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Abstract: In this paper, we obtain sharp bounds in the Zalcman conjecture for the
initial coefficients, the second Hankel determinant H2,2(f) = a2a4 − a2

3
and an upper
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4
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of our main results are the coefficient inequalities of the Carathéodory class P .
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1. Introduction

Let H denote the class of all analytic functions defined in the open unit disc

D = {z ∈ C : |z| < 1}. Let A represent the class of functions f ∈H satisfying the

normalized conditions namely f(0) = f ′(0)− 1 = 0, i.e., of the form

f(z) =

∞∑

n=1

anz
n, a1 := 1, z ∈ D. (1.1)

By S, we denote the subfamily of A , consisting of all univalent functions (i.e., one-

to-one) in D. Pommerenke [1] characterized the nth Hankel determinant of order r,

for f given in (1.1) with r, n ∈ N = {1, 2, 3, . . .} as

Hr,n(f) =

∣∣∣∣∣∣∣∣

an an+1 · · · an+r−1

an+1 an+2 · · · an+r

...
...

...
...

an+r−1 an+r · · · an+2r−2

∣∣∣∣∣∣∣∣
. (1.2)

The Fekete–Szegö functional is obtained for r = 2 and n = 1 in (1.2) and denoted

by H2,1(f), where

H2,1(f) =

∣∣∣∣
a1 a2

a2 a3

∣∣∣∣ = a3 − a2
2.
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Further, sharp bounds for the functional |a2a4 − a2
3| are obtained in (1.2) for r = 2

and n = 2, the Hankel determinant of order two

H2,2(f) =

∣∣∣∣
a2 a3

a3 a4

∣∣∣∣ = a2a4 − a2
3.

In recent years, many authors have focussed research on the estimation of an upper

bound for |H2,2(f)|. The exact estimates of |H2,2(f)| for the family of univalent

functions, namely bounded turning, starlike and convex, denoted by ℜ, S∗ and K ,

respectively, fulfilling the analytic conditions Re{f ′(z)} > 0, Re
{ zf ′(z)

f(z)

}
> 0 and

Re
{
1 +

zf ′′(z)
f ′(z)

}
> 0 in the unit disc D, were proved by Janteng et al. (see [2, 3]),

the bounds as 4/9, 1, and 1/8 were derived. For recent results on the second Hankel

determinants (see [4–8]). Similarly, by taking r = 2 and n = 3 in (1.2), we have

H2,3(f) = a3a5 − a2
4, the second Hankel determinant, for which Zaprawa [9] derived

sharp bounds |H2,3(f)| ≤ 1 for the class S∗ and |H2,3(f)| ≤ 1
15 for the class K with

the assumption that a2 = 0 in f given in (1.1). By the results derived by Zaprawa

[9], recently, Andy Liew Pik Hern et al. [10] have shown that |H2,3(f)| ≤ 13
16 for

f ∈ S∗s and |H2,3(f)| ≤ 13
240 for f ∈ Ks, where S∗s and Ks denote the families of

starlike and convex functions with respect to symmetric points, analytically defined

as

f ∈ S∗s ⇔ Re

{
2zf ′(z)

f(z)− f(−z)

}
> 0, z ∈ D. (1.3)

f ∈Ks ⇔ Re

{
2 {zf ′(z)}′

zf ′(z) + zf ′(−z)

}
> 0, z ∈ D. (1.4)

Choosing r = 2 and n = p+ 1 in (1.2), we obtain the Hankel determinant of second

order for the p-valent function (see [11])

H2,p+1(f) =

∣∣∣∣
ap+1 ap+2

ap+2 ap+3

∣∣∣∣ = ap+1ap+3 − a2
p+2,

In the 1960s Zalcman posed a conjecture that if f ∈ S then
∣∣a2

n − a2n−1

∣∣ ≤ (n− 1)2 for n = 2, 3, . . . ; (1.5)

the equality holds only for the Koebe function k(z) = z/(1 − z)2 or its rotations.

For functions in S, Krushkal proved the Zalcman conjecture for n = 3 (see [12])

and recently for n = 4, 5, 6, . . . [13]. This remarkable conjecture was investigated

by many researchers and is still an open problem for functions belonging to class S

when n > 6. The Zalcman conjecture was proved for certain special subclasses of S,

such as starlike, typically real, and close-to-convex functions (see [12, 14]). Recently,

Abu Muhanna et al. [15] solved the Zalcman conjecture for the class F consisting

of the functions f ∈ A satisfying the analytic condition

Re

(
1 +

zf ′′(z)

f ′(z)

)
> −1/2, z ∈ D.

Functions in the class F are known to be convex in some direction (and hence close-

to-convex and univalent) in D. In 1988, Ma [16] proved the Zalcman conjecture
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for close-to-convex functions. For f ∈ S, Ma [17] proposed a generalized Zalcman

conjecture:

|anam − an+m−1| ≤ (n− 1)(m− 1) for m,n = 2, 3, . . . , (1.6)

which is still an open problem, and proved it for classes S∗ and SR, where SR denotes

the type of all functions in A which are typically real. Bansal and Sokol [18] studied

the Zalcman conjecture for some subclasses of analytic functions. Ravichandran and

Verma [19] proved this conjecture for the classes of starlike and convex functions of

a certain order and the class of functions with bounded turning. Motivated by the

results mentioned above, which are associated with the Zalcman conjecture and the

Hankel determinants, in the present paper, we are attempting to find sharp upper

bounds for the coefficient inequalities specified in the abstract for the functions

belonging to a certain subclass of analytic functions defined as follows.

Definition [20]. A mapping f ∈ A is said to be in the class S∗Ks(β) (0 ≤
β ≤ 1) if

Re

[
2
{
zf ′(z) + βz2f ′′(z)

}

(1 − β) {f(z)− f(−z)}+ β {zf ′(z) + zf ′(−z)}

]
> 0, z ∈ D. (1.7)

For β = 0 and β = 1 in (1.7), we get S∗Ks(0) = S∗s , consisting of starlike functions

with respect to symmetric points, interpreted and studied by Sakaguchi [21], and

S∗Ks(1) = Ks, consisting of convex functions with respect to symmetric points,

analyzed by Das and Singh [22], for which analytic conditions are given in (1.3) and

(1.4).

In proving our results, the required sharp estimates specified below are given as

lemmas suitable for functions possessing positive real part.

Let P be a class of all functions g having a positive real part in D:

g(z) = 1 +

∞∑

t=1

ctz
t, (1.8)

Every such a function is called Carathéodory function [23].

Lemma 1.1 [24]. If g ∈P, then |ct| ≤ 2 for t ∈ N; the equality is attained for

the function h(z) = 1+z
1−z , z ∈ D.

Lemma 1.2 [25]. If g ∈ P, then the estimate |ci − µcjci−j | ≤ 2 holds for

i, j ∈ N = {1, 2, 3, . . .} with i > j and µ ∈ [0, 1].

From Lemma 1.2, Livingston [26] proved that |ci − cjci−j | ≤ 2.

Lemma 1.3 [9]. If g ∈P, then
∣∣c2c4 − c23

∣∣ ≤ 4. The inequality holds only for

the functions

h1(z) =
1 + z2

1− z2
, h2(z) =

1 + z3

1− z3

and their rotations.
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Lemma 1.4 [27]. Let g ∈P be of the form (1.8) with c1 ≥ 0. Then

2c2 = c21 + y(4− c21)

and

4c3 =
[
c31 + {2c1y − c1y2 + 2(1− |x|2)y}(4− c21)

]
,

for some complex valued x and y such that |x| ≤ 1 and |y| ≤ 1.

To obtain our results, we adopt some ideas from Libera and Zlotkiewicz [27].

2. Important Results

Theorem 2.1. If f ∈ S∗Ks(β) (0 ≤ β ≤ 1), then

|a2a3 − a4| ≤
1

2(1 + 3β)
< (2− 1)(3− 1) = 2;

this inequality is sharp for g1(z) = 1+z3

1−z3 .

Proof. For f ∈ S∗Ks(β), there exists g ∈P such that

2{zf ′(z) + βz2f ′′(z)}
(1− β){f(z)− f(−z)}+ β{zf ′(z) + zf ′(−z)} = g(z). (2.1)

Putting the values for f , f ′ , f ′′ and g in (2.1), we get

[2(1 + β)a2 + 3(1 + 2β)a3z + 4(1 + 3β)a4z
2 + 5(1 + 4β)a5z

3 + . . . ]

= [c1 + {c2 + (1 + 2β)a3}z + {c3 + (1 + 2β)c1a3}z2

+ {c4 + (1 + 2β)c2a3 + (1 + 4β)a5}z3 + . . . ]. (2.2)

Equating the coefficients for powers of z in (2.2), we obtain

a2 =
c1

2(1 + β)
, a3 =

c2
2(1 + 2β)

, a4 =
(2c3 + c1c2)

8(1 + 3β)
, a5 =

(2c4 + c22)

8(1 + 4β)
. (2.3)

Using the values of a2, a3 and a4 from (2.3), we have

a2a3 − a4 =
c1c2

4(1 + β)(1 + 2β)
− (2c3 + c1c2)

8(1 + 3β)

= − 1

4(1 + 3β)

(
c3 −

(−2β2 + 3β + 1)

2(1 + β)(1 + 2β)
c1c2

)
.

Taking modulus on both sides and then applying Lemma 1.2 to the expression above,

upon simplification, we obtain

|a2a3 − a4| ≤
1

2(1 + 3β)
< (2− 1)(3− 1) = 2. �

Remark 2.2. For the extremal function g1(z) = 1+z3

1−z3 = 1 + 2z3 + 2z6 + . . . ,

we have c1 = 0, c2 = 0, and c3 = 2. Hence, from (2.3) we obtain a2 = 0, a3 = 0,

and a4 = c3
4(1+3β) .
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Theorem 2.3. If f ∈ S∗Ks(β) (0 ≤ β ≤ 1), then

∣∣a2
2 − a3

∣∣ ≤ 1

(1 + 2β)
< (2− 1)2 = 1;

this inequality is sharp for g2(z) = 1+z2

1−z2 .

Proof. Using the values of a2 and a3 from (2.3), we have

a2
2 − a3 =

c21
4(1 + β)2

− c2
2(1 + 2β)

= − 1

2(1 + 2β)

(
c2 −

(1 + 2β)

2(1 + β)2
c21

)
.

Putting modulus on both sides in the expression above and applying Lemma 1.2,

after simplifying, we get

|a2
2 − a3| ≤

1

(1 + 2β)
. �

Remark 2.4. For the extremal function g2(z) = 1+z2

1−z2 = 1 + 2z2 + 2z4 + . . . ,

we have c1 = 0 and c2 = 2; Hence, from (2.3), we obtain a2 = 0 and a3 = c2
2(1+2β) .

Theorem 2.5. If f ∈ S∗Ks(β) (0 ≤ β ≤ 1), then

∣∣a2
3 − a5

∣∣ ≤ 1

2(1 + 4β)
< (3− 1)2 = 4;

this inequality is sharp for g3(z) = 1+z4

1−z4 .

Proof. Using the values of a3 and a5 from (2.3), we have

a2
3−a5 =

c22
4(1 + 2β)2

− (2c4 + c22)

8(1 + 4β)
= − 1

4(1 + 4β)

(
c4 −

(−4β2 + 4β + 1)

2(1 + 2β)2
c22

)
. (2.4)

Taking modulus on both sides and applying Lemma 1.2, after simplifying, we get

∣∣a2
3 − a5

∣∣ ≤ 1

2(1 + 4β)
. �

Remark 2.6. For the extremal function

g3(z) =
1 + z4

1− z4
= 1 + 2z4 + 2z8 + . . . ,

we have c2 = 0 and c4 = 2, therefore, from (2.3), we obtain a3 = 0 and a5 = c4
4(1+4β) .

Theorem 2.7. If f ∈ S∗Ks(β) (0 ≤ β ≤ 1), then

|H2,2(f)| = |a2a4 − a2
3| ≤

1

(1 + 2β)2
;

the inequality is sharp for the same function g2(z) as in Theorem 2.3.

Proof. Using the values of a2, a3, and a4 from (2.3), for the expression a2a4−
a2
3, we get

a2a4 − a2
3 =

1

16(1 + β)(1 + 2β)2(1 + 3β)

×
(
2(1 + 2β)2c1c3 + (1 + 2β)2c21c2 − 4(1 + β)(1 + 3β)c22

)
, (2.5)
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which is equivalent to

a2a4 − a2
3 =

1

16(1 + β)(1 + 2β)2(1 + 3β)

[
d1c1c3 + d2c

2
1c2 + d3c

2
2

]
, (2.6)

where

d1 = 2(1 + 2β)2, d2 = (1 + 2β)2, d3 = −4(1 + β)(1 + 3β). (2.7)

Putting the values of c2 and c3 from Lemma 1.4 into the right-hand side of (2.6),

we simplify it into

4
[
d1c1c3 + d2c

2
1c2 + d3c

2
2

]
=
[
(d1 + 2d2 + d3)c

4
1

+ 2(d1 + d2 + d3)c
2
1(4− c21)x − d1c

2
1(4− c21)x2 + d3(4 − c21)2x2+

2d1c1(4− c21)(1− |x|2)y
]
. (2.8)

Taking modulus on both sides and applying the triangle inequality in the expression

above, we get

4
∣∣d1c1c3 + d2c

2
1c2 + d3c

2
2

∣∣ ≤
[
|d1 + 2d2 + d3||c1|4 + 2|d1||c1||4− c21||y|

+ 2|d1 + d2 + d3||c1|2|4− c21||x|+
{
(|d1| − |d3|)c21 − 2|d1||c1||y|+ 4|d3|

}
|4− c21||x|2

]
.

(2.9)

By (2.7), we can now write

|d1 + 2d2 + d3| = 4β2, |d1 + d2 + d3| = 1 + 4β, (2.10)

{
(|d1| − |d3|)c21 − 2|d1||c1||y|+ 4|d3|

}

= −(4β2 + 8β + 2)c21 − 4(1 + 2β)2c1|y|+ 16(1 + β)(1 + 3β)

= 2(c1 − 2){−(2β2 + 4β + 1)c1 − 4(1 + β)(1 + 3β)},
= 2(2− c1){(2β2 + 4β + 1)c1 + 4(1 + β)(1 + 3β)}, |y| = 1.

Putting the calculated values from (2.10) and the value of d1 from (2.7) into (2.9),

after simplifying, we get

2
∣∣d1c1c3 +d2c

2
1c2 +d3c

2
2

∣∣ ≤
[
2β2c41 +2(1+2β)2c1

(
4− c21

)
|y|+(1+4β)c21

(
4− c21

)
|x|

+ (2 − c1){(2β2 + 4β + 1)c1 + 4(1 + β)(1 + 3β)}
(
4− c21

)
|x|2
]
. (2.11)

Applying the triangle inequality, restoring |x| by ρ, with |y| ≤ 1, choosing c1 =

c ∈ [0, 2], on the right-hand side of (2.11) we obtain

2
∣∣d1c1c3 + d2c

2
1c2 + d3c

2
2

∣∣ ≤
[
2β2c4 + 2(1 + 2β)2c(4− c2) + (1 + 4β)c2(4− c2)ρ

+(2−c){(2β2+4β+1)c+4(1+β)(1+3β)}(4−c2)ρ2
]

= H(c, ρ) for |x| = ρ ∈ [0, 1].
(2.12)

Here

H(c, ρ) = [2β2c4 + 2(1 + 2β)2c(4− c2) + (1 + 4β)c2(4− c2)ρ
+ (2− c){(2β2 + 4β + 1)c+ 4(1 + β)(1 + 3β)}(4− c2)ρ2]. (2.13)
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To determine the maximum value of H(c, ρ) over the rectangle [0, 1] × [0, 2], we

consider the partial differential coefficient of H(c, ρ) from (2.13) with regard to ρ

given by

∂H

∂ρ
= [(1 + 4β)c2 + 2(2− c){(2β2 + 4β + 1)c+ 4(1 + β)(1 + 3β)}ρ](4− c2). (2.14)

For ρ ∈ (0, 1), c ∈ (0, 2), and (0 ≤ β ≤ 1), by (2.14), we notice that ∂H
∂ρ > 0,

which indicates that H(c, ρ) turns out to be an increasing mapping of ρ, hence, its

maximum value is attained on the boundary of the rectangle only, i.e., when ρ = 1.

Therefore, for ρ = 1 in (2.13), after simplifying, we get

F (c) = H(c, 1) = 4β2c4 − 8(1 + 2β)2c2 + 32(1 + β)(1 + 3β), (2.15)

F ′(c) = 16β2c3 − 16(1 + 2β)2c, (2.16)

F ′′(c) = 48β2c2 − 16(1 + 2β)2. (2.17)

For the extreme values of F (c), let F ′(c) = 0. From (2.16), we have

16c{β2c2 − (1 + 2β)2} = 0. (2.18)

Now, let us discuss the following two instances.

Case 1. When c = 0, from (2.17), we note that

F ′′(0) = −16(1 + 2β)2 < 0 for 0 ≤ β ≤ 1.

Therefore, by the 2nd differentiation test at c = 0, F (c) possesses the maximum

value, which we can obtain from (2.15) as

max
0≤c≤2

F (0) = 32(1 + β)(1 + 3β). (2.19)

Case 2. When c 6= 0, from (2.18), we get

c2 =
(1 + 2β)2

β2
. (2.20)

For 0 < β ≤ 1, from (2.20) we note that c2 does not belong to [0, 2].

Now, simplifying the expressions (2.12) and (2.19), we obtain
∣∣d1c1c3 + d2c

2
1c2 + d3c

2
2

∣∣ ≤ 16(1 + β)(1 + 3β). (2.21)

From (2.5) and (2.21), after simplifying, we get

∣∣a2a4 − a2
3

∣∣ ≤ 1

(1 + 2β)2
. � (2.22)

Remark 2.8. For the extremal function g2(z) = 1+z2

1−z2 = 1 + 2z2 + 2z4 + . . . ,

we have c1 = 0, c2 = 2, c3 = 0, and c4 = 2, for which from (2.3) we obtain a2 = 0,

a3 = c2
2(1+2β) , and a4 = 0.

Remark 2.9. For β = 0 and β = 1 in (2.22), the particular results coincide

with that of Rami Reddy and Vamshee Krishna [28].
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Theorem 2.10. If f ∈ S∗Ks(β) (0 ≤ β ≤ 1), then

|H2,3(f)| =
∣∣a3a5 − a2

4

∣∣ ≤ 13

16(1 + 2β)(1 + 4β)
.

Proof. Using the values of a3, a4, and a5 from (2.3) in a3a5 − a2
4, we simplify

it into

a3a5 − a2
4 =

1

64

[
(4c32 + 8c2c4)

(1 + 2β)(1 + 4β)
− (4c1c2c3 + 4c23 + c21c

2
2)

(1 + 3β)2

]
. (2.23)

Rearranging the terms in (2.23), we have

a3a5 − a2
4 =

1

64(1 + 2β)(1 + 4β)

[
4

{
c2c4 −

(1 + 2β)(1 + 4β)

4(1 + 3β)2
c23

}

+ 4c2

{
c4 −

(1 + 2β)(1 + 4β)

4(1 + 3β)2
c1c3

}

+
c22

(1 + 2β)(1 + 4β)

{
c2 −

(1 + 2β)(1 + 4β)

(1 + 3β)2
c21

}
+

3c32
(1 + 2β)(1 + 4β)

]
. (2.24)

Taking modulus on both sides and applying Lemmas 1.1, 1.2, and 1.3, upon simpli-

fication, we obtain

|H2,3(f)| =
∣∣a3a5 − a2

4

∣∣ ≤ 13

16(1 + 2β)(1 + 4β)
. � (2.25)

Remark 2.11. For β = 0 and β = 1 in (2.25), the results coincide with that of

Andy Liew Pik Hern et al. [10].
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