

SHARP BOUNDS ASSOCIATED WITH  
THE ZALCMAN CONJECTURE FOR THE  
INITIAL COEFFICIENTS AND SECOND  
HANKEL DETERMINANTS FOR CERTAIN  
SUBCLASS OF ANALYTIC FUNCTIONS

**N. Vani, D. Vamshee Krishna, and B. Rath**

**Abstract:** In this paper, we obtain sharp bounds in the Zalcman conjecture for the initial coefficients, the second Hankel determinant  $H_{2,2}(f) = a_2 a_4 - a_3^2$  and an upper bound for the second Hankel determinant  $H_{2,3}(f) = a_3 a_5 - a_4^2$  for the functions belonging to a certain subclass of analytic functions. The practical tools applied in the derivation of our main results are the coefficient inequalities of the Carathéodory class  $\mathcal{P}$ .

DOI: 10.25587/SVFU.2023.24.67.007

**Keywords:** analytic function, upper bound, the Zalcman conjecture, univalent function, Carathéodory function.

**1. Introduction**

Let  $\mathcal{H}$  denote the class of all analytic functions defined in the open unit disc  $\mathbb{D} = \{z \in \mathbb{C} : |z| < 1\}$ . Let  $\mathcal{A}$  represent the class of functions  $f \in \mathcal{H}$  satisfying the normalized conditions namely  $f(0) = f'(0) - 1 = 0$ , i.e., of the form

$$f(z) = \sum_{n=1}^{\infty} a_n z^n, \quad a_1 := 1, \quad z \in \mathbb{D}. \quad (1.1)$$

By  $S$ , we denote the subfamily of  $\mathcal{A}$ , consisting of all univalent functions (i.e., one-to-one) in  $\mathbb{D}$ . Pommerenke [1] characterized the  $n^{th}$  Hankel determinant of order  $r$ , for  $f$  given in (1.1) with  $r, n \in \mathbb{N} = \{1, 2, 3, \dots\}$  as

$$H_{r,n}(f) = \begin{vmatrix} a_n & a_{n+1} & \cdots & a_{n+r-1} \\ a_{n+1} & a_{n+2} & \cdots & a_{n+r} \\ \vdots & \vdots & \vdots & \vdots \\ a_{n+r-1} & a_{n+r} & \cdots & a_{n+2r-2} \end{vmatrix}. \quad (1.2)$$

The Fekete–Szegö functional is obtained for  $r = 2$  and  $n = 1$  in (1.2) and denoted by  $H_{2,1}(f)$ , where

$$H_{2,1}(f) = \begin{vmatrix} a_1 & a_2 \\ a_2 & a_3 \end{vmatrix} = a_3 - a_2^2.$$

Further, sharp bounds for the functional  $|a_2a_4 - a_3^2|$  are obtained in (1.2) for  $r = 2$  and  $n = 2$ , the Hankel determinant of order two

$$H_{2,2}(f) = \begin{vmatrix} a_2 & a_3 \\ a_3 & a_4 \end{vmatrix} = a_2a_4 - a_3^2.$$

In recent years, many authors have focussed research on the estimation of an upper bound for  $|H_{2,2}(f)|$ . The exact estimates of  $|H_{2,2}(f)|$  for the family of univalent functions, namely bounded turning, starlike and convex, denoted by  $\mathfrak{R}$ ,  $S^*$  and  $\mathcal{K}$ , respectively, fulfilling the analytic conditions  $\operatorname{Re}\{f'(z)\} > 0$ ,  $\operatorname{Re}\{\frac{zf'(z)}{f(z)}\} > 0$  and  $\operatorname{Re}\{1 + \frac{zf''(z)}{f'(z)}\} > 0$  in the unit disc  $\mathbb{D}$ , were proved by Janteng et al. (see [2, 3]), the bounds as  $4/9$ ,  $1$ , and  $1/8$  were derived. For recent results on the second Hankel determinants (see [4–8]). Similarly, by taking  $r = 2$  and  $n = 3$  in (1.2), we have  $H_{2,3}(f) = a_3a_5 - a_4^2$ , the second Hankel determinant, for which Zaprawa [9] derived sharp bounds  $|H_{2,3}(f)| \leq 1$  for the class  $S^*$  and  $|H_{2,3}(f)| \leq \frac{1}{15}$  for the class  $\mathcal{K}$  with the assumption that  $a_2 = 0$  in  $f$  given in (1.1). By the results derived by Zaprawa [9], recently, Andy Liew Pik Hern et al. [10] have shown that  $|H_{2,3}(f)| \leq \frac{13}{16}$  for  $f \in S_s^*$  and  $|H_{2,3}(f)| \leq \frac{13}{240}$  for  $f \in \mathcal{K}_s$ , where  $S_s^*$  and  $\mathcal{K}_s$  denote the families of starlike and convex functions with respect to symmetric points, analytically defined as

$$f \in S_s^* \Leftrightarrow \operatorname{Re} \left\{ \frac{2zf'(z)}{f(z) - f(-z)} \right\} > 0, \quad z \in \mathbb{D}. \quad (1.3)$$

$$f \in \mathcal{K}_s \Leftrightarrow \operatorname{Re} \left\{ \frac{2\{zf'(z)\}'}{zf'(z) + zf'(-z)} \right\} > 0, \quad z \in \mathbb{D}. \quad (1.4)$$

Choosing  $r = 2$  and  $n = p + 1$  in (1.2), we obtain the Hankel determinant of second order for the  $p$ -valent function (see [11])

$$H_{2,p+1}(f) = \begin{vmatrix} a_{p+1} & a_{p+2} \\ a_{p+2} & a_{p+3} \end{vmatrix} = a_{p+1}a_{p+3} - a_{p+2}^2,$$

In the 1960s Zalcman posed a conjecture that if  $f \in S$  then

$$|a_n^2 - a_{2n-1}| \leq (n-1)^2 \quad \text{for } n = 2, 3, \dots; \quad (1.5)$$

the equality holds only for the Koebe function  $k(z) = z/(1-z)^2$  or its rotations. For functions in  $S$ , Krushkal proved the Zalcman conjecture for  $n = 3$  (see [12]) and recently for  $n = 4, 5, 6, \dots$  [13]. This remarkable conjecture was investigated by many researchers and is still an open problem for functions belonging to class  $S$  when  $n > 6$ . The Zalcman conjecture was proved for certain special subclasses of  $S$ , such as starlike, typically real, and close-to-convex functions (see [12, 14]). Recently, Abu Muhanna et al. [15] solved the Zalcman conjecture for the class  $\mathcal{F}$  consisting of the functions  $f \in \mathcal{A}$  satisfying the analytic condition

$$\operatorname{Re} \left( 1 + \frac{zf''(z)}{f'(z)} \right) > -1/2, \quad z \in \mathbb{D}.$$

Functions in the class  $\mathcal{F}$  are known to be convex in some direction (and hence close-to-convex and univalent) in  $\mathbb{D}$ . In 1988, Ma [16] proved the Zalcman conjecture

for close-to-convex functions. For  $f \in S$ , Ma [17] proposed a generalized Zalcman conjecture:

$$|a_n a_m - a_{n+m-1}| \leq (n-1)(m-1) \quad \text{for } m, n = 2, 3, \dots, \quad (1.6)$$

which is still an open problem, and proved it for classes  $S^*$  and  $S_{\mathbb{R}}$ , where  $S_{\mathbb{R}}$  denotes the type of all functions in  $\mathcal{A}$  which are typically real. Bansal and Sokol [18] studied the Zalcman conjecture for some subclasses of analytic functions. Ravichandran and Verma [19] proved this conjecture for the classes of starlike and convex functions of a certain order and the class of functions with bounded turning. Motivated by the results mentioned above, which are associated with the Zalcman conjecture and the Hankel determinants, in the present paper, we are attempting to find sharp upper bounds for the coefficient inequalities specified in the abstract for the functions belonging to a certain subclass of analytic functions defined as follows.

**DEFINITION** [20]. A mapping  $f \in \mathcal{A}$  is said to be in the class  $S^* \mathcal{K}_s(\beta)$  ( $0 \leq \beta \leq 1$ ) if

$$\operatorname{Re} \left[ \frac{2 \{zf'(z) + \beta z^2 f''(z)\}}{(1-\beta) \{f(z) - f(-z)\} + \beta \{zf'(z) + zf'(-z)\}} \right] > 0, \quad z \in \mathbb{D}. \quad (1.7)$$

For  $\beta = 0$  and  $\beta = 1$  in (1.7), we get  $S^* \mathcal{K}_s(0) = S_s^*$ , consisting of starlike functions with respect to symmetric points, interpreted and studied by Sakaguchi [21], and  $S^* \mathcal{K}_s(1) = \mathcal{K}_s$ , consisting of convex functions with respect to symmetric points, analyzed by Das and Singh [22], for which analytic conditions are given in (1.3) and (1.4).

In proving our results, the required sharp estimates specified below are given as lemmas suitable for functions possessing positive real part.

Let  $\mathcal{P}$  be a class of all functions  $g$  having a positive real part in  $\mathbb{D}$ :

$$g(z) = 1 + \sum_{t=1}^{\infty} c_t z^t, \quad (1.8)$$

Every such a function is called Carathéodory function [23].

**Lemma 1.1** [24]. *If  $g \in \mathcal{P}$ , then  $|c_t| \leq 2$  for  $t \in \mathbb{N}$ ; the equality is attained for the function  $h(z) = \frac{1+z}{1-z}$ ,  $z \in \mathbb{D}$ .*

**Lemma 1.2** [25]. *If  $g \in \mathcal{P}$ , then the estimate  $|c_i - \mu c_j c_{i-j}| \leq 2$  holds for  $i, j \in \mathbb{N} = \{1, 2, 3, \dots\}$  with  $i > j$  and  $\mu \in [0, 1]$ .*

From Lemma 1.2, Livingston [26] proved that  $|c_i - c_j c_{i-j}| \leq 2$ .

**Lemma 1.3** [9]. *If  $g \in \mathcal{P}$ , then  $|c_2 c_4 - c_3^2| \leq 4$ . The inequality holds only for the functions*

$$h_1(z) = \frac{1+z^2}{1-z^2}, \quad h_2(z) = \frac{1+z^3}{1-z^3}$$

and their rotations.

**Lemma 1.4** [27]. *Let  $g \in \mathcal{P}$  be of the form (1.8) with  $c_1 \geq 0$ . Then*

$$2c_2 = c_1^2 + y(4 - c_1^2)$$

and

$$4c_3 = [c_1^3 + \{2c_1y - c_1y^2 + 2(1 - |x|^2)y\}(4 - c_1^2)],$$

for some complex valued  $x$  and  $y$  such that  $|x| \leq 1$  and  $|y| \leq 1$ .

To obtain our results, we adopt some ideas from Libera and Zlotkiewicz [27].

## 2. Important Results

**Theorem 2.1.** *If  $f \in S^* \mathcal{K}_s(\beta)$  ( $0 \leq \beta \leq 1$ ), then*

$$|a_2a_3 - a_4| \leq \frac{1}{2(1+3\beta)} < (2-1)(3-1) = 2;$$

this inequality is sharp for  $g_1(z) = \frac{1+z^3}{1-z^3}$ .

PROOF. For  $f \in S^* \mathcal{K}_s(\beta)$ , there exists  $g \in \mathcal{P}$  such that

$$\frac{2\{zf'(z) + \beta z^2 f''(z)\}}{(1-\beta)\{f(z) - f(-z)\} + \beta\{zf'(z) + zf'(-z)\}} = g(z). \quad (2.1)$$

Putting the values for  $f$ ,  $f'$ ,  $f''$  and  $g$  in (2.1), we get

$$\begin{aligned} & [2(1+\beta)a_2 + 3(1+2\beta)a_3z + 4(1+3\beta)a_4z^2 + 5(1+4\beta)a_5z^3 + \dots] \\ &= [c_1 + \{c_2 + (1+2\beta)a_3\}z + \{c_3 + (1+2\beta)c_1a_3\}z^2 \\ &\quad + \{c_4 + (1+2\beta)c_2a_3 + (1+4\beta)a_5\}z^3 + \dots]. \end{aligned} \quad (2.2)$$

Equating the coefficients for powers of  $z$  in (2.2), we obtain

$$a_2 = \frac{c_1}{2(1+\beta)}, \quad a_3 = \frac{c_2}{2(1+2\beta)}, \quad a_4 = \frac{(2c_3 + c_1c_2)}{8(1+3\beta)}, \quad a_5 = \frac{(2c_4 + c_2^2)}{8(1+4\beta)}. \quad (2.3)$$

Using the values of  $a_2$ ,  $a_3$  and  $a_4$  from (2.3), we have

$$\begin{aligned} a_2a_3 - a_4 &= \frac{c_1c_2}{4(1+\beta)(1+2\beta)} - \frac{(2c_3 + c_1c_2)}{8(1+3\beta)} \\ &= -\frac{1}{4(1+3\beta)} \left( c_3 - \frac{(-2\beta^2 + 3\beta + 1)}{2(1+\beta)(1+2\beta)} c_1c_2 \right). \end{aligned}$$

Taking modulus on both sides and then applying Lemma 1.2 to the expression above, upon simplification, we obtain

$$|a_2a_3 - a_4| \leq \frac{1}{2(1+3\beta)} < (2-1)(3-1) = 2. \quad \square$$

**REMARK 2.2.** For the extremal function  $g_1(z) = \frac{1+z^3}{1-z^3} = 1 + 2z^3 + 2z^6 + \dots$ , we have  $c_1 = 0$ ,  $c_2 = 0$ , and  $c_3 = 2$ . Hence, from (2.3) we obtain  $a_2 = 0$ ,  $a_3 = 0$ , and  $a_4 = \frac{c_3}{4(1+3\beta)}$ .

**Theorem 2.3.** If  $f \in S^* \mathcal{K}_s(\beta)$  ( $0 \leq \beta \leq 1$ ), then

$$|a_2^2 - a_3| \leq \frac{1}{(1+2\beta)} < (2-1)^2 = 1;$$

this inequality is sharp for  $g_2(z) = \frac{1+z^2}{1-z^2}$ .

PROOF. Using the values of  $a_2$  and  $a_3$  from (2.3), we have

$$a_2^2 - a_3 = \frac{c_1^2}{4(1+\beta)^2} - \frac{c_2}{2(1+2\beta)} = -\frac{1}{2(1+2\beta)} \left( c_2 - \frac{(1+2\beta)}{2(1+\beta)^2} c_1^2 \right).$$

Putting modulus on both sides in the expression above and applying Lemma 1.2, after simplifying, we get

$$|a_2^2 - a_3| \leq \frac{1}{(1+2\beta)}. \quad \square$$

REMARK 2.4. For the extremal function  $g_2(z) = \frac{1+z^2}{1-z^2} = 1 + 2z^2 + 2z^4 + \dots$ , we have  $c_1 = 0$  and  $c_2 = 2$ ; Hence, from (2.3), we obtain  $a_2 = 0$  and  $a_3 = \frac{c_2}{2(1+2\beta)}$ .

**Theorem 2.5.** If  $f \in S^* \mathcal{K}_s(\beta)$  ( $0 \leq \beta \leq 1$ ), then

$$|a_3^2 - a_5| \leq \frac{1}{2(1+4\beta)} < (3-1)^2 = 4;$$

this inequality is sharp for  $g_3(z) = \frac{1+z^4}{1-z^4}$ .

PROOF. Using the values of  $a_3$  and  $a_5$  from (2.3), we have

$$a_3^2 - a_5 = \frac{c_2^2}{4(1+2\beta)^2} - \frac{(2c_4 + c_2^2)}{8(1+4\beta)} = -\frac{1}{4(1+4\beta)} \left( c_4 - \frac{(-4\beta^2 + 4\beta + 1)}{2(1+2\beta)^2} c_2^2 \right). \quad (2.4)$$

Taking modulus on both sides and applying Lemma 1.2, after simplifying, we get

$$|a_3^2 - a_5| \leq \frac{1}{2(1+4\beta)}. \quad \square$$

REMARK 2.6. For the extremal function

$$g_3(z) = \frac{1+z^4}{1-z^4} = 1 + 2z^4 + 2z^8 + \dots,$$

we have  $c_2 = 0$  and  $c_4 = 2$ , therefore, from (2.3), we obtain  $a_3 = 0$  and  $a_5 = \frac{c_4}{4(1+4\beta)}$ .

**Theorem 2.7.** If  $f \in S^* \mathcal{K}_s(\beta)$  ( $0 \leq \beta \leq 1$ ), then

$$|H_{2,2}(f)| = |a_2 a_4 - a_3^2| \leq \frac{1}{(1+2\beta)^2};$$

the inequality is sharp for the same function  $g_2(z)$  as in Theorem 2.3.

PROOF. Using the values of  $a_2$ ,  $a_3$ , and  $a_4$  from (2.3), for the expression  $a_2 a_4 - a_3^2$ , we get

$$\begin{aligned} a_2 a_4 - a_3^2 &= \frac{1}{16(1+\beta)(1+2\beta)^2(1+3\beta)} \\ &\quad \times (2(1+2\beta)^2 c_1 c_3 + (1+2\beta)^2 c_1^2 c_2 - 4(1+\beta)(1+3\beta) c_2^2), \end{aligned} \quad (2.5)$$

which is equivalent to

$$a_2 a_4 - a_3^2 = \frac{1}{16(1+\beta)(1+2\beta)^2(1+3\beta)} [d_1 c_1 c_3 + d_2 c_1^2 c_2 + d_3 c_2^2], \quad (2.6)$$

where

$$d_1 = 2(1+2\beta)^2, \quad d_2 = (1+2\beta)^2, \quad d_3 = -4(1+\beta)(1+3\beta). \quad (2.7)$$

Putting the values of  $c_2$  and  $c_3$  from Lemma 1.4 into the right-hand side of (2.6), we simplify it into

$$\begin{aligned} 4[d_1 c_1 c_3 + d_2 c_1^2 c_2 + d_3 c_2^2] &= [(d_1 + 2d_2 + d_3)c_1^4 \\ &\quad + 2(d_1 + d_2 + d_3)c_1^2(4 - c_1^2)x - d_1 c_1^2(4 - c_1^2)x^2 + d_3(4 - c_1^2)^2x^2 + \\ &\quad 2d_1 c_1(4 - c_1^2)(1 - |x|^2)y]. \end{aligned} \quad (2.8)$$

Taking modulus on both sides and applying the triangle inequality in the expression above, we get

$$\begin{aligned} 4|d_1 c_1 c_3 + d_2 c_1^2 c_2 + d_3 c_2^2| &\leq [|d_1 + 2d_2 + d_3||c_1|^4 + 2|d_1||c_1||4 - c_1^2||y| \\ &\quad + 2|d_1 + d_2 + d_3||c_1|^2|4 - c_1^2||x| + \{(|d_1| - |d_3|)c_1^2 - 2|d_1||c_1||y| + 4|d_3|\} |4 - c_1^2||x|^2]. \end{aligned} \quad (2.9)$$

By (2.7), we can now write

$$|d_1 + 2d_2 + d_3| = 4\beta^2, \quad |d_1 + d_2 + d_3| = 1 + 4\beta, \quad (2.10)$$

$$\begin{aligned} \{(|d_1| - |d_3|)c_1^2 - 2|d_1||c_1||y| + 4|d_3|\} \\ &= -(4\beta^2 + 8\beta + 2)c_1^2 - 4(1+2\beta)^2 c_1 |y| + 16(1+\beta)(1+3\beta) \\ &= 2(c_1 - 2)\{-(2\beta^2 + 4\beta + 1)c_1 - 4(1+\beta)(1+3\beta)\}, \\ &= 2(2 - c_1)\{(2\beta^2 + 4\beta + 1)c_1 + 4(1+\beta)(1+3\beta)\}, \quad |y| = 1. \end{aligned}$$

Putting the calculated values from (2.10) and the value of  $d_1$  from (2.7) into (2.9), after simplifying, we get

$$\begin{aligned} 2|d_1 c_1 c_3 + d_2 c_1^2 c_2 + d_3 c_2^2| &\leq [2\beta^2 c_1^4 + 2(1+2\beta)^2 c_1 (4 - c_1^2) |y| + (1+4\beta)c_1^2 (4 - c_1^2) |x| \\ &\quad + (2 - c_1)\{(2\beta^2 + 4\beta + 1)c_1 + 4(1+\beta)(1+3\beta)\} (4 - c_1^2) |x|^2]. \end{aligned} \quad (2.11)$$

Applying the triangle inequality, restoring  $|x|$  by  $\rho$ , with  $|y| \leq 1$ , choosing  $c_1 = c \in [0, 2]$ , on the right-hand side of (2.11) we obtain

$$\begin{aligned} 2|d_1 c_1 c_3 + d_2 c_1^2 c_2 + d_3 c_2^2| &\leq [2\beta^2 c^4 + 2(1+2\beta)^2 c (4 - c^2) + (1+4\beta)c^2 (4 - c^2) \rho \\ &\quad + (2 - c)\{(2\beta^2 + 4\beta + 1)c + 4(1+\beta)(1+3\beta)\} (4 - c^2) \rho^2] = H(c, \rho) \quad \text{for } |x| = \rho \in [0, 1]. \end{aligned} \quad (2.12)$$

Here

$$\begin{aligned} H(c, \rho) &= [2\beta^2 c^4 + 2(1+2\beta)^2 c (4 - c^2) + (1+4\beta)c^2 (4 - c^2) \rho \\ &\quad + (2 - c)\{(2\beta^2 + 4\beta + 1)c + 4(1+\beta)(1+3\beta)\} (4 - c^2) \rho^2]. \end{aligned} \quad (2.13)$$

To determine the maximum value of  $H(c, \rho)$  over the rectangle  $[0, 1] \times [0, 2]$ , we consider the partial differential coefficient of  $H(c, \rho)$  from (2.13) with regard to  $\rho$  given by

$$\frac{\partial H}{\partial \rho} = [(1 + 4\beta)c^2 + 2(2 - c)\{(2\beta^2 + 4\beta + 1)c + 4(1 + \beta)(1 + 3\beta)\}\rho](4 - c^2). \quad (2.14)$$

For  $\rho \in (0, 1)$ ,  $c \in (0, 2)$ , and  $(0 \leq \beta \leq 1)$ , by (2.14), we notice that  $\frac{\partial H}{\partial \rho} > 0$ , which indicates that  $H(c, \rho)$  turns out to be an increasing mapping of  $\rho$ , hence, its maximum value is attained on the boundary of the rectangle only, i.e., when  $\rho = 1$ . Therefore, for  $\rho = 1$  in (2.13), after simplifying, we get

$$F(c) = H(c, 1) = 4\beta^2 c^4 - 8(1 + 2\beta)^2 c^2 + 32(1 + \beta)(1 + 3\beta), \quad (2.15)$$

$$F'(c) = 16\beta^2 c^3 - 16(1 + 2\beta)^2 c, \quad (2.16)$$

$$F''(c) = 48\beta^2 c^2 - 16(1 + 2\beta)^2. \quad (2.17)$$

For the extreme values of  $F(c)$ , let  $F'(c) = 0$ . From (2.16), we have

$$16c\{\beta^2 c^2 - (1 + 2\beta)^2\} = 0. \quad (2.18)$$

Now, let us discuss the following two instances.

CASE 1. When  $c = 0$ , from (2.17), we note that

$$F''(0) = -16(1 + 2\beta)^2 < 0 \quad \text{for } 0 \leq \beta \leq 1.$$

Therefore, by the 2<sup>nd</sup> differentiation test at  $c = 0$ ,  $F(c)$  possesses the maximum value, which we can obtain from (2.15) as

$$\max_{0 \leq c \leq 2} F(c) = 32(1 + \beta)(1 + 3\beta). \quad (2.19)$$

CASE 2. When  $c \neq 0$ , from (2.18), we get

$$c^2 = \frac{(1 + 2\beta)^2}{\beta^2}. \quad (2.20)$$

For  $0 < \beta \leq 1$ , from (2.20) we note that  $c^2$  does not belong to  $[0, 2]$ .

Now, simplifying the expressions (2.12) and (2.19), we obtain

$$|d_1 c_1 c_3 + d_2 c_1^2 c_2 + d_3 c_2^2| \leq 16(1 + \beta)(1 + 3\beta). \quad (2.21)$$

From (2.5) and (2.21), after simplifying, we get

$$|a_2 a_4 - a_3^2| \leq \frac{1}{(1 + 2\beta)^2}. \quad \square \quad (2.22)$$

REMARK 2.8. For the extremal function  $g_2(z) = \frac{1+z^2}{1-z^2} = 1 + 2z^2 + 2z^4 + \dots$ , we have  $c_1 = 0$ ,  $c_2 = 2$ ,  $c_3 = 0$ , and  $c_4 = 2$ , for which from (2.3) we obtain  $a_2 = 0$ ,  $a_3 = \frac{c_2}{2(1+2\beta)}$ , and  $a_4 = 0$ .

REMARK 2.9. For  $\beta = 0$  and  $\beta = 1$  in (2.22), the particular results coincide with that of Rami Reddy and Vamshee Krishna [28].

**Theorem 2.10.** If  $f \in S^* \mathcal{K}_s(\beta)$  ( $0 \leq \beta \leq 1$ ), then

$$|H_{2,3}(f)| = |a_3a_5 - a_4^2| \leq \frac{13}{16(1+2\beta)(1+4\beta)}.$$

PROOF. Using the values of  $a_3$ ,  $a_4$ , and  $a_5$  from (2.3) in  $a_3a_5 - a_4^2$ , we simplify it into

$$a_3a_5 - a_4^2 = \frac{1}{64} \left[ \frac{(4c_2^3 + 8c_2c_4)}{(1+2\beta)(1+4\beta)} - \frac{(4c_1c_2c_3 + 4c_3^2 + c_1^2c_2^2)}{(1+3\beta)^2} \right]. \quad (2.23)$$

Rearranging the terms in (2.23), we have

$$\begin{aligned} a_3a_5 - a_4^2 &= \frac{1}{64(1+2\beta)(1+4\beta)} \left[ 4 \left\{ c_2c_4 - \frac{(1+2\beta)(1+4\beta)}{4(1+3\beta)^2} c_3^2 \right\} \right. \\ &\quad + 4c_2 \left\{ c_4 - \frac{(1+2\beta)(1+4\beta)}{4(1+3\beta)^2} c_1c_3 \right\} \\ &\quad \left. + \frac{c_2^2}{(1+2\beta)(1+4\beta)} \left\{ c_2 - \frac{(1+2\beta)(1+4\beta)}{(1+3\beta)^2} c_1^2 \right\} + \frac{3c_2^3}{(1+2\beta)(1+4\beta)} \right]. \end{aligned} \quad (2.24)$$

Taking modulus on both sides and applying Lemmas 1.1, 1.2, and 1.3, upon simplification, we obtain

$$|H_{2,3}(f)| = |a_3a_5 - a_4^2| \leq \frac{13}{16(1+2\beta)(1+4\beta)}. \quad \square \quad (2.25)$$

REMARK 2.11. For  $\beta = 0$  and  $\beta = 1$  in (2.25), the results coincide with that of Andy Liew Pik Hern et al. [10].

**Acknowledgement:** The authors would like to thank the esteemed referee(s) for their careful readings, valuable suggestions, and comments which helped improve the presentation of the paper.

#### REFERENCES

1. Pommerenke Ch., “On the coefficients and Hankel determinants of univalent functions,” J. Lond. Math. Soc., **41**, 111–122 (1966).
2. Janteng A., Halim S. A. and Darus M., “Hankel determinant for starlike and convex functions,” Int. J. Math. Anal., **1**, No. 13, 619–625 (2007).
3. Janteng A., Halim S. A. and Darus M., “Coefficient inequality for a function whose derivative has a positive real part,” J. Inequal. Pure Appl. Math., **7**, No. 2, 1–5 (2006).
4. Gurusamy P. and Jayasankar R., “The estimates for second Hankel determinant of Ma–Minda starlike and convex functions,” AIP Conf. Proc., **2282**, 020039 (2020).
5. Orhan H., Magesh N., and Balaji V. K., “Second Hankel determinant for certain class of bi-univalent functions defined by Chebyshev polynomials,” Asian-Eur. J. Math., **12**, No. 2, Article ID 1950017 (2019).
6. Sim Y. J., Thomas D. K., and Zaprawa P., “The second Hankel determinant for starlike and convex functions of order alpha,” Complex Variables, Elliptic Equ., **67**, No. 10, 2423–2443 (2021).
7. Sokol J. and Thomas D. K., “The second Hankel determinant for alpha-convex functions,” Lith. Math. J., **58**, No. 2, 212–218 (2018).
8. Zaprawa P., “Second Hankel determinants for the class of typically real functions,” Abstr. Appl. Anal., **2016**, Article ID 3792367 (2016).

9. Zaprawa P., “On Hankel determinant  $H_2(3)$  for univalent functions,” *Result. Math.*, **73**, No. 3 (2018).
10. Hern A. L. P., Janteng A., Omar R., “Hankel determinant  $H_2(3)$  for certain subclasses of univalent functions,” *Math. Stat.*, **8**, No. 5, 566–569 (2020).
11. Vamshee Krishna D. and RamReddy T., “Coefficient inequality for certain  $p$ -valent analytic functions,” *Rocky Mt. J. Math.*, **44**, No. 6, 1941–1959 (2014).
12. Krushkal S. L., “Univalent functions and holomorphic motions,” *J. Anal. Math.*, **66**, 253–275 (1995).
13. Krushkal S. L., “Proof of the Zalcman conjecture for initial coefficients,” *Georgian Math. J.*, **17**, 663–681 (2010).
14. Brown J. E. and Tsao A., “Proof of the Zalcman conjecture for starlike and typically real functions,” *Math. Z.*, **191**, 467–474 (1986).
15. Abu Muhanna Y., Li L., and Ponnusamy S., “Extremal problems on the class of convex functions of order  $-1/2$ ,” *Arch. Math. (Basel)*, **103**, No. 6, 461–471 (2014).
16. Ma W., “The Zalcman conjecture for close-to-convex functions,” *Proc. Amer. Math. Soc.*, **104**, 741–744 (1988).
17. Ma W., “Generalized Zalcman conjecture for starlike and typically real functions,” *J. Math. Anal. Appl.*, **234**, 328–339 (1999).
18. Bansal D. and Sokol J., “Zalcman conjecture for some subclass of analytic functions,” *J. Fractional Calc.*, **8**, No. 1, 1–5 (2017).
19. Ravichandran V. and Verma S., “Generalized Zalcman conjecture for some classes of analytic functions,” *J. Math. Anal. Appl.*, **450**, No. 1, 592–605 (2017).
20. Vamshee Krishna D. and Shalini D., “Certain coefficient inequalities associated with Hankel determinant for a specific subfamily of holomorphic mappings,” *Publ. Inst. Math. (Beograd) (N. S.)*, **111**, No. 125, 127–132 (2022).
21. Sakaguchi K., “On a certain univalent mapping,” *J. Math. Soc. Japan*, **11**, 72–75 (1959).
22. Das R. N. and Singh P., “On subclass of schlicht mappings,” *Ind. J. Pure Appl. Math.*, **8**, 864–872 (1977).
23. Duren P. L., *Univalent Functions*, Springer, New York (1983) (Grundlehren Math. Wiss.; vol. 259).
24. Pommerenke Ch., *Univalent Functions*, Vandenhoeck und Ruprecht, Göttingen (1975).
25. Hayami T. and Owa S., “Generalized Hankel determinant for certain classes,” *Int. J. Math. Anal.*, **4**, 2573–2585 (2010).
26. Livingston A. E., “The coefficients of multivalent close-to-convex functions,” *Proc. Amer. Math. Soc.*, **21**, No. 3, 545–552 (1969).
27. Libera R. J. and Zlotkiewicz E. J., “Coefficient bounds for the inverse of a function with derivative in  $\mathcal{P}$ ,” *Proc. Amer. Math. Soc.*, **87**, 251–257 (1983).
28. RamReddy T. and Vamshee Krishna D., “Hankel determinant for starlike and convex functions with respect to symmetric points,” *J. Ind. Math. Soc. (N. S.)*, **79**, No. 1–4, 161–171 (2012).

Submitted February 22, 2023

Revised May 11, 2023

Accepted May 29, 2023

N. Vani, D. Vamshee Krishna, and B. Rath  
 Department of Mathematics  
 GITAM School of Science,  
 GITAM University,  
 Visakhapatnam-530 045, A. P., India  
 vnallmot@gitam.in, vamsheekrishna1972@gmail.com (corresponding author),  
 brath@gitam.edu