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Abstract: In this paper, we obtain sharp bounds in the Zalcman conjecture for the
initial coefficients, the second Hankel determinant Hz 2(f) = azas — a% and an upper
bound for the second Hankel determinant Hz 3(f) = azas —ai for the functions belonging
to a certain subclass of analytic functions. The practical tools applied in the derivation
of our main results are the coefficient inequalities of the Carathéodory class &2 .
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1. Introduction

Let 27 denote the class of all analytic functions defined in the open unit disc
D= {z€C:|z| <1}. Let & represent the class of functions f € J# satisfying the
normalized conditions namely f(0) = f/(0) — 1 =0, i.e., of the form

f(z) =) anz", a1:=1, z€D. (1.1)
n=1
By S, we denote the subfamily of &7, consisting of all univalent functions (i.e., one-

to-one) in . Pommerenke [1] characterized the n'" Hankel determinant of order 7,
for f given in (1.1) with r,n € N= {1,2,3,...} as

(07 Ap+1 et Ap+r—1
Ap+1 Ap+2 et Aptr
H’r,n(f) — : . : . . (12)
Ap+4r—1 Aptp et Ap+2r—2

The Fekete—Szego functional is obtained for » = 2 and n = 1 in (1.2) and denoted
by Hz1(f), where
a; az

== asz — ag.
az as

Hy 1 (f) =
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Further, sharp bounds for the functional |agzay — a3| are obtained in (1.2) for r = 2
and n = 2, the Hankel determinant of order two

az as

2
— a2a4 — Q5.
as ay 204 3

Hs»(f) =

In recent years, many authors have focussed research on the estimation of an upper
bound for |Hz22(f)|. The exact estimates of |Hz o(f)| for the family of univalent
functions, namely bounded turning, starlike and convex, denoted by R, S* and 7,

respectively, fulfilling the analytic conditions Re{f’(z)} > 0, Re{Z;ES)} > 0 and

Re{1 + zf,l—ég)} > 0 in the unit disc D, were proved by Janteng et al. (see [2,3]),
the bounds as 4/9, 1, and 1/8 were derived. For recent results on the second Hankel
determinants (see [4-8]). Similarly, by taking » = 2 and n = 3 in (1.2), we have
Hs 3(f) = asas — a3, the second Hankel determinant, for which Zaprawa [9] derived
sharp bounds |Hz3(f)| <1 for the class S* and |Hy3(f)| < 1= for the class %~ with
the assumption that az = 0 in f given in (1.1). By the results derived by Zaprawa
[9], recently, Andy Liew Pik Hern et al. [10] have shown that |[Hz3(f)| < 12 for

f € S and |Has(f)| < 5 for f € A, where S¥ and #; denote the families of

240
starlike and convex functions with respect to symmetric points, analytically defined
" 2:£/(2)
zf'(z
feS:@Re{7}>0, z € D. 1.3
7 - - (49
2{=f'(2)} }
€ ;< Re >0, e D. 1.4
d \Far e ? 4

Choosing r = 2 and n = p + 1 in (1.2), we obtain the Hankel determinant of second
order for the p-valent function (see [11])

Gp+1  Opi2

Hypia(f) = Gpiz Gpis

= Qp+10p+3 — 0727+2,
In the 1960s Zalcman posed a conjecture that if f € S then
la2 —agn—1| < (n—1)* forn=2,3,...; (1.5)

the equality holds only for the Koebe function k(z) = 2/(1 — 2)? or its rotations.
For functions in S, Krushkal proved the Zalcman conjecture for n = 3 (see [12])
and recently for n = 4,5,6,... [13]. This remarkable conjecture was investigated
by many researchers and is still an open problem for functions belonging to class S
when n > 6. The Zalcman conjecture was proved for certain special subclasses of S,
such as starlike, typically real, and close-to-convex functions (see [12, 14]). Recently,
Abu Muhanna et al. [15] solved the Zalcman conjecture for the class .# consisting
of the functions f € & satisfying the analytic condition

2f"(z)
f'(2)
Functions in the class .# are known to be convex in some direction (and hence close-
to-convex and univalent) in D. In 1988, Ma [16] proved the Zalcman conjecture

Re<1+ >>—1/27 z € D.
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for close-to-convex functions. For f € S, Ma [17] proposed a generalized Zalcman
conjecture:

|anam — anim-1] < (n—1)(m—1) for m,n=2,3,..., (1.6)

which is still an open problem, and proved it for classes S* and Sg, where Sg denotes
the type of all functions in &7 which are typically real. Bansal and Sokol [18] studied
the Zalcman conjecture for some subclasses of analytic functions. Ravichandran and
Verma [19] proved this conjecture for the classes of starlike and convex functions of
a certain order and the class of functions with bounded turning. Motivated by the
results mentioned above, which are associated with the Zalcman conjecture and the
Hankel determinants, in the present paper, we are attempting to find sharp upper
bounds for the coefficient inequalities specified in the abstract for the functions
belonging to a certain subclass of analytic functions defined as follows.

DEFINITION [20]. A mapping f € & is said to be in the class S*7;(8) (0 <
B <1)if

2{2f'(2) + B2°f"(2)}
(1 =B){f(2) = f(=2)} + B{af"(2) + 2f'(=2)}

For  =0and 8 =1in (1.7), we get S*#;(0) = S*, consisting of starlike functions
with respect to symmetric points, interpreted and studied by Sakaguchi [21], and
S*H#5(1) = A, consisting of convex functions with respect to symmetric points,

analyzed by Das and Singh [22], for which analytic conditions are given in (1.3) and
(1.4).

Re >0, zeD. (1.7)

In proving our results, the required sharp estimates specified below are given as
lemmas suitable for functions possessing positive real part.
Let & be a class of all functions g having a positive real part in D:

9(2) =1+ e, (1.8)
t=1

Every such a function is called Carathéodory function [23].

Lemma 1.1 [24]. If g € &, then |c;| < 2 for t € N; the equality is attained for
the function h(z) = 2, z € D.

1-2?

Lemma 1.2 [25]. If g € &, then the estimate |c; — pcjci—;| < 2 holds for
i,j€N=1{1,2,3,...} withi > j and p € [0,1].

From Lemma 1.2, Livingston [26] proved that |¢; — ¢jei—j;| < 2.

Lemma 1.3 [9]. If g € &2, then |0204 — c§| < 4. The inequality holds only for

the functions
N 1+ 22

1= 2

71+z3

ue) T

h,Q(Z)

and their rotations.
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Lemma 1.4 [27]. Let g € & be of the form (1.8) with ¢; > 0. Then
20 = cf +y(d—cf)

and
deg = [} + {2c1y — ary® + 2(1 — [z[P)y}(4 — ¢})],
for some complex valued z and y such that |z| <1 and |y| < 1.

To obtain our results, we adopt some ideas from Libera and Zlotkiewicz [27].

2. Important Results
Theorem 2.1. If f € S*%,(8) (0 <8 <1), then

1
_ < — 2—-1)3—-1)=2;
lazas — aq| < 311 35) < )3-1) ;
this inequality is sharp for g1(z) = if'zz )
PRrROOF. For f € S*.#(f), there exists g € & such that
SRORSEr SO = 4(2) (21)
(1 =B){f(z) = f(=2)} + B{zf"(2) + 2f'(=2)}
Putting the values for f, f', f” and g in (2.1), we get
[2(1+ B)az +3(1 + 2B)azz +4(1 + 3B)asz? +5(1 +4B)asz> +...]
=le1 +{ca+ (1 +28)az}z + {c3 + (1 +2B)craz}2?
+{ea + (1 +2B)caaz + (1 +4B8)as}yz® +...]. (2.2)
Equating the coefficients for powers of z in (2.2), we obtain
o Co (2¢3 + c102) (2¢4 + 3)
_ s g srac) 0 BaTa) g,
“=oaiE a2 M s s sarap Y

Using the values of ag, ag and a4 from (2.3), we have
- C1Co _ (263 + 6162)
A1+ 8)(1+28)  8(1+33)
1 < (—2B% +38+1) )
= | & — c1ez
41+ 3B) 2(1+p)(1+28)

Taking modulus on both sides and then applying Lemma 1.2 to the expression above,

203 — Q4

upon simplification, we obtain

1
I&zag—a4|§2 <@2-1B-1=2 0O

(1+38)

REMARK 2.2. For the extremal function g;(z) = Lzl ] 4223 4226 4

1—23
we have ¢; = 0, cg = 0, and ¢3 = 2. Hence, from (2.3) we obtain az = 0, a3 = 0,

and a4 — ﬁ
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Theorem 2.3. If f € S*%,(8) (0 <5 <1), then
1

2 _asl<—<(2-12=1,
’aQ a3’ = (1+2B) ( ) )
this inequality is sharp for go(z) = %fiz )

PROOF. Using the values of az and as from (2.3), we have

o4 e 1 G_Qi%gﬁ
ST+ B)2 2(1+28) 200428\ 200+p2 )

Putting modulus on both sides in the expression above and applying Lemma 1.2,

a3 —

after simplifying, we get
1
a3 — a3 < =2

(1+28)

REMARK 2.4. For the extremal function g2(z) = Lzl ] 4222 4 224 4 .,

1—22

we have ¢; = 0 and ¢ = 2; Hence, from (2.3), we obtain as = 0 and a3 = ﬁ

Theorem 2.5. If f € S*%,(B) (0 <5 <1), then
1

2 | < ——<(3-1)2=4;
a5 = as| < 5y <6
this inequality is sharp for g3(z) = ifi
PROOF. Using the values of a3 and a5 from (2.3), we have
2 2 2 1 —45% +4 1
ag—a5: 2 —( C4+62):— (04——( B+ 46+ )C§> (2.4)
=297 s(1-45) 41+ 4P) 21+ 26)2

Taking modulus on both sides and applying Lemma 1.2, after simplifying, we get

2
az; —as| < ————.
o5 — as| < 2(1+48)
REMARK 2.6. For the extremal function
1+t
1 — 4

c4

we have ¢ = 0 and ¢4 = 2, therefore, from (2.3), we obtain ag = 0 and a5 = g

g3(2) =142 1228 4.,

Theorem 2.7. If f € S*#,(B) (0 < 5 < 1), then
1 .
(1+283)%

the inequality is sharp for the same function g2(z) as in Theorem 2.3.

|Hao(f)| = |azas — a3| <

PROOF. Using the values of as, a3, and a4 from (2.3), for the expression asaq —
a%, we get
1
T I6(1 1 B)(L + 28)%(1 + 3B)
x (2(1+28)%cics + (1 +28)%clea —4(1 + B)(1 +3B)c3),  (2.5)

aoa4 — a§
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which is equivalent to

1
T 16(1+ B)(1 +2B)2(1 + 38) [

a204 — a% dicics + dgC%Cz + dgcg], (26)

where
dy =2(1+26)% do=(1+28)% ds=—4(1+p6)(1+30). (2.7)
Putting the values of ¢z and ¢3 from Lemma 1.4 into the right-hand side of (2.6),
we simplify it into
4[d10103 + dQC%CQ + d3c§] = [(dl + 2ds + dg)ciL
+2(dy +do + d3)E (4 — Az — di P (4 — A)a? 4 ds(4 — 3)2a?+
2dic1(4—c})(1— [z?)y]. (2.8)
Taking modulus on both sides and applying the triangle inequality in the expression
above, we get
4|d16103 +docicy + dgcg’ < [|d1 +2do + ds]|e1|* + 2|dy||c1|]4 — 2y
+2]dy + da + dsller|*4 = €fl|x] + {(|da| = |ds])et — 2]du|eally] + 4ds]} |4 — cF]]a]?].
(2.9)

By (2.7), we can now write

|dy + 2do + ds| = 45%, |dy +do + d3| = 1+ 48, (2.10)

{(Idi] = da])ei = 2ldulex|ly| + 4]ds| }
= —(48% + 8B +2)cf —4(1 +28)%crly| + 16(1 + B)(1 + 38)
=2(c1 = 2){=(28% + 48 + )er —4(1 + B)(1 + 30)},
=2(2 = c){(26* +48 + e +4(1+ B)(1 +30)}, |yl = 1.
Putting the calculated values from (2.10) and the value of d; from (2.7) into (2.9),
after simplifying, we get
2|d10103 +docicy + dgcg‘ < [2520411 +2(1+28)%¢; (4 — c%) ly| +(1+48)c3 (4 — c%) ||
+(2—c){(26% +4B8 + 1)er +4(1 + B)(L +368) (4 — ) |z|*]. (2.11)
Applying the triangle inequality, restoring |z| by p, with |y| < 1, choosing ¢; =
¢ €]0,2], on the right-hand side of (2.11) we obtain
2|dicies + dacten + dsc3| < [28%¢* +2(1 4 28)%c(4 — &) + (1 +48)*(4 = )p

+(2-0){(28% +4B+1)c+4(1+B8)(1+3B)}4—c)p?] = H(c,p) for |z| = p e([O, 1]).
2.12

Here
H(c,p) = [28%c* +2(1 +28)%c(4 — ) + (1 +4B)c2 (4 — A)p
+(2-o){(28% +4B8 + Ve +4(1+ B)(1 +36) 4 —cH)p?l. (2.13)
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To determine the maximum value of H(c,p) over the rectangle [0,1] x [0,2], we
consider the partial differential coefficient of H(c, p) from (2.13) with regard to p
given by
0H
dp

For p € (0,1), ¢ € (0,2), and (0 < 8 < 1), by (2.14), we notice that %—Ij > 0,
which indicates that H(c, p) turns out to be an increasing mapping of p, hence, its

= [(1+48)c® +2(2 —c){(26% +4B8 + e+ 4(1 + B)(1 +38)}p|(4 — c*). (2.14)

maximum value is attained on the boundary of the rectangle only, i.e., when p = 1.
Therefore, for p = 1 in (2.13), after simplifying, we get

F(c) = H(c,1) = 48%c* —8(1 +26)%® + 32(1 + B)(1 + 33), (2.15)
F'(c) = 168%c® —16(1 + 253)?c, (2.16)
F'(c) = 483%c* — 16(1 + 2)>. (2.17)
For the extreme values of F(c), let F'(c) = 0. From (2.16), we have
16c{3%c* — (1 +2B)*} = 0. (2.18)

Now, let us discuss the following two instances.
CASE 1. When ¢ = 0, from (2.17), we note that

F"(0) = —16(1 +28)2 <0 for0< g <1.

Therefore, by the 2"¢ differentiation test at ¢ = 0, F(c) possesses the maximum
value, which we can obtain from (2.15) as

Joax F(0) = 32(1+ B)(1+3p3). (2.19)
CASE 2. When ¢ # 0, from (2.18), we get
2
2 — (H’%ﬂ) (2.20)

For 0 < 8 < 1, from (2.20) we note that ¢? does not belong to [0, 2].
Now, simplifying the expressions (2.12) and (2.19), we obtain

|dicies + dacies + dsc3| < 16(1+ B)(1 + 3B). (2.21)
From (2.5) and (2.21), after simplifying, we get
1
2
‘a2a4 - a3‘ S m (222)

REMARK 2.8. For the extremal function g2(z) = Lbe? ] 4222 4 224 4

1—22
we have ¢; = 0, ¢a = 2, ¢3 = 0, and ¢4 = 2, for which from (2.3) we obtain ay = 0,

as = ﬁ, and aq = 0.

REMARK 2.9. For § = 0 and 8 = 1 in (2.22), the particular results coincide
with that of Rami Reddy and Vamshee Krishna [28].
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Theorem 2.10. If f € S*%,(6) (0 < 5 <1), then

2| < 13
=161+ 26)(1 +48)

|Ha3(f)| = |asas —

PROOF. Using the values of a3, a4, and as from (2.3) in azas — a3, we simplify

it into
osas —af = g [(1(103530102/3) - Mq@iiiﬁ); C%CE)] (223)
Rearranging the terms in (2.23), we have
i il 04
U AREETITES Ui
T e ) e

Taking modulus on both sides and applying Lemmas 1.1, 1.2, and 1.3, upon simpli-
fication, we obtain

13
(1+28)(1+4B)

REMARK 2.11. For 8 =0 and 8 = 1 in (2.25), the results coincide with that of
Andy Liew Pik Hern et al. [10].

|Ho,(f)] = [asas —ai] < 15 (2.25)
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