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Аннотация. Рассматривается адаптация к кусочно-гладкой системе Чуа разрабо-
танного ранее высокоточного численного метода построения приближений к неустой-
чивым решениям динамических систем с квадратичными нелинейностями на их
аттракторах. Также получена модификация алгоритма Бенеттина — Вольфа для
вычисления характеристических показателей Ляпунова рассматриваемой кусочно-
гладкой системы для рассматриваемого режима. Разработан способ, основанный на
методе наименьших квадратов, позволяющий вычислить усредненную оценку стар-
шего показателя Ляпунова на основе данных о поведении линеаризованной динами-
ческой системы с использованием высокоточного метода на больших промежутках
времени. Для скрытых аттракторов в системе Чуа получены следующие резуль-
таты: 1) фрактальная размерность скрытого хаотического аттрактора на основе
статистики возвратов Пуанкаре, 2) значения характеристических показателей Ля-
пунова для устойчивого цикла и хаотического аттрактора с помощью разработан-

ной модификации алгоритма Бенеттина — Вольфа; повышена его эффективность
за счет использования параллельных вычислений.
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1. Введение

Рассмотрим кусочно-гладкую динамическую систему Чуа [1–3]




ẋ1 = α(x2 − µx1)− αψ(x1),

ẋ2 = x1 − x2 + x3,

ẋ3 = −βx2 − γx3,

(1)

где

ψ(x1) =
a

2
(|x1 + 1| − |x1 − 1|), (2)

α, µ = m1 + 1, β, γ, a = m0 −m1, m0 и m1 — параметры системы.

Заметим, что по виду функции ψ(x1) систему (1) можно назвать системой

с преобразователем типа упора [4, с. 23, 24].

Для локализации скрытых аттракторов системы (1) в работах [1–3] исполь-

зуется метод описывающей функции. При этом приведены значения начальных

условий, дающих приближения к этим аттракторам.
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При оценке характеристик аттракторов динамических систем (например,

спектра показателей Ляпунова, фрактальных размерностей и др.) важно иметь

высокоточные методы построения приближений к их решениям на больших про-

межутках времени из-за неустойчивости решений таких систем на аттракторах.

Классические численные методы могут давать большие накопления ошибок из-

за конечной точности представления вещественных чисел в ЭВМ и погрешно-

стей численного интегрирования. Заметим, что для системы Чуа на сегодня

существует не так много работ, посвященных особенностям численного инте-

грирования системы. Поскольку функция ψ(x1) не является всюду гладкой,

применение классических численных методов также усложнено тем, что перехо-

ды через плоскости x1 = ±1 вызывают скачок погрешности метода. Например,

для дифференциальных уравнений с разрывной правой частью можно исполь-

зовать [5–8] метод Рунге-Кутты 4-го порядка точности в областях гладкости с

последующим склеиванием приближенных решений на границе. Однако ошиб-

ка определения момента времени, когда траектория пересекает такую границу,

дает свой вклад в накопление общей ошибки интегрирования, которая со вре-

менем нарастает, если точное решение системы в некоторых областях неустой-

чиво. Заметим, что данная проблема в известной литературе достаточно редко

рассматривается [6, 9, 10]. Пример системы уравнений с кусочно-гладкой пра-

вой частью лоренцева типа, для которой решения на аттракторе неустойчивы

и имеют место скользящие режимы, приведен в статье [11]. В статье [12] пред-

ставлена схема алгоритма численного решения систем обыкновенных диффе-

ренциальных уравнений с произвольным количеством поверхностей разрыва в

виде конечного автомата, с помощью которой можно построить приближенные

решения таких систем в общем виде. Данная схема предусматривает скользя-

щие режимы.

Отметим, что в современной литературе (см., например, [13]) для кусочно-

гладких систем некоторые исследователи применяют высокоточные модифика-

ции метода гармонического баланса для отыскания приближений к периодиче-

ским решениям, являющегося численно-аналитическим и достаточно трудоем-

ким по алгоритмической реализации в общем случае.

В последние годы появилось несколько работ [14–19] автора, посвящен-

ных разработке высокоточного численного метода построения приближений к

неустойчивым решениям динамических систем с квадратичными нелинейностя-

ми на их аттракторах на базе метода степенных рядов и локализации вертикаль-

ных асимптот динамических систем взрывного типа [19]. В статье [19] также

была предложена идея переноса разработанного метода на негладкий случай

системы (1). Заметим, что данный метод может быть применен и для проверки

точности найденного приближения к неустойчивому периодическому решению

системы Лоренца [20].

Для применения рассматриваемых численных схем нужно описать следу-
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ющие моменты. Введем обозначение:

F (x1, x2, x3) =



α(x2 − µx1)− αψ(x1)

x1 − x2 + x3

−βx2 − γx3


 .

Перепишем систему (1) в векторной форме:

Ẋ = F (X),

где X(t) = [x1(t) x2(t) x3(t)]
⊤.

Заметим, что функция ψ(x1) глобально липшицева:

|ψ(x1)− ψ(y1)| ≤
|a|
2
|(|x1 + 1| − |y1 + 1|)− (|x1 − 1| − |y1 − 1|)|

≤ |a|
2

(||x1 + 1| − |y1 + 1||+ ||x1 − 1| − |y1 − 1||),

по свойству модуля ||r| − |w|| ≤ |r − w| имеем

|ψ(x1)− ψ(y1)| ≤
|a|
2

(|x1 − y1|+ |x1 − y1|) ≤ l|x1 − y1|

с константой Липшица l = |a|.
Поскольку остальные компоненты векторной функции F (x1, x2, x3) линей-

ны, то функция F удовлетворяет условию Липшица. Тогда решение системы

(1) существует и единственно для любых начальных условий [21].

По свойству функции ψ(x1)

|ψ(x1)| ≤ |a||x1|

имеем оценку

|α(x2−µx1)−αψ(x1)| ≤ ((|αµ|+ |a|)|x1|+ |α||x2|) ≤ n1(|x1|+ |x2|+ |x3|) = n1‖X‖1,

где n1 = max{|αµ|+ |a|, |α|, 1}. Аналогично

|x1 − x2 + x3| ≤ ‖X‖1, | − βx2 − γx3| ≤ n3‖X‖1,

где n3 = max{1, |β|, |γ|}. Тогда

‖F (X)‖1 ≤ (n1 + 1 + n3)‖X‖1 = L(‖X‖1),

причем функция L(ϕ) удовлетворяет условию Осгуда [22]. Таким образом, все

решения системы (1) нелокально продолжаемы вправо.

В настоящей статье будем исследовать два скрытых аттрактора в системе

(1), существование которых доказано в статье [1]. Также в статье [1] приведены

начальные условия, близкие к скрытым аттракторам, и доказан их тип для

значений параметров α = 8.4, β = 12, γ = −0.005, m0 = −1.2 и m1 = −0.05.

1. Устойчивый цикл с циклической частотой

ω ≈ 3.2396 (3)
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и приближение к его начальным условиям:

X(0) =




11.7546

9.7044

−16.7367


 . (4)

2. Хаотический аттрактор:

X(0) =




1.5187

0.0926

−2.1682


 . (5)

Целью настоящей статьи является адаптация высокоточного численного

метода для систем с квадратичной правой частью к кусочно-гладкой системе

(1). На базе данного метода провести исследования режимов (4) и (5) и решить

следующие задачи.

1. Модифицировать алгоритм Бенеттина — Вольфа для гладких систем

при вычислении характеристических показателей Ляпунова системы (1) для

рассматриваемого режима.

2. Разработать способ, основанный на методе наименьших квадратов, поз-

воляющий вычислить усредненную оценку старшего показателя Ляпунова на

основе данных о поведении линеаризованной динамической системы на боль-

ших промежутках времени.

3. Вычислить фрактальную размерность для режима (5) на основе стати-

стики возвратов Пуанкаре.

4. Вычислить значения характеристических показателей Ляпунова для ре-

жимов (4) и (5) с помощью разработанной модификации алгоритма Бенетти-

на — Вольфа; повысить его эффективность за счет использования параллель-

ных вычислений.

2. Описание численного метода

Модули, стоящие в правой части первого уравнения системы (1), определя-

ют три области, разделенные плоскостями с уравнениями

x1 = 1 (6)

и

x1 = −1, (7)

которым будут соответствовать свои гладкие системы. Введем номер области j:

1) j = 0 при x1 < −1,

2) j = 1 при x1 ∈ [−1, 1],

3) j = 2 при x1 > 1.

Перепишем систему (1) в общем виде для введенных областей:




ẋ1 = qj + pjx1 + αx2 ≡ w1(x1, x2, x3),

ẋ2 = x1 − x2 + x3,

ẋ3 = −βx2 − γx3,

(8)
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где q0 = c, p0 = d, q1 = 0, p1 = b, q2 = −c, p2 = d; b = −α(m0 + 1), c = aα,

d = −µα.

Представим решение системы (8) в области с номером j в виде степенных

рядов:

x1(t) = ξ
(j)
1,0 +

∞∑

i=1

ξ
(j)
1,i t

i, x2(t) = ξ
(j)
2,0 +

∞∑

i=1

ξ
(j)
2,i t

i, x3(t) = ξ
(j)
3,0 +

∞∑

i=1

ξ
(j)
3,i t

i, (9)

сходящихся на некотором отрезке времени [−τ, τ ]. В общем случае значение τ

ограничено и зависит от выбора начальных условий [14, 19].

Отметим, что, исходя из формул (9), ξ
(j)
1,0, ξ

(j)
2,0 и ξ

(j)
3,0 — заданные значения

начальных условий для системы (8) в рассматриваемой области с номером j.

Коэффициенты разложения в ряды (9) имеют вид [16, 17]

ξ
(j)
1,1 = qj + pjξ

(j)
1,0 + αξ

(j)
2,0, ξ

(j)
2,1 = ξ

(j)
1,0 − ξ

(j)
2,0 + ξ

(j)
3,0, (10)

ξ
(j)
3,1 = −βξ(j)2,0 − γξ

(j)
3,0; (11)

при i ≥ 2

ξ
(j)
1,i =

pjξ
(j)
1,i−1 + αξ

(j)
2,i−1

i
, ξ

(j)
2,i =

ξ
(j)
1,i−1 − ξ

(j)
2,i−1 + ξ

(j)
3,i−1

i
, (12)

ξ
(j)
3,i =

−βξ(j)2,i−1 − γξ
(j)
3,i−1

i
. (13)

Чтобы при вычислениях оперировать положительными (или отрицатель-

ными) шагами по времени, необходимо иметь гарантированную оценку величи-

ны τ . Поэтому перепишем систему (8) в векторной форме [16, 17]:

Ẋ = A
(j)
0 +A

(j)
1 X,

где

A
(j)
0 = [qj 0 0]⊤,

A
(j)
1 =



pj α 0

1 −1 1

0 −β −γ


 . (14)

Затем вычисляем значения функций

h1

(
ξ
(j)
1,0, ξ

(j)
2,0, ξ

(j)
3,0

)
=
∣∣ξ(j)1,0

∣∣+
∣∣ξ(j)2,0

∣∣+
∣∣ξ(j)3,0

∣∣, (15)

h2

(
ξ
(j)
1,0, ξ

(j)
2,0, ξ

(j)
3,0

)
=

{ ∥∥A(j)
0

∥∥+
∥∥A(j)

1

∥∥ · h1

(
ξ
(j)
1,0, ξ

(j)
2,0, ξ

(j)
3,0

)
, если h1 > 1,

∥∥A(j)
0

∥∥+
∥∥A(j)

1

∥∥ в противном случае,
(16)

τ
(
ξ
(j)
1,0, ξ

(j)
2,0, ξ

(j)
3,0

)
=

1

h2

(
ξ
(j)
1,0, ξ

(j)
2,0, ξ

(j)
3,0

)
+ δpw

, (17)

где

∥∥A(j)
0

∥∥ =
∥∥A(j)

0

∥∥
1

= |qj |,
∥∥A(j)

1

∥∥ =
∥∥A(j)

1

∥∥
1

= max{|pj|+ 1, |α|+ |β|+ 1, |γ|+ 1},
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δpw — любое положительное число.

Алгоритм построения дуги траектории системы [8] подробно описан в тези-

сах [23] с использованием высокоточных вычислений на базе библиотеки MPFR

C++ [24] в случае, когда дуга траектории на рассматриваемом отрезке време-

ни целиком находится в области с номером j. Отметим, что метод аналогичен

методам Рунге-Кутты, но с гибким изменением порядка и выбором шага, обес-

печивающим сходимость рядов (9).

Далее рассмотрим модификацию данного алгоритма с учетом кусочно-глад-

кой правой части системы (1).

Введем векторы

�
(j)
i =

[
ξ
(j)
1,i ξ

(j)
2,i ξ

(j)
3,i

]⊤
.

Пусть T — длина отрезка интегрирования. Зададим такое представление веще-

ственного числа, чтобы

εm ≪ εpw,

где εm — машинный эпсилон и εpw — точность оценки общего члена ряда (9).

Таким образом, суммирование при использовании формулы (9) прекращается

при таком значении i = i∗, когда
∥∥�(j)

i∗

∥∥ · |�t|i∗ < εpw, (18)

где �t — шаг интегрирования. Отметим, что для сходимости ряда величину �t

нужно выбирать так:

0 < �t ≤ τ
(
�

(j)
0

)
.

Рассмотрим более подробно алгоритм построения дуги траектории системы

(1) на отрезке времени [0, T ]. В начале алгоритма по начальному условию для

координаты x1 определяем, в какой части фазового пространства мы находимся,

т. е. номер j. Далее делаем шаг по времени �t = τ
(
�

(j)
0

)
вперед. При этом

нужно запомнить полученные полиномы x̃1(t), x̃2(t) и x̃3(t), аппроксимирующие

соответствующие фазовые координаты x1(t), x2(t) и x3(t) на отрезке времени

[0, �t].

Если x̃1(�t) не принадлежит текущей части фазового пространства, то

необходимо с высокой точностью найти момент времени t = �tnew, когда тра-

ектория пересекает одну из плоскостей (6) или (7). Для этого методом секущих

численно решается уравнение

x̃1(t)− g = 0, (19)

где g = 1 или g = −1, с заданной погрешностью δsec. Заметим, что под дости-

жением величины δsec в итерационном процессе

�t[k], k = 0, 1, . . . , (20)

поиска приближений к корню �tnew уравнения (19) понимается достижение

такого номера k = k∗, когда

|�t[k∗] −�t[k∗−1]| < δsec.
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Далее вектор начальных условий принимается равным

�
(jnew)
0 = [g x̃2(�t

[k∗]) x̃3(�t
[k∗])]⊤,

где jnew — номер новой области, в которую мы попали, и поскольку система (8)

динамическая, начальный момент времени принимается равным нулю.

Преимущества метода секущих при решении данной задачи:

1) для достижения точности εsec этим методом требуется O(ln ln(1/εsec))

итераций, как и в методе Ньютона [25, с. 335, 336];

2) не требуется построения выражений и вычисления производной функции

x̃1(t);

3) перед началом итерационного процесса (20) имеем отрезок [0, �t] лока-

лизации корня.

Отметим, что в работах [6, 10] во избежание скачка погрешности прибли-

женного решения в методе Рунге-Кутты 4-го порядка точности для корректи-

ровки шага интегрирования используются интерполяционные полиномы с ин-

терполяцией назад и метод Ньютона для численного решения уравнения от-

носительно шага с экстраполяцией до поверхности границы раздела областей,

чтобы не вычислять значения правой части системы в другой области. В нашем

случае аппроксимирующие полиномы фазовые координаты x1(t), x2(t) и x3(t)

строятся по коэффициентам рядов (9).

Описанный алгоритм является базовым для всех дальнейших исследований

характеристик аттракторов в системе (1). Сначала рассмотрим его применение

для вычислений спектра показателей Ляпунова.

3. Модификация алгоритма Бенеттина —

Вольфа для вычисления оценок значений

характеристических показателей Ляпунова

Для вычисления оценок значений характеристических показателей Ляпу-

нова на практике обычно используют алгоритм Бенеттина — Вольфа [26, 27].

Однако его применение напрямую к системе (1) осложнено тем, что она не яв-

ляется гладкой. Поэтому осуществим следующую процедуру.

Рассмотрим разностный аналог частной производной функции w1 и матри-

цы Якоби для системы (8)

∂w1

∂x1
≃ qjnew + pjnew (x1 +�) + αx2 − qj − pjx1 − αx2

�

= pjnew +
qjnew − qj + (pjnew − pj)x1

�
,

J̃j 7−→jnew (x1) =



pjnew +

qjnew−qj+(pjnew−pj)x1

� , α 0

1 −1 1

0 −β −γ


 , (21)

где � — достаточно малая величина, pjnew и qjnew — значения коэффициентов

системы (8) в новой области фазового пространства с номером jnew, j 7−→ jnew
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означает переход из текущей области с номером j в область с номером jnew.

Заметим, что когда jnew = j, матрица в формуле (21) совпадает с матрицей в

(14).

Выбор величины � осуществляется следующим образом. Пусть δx1 > 0 —

заданная малая величина. Если jnew < j, то � = −δx1 (идет движение в сторо-

ну уменьшения координаты x1); иначе � = δx1 . В нашем случае направление

возрастания нумерации областей фазового пространства совпадает с направле-

нием возрастания координаты x1.

Пусть x4(t), x5(t) и x6(t) — возмущения для координат x1(t), x2(t) и x3(t)

соответственно. Тогда уравнения относительно данных возмущений имеют вид

ẋ4 =

(
pjnew +

qjnew − qj + (pjnew − pj)x1

�

)
x4 + αx5, (22)

ẋ5 = x4 − x5 + x6,

ẋ6 = −βx5 − γx6.

Перепишем уравнение (22), выделив в нем линейную и квадратичную ча-

сти:

ẋ4 =

(
pjnew +

qjnew − qj
�

)
x4 + αx5 +

pjnew − pj
�

x1x4.

По аналогии с подходом, используемым в работах автора [17, 18], расширим

систему (8), дополнив ее уравнениями для фазовых координат возмущений.

При этом введем вектор

X̂(t) = [x1(t) . . . x6(t)]
⊤

и матрицы

Â
(j)
0 = [qj 0 0 0 0 0]⊤,

Â
(j)
1 =




pj α 0 0 0 0

1 −1 1 0 0 0

0 −β −γ 0 0 0

0 0 0 pjnew +
qjnew−qj

� α 0

0 0 0 1 −1 1

0 0 0 0 −β −γ



,

Q̂
(j)
1 = Q̂

(j)
2 = Q̂

(j)
3 = Q̂

(j)
5 = Q̂

(j)
6 = O,

Q̂
(j)
4 =




0 0 0
pjnew−pj

� 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0



.

Расширенная динамическая система имеет вид

dX̂/dt = Â
(j)
0 + Â

(j)
1 X̂ + �(X̂), (23)
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где

�(X̂) = [ϕ1(X̂) . . . ϕ6(X̂)]⊤, ϕp(X̂) = 〈QpX̂, X̂〉, p = 1, . . . , 6.

Получим [17, 18] рекуррентные соотношения для вычисления коэффициен-

тов рядов возмущений

x4(t) = ξ
(j)
4,0 +

∞∑

i=1

ξ
(j)
4,i t

i, x5(t) = ξ
(j)
5,0 +

∞∑

i=1

ξ
(j)
5,i t

i, x6(t) = ξ
(j)
6,0 +

∞∑

i=1

ξ
(j)
6,i t

i, (24)

ξ
(j)
4,i =

(
pjnew +

qjnew−qj
�

)
ξ
(j)
4,i−1 + αξ

(j)
5,i−1 +

pjnew−pj

�

i∑
k=0

ξ
(j)
1,kξ

(j)
4,i−k

i
, (25)

ξ
(j)
5,i =

ξ
(j)
4,i−1 − ξ

(j)
5,i−1 + ξ

(j)
6,i−1

i
, (26)

ξ
(j)
6,i =

−βξ(j)5,i−1 − γξ
(j)
6,i−1

i
. (27)

Формулы (25)–(27) являются дополнением формул (10)–(13).

Значение числа τ , определяющего отрезок сходимости степенных рядов (9)

и (24), вычисляется следующим образом:

∥∥Â(j)
0

∥∥ =
∥∥Â(j)

0

∥∥
1

= |qj |,
∥∥Â(j)

1

∥∥ =
∥∥Â(j)

1

∥∥
1

= max

{
|pj |+ 1, |α|+ |β|+ 1, |γ|+ 1,

∣∣∣∣pjnew +
qjnew − qj

�

∣∣∣∣+ 1

}
,

∥∥Q̂(j)
1

∥∥ =
∥∥Q̂(j)

2

∥∥ =
∥∥Q̂(j)

3

∥∥ =
∥∥Q̂(j)

5

∥∥ =
∥∥Q̂(j)

6

∥∥ = 0,

∥∥Q̂(j)
4

∥∥ =

∣∣∣∣
pjnew − pj

�

∣∣∣∣ ,

µ = 6 max
p=1,... ,6

∥∥Q̂(j)
p

∥∥ = 6

∣∣∣∣
pjnew − pj

�

∣∣∣∣ ,

h1

(
ξ
(j)
1,0, . . . , ξ

(j)
6,0

)
=
∥∥�(j)

i

∥∥ =
∥∥�(j)

i

∥∥
1

=

6∑

p=1

∣∣ξ(j)p,0

∣∣,

h2

(
ξ
(j)
1,0, . . . , ξ

(j)
6,0

)
=

{
µh2

1 +
(∥∥Â(j)

1

∥∥+ 2µ
)
h1 +

∥∥Â(j)
0

∥∥, если h1 > 1,
∥∥Â(j)

0

∥∥+
∥∥Â(j)

1

∥∥+ µ в противном случае,

τ
(
ξ
(j)
1,0, . . . , ξ

(j)
6,0

)
=

1

h2 + δpw
. (28)

Применение алгоритма Бенеттина — Вольфа для вычисления оценок λ̃1, λ̃2

и λ̃3 характеристических показателей Ляпунова в случае систем с квадратичной

правой частью подробно описано в статье [18]. Напомним, что заданный отре-

зок времени [0, TL] (обычно достаточно большой), на котором мы будем искать

оценки показателей, делится на отрезки одинаковой длины

τM =
TL
M
,
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где M — количество таких отрезков. Далее, используя процесс Грама — Шмид-

та (ГШ) [26; 27, с. 163–165; 28, с. 126–132], формируем три начальных условия

для системы (23), у которых три первые координаты совпадают соответствен-

но — они являются координатами точки, близкой к аттрактору. Остальные

координаты — это нормированные и ортогонализованные возмущения.

Выбор значения M — это отдельная проблема. В [26, с. 294, 297] указано,

что имеется некоторая неустойчивость в значениях самого младшего отрица-

тельного показателя λ3, так как «элементы объема, включающие отрицатель-

ные направления экспоненты, затухают экспоненциально быстро», и рекоменду-

ется отслеживать установившиеся оценки показателей Ляпунова в зависимости

от изменения τM . Поэтому вычисление младшего показателя лучше реализо-

вывать для малых значений τM .

В случае хаотического аттрактора для системы третьего порядка частое

применение ГШ-процесса (при малых значениях τM ) вызывает потерю ориен-

тации в фазовом пространстве [26, с. 299], внося шум в получаемое значение

оценки старшего λ̃1 > 0 показателя. При больших значениях τM элементы

объема фазового пространства становятся слишком большими, демонстрируя

экспоненциальный рост во времени. Это дает возможность улучшить оценку

λ̃1, но применение классических численных методов с малыми фиксированны-

ми порядками точности и стандартного представления вещественных чисел в

ЭВМ (например, в языке C) приведет к большим ошибкам интегрирования и

переполнению используемых переменных в программном коде.

Использование описанной высокоточной численной схемы на базе метода

степенных рядов совместно с библиотекой MPFR C++ [24, 29] для представ-

ления чисел произвольной точности (тип данных mpreal с перегруженными

арифметическими операциями и дружественными математическими функци-

ями) позволяет избежать переполнений и контролировать накопление ошибки

численного интегрирования при варьировании точности εpw оценки общего чле-

на рядов (9) и (24). Таким образом, мы можем увеличить значение τM для

уменьшения шума в получаемом значении λ̃1.

При переходе из одной области фазового пространства в другую (измене-

ние номера j) по алгоритму, описанному в разд. 2, вычисляется приближенное

значение шага �tnew по времени, когда траектория системы (1) пересечет од-

ну из плоскостей (6) или (7). При достижении данной границы, система (23)

будет иметь квадратичную правую часть (внутри области она линейна), при

этом значение jnew — это индекс новой области. Из-за малости величины δx1

значения коэффициентов данной системы очень велики, но полученная оценка

длины (28) отрезка сходимости рядов (9) и (24) в работе [16] гарантирует их схо-

димость на шаге интегрирования �t = τ . Взрывной рост фазовых координат

при этом невозможен, поскольку из формулы (28) следует, что

�t = O
(∥∥�(j)

0

∥∥−2)
(29)

при
∥∥�(j)

0

∥∥→∞, т. е. величина �t будет достаточно малой, а после перехода в



О высокоточном численном методе 123

новую область система (23) станет линейной. Периодическое применение ГШ-

процесса также останавливает резкий рост фазовых координат возмущений.

Стоит отметить следующую особенность описанной схемы вычислений оце-

нок значений характеристических показателей Ляпунова. Исходя из оценки

(29), экспоненциальный рост фазовых координат дает экспоненциальное зату-

хание значения шага по времени, что ведет к резкому росту времени вычис-

лений. Поскольку для системы третьего порядка необходимо три раза решать

систему (23) между ГШ-процессами, данную процедуру можно распараллелить.

Как было описано выше, организация вычислений происходит с использовани-

ем вещественных чисел произвольной точности, что делает невозможным на

данный момент применение GPU. Поскольку мы имеем три независимых про-

цесса, использующих небольшой объем вычислительных ресурсов, параллель-

ные вычисления можно организовать в рамках одной ЭВМ на CPU, например,

в многопоточном режиме. Заметим, что параллельные вычисления на GPU на

сегодняшний день используются при анализе нескольких предельных решений

ОДУ, в том числе скрытых аттракторов (например, в работах [30, 31]).

Чтобы проверить точность найденных оценок λ̃1, λ̃2 и λ̃3, воспользуемся

следующим соотношением [32, с. 136]:

λ1 + λ2 + λ3 = 〈div F 〉, (30)

где

〈div F 〉 = lim
T→∞

1

T

T∫

0

divF (x1(t)) dt,

при этом

divF (x1) = −αµ− αψ′x1
− 1− γ.

Тогда вычисление правой части равенства (30) сводится к вычислению сред-

него значения 〈ψ′x1
〉 функции ψ′x1

(x1(t)) на отрезке времени [0, T ] при больших

значениях T .

Исходя из графика функции ψ(x1), значения

ψ′x1
(x1) =

{
a, если x1 ∈ (−1, 1),

0, если x1 ∈ (−∞,−1) ∪ (1,+∞).

Поскольку в алгоритме, описанном в разд. 2, рассчитывается такое значе-

ние шага по времени, когда траектория пересечет одну из плоскостей (6) или

(7), а также по виду частей, составляющих функцию ψ′x1
(x1(t)), для реализа-

ции вычисления 〈ψ′x1
〉 используется метод левых прямоугольников с перемен-

ным шагом интегрирования таким же, какой используется в данном алгоритме.

Следовательно, внутри шага не произойдет скачка значения ψ′x1
(x1(t)).

4. Результаты вычислений значений λ̃1, λ̃2

и λ̃3 для скрытых аттракторов системы (1)

Пусть bm — число бит под мантиссу вещественного числа. Для вычислений

были подобраны такие точности, что у получаемых значений показателей верны
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Рис. 1. Траектория системы (1), соответствующая скрытому хаотическому ат-
трактору.

первые 4 знака в дробной части:

bm = 300, тогда εm = 9.8 · 10−91;

δpw = 10−10, εpw = 10−80, δsec = 10−60, δx1 = 10−2.

Отметим, что уменьшение величины δx1 не дает значительного эффекта в

результатах вычислений.

Для начальных условий (5) была получена точка, более близкая к скрытому

хаотическому аттрактору в системе (1), по алгоритму, описанному в разд. 2:

X(0) =




0.242607564664894625733914154575786941050105924448969850851

−0.129154013908900093933869116916933583688948511046159634882

0.265287927489326246666551239611062113982412884174965132271


 .

(31)

Таблица 1. Результаты вычислений оценок λ̃1,

λ̃2 и λ̃3 для различных значений числа M

M λ̃1 λ̃2 λ̃3

20000 0.2121 −0.0266 −4.1824

10000 0.1964 −0.0123 −4.1950

5000 0.1834 −0.0126 −4.1987

2000 0.1760 −0.0039 −4.2011

500 0.1610 −0.0028 −3.5639

200 0.1614 0.0036 −1.6694

100 0.1634 0.0013 −0.8706

50 0.1621 0.0017 −0.4860

29 0.1638 0.0020 −0.3221
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Используя описанную выше модификацию алгоритма Бенеттина — Воль-

фа, при TL = 1000 для точки (31) при разных значениях числа M усредненные

значения оценок λ̃1, λ̃2 и λ̃3 сведены в табл. 1, откуда видна стабилизация пока-

зателя λ̃1 при уменьшении значения M . Также можно отметить стабильность в

значениях λ̃3 при больших значения числа M , что и было указано в разд. 3 дан-

ной статьи. Тогда можно сделать вывод о том, что для скрытого хаотического

аттрактора, представленного на рис. 1, значения

λ̃1 ≈ 0.16, λ̃2 ≈ 0, λ̃3 ≈ −4.2, λ̃1 + λ̃2 + λ̃3 ≈ −4.04.

При этом для T = TL средние значения

〈ψ′x1
〉 ≈ −0.6, 〈divF 〉 ≈ −3.93.

Таким образом, в равенстве (30) левая и правая части отличаются пример-

но на 0.11, что говорит о приемлемой точности вычисления оценок значений

характеристических показателей Ляпунова.

Применение параллельных вычислений для расчета оценок показателей

Ляпунова дает следующие результаты. В многопоточном режиме (использу-

емая операционная система — Ubuntu Linux) время вычислений при M = 29 со-

ставляет 47 мин на процессоре AMD Ryzen 7 5700G (4.67 ГГц, 16-ти потоковый),

температура процессора достигает 70◦C, загрузка — два-три ядра (обычный

режим работы процессора, при котором нет вычислительных задач, — 40◦C).

Контроль температуры осуществлялся в приложении Psensor. Время вычисле-

ний для последовательного алгоритма (загружено одно ядро, температура —

64◦C) — 71 мин; с использованием библиотеки libopenmpi (технология Open

MPI) (загрузка — 4 ядра, максимальная температура процессора составляет

78◦C) — 59 мин. Увеличение загрузки процессора и времени вычислений свя-

зано с тем, при работе с MPI-приложениями происходит запуск нескольких

процессов на одном (если позволяют ресурсы) или нескольких компьютерах.

В многопоточном же режиме параллельные вычисления выполняются в виде

нескольких потоков (нитей) в одном процессе, при этом операционная система

может оптимизировать загрузку ядер в рамках данного процесса, в отличие от

многопроцессного режима работы, где синхронизация процессов выполняется

программно.

Поскольку рассматриваемый метод оценки характеристических показате-

лей Ляпунова позволяет увеличить отрезок между ГШ-процессами, мы можем

построить график зависимости нормы ‖X̂‖2 от времени, например, на первом

шаге по алгоритму, описанному в разд. 2. При TL = 1000 и M = 29 величина

τM ≈ 34.48. Данный график представлен на рис. 2. Также на этом рисунке

построен график усредненной зависимости ‖X̂‖2 от t

‖X̂‖2 = b0 + b1e
λ̃1at,

где коэффициенты b0, b1 и λ̃1a определяются по методу наименьших квадратов

в математическом пакете Maxima [33]:

b0 ≈ 8.4, b1 ≈ 0.26, λ̃1a ≈ 0.272.
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Рис. 2. График зависимости нормы ‖X̂‖2 от t и усредненная кривая для вычис-

ления λ̃1a.

Рис. 3. Траектория системы (1), соответствующая скрытому аттрактору — пре-
дельному циклу.

Таким образом, получена еще одна оценка λ̃1a старшего показателя Ляпу-

нова. При этом значение

λ̃1a + λ̃2 + λ̃3 ≈ −3.928,

которое более близко к величине 〈div F 〉.
Отметим, что достоинство данного способа вычисления старшего показа-

теля Ляпунова по сравнению с алгоритмом Бенеттина — Вольфа в том, что

получаемое значение показателя учитывает значения фазовых координат на

отрезке времени [0, τM ], а не только в конечный момент времени.

По аналогии была получена точка, более близкая к предельному циклу, чем
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(4):

X(0) =




10.9947740082418782801240113997819195633739779444994538757

9.61981334895099741414351646822521979405421000896426828936

−11.8170827045443885649065273583176924298515470429370283924


 .

(32)

Расчеты для данного скрытого аттрактора проводилось для значения TL =

194.2, кратного периоду цикла (данная величина будет далее определена). При

M = 10 значение λ̃1 ≈ 0.0068 ≈ 0. Значения остальных показателей определя-

лось при M = 20000, поскольку они отрицательные:

λ̃2 ≈ −0.042, λ̃3 ≈ −8.43.

Тогда

λ̃1 + λ̃2 + λ̃3 ≈ −8.472.

Значение

〈divF 〉 ≈ −8.457,

что обеспечивает достоверность найденных оценок.

Исследуемая траектория показана на рис. 3.

5. Устойчивость по Пуассону

точек скрытых аттракторов

В работах [15, 16] численно исследованы точки предельных решений на

устойчивость по Пуассону, что позволило понять, имеем ли мы квазиперио-

дический или хаотический режим.

Напомним [21], что точка y фазового пространства называется положи-

тельно устойчивой по Пуассону (обозначение P+), если для любой окрестно-

сти U точки y и для любого TP > 0 найдется такое значение времени t ≥ TP ,

что траектория динамической системы попадет в окрестность U . Аналогично

если найдется такое t ≤ −TP , при котором траектория попадет в окрестность

U , то точка y отрицательно устойчива по Пуассону (обозначение P−). Точка,

устойчивая P+ и P−, называется просто устойчивой по Пуассону. Если каж-

дая точка траектории устойчива по Пуассону, то такая траектория называется

устойчивой по Пуассону.

Из ограниченности предельных решений диссипативных систем следует

[21, 27], что любой установившийся режим колебаний описывается устойчивыми

по Пуассону траекториями. Данное утверждение относится и к динамическому

хаосу. Если рассматривается траектория, отличная от положения равновесия,

то устойчивой по Пуассону она будет в том случае, если обладает свойством

возвращаться в сколь угодно малую ε-окрестность каждой своей точки беско-

нечное число раз. Такие возвраты называют возвратами Пуанкаре. В [27,

с. 146] указано, что «изучение статистики возвратов Пуанкаре — мощное сред-

ство анализа и классификации динамических режимов. По-видимому, потенци-

альные возможности этого подхода еще не полностью исчерпаны в современной
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нелинейной динамике». Например, для периодических режимов возвраты сле-

дуют друг за другом регулярно. Тогда [27, с. 145] «динамический хаос — это

такая ситуация, когда возвраты Пуанкаре в ε-окрестность стартовой точки не

проявляют регулярности, интервал времени между двумя последовательными

возвратами оказывается каждый раз другим и возникает некоторое статисти-

ческое распределение времен возврата». Пример анализа возвратов Пуанкаре,

основанного на теореме Каца [34, с. 67], для дискретных и непрерывных дина-

мических систем с хаотическими аттракторами приведен в работах [35, 36].

Для исследования возвратов Пуанкаре разработана программа [37], кото-

рая собирает статистику возвратов. Алгоритм ее работы следующий.

Пусть X0 = X(0) — начальная точка для системы (1), соответствующая

исследуемой, в частности, близкая к скрытому аттрактору. Отслеживание воз-

вратов необходимо производить не сразу, а через некоторый заданный момент

времени ts, чтобы выйти из ε-окрестности точки X0. Значения ε < 1 при этом

перебираются из некоторого убывающего конечного набора

ε0, . . . , εK

вещественных чисел. Для каждого значения εm (m = 0, . . . ,K) организуется

цикл по времени от t = ts до некоторого большого значения T с заданным

малым шагом�τ вычисления приближенных значений фазовых координатX(t)

системы (1) по алгоритму, описанному в разд. 2, в момент времени t, причем

фиксируются такие моменты t = tk, когда

‖X(tk)−X0‖2 < εm,

где k = 1, . . . , kmax. Заметим, что в данном случае фиксируются моменты вхож-

дения в εm-окрестность [36].

После этого вычисляется среднее время возврата [35, с. 5]

τ(εm) =
1

kmax

kmax∑

k=1

(tk+1 − tk) =
tkmax − t1
kmax

.

В случае хаотического аттрактора высокоточные вычисления важны для

получения более точной статистики возвратов.

По следствию из теоремы Каца [35, с. 4]

τ(ε) = Cε−d,

где C — некоторая постоянная, d — фрактальная размерность аттрактора.

Для начальной точки (31) получена статистика возвратов в ее окрестность

по описанному алгоритму. При этом

ts = 0.5, ε0 = 0.1, T = TL, εm =
ε0
m

для m ≥ 1. Далее по методу наименьших квадратов в математическом пакете

Maxima определяются коэффициенты C и d:

C = 0.424, d = 0.877.
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Рис. 4. Зависимость среднего времени возврата от радиуса отслеживаемой окрест-
ности.

Коэффициент детерминации R2 = 99%, что говорит о хорошем качестве ап-

проксимации. На рис. 4 показаны полученные точки, соответствующие радиусу

отслеживаемой окрестности и среднему времени возврата, а также аппрокси-

мирующая кривая.

Для регулярного режима, соответствующего точке (32), определены сред-

ние времена возвратов в окрестности точки X0. Оказалось, что

τ(ε0) = . . . = τ(εK) = 1.942,

откуда можно сделать вывод о том, что данное значение равно периоду Tp пре-

дельного цикла.

Полученное число соответствует циклической частоте (3):

ωp =
2π

Tp
≈ 3.235 ≈ ω.

6. Заключение

В данной статье рассмотрен численный метод решения кусочно-гладкой си-

стемы обыкновенных дифференциальных уравнений Чуа с использованием вы-

сокоточных вычислений, который может быть применен для сбора статистики

возвратов Пуанкаре с целью оценки фрактальной размерности рассматривае-

мого аттрактора. Описана реализация модификации алгоритма Бенеттина —

Вольфа для данной системы, в основу которой положена рассматриваемая чис-

ленная схема решения систем дифференциальных уравнений на базе метода

степенных рядов, реализованная с использованием параллельных алгоритмов

и арифметики произвольной точности на больших отрезках разбиения задан-

ного промежутка времени. Программный комплекс разработан на языке C++,

получено свидетельство о его регистрации [37].
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Замечено, что полученные характеристики аттракторов зависят от приме-

няемых алгоритмов, которые опираются на важные теоретические результа-

ты. Например, на зависимость оценки области сходимости рядов в описанном

высокоточном численном методе для выбора шага интегрирования от началь-

ных условий (формула (29)) и теорему Каца для исследования устойчивости по

Пуассону приведенных точек. Также отметим, что показатели Ляпунова могут

отличаться для разных траекторий аттракторов.
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