорных оценок.
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Пусть ψ(x) — функция из пространства W 1
2 (�). Для этой функции выпол-

няется неравенство ∫

�

ψ2(x) dS ≤ d0‖ψ‖2W 1
2
(�), (15)

постоянная d0 в котором определяется лишь областью � (см. [17, 18]).

Положим

g2(t) =

∫

�

N(x)f(x, t)dS − h′0(t), m2 = vraimin
[0,T ]

g2(t),

M5 =

n∑

i=1

‖ϕ− 1
2�2f‖2L2(Q) +

n∑

i=1

‖�u0xi
‖2L2(�), M6 = max

i=1,...,n
(‖�fxi

‖L2(Q)),

M7 =
√
nTM6 +

(
nT 2M2

6 + T
n∑

i=1

‖�u0xi
‖2L2(�)

) 1
2

,

M8 =

n∑

i=1

‖�u0xi
‖2L2(�) + 2M6M7,

Mij = Mi +Mj, i = 1 или i = 3, j = 5 или j = 5.

Определим условия, которые понадобятся ниже:

(α) f(x, t) ∈ L∞(0, T ;L2(�)), ϕ−
1
2 (t)fxk

(x, t) ∈ L2(Q), k = 1, . . . , n;

(β) f(x, t) ∈ L2

(
0, T ;W 2

2 (�)
)
,

∂f(x, t)

∂ν

∣∣∣∣
S

= 0;

(γ) f(x, t) ∈ L∞(0, T ;L2(S)), ϕ−
1
2 (t)�f(x, t) ∈ L2(Q);

(δ) f(x, t) ∈ L2

(
0, T ;W 3

2 (�)
)
,

∂f(x, t)

∂ν

∣∣∣∣
S

= 0.

Теорема 3. Пусть выполняются условия

ϕ(t) ∈ C([0, T ]), ϕ(t) ≥ 0 при t ∈ [0, T ]; N(x) ∈ L2(� );

h(t) ∈ C1([0, T ]), h(t) ≥ h0 > 0 при t ∈ [0, T ]; u0(x) ∈ W 6
2 (�),

∂u0(x)

∂ν
=
∂�u0(x)

∂ν
=
∂�2u0(x)

∂ν
= 0 при x ∈ � ,

∫

�

N(x)u0(x) dS = h(0),

а также либо условия (α) и (γ) и условие d0ϕ0M
1/2
15 ≤ m2, либо условия (α) и

(δ) и условие d0ϕ0M
1/2
18 ≤ m2, либо условия (β) и (γ) и условие d0ϕ0M

1/2
35 ≤ m2,

либо условия (β) и (δ) и условие d0ϕ0M
1/2
38 ≤ m2.
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Тогда обратная задача II имеет решение {u(x, t), q(t)} такое, что

u(x, t) ∈ L∞
(
0, T ;W 2

2 (�)
)
, ϕ

1
2 (t)�2u(x, t) ∈ L2(0, T ;L2(�)),

ut(x, t) ∈ L2(Q), q(t) ∈ L∞([0, T ]), q(t) ≥ 0 при t ∈ [0, T ].

Доказательство. Вновь определим срезающую функцию G(ξ), но в этот

раз с помощью числа m2. Для положительного числа ε рассмотрим краевую

задачу: найти функцию u(x, t), являющуюся в цилиндре Q решением уравнения

ut − ε�3u− ϕ(t)�u +
1

h(t)

[
g2(t) + ϕ(t)G

(∫

�

N(x)�u(x, t) dS

)]
u = f(x, t) (16)

и такую, что для нее выполняются условия (2) и (3), а также условие

∂�u(x, t)

∂ν

∣∣∣∣
S

=
∂�2u(x, t)

∂ν

∣∣∣∣
S

= 0. (17)

Используя метод неподвижной точки, теоремы вложения [17, 18] и теорему Ша-

удера, нетрудно установить, что краевая задача (16), (2), (3), (17) при фикси-

рованном ε и при принадлежности функции f(x, t) пространству L2(Q) имеет

решение u(x, t) такое, что u(x, t) ∈ L2

(
0, T ;W 6

2 (�)
)
∩L∞

(
0, T ;W 3

2 (�)
)
, ut(x, t) ∈

L2(Q). Покажем, что для функций u(x, t) имеют место «хорошие» априорные

оценки.

Используя технику доказательства теоремы 1, нетрудно получить, что при

выполнении одного из условий (α) или (β) для функций u(x, t) выполняется

соответствующая оценка ∫

�

[�u(x, t)]2dx ≤M1 (18)

или ∫

�

[�u(x, t)]2dx ≤M3. (19)

Умножим уравнение (16) на функцию −�3u и проинтегрируем по простран-

ственным переменным по области � и по временной переменной от 0 до те-

кущей точки. Повторяя выкладки, которые привели к неравенствам (9)–(13),

получим, что для функции u(x, t) выполняется одна из оценок

n∑

i=1

∫

�

[�uxi
(x, t)]2 dx ≤M5, (20)

или
n∑

i=1

∫

�

[�uxi
(x, t)]2dx ≤M8 (21)

в зависимости от того, какое из условий (γ) или (δ) выполняется, а также оценка

t∫

0

∫

�

u2
τ (x, τ) dxdτ +

t∫

0

∫

�

ϕ(τ)[�2u(x, τ)]2 dxdτ + ε

t∫

0

∫

�

[�3u(x, τ)]2 dxdτ ≤M9,

(22)
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постоянная M9 в которой определяется функциями f(x, t), N(x) и h(t).

Из оценок (18) и (20) или (19) и (21), а также из неравенства (15) и условий

теоремы следует, что выполняется равенство

G

(∫

�

N(x)�u(x, t) dS

)
=

∫

�

N(x)�u(x, t) dS.

Используя это равенство, выполняя далее стандартные действия в организации

предельного перехода (см. [8]), нетрудно получить, что существует функция

u(x, t), принадлежащая требуемому в теореме классу и являющаяся решением

уравнения

ut − ϕ(t)�u +
1

h(t)

[
g2(t) + ϕ(t)

∫

�

N(x)�u(x, t) dS

]
u = f(x, t).

Это уравнение означает, что функция u(x, t) и функция q(t), определенная ра-

венством

q(t) =
1

h(t)

[
g2(t) + ϕ(t)

∫

�

N(x)�u(x, t) dS

]
,

связаны в цилиндре Q уравнением (1). Выполнение для функции u(x, t) условий

(2), (3) и (5) очевидны, принадлежность функции q(t) пространству L∞([0, T ])

также очевидна.

Все изложенное выше означает, что функции u(x, t) и q(t) дают искомое

решение обратной задачи II.

Теорема доказана.

Определим множество W2 как множество функций {u(x, t), q(t)} таких, что

u(x, t) ∈W1, �u(x, t) ∈ W1, q(t) ∈ L∞([0, T ]), q(t) ≥ 0 при t ∈ [0, T ].

Теорема 4. Пусть выполняются условия

ϕ(t) ∈ C([0, T ]), ϕ(t) ≥ 0 при t ∈ [0, T ]; N(x) ∈ L2(� ).

Тогда любые два решения {u1(x, t), q1(t)} и {u2(x, t), q2(t)} обратной задачи II,

принадлежащие множеству W2, совпадают.

Доказательство. Для разности ω(x, t) функций u1(x, t) и u2(x, t) выпол-

няется уравнение

ωt − ϕ(t)�ω + q1(t)ω =
ϕ(t)

h(t)

(∫

�

N(y)�ω(y, t) dS

)
�u2(x, t).

Поскольку решения {u1(x, t), q1(t)} и {u2(x, t), q2(t)} принадлежат множеству

W2, от этого уравнения можно перейти к уравнению для функции v(x, t) =

�ω(x, t):

vt − ϕ(t)�ω + q1(t)v =
ϕ(t)

h(t)

(∫

�

N(y)v(y, t) dS

)
�u2(x, t). (23)
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Умножим уравнение (23) на функцию v(x, t) и проинтегрируем по �(x, t) и

по временной переменной от 0 до текущей точки. Получим равенство

1

2

∫

�

v2(x, t) dx +

n∑

i=1

t∫

0

∫

�

ϕ(τ)v2
xi

(x, τ) dxdτ +

t∫

0

∫

�

q1(τ)v
2(x, τ) dxdτ

= −
n∑

i=1

t∫

0

ϕ(τ)

h(τ)

(∫

�

N(y)v(y, τ) dS

)(∫

�

u2xi
(x, τ)vxi

(x, τ) dx

)
dτ. (24)

От равенства (24) нетрудно перейти к следующей цепочке неравенств (с

помощью неравенств Гёльдера и Юнга и с учетом принадлежности функции

u2(x, t) множеству W2). Оценивая правую часть этого равенства с помощью

неравенства Гёльдера, придем к оценке

∫

�

v2(x, t) dx+

n∑

i=1

t∫

0

∫

�

ϕ(τ)v2
xi

(x, τ) dxdτ

≤
n∑

i=1

t∫

0

ϕ(τ)

h(τ)

(∫

�

N(y)v(y, τ) dS

)(∫

�

u2
2xi

(x, τ) dx

) 1
2
(∫

�

v2
xi

(x, τ) dx

) 1
2

dτ

≤ δ1
n∑

i=1

t∫

0

ϕ(τ)

(∫

�

v2
xi

(x, τ) dx

)
dτ +M(δ1)

t∫

0

ϕ(τ)

(∫

�

N(y)v(y, τ) dS

)2

dτ ;
(25)

число δ1 в последнем неравенстве есть произвольное положительное число, чис-

ло M(δ1) определяется помимо числа δ1 также числом n и функциями h(t),

u2(x, t).

Помимо неравенства (15) для функций ψ(t) из пространства W 1
2 (�) имеет

место неравенство

∫

�

ψ2(x) dS ≤ δ0
n∑

i=1

∫

�

ψ2
xi

(x) dx + C(δ0)

∫

�

ψ2(x) dx, (26)

в котором δ0 вновь есть произвольное положительное число, число C(δ0) опре-

деляется числом δ0, а также областью �.

Используя (26), продолжим неравенство (25):

∫

�

v2(x, t) dx+

t∫

0

∫

�

ϕ(τ)
n∑

i=1

v2
xi

(x, τ) dxdτ

≤ δ1
n∑

i=1

t∫

0

∫

�

ϕ(τ)v2
xi

(x, τ) dxdτ + δ0M(δ1)
n∑

i=1

t∫

0

∫

�

ϕ(τ)v2
xi

(x, τ) dxdτ

+ C(δ0)M(δ1)‖N‖2L2(�)

t∫

0

∫

�

v2(x, τ) dxdτ. (27)
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Подбирая число δ1 малым и фиксируя, затем подбирая число δ0 так, чтобы

δ0M(δ1) оказалось малым, и далее используя лемму Гронуолла, получим, что

v(x, t) есть тождественно нулевая в Q функция. Но тогда и функция ω(x, t)

будет тождественно нулевой в Q функцией. Как отмечено при доказательстве

теоремы 2, это и означает, что для обратной задачи II при выполнении условий

теоремы 4 имеет место свойство единственности.

Теорема доказана.

4. Комментарии и дополнения

4.1. Определенные в теоремах единственности множества W1 и W2, оче-

видно, являются множествами устойчивости для обратных задач I и II соответ-

ственно.

4.2. Теорему существования решений обратной задачи II нетрудно дока-

зать и при выполнении условия N(x) ∈ W 1
2 (�). В этом случае вспомогательной

задачей будет задача нахождения решения u(x, t) уравнения

ut− [ϕ(t) + ε]�u+

[
g1(t)−

ϕ(t)

h(t)
G

(
n∑

j=1

∫

�

Nxj
(x)uxj

(x, t) dy

)]
= f(x, t) (ε > 0),

(28)

для которого выполняются условия (2) и (3). Основная априорная оценка в

этой задаче выводится после умножения уравнения (28) на функцию −�u.

Заметим, что при выполнении условия N(x) ∈ W 1
2 (�) классы существова-

ния и устойчивости будут совпадать.

4.3. В обратных задачах I и II оператор Лапласа вполне можно заменить

общим эллиптическим оператором второго порядка. Идеи доказательства тео-

рем существования и единственности останутся прежними, но выкладки и усло-

вия станут более громоздкими. Уточним лишь, что в условии (3) нормальную

производную нужно будет заменить конормальной.

4.4. В обратных задачах I и II условие (3) вполне можно заменить условием

третьей начально-краевой задачи.
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